FI88623C - Copper alloy and process for its preparation - Google Patents
Copper alloy and process for its preparation Download PDFInfo
- Publication number
- FI88623C FI88623C FI872760A FI872760A FI88623C FI 88623 C FI88623 C FI 88623C FI 872760 A FI872760 A FI 872760A FI 872760 A FI872760 A FI 872760A FI 88623 C FI88623 C FI 88623C
- Authority
- FI
- Finland
- Prior art keywords
- copper
- alloy
- copper alloy
- phosphorus
- zinc
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
- Error Detection And Correction (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Metal Extraction Processes (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
- Chemically Coating (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
1 886231 88623
Kuparilejeerinki ja menetelmä sen valmistamiseksiCopper alloy and method of making it
Keksintö koskee kupari le jeerlnkiä ja menetelmää sen valmistamiseksi.The invention relates to copper le jeerlnk and a process for its production.
5 Korkeassa lämpötilassa sulavien metallien, kuten teräksen, jatkuvaan valuun käytettävien tankovalukokillien valmistusaineena on käytetty pitkään pääasiassa tyyppiä SF-Cu olevaa kuparia, joka suuren lämmönjohtokykynsä ansiosta mahdollistaa lämmön sangen nopean poiston sulat-10 teestä. Kokillien seinämäpaksuus valitaan niin suureksi, että se riittävällä tavalla kestää odotettavissa olevat mekaaniset rasitukset.5 Copper, mainly of the SF-Cu type, has long been used as a material for the production of bar castings for the continuous casting of high-melting metals such as steel, which, due to its high thermal conductivity, allows heat to be removed from melt-10 relatively quickly. The wall thickness of the molds is chosen to be large enough to withstand the expected mechanical stresses.
Kuumalujuuden parantamiseksi on ehdotettu tankovalukokillien valmistamista lejeeringistä, joka sisältää vä-15 hintään 85 % kuparia ja vähintään yhtä muuta erkautumlsko-vettumisen aikaansaavaa lejeeraavaa alkuainetta. Lejeeraa-vana alkuaineena ehdotetaan käytettäväksi korkeintaan 3 % kromia, piitä, hopeaa ja berylliumia. Tästäkään raaka-aineesta valmistetut tankovalukokillit eivät ole olleet 20 täysin tyydyttäviä, koska erityisesti lejeeraavina alkuaineina käytetyt pii ja beryllium heikentävät voimakkaasti lämmönjohtokykyä (AT-patenttijulkaisu 234 930).In order to improve the heat resistance, it has been proposed to make bar casting molds from an alloy containing at least 85% copper and at least one other alloying element which causes precipitation-hydrogenation. It is proposed to use up to 3% chromium, silicon, silver and beryllium as an alloying element. Bar casting molds made from this raw material have not been completely satisfactory either, because silicon and beryllium, used in particular as alloying elements, severely impair the thermal conductivity (AT patent publication 234,930).
Mikään näistä ratkaisuista ei ole ollut täysin tyydyttävä tankovalukokillien raaka-aineena.None of these solutions has been entirely satisfactory as a raw material for bar casting molds.
25 Tämän keksinnön päämääränä on siten saada aikaan kuparilejeerinki, jolla on hyvä lämmönjohtokyky, suuri mekaaninen lujuus erityisesti lämpötiloissa yli 300 °C ja hyvä kuumamuovailtavuus. Raaka-aineen tulee olla käyttökelpoista erityisesti tankovalukokillien valmistukseen.It is therefore an object of the present invention to provide a copper alloy having good thermal conductivity, high mechanical strength, especially at temperatures above 300 ° C, and good thermoplasticity. The raw material must be particularly useful for the production of bar casting molds.
30 Menetelmä koskee kuparilejeerinkiä, jolle on tun nusomaista, että se sisältää 0,05 - 0,4 % sinkkiä, 0,02 -0,3 % magnesiumia, 0,02 - 0,2 % fosforia, enintään 0,2 %, edullisesti enintään 0,1 %, piitä ja enintään 0,15 % zirkoniumia loppuosan ollessa kuparia ja valmistuksesta ai-‘ 35 heutuvia epäpuhtauksia.The process relates to a copper alloy characterized in that it contains 0.05 to 0.4% zinc, 0.02 to 0.3% magnesium, 0.02 to 0.2% phosphorus, up to 0.2%, preferably not more than 0,1%, silicon and not more than 0,15% of zirconium, the remainder being copper and impurities from manufacture.
