JPS62199003A - Zero-phase current transformer - Google Patents

Zero-phase current transformer

Info

Publication number
JPS62199003A
JPS62199003A JP61040294A JP4029486A JPS62199003A JP S62199003 A JPS62199003 A JP S62199003A JP 61040294 A JP61040294 A JP 61040294A JP 4029486 A JP4029486 A JP 4029486A JP S62199003 A JPS62199003 A JP S62199003A
Authority
JP
Japan
Prior art keywords
current transformer
zero
amorphous alloy
phase current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040294A
Other languages
Japanese (ja)
Inventor
Susumu Hashimoto
進 橋本
Takao Sawa
孝雄 沢
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61040294A priority Critical patent/JPS62199003A/en
Publication of JPS62199003A publication Critical patent/JPS62199003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase coercive force in high frequency to obtain a current transformer with large capacity and superior characteristics in respect to temperature, by using a Co-group amorphous alloy as an iron core for a zero-phase current transformer and lowering its Curie temperature below 180 deg.C. CONSTITUTION:A zero-phase current transformer ZCT is used as a current sensor in a leak breaker. An iron core, around which a Co-group amorphous alloy is wound or piled, is used for the ACT. Curie temperature of the Co-group amorphous alloy is made 180 deg.C or below, and the magnetic strain value lambdas of the Co-group amorphous alloy is made to come to 0<=lambdas<=+3X10<-6>. And, the coercive force at high frequency is increased, with the zero-phase current transformer having large capacity and superior characteristics in respect to temperature and the load is cut off in a relay circuit.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はCo基アそルファス合金を用いた高出力でかつ
温度特性にすぐれた零相変流器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a zero-phase current transformer that uses a Co-based amorphous alloy and has high output and excellent temperature characteristics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

零相変流器(ZCT)は、漏電遮断器など一種の電流セ
ンサーとして用いられている。ZCT七用いた一例とし
て図1に漏TIvx断器の基本構成回路を示す。
A zero-phase current transformer (ZCT) is used as a type of current sensor such as an earth leakage breaker. As an example using ZCT7, FIG. 1 shows the basic configuration circuit of a leakage TIvx disconnector.

ZC’I’t−貫通する2つの導線には相反する方向に
電流が流れてお#)5通常はZCTの一次側電流として
みた場合、相殺されており(11−I2:O)従って、
2次側が誘起電圧はゼロである。そして、導線のある箇
所に漏電が生じると、エニー■2%oと々夛結果として
一次側電流が存在し、2次側に誘起電圧が生じる。これ
によって導線に接続しているリレ一部が動作し、電流が
遮断される。このように。
ZC'I't - Current flows in opposite directions in the two conductors passing through it. 5 Normally, when viewed as the primary current of ZCT, they cancel out (11 - I2:O) Therefore,
The induced voltage on the secondary side is zero. When a current leakage occurs at a certain point in the conducting wire, a primary current exists as a result of a large amount of electricity, and an induced voltage is generated on the secondary side. This activates a portion of the relay connected to the conductor, cutting off the current. in this way.

微小電流を検出する必要があ、9.ZCTとして用いる
材料は透磁率特に感度全土げるためには初透磁率が高い
ことが重要な条件となる。また温度特性が安定なことも
必要である。従来、このような材料としては80%Ni
−Fe合金が用いられているが、さらに高い2次出力を
得ることが望まれていた。また8 0 % N i −
F e合金での2次出力の温度特性は室温以下で大きく
変化広い温度範囲で、2次出力の安定なZCTが要求さ
れていた。
9. It is necessary to detect minute currents. It is an important condition for the material used as the ZCT to have high magnetic permeability, particularly high initial magnetic permeability in order to increase overall sensitivity. It is also necessary that the temperature characteristics be stable. Conventionally, such materials include 80%Ni.
-Fe alloy is used, but it has been desired to obtain even higher secondary output. Also, 80% Ni-
The temperature characteristics of the secondary output of Fe alloys change significantly below room temperature, and a stable ZCT of the secondary output is required over a wide temperature range.

〔本発明の目的〕[Object of the present invention]

本発明は、上記問題点に鑑みてなされたものであシ、高
出力化(高感度化)および温度特性、の安定なZCT全
提供するものである。
The present invention has been made in view of the above problems, and provides a ZCT with high output (high sensitivity) and stable temperature characteristics.

