FR2458907A1 - Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor - Google Patents

Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor Download PDF

Info

Publication number
FR2458907A1
FR2458907A1 FR7914991A FR7914991A FR2458907A1 FR 2458907 A1 FR2458907 A1 FR 2458907A1 FR 7914991 A FR7914991 A FR 7914991A FR 7914991 A FR7914991 A FR 7914991A FR 2458907 A1 FR2458907 A1 FR 2458907A1
Authority
FR
France
Prior art keywords
intermediate layer
field effect
source
layer
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR7914991A
Other languages
French (fr)
Other versions
FR2458907B1 (en
Inventor
Bernard Descamps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to FR7914991A priority Critical patent/FR2458907A1/en
Publication of FR2458907A1 publication Critical patent/FR2458907A1/en
Application granted granted Critical
Publication of FR2458907B1 publication Critical patent/FR2458907B1/fr
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The field effect transistor has an insulated gate and source and drain layers of the same type of material. Between the source and drain layers is a layer of the opposite type of material which surrounds the source and is itself surrounded by the drain. Source metallisation shorts the source region and part of the intermediate layer distant from the gate channel. Doping in the intermediate layer is chosen in the bulk to reduce the effect of the parasitic bipolar transistor and in the channel region it is more lightly doped to optimise the pinch off voltage of the FET. Doping in the channel region is an order of magnitude less than in the layer and the difference is acheived by ion implantation. The technique is applicable to VMOS and to monolithic integrated circuit FETs.

Description

La présente invention concerne un transistor à effet de champ diffusé à grille isolée de tension de seuil ajustable. The present invention relates to a diffused field effect transistor with an insulated gate of adjustable threshold voltage.

Un transistor à effet de champ diffusé à grille isolée (DMOS) est un dispositif semiconducteur à trois électrodes comprenant essentiellement des régions ou couches de source et de drain de même type de conductivité et une région intermédiaire du type de conductivité opposé séparant ces régions de source et de drain. Une portion de la couche intermédiaire est placée sous une électrode de grille mais en est séparée par une couche isolante. Quand une polarisation convenable est appliquée à l'électrode de grille, le type de conductivité de la portion de couche intermédiaire placée sous cette grille s'inverse. Il y a alors continuité de type de conductivité entre la source et le drain et, si une différence de potentiel appropriée est appliquée entre source et drain, un courant peut circuler de l'un à l'autre. An insulated gate diffused field effect transistor (DMOS) is a semiconductor device with three electrodes essentially comprising source or drain regions or layers of the same type of conductivity and an intermediate region of the opposite conductivity type separating these source regions. and drain. A portion of the intermediate layer is placed under a gate electrode but is separated from it by an insulating layer. When a suitable polarization is applied to the grid electrode, the type of conductivity of the portion of intermediate layer placed under this grid is reversed. There is then continuity of type of conductivity between the source and the drain and, if an appropriate potential difference is applied between source and drain, a current can flow from one to the other.

On va exposer ci-après en relation avec les figures 1 et 2, illustrant des transistors à effet de champ de l'art antérieur dans lesquels la couche intermédiaire est obtenue par diffusion, la façon dont l'existence d'un transistor bipolaire parasite nuit au bon fonctionnement de tels transistors à effet de champ. We will explain below in relation to FIGS. 1 and 2, illustrating prior art field effect transistors in which the intermediate layer is obtained by diffusion, the way in which the existence of a parasitic bipolar transistor harms the proper functioning of such field effect transistors.

La figure 1 représente un transistor de type MOS à canal latéral diffusé classique, couramment appelé transistor
DMOS. Un tel transistor comprend un substrat 11 de type N+.
FIG. 1 represents a MOS type transistor with conventional diffused side channel, commonly called transistor
DMOS. Such a transistor comprises an N + type substrate 11.

