FR2718060A1 - Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. - Google Patents
Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. Download PDFInfo
- Publication number
- FR2718060A1 FR2718060A1 FR9403866A FR9403866A FR2718060A1 FR 2718060 A1 FR2718060 A1 FR 2718060A1 FR 9403866 A FR9403866 A FR 9403866A FR 9403866 A FR9403866 A FR 9403866A FR 2718060 A1 FR2718060 A1 FR 2718060A1
- Authority
- FR
- France
- Prior art keywords
- pore volume
- catalyst according
- noble metal
- catalyst
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 51
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title description 9
- 239000011148 porous material Substances 0.000 claims abstract description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 7
- 239000011959 amorphous silica alumina Substances 0.000 claims abstract description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052697 platinum Inorganic materials 0.000 claims description 12
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000002199 base oil Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000004517 catalytic hydrocracking Methods 0.000 description 4
- 238000006317 isomerization reaction Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/62—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/643—Pore diameter less than 2 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/67—Pore distribution monomodal
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
L'invention concerne un catalyseur pour la conversion de charges hydrocarbonées. Le catalyseur est essentiellement constitué de 0,05% à 10% poids de métal noble et d'un support silice (5-70%)/alumine ayant une surface spécifique de 100-500m2 /g. Le catalyseur présente un diamètre moyen de pores de 1-12nm, le volume poreux des pores dont le diamètre est compris entre le diamètre moyen +- 3nm est supérieur à 40% du volume poreux total, la dispersion de métal noble est de 20-100% et le coefficient de répartition du métal noble supérieur à 0,1.
Description
La présente invention concerne un catalyseur utilisé dans les procédés d'hydroconversion de charges qui ont des teneurs réduites en métaux.
Il est particulièrement avantageux pour le traitement avec hydroisomérisation de charges telles que les résidus d'hydrocracking pour obtenir des produits de très haute valeur ajoutée tels que kérosène, gas-oils et huiles de base.
Divers catalyseurs peuvent être utilisés pour réaliser la réaction d'hydroisomérisation. Par exemple, le brevet américain US4,929,795 décrit l'utilisation d'un catalyseur composé de 0,6% poids de platine déposé sur une alumine halogénée contenant 7,2lac poids de fluor pour obtenir des huiles de base à partir de paraffines. La demanderesse a cherché un procédé plus simple car le catalyseur ainsi décrit nécessite une injection en continu de composé fluoré dans l'unité catalytique.
Le brevet américain US-4,428,819 décrit lui un catalyseur contenant une zéolithe utilisé pour réaliser la réaction d'isomérisation d'un mélange de paraffines issues du pétrole et mélangée à une huile de base obtenue par déparaffinage catalytique dans le but d'en améliorer le point de trouble. Enfin, le brevet américain US-4,547,283 décrit un catalyseur d'hydroisomérisation de paraffines issues du pétrole contenant au moins un métal actif du groupe 2a, 3a, 4a et/ou 4b du tableau périodique des éléments et dont le support est de préférence une silice.
La demanderesse a cherché un catalyseur plus simple de mise en oeuvre en évitant l'utilisation de la zéolithe ou l'addition d'éléments supplémentaires lors de la fabrication du catalyseur.
Tous les catalyseurs utilisés actuellement en hydroconversion sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines amorphes et les silice-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
Les travaux de recherche effectués par la demanderesse sur de nombreuses silice-alumines l'ont conduit à découvrir que, de façon surprenante, I'utilisation d'un catalyseur comprenant une silice-alumine particulière permet d'obtenir des catalyseurs très actifs mais aussi très sélectifs dans certaines réactions telles que l'isomérisation de charges telles que définies ci-après.