〔本発明の概要〕[Summary of the invention]

本発明はZCTの磁心としてCogアモルファス合金を
用いたことを特徴としており、これによシ高出力化およ
び温度特性の安定性を得たものである。
The present invention is characterized by using a Cog amorphous alloy as the magnetic core of the ZCT, thereby achieving high output and stable temperature characteristics.

ここで用いるCO基アモルファス合金はキュリ一温度が
180℃以上300℃以下で上記特性を満足する。キエ
リ一温度が300℃以上180℃以下では2次出力の温
度特性、に劣化が見られる。好ましくは、キュリ一温度
は200℃以上280℃以下である。
The CO-based amorphous alloy used here satisfies the above characteristics when the Curie temperature is 180° C. or higher and 300° C. or lower. When the Chieri temperature is above 300°C and below 180°C, the temperature characteristics of the secondary output deteriorate. Preferably, the Curie temperature is 200°C or more and 280°C or less.

またこれらのCO基アモルファス合金のうち特に飽和磁
歪定数λsがO≦λs≦+3 X 1o−15の範囲の
組成で特に温度特性が安定で高出力なZCTが実現でき
、さらに好ましくはO≦λs≦+I X 10−6の範
囲である。λsが3X10−6以上では2次出力の値が
小さくなQl一方λsがλs (Qの時は温度安定性が
悪くなる。
Furthermore, among these CO-based amorphous alloys, a ZCT with particularly stable temperature characteristics and high output can be realized with a composition in which the saturation magnetostriction constant λs is in the range of O≦λs≦+3×1o−15, and more preferably O≦λs≦ +I x 10-6 range. When λs is 3X10-6 or more, the value of the secondary output is small (Ql). On the other hand, when λs is λs (Q), the temperature stability becomes poor.

これを組成式で表わすと、一般式 (Co1−a−bFeaMb)1oo−x−y 81x
Byただし  Oくa≦0.12 0≦b≦0.15 0≦X≦25 5≦y≦35 M:Ti 、V、Cr 、Mn 、Ni 、Cu 、Z
r 、Nb 、Mo 、HfTa、W、白金族から選ば
れる少なくとも1種であシO≦λs≦5 X 10−’
 、 180℃≦Tc≦300℃を満たす組成が好迄ト
ハ。
When this is expressed as a compositional formula, the general formula (Co1-a-bFeaMb)1oo-x-y 81x
By However, Okua≦0.12 0≦b≦0.15 0≦X≦25 5≦y≦35 M: Ti, V, Cr, Mn, Ni, Cu, Z
r, Nb, Mo, HfTa, W, at least one member selected from the platinum group O≦λs≦5×10-'
A composition satisfying 180°C≦Tc≦300°C is preferable.

ここでF縁、は磁歪を上記範囲に調整するのに最も有効
な元素であり添加元素Mの種類、量によってQ(a≦0
.12の範囲でこれが実現できる。具体的にはMとして
通常の非磁性元素を用いる場合は0.04≦a≦0.0
8の範囲となるがM n k用いるとその量によってQ
 (a≦0.04で実現しhNit−用いるとaは0.
07以上でλsが上記範囲に入る。Mは磁気特性の熱安
定性を改善するものであり、特にZr 、Nb 、Mo
 。
Here, the F edge is the most effective element for adjusting the magnetostriction within the above range, and depending on the type and amount of the additive element M, Q(a≦0
.. This can be achieved within a range of 12. Specifically, when using a normal non-magnetic element as M, 0.04≦a≦0.0
8, but if M n k is used, Q
(Realized with a≦0.04 and using hNit-, a is 0.
07 or more, λs falls within the above range. M improves the thermal stability of magnetic properties, especially Zr, Nb, Mo
.

Hf 、Ta 、Wは結晶化温度の上昇ももたらすがb
≧0.15ではキエリ一温度が低下し実用的ではない。
Hf, Ta, and W also increase the crystallization temperature, but b
When ≧0.15, the Chieri temperature decreases and is not practical.

Bは非晶買化するのに必須な元素であp、siは非晶質
形成能を助成する元素である。BtはY≧35at%で
はキ、 +7一温度が低下し実用的ではない。
B is an element essential for amorphous formation, and Si is an element that supports the ability to form an amorphous state. Bt is not practical when Y≧35at%, as the +7 temperature decreases.