2 886232,88623
On tunnettua, että sinkin tai magnesiumin lisääminen vähentää pienessä määrin kuparin johtokykyä, kun taas fosforin lisääminen johtaa voimakkaaseen johtokyvyn laskuun. Sinkin, magnesiumin tai fosforin lisääminen pa-5 rantaa lujuutta. Täysin yllättävästi on kuitenkin osoittautunut, että näiden kaikkien kolmen alkuaineen lisääminen yhdessä patenttivaatimusten mukaisiksi pitoisuuksiksi ei alenna tai alentaa vain vähän johtokykyä verrattuna kaupan olevaan SF-kupariin. Lujuus on sekakidekovettumi-10 sen samoin kuin lisäksi tapahtuvan fosfodien muodostumisen, jotka ovat erkautumiskykyisiä, aikaansaamien kovet-tumisilmiöiden ansiosta oleellisesti suurempi kuin SF-ku-parilla. Erityisesti kuumalujuus on oleellisesti parempi kuin SF-kuparilla. Erityisen edulliseksi on osoittautunut 15 lejeerinki, joka sisältää 0,1 - 0,25 % sinkkiä, 0,05 -0,15 % magnesiumia ja 0,05 - 0,1 % fosforia loppuosan ollessa kuparia ja valmistuksesta aiheutuvia epäpuhtauksia.It is known that the addition of zinc or magnesium slightly reduces the conductivity of copper, while the addition of phosphorus leads to a sharp decrease in conductivity. Addition of zinc, magnesium or phosphorus pa-5 improves strength. Quite surprisingly, however, it has been found that the addition of all three of these elements together to the claimed concentrations does not or only slightly reduces the conductivity compared to commercially available SF copper. The strength is substantially higher than that of SF copper due to the curing phenomena caused by the mixed crystal curing as well as the additional formation of phosphodes which are capable of precipitation. In particular, the heat resistance is substantially better than that of SF copper. An alloy containing 0.1 to 0.25% zinc, 0.05 to 0.15% magnesium and 0.05 to 0.1% phosphorus has been found to be particularly advantageous, with the remainder being copper and manufacturing impurities.
Piin lisääminen korkeintaan pitoisuudeksi 0,2 %, edullisesti korkeintaan 0,1 %, vaikuttaa positiivisesti 20 kovuuteen ja siten kulumisenkestoon.The addition of silicon to a concentration of at most 0.2%, preferably at most 0.1%, has a positive effect on the hardness and thus the wear resistance.
Zirkoniumin lisääminen korkeintaan pitoisuudeksi 0,15 % johtaa kuumamuovattavuuden paranemiseen.Adding zirconium to a maximum concentration of 0.15% results in improved thermoformability.
Nämä lisäaineet mahdollistavat lisäksi yhdistettyinä ohjattuun lämpökäsittelyyn pehmenemiskäyttäytymisen li-25 säparantamisen. Kumpikaan lisäaine ei annettuina pitoisuuksina johda lämmönjohtokyvyn oleelliseen heikkenemiseen.In addition, these additives, when combined with controlled heat treatment, allow the softening behavior to be improved. Neither additive, at the concentrations given, leads to a significant deterioration in thermal conductivity.
Keksintö koskee myös menetelmää edellä kuvatun ku-parilejeeringin valmistamiseksi. Menetelmälle on tunnus-30 omaista, että lejeerinki kuumamuovataan valamisen jälkeen, hehkutetaan 1-6 tuntia lämpötilassa noin 300 - 550 °C ja kylmämuovataan sen jälkeen vähintään 10 %.The invention also relates to a method for producing the copper alloy described above. The process is characterized in that the alloy is thermoformed after casting, annealed for 1 to 6 hours at a temperature of about 300 to 550 ° C, and then cold-formed by at least 10%.
Vähintään 10-%:inen kylmämuovaus kuumamuovauksen ja 300 - 550 °C:n lämpötilassa tehtävän erkauttamishehkutuk-35 sen välillä vaikuttaa positiivisesti homogenisoitumiseen ja ominaisuuksien yhdistelmään.Cold molding of at least 10% between the hot molding and the precipitation annealing at 300 to 550 ° C has a positive effect on homogenization and the combination of properties.