Plus précisément, selon l'invention, le catalyseur est essentiellement constitué de 0,05-10% en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine qui contient 5-70C/c en poids de silice et présente une surface spécifique BET de 100-500m2/g et le catalyseur présente
* un diamètre moyen des pores compris entre 1-12nm,
* un volume poreux des pores dont le diamètre est compris
entre le diamètre moyen tel que défini précédemment
diminué de 3nm et le diamètre moyen tel que défini
précédemment augmenté de 3nm est supérieur à 40% du
volume poreux total
* une dispersion du métal noble comprise entre 20-100%,
* un coefficient de répartition du métal noble supérieur à
0,1.
* un diamètre moyen des pores compris entre 1-12nm,
* un volume poreux des pores dont le diamètre est compris
entre le diamètre moyen tel que défini précédemment
diminué de 3nm et le diamètre moyen tel que défini
précédemment augmenté de 3nm est supérieur à 40% du
volume poreux total
* une dispersion du métal noble comprise entre 20-100%,
* un coefficient de répartition du métal noble supérieur à
0,1.
Ces caractéristiques sont plus en détail
Teneur en silice: le support utilisé pour l'élaboration du catalyseur décrit dans le cadre de ce brevet est composé de silice SiO2 et d'alumine A12O3. La teneur en silice, exprimée en pourcentage poids, est compris entre 5 et 70 et de manière préférée entre 20 et 60% et de manière encore plus préférée entre 22 et 45. Cette teneur est parfaitement mesurée à l'aide de la fluorescence X.
Teneur en silice: le support utilisé pour l'élaboration du catalyseur décrit dans le cadre de ce brevet est composé de silice SiO2 et d'alumine A12O3. La teneur en silice, exprimée en pourcentage poids, est compris entre 5 et 70 et de manière préférée entre 20 et 60% et de manière encore plus préférée entre 22 et 45. Cette teneur est parfaitement mesurée à l'aide de la fluorescence X.
Nature du métal noble : pour ce type particulier de réaction, la fonction métallique est apportée par un métal noble du groupe
VIII de la classification périodique des éléments et plus particulièrement le platine.
VIII de la classification périodique des éléments et plus particulièrement le platine.
Teneur en métal noble . la teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5.
Dispersion du métal noble : la dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, peut être mesurée, par exemple, par titrage
H2/02. Le métal est préalablement réduit c'est-à-dire qu'il subit un traitement sous flux d'hydrogène à haute température dans des conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO2. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée ; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur. Dans notre cas, la dispersion est comprise entre 20% et et et de préférence entre 30% et 100SG.
H2/02. Le métal est préalablement réduit c'est-à-dire qu'il subit un traitement sous flux d'hydrogène à haute température dans des conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO2. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée ; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur. Dans notre cas, la dispersion est comprise entre 20% et et et de préférence entre 30% et 100SG.
Répartition du ni métal noble : la répartition du métal noble représente la distribution du métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé. Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à-dire que tous les atomes de platine, situés en couronne, seront accessibles aux réactifs. Dans notre cas, la répartition du platine est bonne c'està-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 et de préférence supérieur à 0,2.
Surface BET . la surface BET du support est comprise entre 100m2/g et 500m2/g et de préférence comprise entre 250m2/g et 450m2/g et de manière encore plus préférée entre 310m2/g et 450m2/g.
Diamètre moyen des pores: le diamètre moyen des pores du catalyseur est mesuré à partir du profil de répartition poreuse obtenu à l'aide d'un porosimètre au mercure. Le diamètre moyen des pores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée obtenue à partir de la courbe de porosité au mercure. Le diamètre moyen des pores, ainsi défini, est compris entre lnm (1*10-9mètre) et 12nm (12*10-9mètre) et de préférence compris entre 2,5nm (2,5*10-9mètre) et 1 lnm (1î*10-9mètre) et de manière encore plus préférée entre 4nm (4*10-9mètre) et 10,5nm (10,5*10-9mètre).