Sur ce substrat est formé par épitaxie une couche 12 de type N dans laquelle se trouvent deux régions diffusées de type N+13 et 14. La couche 13 est emboîtée dans une couche diffusée 15 de type P. Sur la surface supérieure de la couche 14 ou couche de drain est déposée une métallisation de drain D. Sur la surface supérieure de la couche 13 ou couche de source est déposée une métallisation de source S. La région 15 de type P dans laquelle est insérée la région de source 13 sera appelée région ou couche intermédiaire. Au-dessus d'une partie 17 de la région intermédiaire 15 est déposée une métallisation de grille G.On this substrate is formed by epitaxy an N-type layer 12 in which there are two diffused regions of type N + 13 and 14. The layer 13 is nested in a diffused layer 15 of type P. On the upper surface of the layer 14 or drain layer is deposited a drain metallization D. On the upper surface of the layer 13 or source layer is deposited a source metallization S. The region 15 of type P in which is inserted the source region 13 will be called region or intermediate layer. Above part 17 of the intermediate region 15 is deposited a gate metallization G.

Cette métallisation est isolée de la plaquette semiconductrice sous-jacente par une couche d'isolement 16, généralement une couche de silice. Ainsi, quand une polarisation est appliquée à la grille, il se forme dans la partie 17 de la couche intermédiaire sous-jacente une zone de canal à type de conductivité inversé par rapport à la conductivité initiale de la couche 15 et il n'existe donc plus de jonction bloquante entre les électrodes de source et de drain.This metallization is isolated from the underlying semiconductor wafer by an insulation layer 16, generally a layer of silica. Thus, when a polarization is applied to the grid, there is formed in the part 17 of the underlying intermediate layer a channel zone with a type of inverted conductivity with respect to the initial conductivity of the layer 15 and there therefore exists no more blocking junction between the source and drain electrodes.

On notera tout particulièrement dans la figure 1 que la métallisation de source S est en contact à la fois avec la partie supérieure de la couche de la source 13 et avec une partie supérieure de la couche intermédiaire 15, dans une région de cette couche éloignée de la zone de canal 17. Ce contact entre la métallisation de source et la couche intermédiaire 15 est destiné à assurer une polarisation facilitant le fonctionnement du transistor à effet de champ. It will be noted in particular in FIG. 1 that the source metallization S is in contact both with the upper part of the layer of the source 13 and with an upper part of the intermediate layer 15, in a region of this layer remote from the channel zone 17. This contact between the source metallization and the intermediate layer 15 is intended to ensure polarization facilitating the operation of the field effect transistor.

La figure 2 représente une autre configuration de transistor à effet de champ diffusé, connue usuellement sous l'appelation VMOS . Dans cette figure, les couches et zones ayant même fonction que les couches correspondantes de la figure 1 sont désignées par des nombres de référence dont le chiffre des unités est identique mais dont le chiffre des dizaines est de 2 au lieu d'être 1. Cette structure ne sera pas décrite en détail étant donné qu'elle est actuellement bien connue. Le drain est connecté à la face inférieure de la pastille désignée par la double référence 21-24 et le canal 27 se forme dans la partie de la couche intermédiaire 25 voisine d'une vallée ou tranchée 20 formée à partir de la face supérieure et dont l'arête se trouve dans la couche 22 de la façon représentée.On notera à nouveau dans cette figure que la métallisation de source S recouvre à la fois la couche de source 23 et une partie de la couche intermédiaire 25 dans une région éloignée de la zone de canal 27. FIG. 2 represents another configuration of a scattered field effect transistor, commonly known by the name VMOS. In this figure, the layers and zones having the same function as the corresponding layers in FIG. 1 are designated by reference numbers whose number of units is identical but whose tens figure is 2 instead of 1. This structure will not be described in detail since it is currently well known. The drain is connected to the lower face of the pellet designated by the double reference 21-24 and the channel 27 is formed in the part of the intermediate layer 25 adjacent to a valley or trench 20 formed from the upper face and whose the edge is in the layer 22 as shown. Note again in this figure that the source metallization S covers both the source layer 23 and part of the intermediate layer 25 in a region remote from the channel area 27.