3 886233,88623
Erityisen edullista on kuumamuovata lejeerinki le-jeeraavien alkuaineiden maksimiliukoisuuslämpötilan yläpuolella ja jäähdyttää se sitten nopeasti vähintään lämpötilassa 750 °C. Tällä toimenpiteellä voidaan saavuttaa 5 lisäkovettumisvaikutus. Liuotuskuumennus voidaan kuiten kin tehdä myös erillään kuumamuovauksesta.It is particularly preferred to thermoforming the alloy above the maximum solubility temperature of the alloying elements and then rapidly cooling it to at least 750 ° C. With this measure, an additional curing effect of 5 can be achieved. However, solution heating can also be done separately from thermoforming.
Lujuuden parantamiseksi on edullista tehdä viimeisen erkauttamishehkutuksen jälkeen vielä yksi vähintään 10 %:n kylmämuovaus.In order to improve the strength, it is advantageous to carry out another cold forming of at least 10% after the last precipitation annealing.
10 Keksintöä valaistaan lähemmin suoritusmuotoesimer- kin avulla.The invention will be further illustrated by means of an exemplary embodiment.
Lejeerinki, joka sisälsi 0,19 % sinkkiä, 0,09 % magnesiumia ja 0,07 % fosforia loppuosan ollessa kuparia ja valmistuksesta aiheutuvia epäpuhtauksia, kuumamuovat-15 tiin suulakepuristamalla valamisen jälkeen ja sen jälkeen kylmämuovattiin vetämällä 20 %. Lejeerinkiä hehkutettiin sitten viisi tuntia lämpötilassa 500 °C. Sitten valmistettiin koekappaleita, joita kylmämuovattiin 10, 20 ja 40 %. Näiden näytteiden ominaisuudet esitetään taulukoissa A, B 20 ja C verrattuina SF-kupariin ja kupari-kromi-zirkoniumle-jeerinkiin.An alloy containing 0.19% zinc, 0.09% magnesium and 0.07% phosphorus with the remainder being copper and manufacturing impurities was thermoformed by extrusion after casting and then cold formed by drawing 20%. The alloy was then annealed for five hours at 500 ° C. Test pieces were then prepared, cold formed at 10, 20 and 40%. The properties of these samples are shown in Tables A, B20 and C compared to SF-copper and copper-chromium-zirconium alloy.
Vertaaminen tankovalukokilleihin usein käytetyn raaka-aineen, SF-kuparin, kanssa osoittaa selvästi, että muovausasteiden ollessa vertailukelpoiset ovat lujuusar-25 vot kautta linjan noin 50 % suurempia. Johtokyky on samoin suurempi. Oleellista on kuitenkin se, että pehmene-miskäyttäytyminen korkeissa lämpötiloissa on selvästi edullisempi. Niinpä keksinnön mukainen raaka-aine pehmenee johtokyvyn ollessa vertailukelpoinen vasta yli 30 500 °C:n lämpötiloissa. Lisäetuna on oleellisesti pienempi virumisvenymä korotetuissa lämpötiloissa, joka saa aikaan paremman kieroutumattomuuden. Kaiken kaikkiaan voidaan odottaa, että keksinnön mukainen kupari lejeerinki soveltuu erinomaisesti tankovalukokillien raaka-aineeksi. Verrattu-35 na kupari-kromilejeerinkiin leikkautuu keksinnön mukainen 4 88623 lejeerinki sangen hyvin. Koska keksinnön mukainen lejee-rinki on oleellisesti yksinkertaisemmin valmistettavissa ja lejeeraavaat alkuaineet ovat halvempia, pitäisi tästä uudesta raaka-aineesta valmistettujen kestävyydeltään sa-5 manlaisten tankovalukokillien olla halvempia.A comparison with bar casting molds with a frequently used raw material, SF copper, clearly shows that when the degree of molding is comparable, the strength values across the line are about 50% higher. Conductivity is also higher. What is essential, however, is that the softening behavior at high temperatures is clearly more advantageous. Thus, the raw material according to the invention softens when the conductivity is comparable only at temperatures above 30,500 ° C. An additional advantage is the substantially lower creep elongation at elevated temperatures, which results in better non-distortion. Overall, it can be expected that the copper alloy according to the invention is excellently suitable as a raw material for bar casting molds. Compared to the copper-chromium alloy, the alloy of 4,88623 according to the invention cuts quite well. Since the alloy according to the invention is substantially simpler to manufacture and the alloying elements are cheaper, bar casting molds of the same durability made from this new raw material should be cheaper.