Répartition poreuse: le catalyseur dont il est question dans ce brevet a une répartition poreuse telle que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3nm et le diamètre moyen tel que défini précédemment augmenté de 3nm (soit le diamètre moyen + 3nm) est supérieur à 4057c du volume poreux total et de manière préférée compris entre 50% et 90% du volume poreux total et plus avantageusement encore entre 50% et 80% du volume poreux total et mieux entre 50% et 70% du volume poreux total.
Volume poreux global du support: il est généralement inférieur à 1,Oml/g et de préférence compris entre 0,3 et 0,9ml/g et encore plus avantageusement inférieur à 0,85ml/g.
La préparation et la mise en forme de la silice-alumine est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-7500C (600"C préféré) pendant 0,2510 heures (2 heures préféré) sous 2-30% volume de vapeur d'eau (7,5% préféré).
Le sel de métal est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine) à la surface d'un support. Une des méthodes préférées est
I'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction, le catalyseur pourra subir une calcination comme par exemple un traitement sous air sec à 300-7500C (520"C préféré) pendant 0,25-10 heures (2 heures préféré).
I'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction, le catalyseur pourra subir une calcination comme par exemple un traitement sous air sec à 300-7500C (520"C préféré) pendant 0,25-10 heures (2 heures préféré).
Avant utilisation dans la réaction de conversion, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 1500C et 650"C et une pression totale comprise entre 0,1 et 25MPa. Par exemple, une réduction consiste en un palier à 1500C de 2 heures puis une montée en température jusqu'à 4500C à la vitesse de 10cumin puis un palier de 2 heures à 450"C ; durant toute cette étape de réduction, le débit d'hydrogène est de l000lhydrogène/lcatalyseur. Notons également que toute méthode de réduction ex-situ est convenable.
Le catalyseur tel qu'il est décrit est actif par exemple pour l'hydroisomérisation des charges telles que décrites ci-après afin d'obtenir une quantité importante de produits résultants de l'hydroisomérisation des molécules présentes dans la charge de départ. En particulier, il est intéressant d'obtenir des produits pouvant ensuite être utilisés comme composants de produits de lubrification.
Toutes les charges propres peuvent être traitées comme par exemple les distillats sous vide, résidu sous vide ou résidu atmosphérique. Ces charges contiennent des molécules avec au moins environ 10 atomes de carbone. Elles peuvent contenir des fragments paraffiniques ou être des molécules entièrement paraffiniques, et la teneur en atomes de carbone aromatiques est d'au plus 20% en poids de la totalité des atomes de carbone de la charge. Nous entendons par charge propre les charges dont la teneur en soufre est inférieure à lOOOppm poids et de préférence inférieure à 500 ppm poids et de façon encore plus préférée inférieure à 300ppm poids et la teneur en azote inférieure à 200ppm poids et de préférence inférieure à lOOppm poids et de manière encore plus préférée inférieure à 50ppm poids. La teneur en métaux de la charge tels que nickel et vanadium est extrêmement réduite c'est-à-dire inférieure à 50ppm poids et de manière plus avantageuse inférieure à l0ppm poids.
De préférence, sont traitées en hydroisomérisation des charges lourdes telles que les résidus d'hydrocracking, c'est-à-dire qui présentent des points d'ébullition essentiellement supérieurs à 350"C. Ces charges contiennent des molécules avec au moins environ 20 atomes de carbone ayant des fragments paraffiniques ou étant des molécules entièrement paraffiniques.
L'hydroisomérisation conduit alors à des produits isoparaffiniques.
Les conditions opératoires utilisées pour cette réaction d'hydroisomérisation sont une température de 2000C à 4500C et préférentiellement de 250"C à 430"C et avantageusement supérieure à 3400C, une pression partielle d'hydrogène de 2MPa à 25MPa et préférentiellement comprise entre 3MPa et 20MPa, une vitesse volumique horaire comprise entre 0,1 et 10 h-1 et préférentiellement comprise entre 0,2 et 2 h- 1 et un taux d'hydrogène compris entre 100 et 2000 litre d'hydrogène par litre de charge et préférentiellement entre 150 et 1500 litre d'hydrogène par litre de charge.