Ense référant maintenant de façon générale aux figures 1 et 2, on notera que le dopage des couches de source 13 et 23 est généralement choisi à une valeur élevée de l'ordre de 1018 à 1020 at/cm3 et qu'ensuite, le dopage de la couche intermédiaire 15 est choisi pour que, dans la région de canal 17, on puisse obtenir la conduction du transistor MOS pour un seuil déterminé. Par exemple si, comme celà est usuel, on souhaite obtenir une tension de seuil relativement faible, de l'ordre du volt, il faudra choisir un dopage de l'ordre de 1016 à 1017 atomes/cm3 pour la couche intermédiaire 15. D'autre part, en ce qui concerne les structures des figures 1 et 2, les couches de source, intermédiaire, et de drain, forment également un transistor bipolaire parasite. Referring now generally to FIGS. 1 and 2, it will be noted that the doping of the source layers 13 and 23 is generally chosen at a high value of the order of 1018 to 1020 at / cm 3 and that, subsequently, the doping of the intermediate layer 15 is chosen so that, in the channel region 17, it is possible to obtain the conduction of the MOS transistor for a determined threshold. For example if, as is usual, one wishes to obtain a relatively low threshold voltage, of the order of a volt, it will be necessary to choose a doping of the order of 1016 to 1017 atoms / cm3 for the intermediate layer 15. D ' on the other hand, with regard to the structures of FIGS. 1 and 2, the source, intermediate and drain layers also form a parasitic bipolar transistor.

Une fois que le claquage drain-source du transistor à effet de champ est amorcé, étant donné que la métallisation de source est connectée à une partie de la couche intermédiaire éloignée de la zone du canal, il se produit une conduction à l'intérieur de la couche intermédiaire à partir de cette métallisation. La couche intermédiaire 25 ayant un niveau de dopage relativement faible et donc une résistivité relativement élevée, cette circulation de courant correspond à une variation de potentiel non négligeable par rapport à la chute de potentiel qui se produit par circulation de courant à l'intérieur de la couche de source-qui est, elle, à niveau de dopage très élevé et donc à faible résistivité. Ainsi, il pourra se produire une polarisation de la base (15, 25) du transistor bipolaire parasite par rapport à l'émetteur (13, 23) de ce transistor bipolaire parasite.Si le niveau de polarisation atteint sensiblement 0,7 volt, il se produira une conduction de la jonction émetteur-base de ce transistor bipolaire parasite et le transistor bipolaire parasite s'amorcera et provoquera une augmentation brutale du courant entre ses couches d'émetteur (13, 23) et de collecteur (14, 24? qui correspondent aux couches de source et de drain du transistor à effet de champ. Il en résulte un mauvais fonctionnement du transistor à effet de champ et même éventuellement une destruction du composant.Once the drain-source breakdown of the field effect transistor is initiated, since the source metallization is connected to a part of the intermediate layer remote from the zone of the channel, conduction occurs inside the intermediate layer from this metallization. Since the intermediate layer 25 has a relatively low doping level and therefore a relatively high resistivity, this current flow corresponds to a non-negligible variation in potential with respect to the drop in potential which occurs by current flow inside the source layer, which is very high doping level and therefore has low resistivity. Thus, there may be a polarization of the base (15, 25) of the parasitic bipolar transistor with respect to the emitter (13, 23) of this parasitic bipolar transistor. If the level of polarization reaches substantially 0.7 volts, it a conduction of the emitter-base junction of this parasitic bipolar transistor will occur and the parasitic bipolar transistor will start and will cause a sudden increase in the current between its layers of emitter (13, 23) and of collector (14, 24? which correspond to the source and drain layers of the field effect transistor, resulting in a malfunction of the field effect transistor and even possibly destruction of the component.

Un objet de la présente invention est de prévoir un transistor à effet de champ dans lequel l'influence du transistor bipolaire parasite est minimisée. An object of the present invention is to provide a field effect transistor in which the influence of the parasitic bipolar transistor is minimized.

Un autre objet de la présente invention est de prévoir un tel transistor à effet de champ dont la tension de seuil est ajustable. Another object of the present invention is to provide such a field effect transistor whose threshold voltage is adjustable.