Lejeeringin tekniset ominaisuudet ovat jonkin verran parempia, jos kuumamuovaus tehdään liuotuskuumennus-lämpötilassa, jäähdytetään sen jälkeen nopeasti ja suoritetaan sitten edellä kuvatut toimenpiteet. Erottamalla 10 välifaasit kuparimatriisista voidaan saavuttaa vielä parempia lujuus- ja johtokykyarvoja.The technical properties of the alloy are somewhat better if the thermoforming is performed at the solution heating temperature, then rapidly cooled, and then the operations described above are performed. By separating the 10 intermediate phases from the copper matrix, even better strength and conductivity values can be achieved.
5 886235,88623
/—N/-OF
COC/O
•H•B
WW
CO CCO C
* 3* 3
*W /-s W* W / -s W
cO XcO X
vt ' m a Ä Ä c a co i ^ rrsee 'm a Ä Ä c a co i ^ rr
4) > Cfl VO «<0 VO4)> Cfl VO «<0 VO
C O tf> «SC O tf> «S
Ή Ji » s -h u cΉ Ji »s -h u c
X -M O -H www IX -M O -H www I
WOO OWOO O
x 3 m 3 :co A« m w w co W Cfl X · co enx 3 m 3: co A «m w w co W Cfl X · co en
:co w M: co w M
* :θ ·η O*: θ · η O
en o. co o h g m o 6 xo 3 o ti h u men o. co o h g m o 6 xo 3 o ti h u m
C W 3 «-NC W 3 «-N
V 3 ^ CQ CV 3 ^ CQ C
a 3 j: *h *h _d > o> w o O» O JZ e e A· w 3 £ _ u O in tn O " o u n O vo tn e jo"-·. ^ m m tn o> a< ^ — e jz 0> X Ama 3 j: * h * h _d> o> w o O »O JZ e e A · w 3 £ _ u O in tn O" o u n O vo tn e jo "- ·. ^ m m tn o> a <^ - e jz 0> X Am
X <NX <N
-¾ E-¾ E
He m <n x V» O E Γ" o> C* n W5 f ^ s s *«? in cg* vo \ <C in 3 cgHe m <n x V »O E Γ" o> C * n W5 f ^ s s * «? In cg * vo \ <C in 3 cg
2 cg tn O2 cg tn O
j CQ »H © *H *H ^j CQ »H © * H * H ^
H 2 Ot H ^ H HH 2 Ot H ^ H H
33
CO ICO I
H 3 cj ^ ^ o mH 3 cj ^ ^ o m
tn NX. CO C" p" VOtn NX. CO C "p" VO
QJQJ
M ^ — c o tn m o o <y »H * " * ^ ' \ 4> m e- < n cg cg r- < •g < X Hw H H H Cg " * .* ; mm w -cg 4j 0 6 o g tn vo oo o cn ^ O· *S f" in i" o cg u z m m m ^ ro o S-M ^ - c o tn m o o <y »H *" * ^ '\ 4> m e- <n cg cg r- <• g <X Hw H H H Cg "*. *; mm w -cg 4j 0 6 o g tn vo oo o cn ^ O · * S f "in i" o cg u z m m m ^ ro o S-
3 0 E3 0 E
i-> > E Γ" in m o oo 3 ^ SV P- VO CO cg *r ►JiOQjg (M m m Tri->> E Γ "in m o oo 3 ^ SV P- VO CO cg * r ►JiOQjg (M m m Tr
H N N HH N N H
m o o o cg h <g ^ 3 3 3 3 w wwwm o o o cg h <g ^ 3 3 3 3 w www
... w w w *J... w w w * J
• * * <0 co *0 co <0 > > > >• * * <0 co * 0 co <0>>>>
r-H O O O Or-H O O O O