L'utilisation de ce catalyseur n'est pas limitée à l'hydroisomérisation, mais de façon plus générale, il convient pour la conversion des hydrocarbures, utilisé dans les conditions nécessaires pour obtenir ladite conversion recherchée.
EXEMPLE
L'exemple présenté ci-après illustre les caractéristiques de l'invention sans toutefois en limiter la portée.
L'exemple présenté ci-après illustre les caractéristiques de l'invention sans toutefois en limiter la portée.
Préparation du catalyseur
Le support est une silice-alumine utilisée sous forme d'extrudés.
Le support est une silice-alumine utilisée sous forme d'extrudés.
Elle contient 29,1% 6ha poids de silice SiO2 et 70,9% poids d'alumine Al2O3. La silice-alumine, avant ajout du métal noble, présente une surface de 389m2/g et un diamètre moyen des pores de 6,6nm.
Le catalyseur correspondant est obtenu après imprégnation du métal noble sur le support. Le sel de platine Pt(NH3)4C12 est dissous dans un volume de solution correspondant au volume poreux total à imprégner. Le solide est ensuite calciné pendant 2 heures sous air sec à 520"C. La teneur en platine est de 0,60% poids. Mesurés sur le catalyseur, le volume poreux est égal à 0,72 cm3/g, la surface BET égale à 332m2/g et le diamètre moyen des pores de 6,5nm et le volume poreux correspondant au pores dont le diamètre est compris entre 3,5nm et 9,5nm est de 46ml/g soit 61% du volume poreux total.
Caractéristiques de la charge
Dans le tableau ci-dessous, nous avons reporté les caractéristiques physico-chimiques de la charge utilisée pour la réaction d'hydroisomérisation. C'est un résidu d'hydrocraquage issu d'une coupe distillée sous vide.
Dans le tableau ci-dessous, nous avons reporté les caractéristiques physico-chimiques de la charge utilisée pour la réaction d'hydroisomérisation. C'est un résidu d'hydrocraquage issu d'une coupe distillée sous vide.
<tb> d154 <SEP> 0,859
<tb> Soufre <SEP> (wt%) <SEP> 0,0012
<tb> azote <SEP> (ppm <SEP> pds) <SEP> 1,8
<tb> point <SEP> d'écoulement <SEP> +300C
<tb> PI <SEP> 104
<tb> 5% <SEP> 327
<tb> 10% <SEP> 385
<tb> 50% <SEP> 452 <SEP>
<tb> 90% <SEP> 519
<tb> 95% <SEP> 536
<tb> PF <SEP> 573
<tb>
Obtention de l'huile de base après réaction
Le catalyseur dont la préparation vient d'être décrite a été utilisé pour la préparation d'huile de base par l'hydroisomérisation de la charge décrite.
<tb> Soufre <SEP> (wt%) <SEP> 0,0012
<tb> azote <SEP> (ppm <SEP> pds) <SEP> 1,8
<tb> point <SEP> d'écoulement <SEP> +300C
<tb> PI <SEP> 104
<tb> 5% <SEP> 327
<tb> 10% <SEP> 385
<tb> 50% <SEP> 452 <SEP>
<tb> 90% <SEP> 519
<tb> 95% <SEP> 536
<tb> PF <SEP> 573
<tb>
Obtention de l'huile de base après réaction
Le catalyseur dont la préparation vient d'être décrite a été utilisé pour la préparation d'huile de base par l'hydroisomérisation de la charge décrite.
La réaction a eu lieu à 355"C, sous une pression totale de 12MPa, une vitesse volumique horaire de 1h-1 et un débit d'hydrogène de 1 0001hydrogène/lcharge. Dans ces conditions opératoires, la conversion nette en 400- est de 55% poids et le rendement en huile de base est de 85% poids. L'huile récupérée a un VI égal à 135.