Pour atteindre ces objets ainsi que d'autres, la présente invention prévoit un transistor à effet de champ comprenant des couches de drain et de source du même type de conductivité et une couche intermédiaire du type de conductivité opposé dans une partie de laquelle peut se former, par suite de la polarisation de la grille et en-dessous de celle-ci, une zone de canal, dans lequel le niveau de dopage de la zone de canal est plus faible que celui du reste de la couche intermédiaire. Ainsi, le dopage de la couche intermédiaire peut être choisi à une valeur suffisamment élevée pour que sa résistivite soit suffisamment faible pour éviter le déclenchement du transistor bipolaire parasite alors que le dopage de la région de canal de cette couche intermédiaire est choisi pour déterminer le seuil désiré de déclenchement du transistor MOS. To achieve these and other objects, the present invention provides a field effect transistor comprising drain and source layers of the same type of conductivity and an intermediate layer of the opposite type of conductivity in a part of which may form. , as a result of the polarization of the gate and below it, a channel zone, in which the doping level of the channel zone is lower than that of the rest of the intermediate layer. Thus, the doping of the intermediate layer can be chosen at a sufficiently high value so that its resistivity is sufficiently low to avoid tripping of the parasitic bipolar transistor while the doping of the channel region of this intermediate layer is chosen to determine the threshold. desired triggering of the MOS transistor.

De préférence la couche intermédiaire est formée par diffusion et la modification du niveau de conductivité du canal est déterminée par une implantation d'impuretés du type de conductivité opposé à celles initialement diffuséesdans la couche intermédiaire. Ainsi, pour la couche intermédiaire, on pourra 18 3 choisir un dopage de l'ordre de 1017 à 1018 atomes/cm alors que ce dopage sera ramené à une valeur de l'ordre de 1016 à 1017 atomes/cm3 dans la région de canal. Preferably the intermediate layer is formed by diffusion and the change in the conductivity level of the channel is determined by implantation of impurities of the conductivity type opposite to those initially diffused in the intermediate layer. Thus, for the intermediate layer, it will be possible to choose a doping of the order of 1017 to 1018 atoms / cm while this doping will be reduced to a value of the order of 1016 to 1017 atoms / cm3 in the channel region. .

Ces objets, caractéristiques et avantages ainsi que d'autres de la présente invention seront exposés plus en détail dans la description suivante de modes de réalisation particuliers faite en relation avec les figures jointes parmi lesquelles
- la figure 1 représente un transistor de type DMOS de l'art antérieur
- la figure 2 représente un transistor de type VMOS de l'art antérieur ;
- la figure 3 représente un transistor de type DMOS selon la présente invention ; et
- la figure 4 représente un transistor VMOS selon la présente invention.
These objects, characteristics and advantages as well as others of the present invention will be explained in more detail in the following description of particular embodiments made in relation to the attached figures among which
- Figure 1 shows a DMOS transistor of the prior art
- Figure 2 shows a VMOS transistor of the prior art;
- Figure 3 shows a DMOS type transistor according to the present invention; and
- Figure 4 shows a VMOS transistor according to the present invention.

De façon générale, on notera que ces figures sont fortement schématiques et que, notamment en ce qui concerne l'épaisseur et les dimensions des diverses couches, elles ne correspondent pas à un tracé à l'échelle. Elles sont uniquement destinées à illustrer la présente invention. Notamment, la région de canal a été représentée élargie en figure 3 par rapport à la figure 1, ceci est uniquement destiné à mieux représenter la zone dans laquelle se situent les modifications de caractéristiques effectuées selon l'invention. In general, it will be noted that these figures are highly schematic and that, in particular as regards the thickness and the dimensions of the various layers, they do not correspond to a layout to scale. They are only intended to illustrate the present invention. In particular, the channel region has been shown enlarged in FIG. 3 compared with FIG. 1, this is only intended to better represent the zone in which the modifications of characteristics carried out according to the invention are situated.