•H 3 3 3 3 : : h e a a a λ 0> **j 5 N o e e *i ? oS^sn f• H 3 3 3 3:: h e a a a λ 0> ** j 5 N o e e * i? oS ^ sn f
* A 3 - O ^ ti ω W* A 3 - O ^ ti ω W
.* u 3ο·!5 3*υ ™ I N 0^3« 1 pg &·· 3 CT· 0 —i 3 w υ s o. — u 6 88623 C (N H O PJ *-«. * u 3ο ·! 5 3 * υ ™ I N 0 ^ 3 «1 pg & ·· 3 CT · 0 —i 3 w υ s o. - u 6 88623 C (N H O PJ * - «
o m Oo m O
o * * * CM o o o o o <u c (Λ •h vo rg r-o * * * CM o o o o o <u c (Λ • h vo rg r-
Cfl O O 0> CO O «HCfl O O 0> CO O «H
-* o cg o O <-* O- * o cg o O <- * O
ffl o * . *ffl o *. *
:3 *H O O O O O: 3 * H O O O O O
j*Sj * S
4J4J
α VO O Oα VO O O
— rf CO CD O «H- rf CO CD O «H
O »H o o Ή o c O * * * -O »H o o Ή o c O * * * -
^ in o O O O O^ in o O O O O
4J4J
JZJZ
0> w σ» co vo ^0> w σ »co vo ^
O ^ Γ- CO *—IO ^ Γ- CO * —I
Jo vO «H o o o o CO <-< % ·»«<·> « o> CM o o o o o wJo vO «H o o o o CO <- <% ·» «<·>« o> CM o o o o o w
Q rH in ««f <NQ rH in «« f <N
cu r** Tf m vo ή <α o o o o o u rg - *. *.cu r ** Tf m vo ή <α o o o o o u rg - *. *.
c r- o O O O Oc r- o O O O O
Ή m r- <τ> co 2 Ä m m ^ in oΉ m r- <τ> co 2 Ä m m ^ in o
3 a O O O O O3 a O O O O O
—i ' * * * * W4J CM O ooo o c υ 5 w m n »j Γ' ιο O m pj h pj o 05 o 000 o CM ^ VO O 000 o—I '* * * * W4J CM O ooo o c υ 5 w m n »j Γ' ιο O m pj h pj o 05 o 000 o CM ^ VO O 000 o
OO
3 f—4 3 (03 f — 4 3 (0
HB
M N N N NM N N N N
m o O O Om o O O O
CM H ^ >J ·—1 4-1 3CM H ^> J · —1 4-1 3
CM 3 3 3 3 3 CCM 3 3 3 3 3 C
E 4J 4J 4J 4J 4J 3E 4J 4J 4J 4J 4J 3
0 U U U U 4-1 U0 U U U U 4-1 U
\ <0 Cd Cd CT3 (Q 4J\ <0 Cd Cd CT3 (Q 4J
2 > >>>>!> O 0 0 0 O > O 3 3 3 3 3 0 m e e e e ε * r—4 1 ®2> >>>>!> O 0 0 0 O> O 3 3 3 3 3 0 m e e e e ε * r — 4 1 ®
o» Oo »O
m % s 0 •H * e ^m% s 0 • H * e ^
i- ^ «H Ci- ^ «H C
O ^ « 0)O ^ «0)
3 ^ <-* C3 ^ <- * C
^ ° *H^ ° * H
_ Cfl :rfl O'·* e S3 >> e c ω ω %c_ Cfl: rfl O '· * e S3 >> e c ω ω% c
> c cg :o M> c cg: o M
w -M * c Nw -M * c N
•H ro o C I• H ro o C I
Θ I - ^ ^ * 3 f I r- w nΘ I - ^ ^ * 3 f I r- w n
U .* U G j* UU. * U G j * U
•h nj I N at I• h nj I N at I
> * Du g .* g “ w uw υ 7 88623> * Du g. * G “w uw υ 7 88623
rH rHrH rH
n* 3 3 « .X .* 3n * 3 3 «.X. * 3
•U X X• U X X
4J4J
3 ΜΛ3 ΜΛ
I—( m (NI— (m (N
3 P-- on M — X Ή ·Η 3 3 m y u m co p u 0 ^ § 10 II* ° s s = °3 P-- on M - X Ή · Η 3 3 m y u m co p u 0 ^ § 10 II * ° s s = °
2 S2 S
rt 3 *<Μ <o e * - £ c·rt 3 * <Μ <o e * - £ c ·
(Q On H(Q On H
:¾ O * N(*iin O: ¾ O * N (* iin O
Ο ιΛ * > 'Λ ιΛ *> '
*j n #H O O O O* j n #H O O O O
*H*B
P.P.