Dans le tableau suivant, nous avons comparé les caractéristiques de l'huile après hydroisomérisation à celles de l'huile extraite du résidu d'hydrocraquage par la méthode classique d'extraction au solvant (MEK/Tol). On remarque que ces deux huiles sont très proches au niveau densité et viscosité. Par contre, les VI, point d'écoulement et surtout rendement huile/résidu sont meilleurs dans le cas du produit hydroisomérisé.
<tb> <SEP> déparaffinage <SEP> Hidroisomé
<tb> <SEP> par <SEP> solvant <SEP> -risation
<tb> d15/4 <SEP> 0,842 <SEP> 0,840
<tb> v(100 C) <SEP> (m2/s) <SEP> 5,0 <SEP> x <SEP> 10-6 <SEP> 4,9 <SEP> x <SEP> 10-6
<tb> VI <SEP> 125 <SEP> 135
<tb> Point <SEP> d'écoulement <SEP> ( C) <SEP> -15 <SEP> -18
<tb> Rendement <SEP> huile/résidu <SEP> (% <SEP> poids) <SEP> 78 <SEP> 88,5
<tb>
<tb> <SEP> par <SEP> solvant <SEP> -risation
<tb> d15/4 <SEP> 0,842 <SEP> 0,840
<tb> v(100 C) <SEP> (m2/s) <SEP> 5,0 <SEP> x <SEP> 10-6 <SEP> 4,9 <SEP> x <SEP> 10-6
<tb> VI <SEP> 125 <SEP> 135
<tb> Point <SEP> d'écoulement <SEP> ( C) <SEP> -15 <SEP> -18
<tb> Rendement <SEP> huile/résidu <SEP> (% <SEP> poids) <SEP> 78 <SEP> 88,5
<tb>
Claims (14)
- * un coefficient de répartition du métal noble supérieur à 0,1.* une dispersion du métal noble comprise entre 20-100%,* un volume poreux des pores dont le diamètre est compris entre le diamètre moyen diminué de 3nm et le diamètre moyen augmenté de 3nm supérieur à 40% du volume poreux total,* un diamètre moyen des pores compris entre 1-î2nm,REVENDICATIONS 1- Catalyseur essentiellement constitué de 0,05-10% en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine caractérisé en ce que ledit support contient 5-70% en poids de silice et présente une surface spécifique BET de 100-500m2/g et que le catalyseur présente
- 2- Catalyseur selon la revendication 1, caractérisé en ce que le volume poreux global du support est inférieur à 1,Oml/g.
- 3 - Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support présente un volume poreux global d'au moins 0,3ml/g et inférieur à 0,9ml/g.
- 4 - Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support présente un volume poreux global inférieur à 0,85 ml/g.
- 5- Catalyseur selon l'une des revendications précédentes, caractérisé en ce qu'il présente un diamètre moyen des pores compris entre 2,5 et 1 lnm.
- 6- Catalyseur selon l'une des revendications précédentes, caractérisé en ce qu'il présente un diamètre moyen des pores compris entre 4 et 10,5nm.
- 7- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen diminué de 3nm et le diamètre moyen augmenté de 3nm est compris entre 50 et 90% du volume poreux total.
- 8- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen diminué de 3nm et le diamètre moyen augmenté de 3nm est compris entre 50 et 80iG du volume poreux total.
- 9- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen diminué de 3nm et le diamètre moyen augmenté de 3nm est compris entre 50 et 70% du volume poreux total.
- 10- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support contient 20-60Sc en poids de silice.
- 11- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support contient 22-45% en poids de silice.
- 12- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support présente une surface BET comprise entre 250 et 450 m2/g.
- 13- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le support présente une surface BET comprise entre 310 et 450 m2/g.