La figure 3 représente un transistor à effet de champ de type Dr4os dans lequel de mêmes références désignent des éléments et des couches analogues à ceux désignés de façon identique en figure 1. On notera que la figure 3 comprend une zone 18, recouvrant notamment la zone de canal 17, dans laquelle on a procédé à une implantation d'ions. Le niveau de dopage de la couche intermédiaire 15 est choisi à une 17 16 3 valeur plus élevée, par exemple de 10 à 10 atomes/cm3, que dans le cas de la figure 1 où ce niveau de dopage était de l'ordre de 1016 a 1017 atomes/cm3.Ainsi, la circulation de courant dans la couche intermédiaire 15 à partir de la métallisation S vers la zone de canal qui a maintenant lieu dans une zone moins résistive entraînera une plus faible chute de tension par rapport à la couche de la source 13. Le transistor bipolaire parasite vertical sera donc peu susceptible d'être amorcé.L'implantation ionique 18 est effectuée à partir d'ions fournissant un type de conductivité N, c'est-àdire que le dopage résultant dans la zone 17 restera de type
P mais à plus faible niveau de dopage, par exemple de l'ordre de 1016 à 1017 atomes/cm3, ce niveau étant choisi pour optimiser le seuil d'ouverture de canal du transistor DM08. Bien que celà ne soit pas représenté dans la figure, on notera que l'étendue de la zone implantée 18 peut correspondre sensiblement à celle de la grille, c'est-à-dire que, lors des étapes de fabrication du composant, on pourra se servir des ouvertures ménagées pour former la grille pour servir de masque d'implantation.
FIG. 3 represents a field effect transistor of the Dr4os type in which the same references designate elements and layers similar to those designated identically in FIG. 1. It will be noted that FIG. 3 comprises an area 18, covering in particular the area of channel 17, in which an ion implantation was carried out. The doping level of the intermediate layer 15 is chosen to have a higher value, for example from 10 to 10 atoms / cm 3, than in the case of FIG. 1 where this doping level was of the order of 1016 has 1017 atoms / cm3. Thus, the current flow in the intermediate layer 15 from the metallization S towards the channel zone which now takes place in a less resistive zone will cause a lower voltage drop compared to the layer of the source 13. The vertical parasitic bipolar transistor will therefore be unlikely to be primed. The ion implantation 18 is carried out using ions providing a type of conductivity N, that is to say that the resulting doping in the area 17 will remain of type
P but at a lower doping level, for example of the order of 1016 to 1017 atoms / cm3, this level being chosen to optimize the channel opening threshold of the transistor DM08. Although this is not shown in the figure, it will be noted that the extent of the implanted area 18 can correspond substantially to that of the grid, that is to say that, during the steps of manufacturing the component, it will be possible to use the openings made to form the grid to serve as an implantation mask.

La figure 4 représente un transistor de type VMOS analogue à celui de la figure 2, dans lequel de mêmes références désignent des éléments et couches identiques à ceux désignés de la même façon en figure 2. On notera l'implantation ionique 28 réalisée notamment dans les zones de canal 27 de la couche intermédiaire 25. De la même façon que dans le cas de la figure 3 celà permet de choisir le niveau de dopage de l'ensemble de la couche intermédiaire 25 pour minimiser l'influence du transistor bipolaire vertical, tout en optimisant le niveau de dopage dans la zone de canal 27 de cette couche intermédiaire. On peut donc ajuster la tension de seuil du transistor à effet de champ sans être géné par les contraintes imposées par le transistor bipolaire parasite. FIG. 4 represents a VMOS type transistor analogous to that of FIG. 2, in which the same references designate elements and layers identical to those designated in the same way in FIG. 2. Note the ion implantation 28 carried out in particular in channel zones 27 of the intermediate layer 25. In the same way as in the case of FIG. 3, this makes it possible to choose the doping level of the assembly of the intermediate layer 25 to minimize the influence of the vertical bipolar transistor, while by optimizing the doping level in the channel region 27 of this intermediate layer. It is therefore possible to adjust the threshold voltage of the field effect transistor without being hampered by the constraints imposed by the parasitic bipolar transistor.