上昇には有効である。It is effective for rising.

る打抜きを行ない、        積層し念後結晶化
温度以下キュリ一温度以上で歪取り熱処理を行なうが必
要に応じてこののち磁場中熱処理を行なってもよい、な
お歪取り熱処理後は水中急冷でも炉冷でもあるいはこの
範囲にある速度で冷却すればよい。
After stacking, strain relief heat treatment is performed at a temperature below the crystallization temperature or more than one Curie temperature, but if necessary, heat treatment in a magnetic field may be performed after this. Alternatively, cooling may be performed at a rate within this range.

一般に、非晶質合金は、所定組成比の合金素材を溶融状
態から105’C/秒以上の冷却速度で急冷すること(
液体急冷法)によって得られることが知られている。本
発明の非晶質合金も、上記し次常法よって容易に製造で
きる。この非晶質合金は。
In general, amorphous alloys are produced by rapidly cooling an alloy material with a predetermined composition ratio from a molten state at a cooling rate of 105'C/sec or more (
It is known that it can be obtained by the liquid quenching method). The amorphous alloy of the present invention can also be easily produced by the conventional method described above. This amorphous alloy.

の薄帯を製造することは液体急冷法では実質的に困難で
あり、ま念厚みが25μ−を超えると高周波における保
磁力が増大するので、薄帯の厚み全以下に本発明の詳細
な説明する。
It is substantially difficult to manufacture a thin ribbon using the liquid quenching method, and if the thickness exceeds 25 μ-, the coercive force at high frequencies increases. do.

(実施例−1) 単ロール法により(CoO,94FsO,06)’71
8i 16B13なる組成のアモルファス合金薄帯を作
製し念、この合金の磁歪定数はλs−4X10”″7で
ありキュリ一温度は228℃であり九。得られ念アモル
ファス合金薄帯を外径18m5+内径12+111のト
ロイダルコアに底形した後1通常の歪取り熱処理を行な
っ之。
(Example-1) (CoO, 94FsO, 06)'71 by single roll method
Suppose that an amorphous alloy ribbon with a composition of 8i 16B13 is prepared, and the magnetostriction constant of this alloy is λs-4X10''7 and the Curie temperature is 228°C. After shaping the obtained amorphous alloy ribbon into a toroidal core having an outer diameter of 18 m5 + an inner diameter of 12 m + 111 m, the core was subjected to a conventional heat treatment for strain relief.

該コアをケースに入れ2次側巻線として100ターン巻
き磁心を貫通する導線を1次側として微小電流を流し2
次側の誘起電圧を測定し念。−また同一サンプルを用い
て温度特性を評価した。
The core is placed in a case, and a small current is passed through the conductor that passes through the magnetic core and is wound with 100 turns as a secondary winding.
Be sure to measure the induced voltage on the next side. -The temperature characteristics were also evaluated using the same sample.

比較として同一コア形状の804Ni −Fe合金につ
いても、同様の評価を行なった。
For comparison, a similar evaluation was performed on an 804Ni-Fe alloy having the same core shape.

結果を第2図に示す。それぞれ室温における2次出力値
アモルファス合金170mV、80%N1−F、e合金
120mVに対し規格化しである。出力値は上記の通り
大幅に向上しており、また、その温度特性は第2図から
れかるように、アモルファス合金の方が安定である。
The results are shown in Figure 2. The secondary output values at room temperature are 170 mV for amorphous alloy, 120 mV for 80% N1-F, and e alloy, respectively. As mentioned above, the output value has been significantly improved, and as can be seen from FIG. 2, the amorphous alloy is more stable in its temperature characteristics.