- 14- Catalyseur selon l'une des revendications précédentes, caractérisé en ce que le métal noble est le platine.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9403866A FR2718060B1 (fr) | 1994-04-01 | 1994-04-01 | Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. |
PCT/FR1995/000352 WO1995026819A1 (fr) | 1994-04-01 | 1995-03-22 | Catalyseur a base de metal noble et silice-alumine et procede de traitement avec hydroisomerisation de charges lourdes |
EP95914399A EP0701480B1 (fr) | 1994-04-01 | 1995-03-22 | Catalyseur a base de metal noble et silice-alumine et procede de traitement avec hydroisomerisation de charges lourdes |
DE69511974T DE69511974T2 (de) | 1994-04-01 | 1995-03-22 | Edelmetall und silica-alumina enthaltender katalysator und verfahren zur behandlungvon schweren kohlenwasserstoffbeschichtingen mit hydroisomerisation |
CN95190229A CN1071134C (zh) | 1994-04-01 | 1995-03-22 | 贵金属/二氧化硅-氧化铝催化剂及重质进料处理方法 |
US08/556,943 US5879539A (en) | 1994-04-01 | 1995-03-22 | Precious metal and silica-alumina based catalyst and hydroisomerisation treatment process for heavy feeds |
JP52544095A JP3843345B2 (ja) | 1994-04-01 | 1995-03-22 | 貴金属およびシリカ−アルミナをベースとした触媒、および重質仕込物の水素化異性化による処理方法 |
KR1019950705395A KR100336723B1 (ko) | 1994-04-01 | 1995-03-22 | 귀금속및실리카-알루미나를주성분으로하는촉매및중질공급물을수소이성질체화시키는방법 |
ES95914399T ES2138730T3 (es) | 1994-04-01 | 1995-03-22 | Catalizador a base de metal noble y silice-alumina y procedimiento de tratamiento con hidroisomerizacion de cargas pesadas. |
ZA952673A ZA952673B (en) | 1994-04-01 | 1995-03-31 | Precious metal and silica-alumina based catalyst and hydroisomerisation treatment process for heavy feeds |
RU95104891A RU2141380C1 (ru) | 1994-04-01 | 1995-03-31 | Катализатор для гидроконверсии с гидроизомеризацией углеводородного сырья и способ переработки с гидроизомеризацией тяжелых нефтяных углеводородных фракций |
NO19954876A NO311501B1 (no) | 1994-04-01 | 1995-11-30 | Katalysator basert på edelmetall og silisiumdioksyd/aluminiumoksyd, samt fremgangsmåte forhydroisomerisering av tunge utgangsmaterialer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9403866A FR2718060B1 (fr) | 1994-04-01 | 1994-04-01 | Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2718060A1 true FR2718060A1 (fr) | 1995-10-06 |
FR2718060B1 FR2718060B1 (fr) | 1996-05-31 |
Family
ID=9461664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9403866A Expired - Lifetime FR2718060B1 (fr) | 1994-04-01 | 1994-04-01 | Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2718060B1 (fr) |
ZA (1) | ZA952673B (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0131925A2 (fr) * | 1983-07-15 | 1985-01-23 | Daido Sanso K.K. | Oxyde de métal ayant les dimensions uniformes des pores, le procédé pour sa préparation et le support catalyseur le comprenant |
FR2563120A1 (fr) * | 1984-04-23 | 1985-10-25 | Leuna Werke Veb | Catalyseur pour le reformage d'hydrocarbures, et procede pour sa fabrication |
EP0160475A2 (fr) * | 1984-04-25 | 1985-11-06 | Toa Nenryo Kogyo Kabushiki Kaisha | Catalyseur d'hydrotraitement et son procédé de fabrication |
FR2565504A1 (fr) * | 1984-06-07 | 1985-12-13 | Inst Francais Du Petrole | Procede de fabrication d'un catalyseur d'hydrocraquage de fractions petrolieres lourdes |
-
1994
- 1994-04-01 FR FR9403866A patent/FR2718060B1/fr not_active Expired - Lifetime
-
1995
- 1995-03-31 ZA ZA952673A patent/ZA952673B/xx unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0131925A2 (fr) * | 1983-07-15 | 1985-01-23 | Daido Sanso K.K. | Oxyde de métal ayant les dimensions uniformes des pores, le procédé pour sa préparation et le support catalyseur le comprenant |