On a décrit précédemment des transistors MOS dans lesquels le drain et la source étaient de type N, c'est-àdire des transistors MOS à canal N. Bien entendu tous les types de conductivité peuvent être inversés pour former des transistors MOS à canal P. MOS transistors have previously been described in which the drain and the source are of type N, that is to say N channel MOS transistors. Of course, all types of conductivity can be reversed to form P channel MOS transistors.

En outre, on a donné des exemples de transistors MOS de type à eprichissement, c'est-à-dire dans lesquels le canal est non conducteur en l'absence de polarisation de grille. La présente invention s'applique également à des transistors MOS du type à appauvrissement, c'est-à-dire dans lesquels la zone de canal est conductrice en l'absence de champ appliqué sur la grille et devient non conductrice quand on applique une polarisation de grille. In addition, examples have been given of MOS transistors of the eprichissement type, that is to say in which the channel is non-conductive in the absence of gate polarization. The present invention also applies to MOS transistors of the depletion type, that is to say in which the channel zone is conductive in the absence of a field applied to the grid and becomes non-conductive when a polarization is applied. grid.

Le transistor à effet de champ selon la présente invention peut être utilisé comme composant discret ou bien faire partie d'un circuit intégré monolithique. The field effect transistor according to the present invention can be used as a discrete component or else be part of a monolithic integrated circuit.

La présente invention n'est pas limitée aux modes de réalisation explicitement décrits mais en engloge les diverses variantes et généralisations contenues dans les revendications ci-après. The present invention is not limited to the embodiments explicitly described but encompasses the various variants and generalizations contained in the claims below.

Dans les revendications ci-apres, on entend par "couche de drain" l'ensemble des couches de même type de con ductivité reliées à la métallisatioii de drain, c'est à dire les couches 12 et 14 des figures 1 et 3 et les couches 22 et 24 des figures 2 et 4. In the claims below, the term "drain layer" means all the layers of the same type of conductivity connected to the drain metallization, that is to say the layers 12 and 14 of FIGS. 1 and 3 and the layers 22 and 24 of Figures 2 and 4.

Claims (5)

REVENDICATIONS 1. Transistor à effet de champ à grille isolée comprenant des couches de drain et de source du même type de conductivité et une couche intermédiaire,de type de conductivité opposé et entourant la couche de source, dans une partie de laquelle peut se former par suite de la polarisation de la grile une zone de canal, cette couche intermédiaire étant elle même entourée par la couche de drain, une métallisation de source établissant un court-circuit entre la couche de source et une partie de la couche intermédiaire éloignée de la zone de canal, caractérisé en ce que le niveau de dopage de la zone du canal est plus faible que celui du reste de la couche intermédiaire, le niveau de dopage de la couche intermédiaire étant choisi pour réduire l'influence d'un transistor bipolaire parasite et celui de la zone de canal pour optimiser la tension de seuil dudit transistor à effet de champ. 1. Insulated gate field effect transistor comprising drain and source layers of the same type of conductivity and an intermediate layer, of opposite conductivity type and surrounding the source layer, in a part of which may form as a result of the polarization of the grid a channel zone, this intermediate layer being itself surrounded by the drain layer, a source metallization establishing a short circuit between the source layer and a part of the intermediate layer distant from the zone of channel, characterized in that the doping level of the channel area is lower than that of the rest of the intermediate layer, the doping level of the intermediate layer being chosen to reduce the influence of a parasitic bipolar transistor and that of the channel area to optimize the threshold voltage of said field effect transistor. 2. Transistor à effet de champ selon la revendication 1, caractérisé en ce que le niveau de dopage de la couche intermédiaire est de l'ordre de 1017 à 1018 atomes/cm3 alors que le niveau de dopage de la région de canal de cette couche inter 16 17 3 médiaire est de l'ordre de 1016 à 1017 atomes/cm 2. Field effect transistor according to claim 1, characterized in that the doping level of the intermediate layer is of the order of 1017 to 1018 atoms / cm3 while the doping level of the channel region of this layer inter 16 17 3 medial is of the order of 1016 to 1017 atoms / cm 3. Transistor à effet de champ selon l'une des revendications 1 ou 2, caractérisé en ce que la modification de niveau de dopage de la zone de canal est obtenue par implantation d'ions.  3. Field effect transistor according to one of claims 1 or 2, characterized in that the modification of the doping level of the channel zone is obtained by implantation of ions. 4. Transistor à effet de champ selon l'une quelconque des revendications 1 à 3 caractérisé en ce qu'il est du type GIMOS .  4. Field effect transistor according to any one of claims 1 to 3 characterized in that it is of the GIMOS type. 5. Circuit intégré monolithique comprenant un transistor à effet de champ selon l'une quelconque des revendications 1 à 4.  5. A monolithic integrated circuit comprising a field effect transistor according to any one of claims 1 to 4.
FR7914991A 1979-06-12 1979-06-12 Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor Granted FR2458907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR7914991A FR2458907A1 (en) 1979-06-12 1979-06-12 Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7914991A FR2458907A1 (en) 1979-06-12 1979-06-12 Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor

Publications (2)

Publication Number Publication Date
FR2458907A1 true FR2458907A1 (en) 1981-01-02
FR2458907B1 FR2458907B1 (en) 1982-11-26

Family

ID=9226477

Family Applications (1)

Application Number Title Priority Date Filing Date
FR7914991A Granted FR2458907A1 (en) 1979-06-12 1979-06-12 Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor

Country Status (1)

Country Link
FR (1) FR2458907A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487583A1 (en) * 1980-07-25 1982-01-29 Thomson Csf Groove FET mfr. - with intermediate oxidn. in steam and oxide removal to control dopant concn. locally
EP0066081A2 (en) * 1981-05-22 1982-12-08 International Business Machines Corporation Dense vertical FET and method of making
FR2511194A1 (en) * 1981-08-04 1983-02-11 Siliconix Inc FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURE
EP0081269A2 (en) * 1981-12-07 1983-06-15 Philips Electronics Uk Limited Insulated-gate field-effect transistors
FR2518816A1 (en) * 1981-12-18 1983-06-24 Nissan Motor METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT TRANSISTOR
EP0114435A1 (en) * 1982-12-21 1984-08-01 Koninklijke Philips Electronics N.V. Lateral DMOS transistor devices suitable for sourcefollower applications
EP0115098A1 (en) * 1982-12-27 1984-08-08 Koninklijke Philips Electronics N.V. Lateral DMOS transistor device having an injector region
EP0407011A2 (en) * 1989-07-03 1991-01-09 Harris Corporation Insulated gate semiconductor devices
CN105336785A (en) * 2014-08-15 2016-02-17 北大方正集团有限公司 Depletion-type VDMOS device and manufacturing method therefor
CN105448733A (en) * 2014-09-02 2016-03-30 北大方正集团有限公司 Depletion type VDMOS device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990399A (en) * 2015-01-27 2016-10-05 北大方正集团有限公司 Method and device for manufacturing depletion type MOSFET