表 (実施例−2) 実施例】と同様の方法で表に掲げるアモルファス合金か
ら成る磁心を作製した。これらの忠心についても歪取り
熱処理を行なった後に、ZCTとしての必要な特性全評
価した。tた比11tlとして、比較例にあげる組成に
ついても同様の評価全行なった。評価結果としては工1
=10 m Aとしたときの2次出力(E2)と室温に
おける2次出力に対する一20℃から80℃までの変化
率(E2/E2(20))で表わすと1表にまとめるよ
うな結果となった。すなわち5本発明範囲内にTc、λ
3が入っている組成ではs ”2 、E2/E2 (2
0)とも良好な結果が得られている。
Table (Example-2) Magnetic cores made of the amorphous alloys listed in the table were produced in the same manner as in Example. Regarding these characteristics, after performing a heat treatment to remove distortion, all necessary characteristics as a ZCT were evaluated. Similar evaluations were also carried out for the compositions listed in Comparative Examples, with a ratio of 11 tl to 11 tl. The evaluation result is 1
When expressed as the secondary output (E2) when = 10 mA and the rate of change from -20℃ to 80℃ (E2/E2(20)) for the secondary output at room temperature, the results are summarized in Table 1. became. That is, Tc and λ are within the range of the present invention.
In the composition containing 3, s ”2, E2/E2 (2
0), good results have been obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば高出力および温度特
性にすぐれたZCTを提供することが出来、その工業的
価値は犬である。
As detailed above, according to the present invention, it is possible to provide a ZCT with high output and excellent temperature characteristics, and its industrial value is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZCTを用いたt@電電断断器基本回路図、第
2図は本発明のアモルファス合金と80チN i F 
e合金の2次出力の温度特性図。 代理人 弁理士 則 近 憲 佑 同 竹 花 喜久男 第  1 図
Fig. 1 is a basic circuit diagram of a t@ electric interrupter using ZCT, and Fig. 2 is a diagram of the amorphous alloy of the present invention and 80-inch N i F.
Temperature characteristic diagram of secondary output of e-alloy. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)Co基アモルファス合金を巻回あるいは積層して
なる磁心を具備した零相変流器において、Co基アモル
ファス合金は、キュリー温度が180℃以上300℃以
下であることを特徴とする零相変流器。
(1) In a zero-phase current transformer equipped with a magnetic core formed by winding or laminating a Co-based amorphous alloy, the Co-based amorphous alloy has a Curie temperature of 180°C or more and 300°C or less. Current transformer.
(2)Co基アモルファス合金は磁歪の値(λs)が0
≦λs≦+3×10^−^6の範囲にあることを特徴と
する特許請求の範囲第1項記載の零相変流器。
(2) Co-based amorphous alloy has a magnetostriction value (λs) of 0
The zero-phase current transformer according to claim 1, wherein the zero-phase current transformer is in the range of ≦λs≦+3×10^-^6.
JP61040294A 1986-02-27 1986-02-27 Zero-phase current transformer Pending JPS62199003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040294A JPS62199003A (en) 1986-02-27 1986-02-27 Zero-phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040294A JPS62199003A (en) 1986-02-27 1986-02-27 Zero-phase current transformer

Publications (1)

Publication Number Publication Date
JPS62199003A true JPS62199003A (en) 1987-09-02

Family

ID=12576586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040294A Pending JPS62199003A (en) 1986-02-27 1986-02-27 Zero-phase current transformer

Country Status (1)

Country Link
JP (1) JPS62199003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106366A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
JP2009106370A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
JP2009136548A (en) * 2007-12-07 2009-06-25 Panasonic Electric Works Co Ltd Hair care equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106366A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
JP2009106370A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
JP2009136548A (en) * 2007-12-07 2009-06-25 Panasonic Electric Works Co Ltd Hair care equipment

Similar Documents

Publication Publication Date Title
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
CA1200407A (en) Magnetic devices using amorphous alloys
KR870000063B1 (en) Non-crystal alloy
JPH0734207A (en) Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production
JPS6328483B2 (en)
JPS6362579B2 (en)
JP6491666B2 (en) Current transformer core, method of manufacturing the same, and apparatus including the core
Luborsky Perspective on application of amorphous alloys in magnetic devices
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPH11186020A (en) Zero-phase current transformer
US5284528A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPS62199003A (en) Zero-phase current transformer
US5110378A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPS6119701B2 (en)
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JPH0338334B2 (en)
JPH01290744A (en) Fe-base soft-magnetic alloy
US2783170A (en) Magnetic material and process of making it
JPS63155709A (en) Current transformer
JP3251126B2 (en) Fe-based soft magnetic alloy
JPH05132744A (en) Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
JPS62124250A (en) Amorphous alloy for electric current-detecting device
JPH0257683B2 (en)
JP2698577B2 (en) Manufacturing method of high permeability core