FR2563120A1 (fr) * | 1984-04-23 | 1985-10-25 | Leuna Werke Veb | Catalyseur pour le reformage d'hydrocarbures, et procede pour sa fabrication |
EP0160475A2 (fr) * | 1984-04-25 | 1985-11-06 | Toa Nenryo Kogyo Kabushiki Kaisha | Catalyseur d'hydrotraitement et son procédé de fabrication |
FR2565504A1 (fr) * | 1984-06-07 | 1985-12-13 | Inst Francais Du Petrole | Procede de fabrication d'un catalyseur d'hydrocraquage de fractions petrolieres lourdes |
Also Published As
Publication number | Publication date |
---|---|
ZA952673B (en) | 1996-09-20 |
FR2718060B1 (fr) | 1996-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0725810B1 (fr) | Procede de traitement avec hydroisomerisation de charges issues du procede fischer-tropsch | |
EP1412458B1 (fr) | Procede flexible ameliore de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique | |
EP0701480B1 (fr) | Catalyseur a base de metal noble et silice-alumine et procede de traitement avec hydroisomerisation de charges lourdes | |
EP0515256A1 (fr) | Procédé d'hydromérisation de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H.Y | |
FR2792851A1 (fr) | Catalyseur a base de metal noble faiblement disperse et son utilisation pour la conversion de charges hydrocarbonees | |
FR2851569A1 (fr) | Procede d'hydrocraquage en deux etapes utilisant un catalyseur amorphe a base de platine et de palladium | |
WO2019201618A1 (fr) | Procede de preparation d'un catalyseur bimetallique a base de nickel et de cuivre pour l'hydrogenation de composes aromatiques | |
EP0515270B1 (fr) | Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y | |
WO2003004583A1 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch | |
FR2926086A1 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch | |
FR2989381A1 (fr) | Production de distillats moyens a partir d'un effluent issu de la synthese fischer-tropsch comprenant une etape de reduction de la teneur en composes oxygenes | |
EP2158303A2 (fr) | Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch | |
CA2139286A1 (fr) | Procede de reduction de la teneur en benzene dans les essences | |
FR2805543A1 (fr) | Procede flexible de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique | |
EP2586851B1 (fr) | Procédé de production de distillats moyens dans lequel la charge issue du procédé Fischer-Tropsch et le flux d'hydrogéne contiennent une teneur limitée en oxygène | |
EP0288362A1 (fr) | Procédé d'isomérisation du butène-1 en butènes-2 dans une coupe d'hydrocarbures en c4 contenant du butadiène et des composés sulfurés | |
FR2718060A1 (fr) | Catalyseur pour la conversion de charges hydrocarbonées, à base de métal noble et silice-alumine. | |
FR2718144A1 (fr) | Procédé de traitement avec hydroisomérisation de charges lourdes. | |
WO2020148134A1 (fr) | Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en post-impregnation | |
FR2805542A1 (fr) | Procede flexible de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique | |
WO2005012461A1 (fr) | Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch utilisant un catalyseur a base d'un melange de zeolithes | |
EP1462166B1 (fr) | Catalyseur et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonnées | |
WO2005012460A1 (fr) | Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base de zeolithe zbm-30 | |
FR2800065A1 (fr) | Procede de synthese d'hydrocarbures a partir de gaz de synthese en presence d'un alliage metallique de raney disperse dans une phase liquide | |
FR2502142A1 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CD | Change of name or company name |