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2136509A1 (en) * 1970-07-24 1972-11-23 Hitachi Ltd., Tokio Semiconductor device
GB1328874A (en) * 1969-09-30 1973-09-05 Sprague Electric Co Semiconductor devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1328874A (en) * 1969-09-30 1973-09-05 Sprague Electric Co Semiconductor devices
DE2136509A1 (en) * 1970-07-24 1972-11-23 Hitachi Ltd., Tokio Semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EXBK/78 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487583A1 (en) * 1980-07-25 1982-01-29 Thomson Csf Groove FET mfr. - with intermediate oxidn. in steam and oxide removal to control dopant concn. locally
EP0066081A2 (en) * 1981-05-22 1982-12-08 International Business Machines Corporation Dense vertical FET and method of making
EP0066081A3 (en) * 1981-05-22 1985-09-11 International Business Machines Corporation Dense vertical fet and method of making
FR2511194A1 (en) * 1981-08-04 1983-02-11 Siliconix Inc FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURE
EP0081269A3 (en) * 1981-12-07 1984-12-27 Philips Electronic And Associated Industries Limited Insulated-gate field-effect transistors
EP0081269A2 (en) * 1981-12-07 1983-06-15 Philips Electronics Uk Limited Insulated-gate field-effect transistors
US4697201A (en) * 1981-12-18 1987-09-29 Nissan Motor Company, Limited Power MOS FET with decreased resistance in the conducting state
FR2518816A1 (en) * 1981-12-18 1983-06-24 Nissan Motor METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT TRANSISTOR
EP0114435A1 (en) * 1982-12-21 1984-08-01 Koninklijke Philips Electronics N.V. Lateral DMOS transistor devices suitable for sourcefollower applications
EP0115098A1 (en) * 1982-12-27 1984-08-08 Koninklijke Philips Electronics N.V. Lateral DMOS transistor device having an injector region
EP0407011A2 (en) * 1989-07-03 1991-01-09 Harris Corporation Insulated gate semiconductor devices
EP0407011A3 (en) * 1989-07-03 1991-03-13 Harris Corporation Insulated gate semiconductor devices
CN105336785A (en) * 2014-08-15 2016-02-17 北大方正集团有限公司 Depletion-type VDMOS device and manufacturing method therefor
CN105336785B (en) * 2014-08-15 2019-03-29 北大方正集团有限公司 A kind of depletion type VDMOS device and preparation method thereof
CN105448733A (en) * 2014-09-02 2016-03-30 北大方正集团有限公司 Depletion type VDMOS device and manufacturing method thereof

Also Published As

Publication number Publication date
FR2458907B1 (en) 1982-11-26

Similar Documents

Publication Publication Date Title
KR100330847B1 (en) Semiconductor device with semi-insulating layer
US7061057B2 (en) Laterally diffused MOS transistor having N+ source contact to N-doped substrate
FR2744835A1 (en) INTEGRATED HIGH VOLTAGE POWER CIRCUIT WITH LEVEL SHIFT OPERATION AND WITHOUT METAL CROSSING
US7420207B2 (en) Photo-detecting device and related method of formation
JPS6276645A (en) Structure of composite semiconductor crystal
JPH0656888B2 (en) Semiconductor device
FR2812970A1 (en) Silicon-on insulator metal-oxide-semiconductor field effect transistor includes trench that penetrates active region and buried oxide layer, to connect active region and ion-implanted region of substrate
EP1073110A1 (en) Method of manufacturing unipolar devices
US20020048841A1 (en) Disposable spacer for symmetric and asymmetric schottky contact to SOI mosfet
FR2953995A1 (en) BIDIRECTIONAL POWER SWITCH COMMANDABLE TO CLOSURE AND OPENING
FR3004583A1 (en) TRANSISTOR MOS WITH EXTENDED DRAIN IN THIN LAYER ON INSULATION
FR2458907A1 (en) Field effect transistor with adjustable pinch off voltage - has doping chosen in intermediate layer to reduce effect of parasitic bipolar transistor
US5026656A (en) MOS transistor with improved radiation hardness
JPH05136436A (en) High breakdown-strength semiconductor element
JPH05315620A (en) Semiconductor device and manufacture thereof
FR2981503A1 (en) TRANSISTOR MOS NOT SUBJECT TO HUMP EFFECT
JP4194778B2 (en) Semiconductor device and method for manufacturing enhancement mode semiconductor device
EP1267413B1 (en) Lateral power MOSFET
EP0246139B1 (en) Input protection device for integrated cmos circuits
JPS59151472A (en) Lateral dmos transistor
EP0055644B1 (en) Mos transistor with bipolar operation in saturation
FR2490405A1 (en) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE
FR2784801A1 (en) POWER COMPONENT WITH INTERCONNECTIONS
FR2488046A1 (en) DMOS controlled semiconductor power device - uses DMOS FET to drive thyristor with photodiodes deposited on insulating layer with power device using most of substrate area
FR2770687A1 (en) Lateral semiconductor with a smaller surface area

Legal Events

Date Code Title Description
ST Notification of lapse