—* ^ Γ" «9 <S NO #-4- * ^ Γ "« 9 <S NO # -4
C O kTl rlH H OC O kTl rlH H O
•H O · · * · ^ m ^ o o © o x 04 u * M C4 ^ m #-4 2 NO rsi <-» o w n * * * · * <u <s ^ o o o o « π) η η σ% Tf Q, flO r*» ON P*> r—i• HO · · * · ^ m ^ oo © ox 04 u * M C4 ^ m # -4 2 NO rsi <- »own * * * · * <u <s ^ oooo« π) η η σ% Tf Q, flO r * »ON P *> r — i
to m o O O Oto m o O O O
4-1 <s · · * - ·.4-1 <s · · * - ·.
n o o o o o c 2 °5 9 “J ^ #H Ι/ΙΙΠ #f #~4n o o o o o c 2 ° 5 9 “J ^ #H Ι / ΙΙΠ #f # ~ 4
w *0 rn O O O Ow * 0 rn O O O O
3*^ *9 * « « .3 * ^ * 9 * ««.
Cc ο* O ooo o υ 3 ο υ|ϋ ji f n no o <n V 0 « rH ΙΛ n n .-4 3 Ol ^ n ooo o ... —4 Ή * * * * *Cc ο * O ooo o υ 3 ο υ | ϋ ji f n no o <n V 0 «rH ΙΛ n n.-4 3 Ol ^ n ooo o ... —4 Ή * * * * *
3 Γ>4| <; no O OOO O3 Γ> 4 | <; no O OOO O
««
HB
NOF
w N N N K Hw N N N K H
ΓΜ ιΛ OOO OΓΜ ιΛ OOO O
fcsl «N «CT H 4Jfcsl «N« CT H 4J
33
^ 3 3 3 3 3 C^ 3 3 3 3 3 C
Z 4J 4J 4-1 4J *J 3Z 4J 4J 4-1 4J * J 3
4J 4J 4J 4J 4-» 4J4J 4J 4J 4J 4- »4J
O (Q (Q <0 (0 (0 4JO (Q (Q <0 (0 (0 4J
m >>>>>« —· o o o o o > 3 3 3 3 3 0 (0 6 6 8 6 6.* r-1m >>>>> «- · o o o o o> 3 3 3 3 3 0 (0 6 6 8 6 6. * r-1
04 <D04 <D
CO OCO O
3 ° E α ΐ ρ . οι o -.c3 ° E α ΐ ρ. οι o -.c
3 ^ *H3 ^ * H
** Q <0 :n3 H, 3 I. 2s C 04 c** Q <0: n3 H, 3 I. 2s C 04 c
0» C 'JO0 »C 'JO
- . - > -H <N C IH-. -> -H <N C 1H
- w <0 · C N- w <0 · C N
’ *H I Ο *— I‘* H I Ο * - I
6 <0 3 CO w<6 <0 3 CO w <
3 .* O C .* O3. * O C. * O
M <0 I N 04 IM <0 I N 04 I
- - r! ,5 “s 3 i 3 > * w u w u- - r! , 5 “s 3 i 3> * w u w u
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19863620654 DE3620654A1 (en) | 1986-06-20 | 1986-06-20 | COPPER ALLOY |
DE3620654 | 1986-06-20 |
Publications (4)
Publication Number | Publication Date |
---|---|
FI872760A0 FI872760A0 (en) | 1987-06-22 |
FI872760A FI872760A (en) | 1987-12-21 |
FI88623B FI88623B (en) | 1993-02-26 |
FI88623C true FI88623C (en) | 1993-06-10 |
Family
ID=6303307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI872760A FI88623C (en) | 1986-06-20 | 1987-06-22 | Copper alloy and process for its preparation |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0250001B1 (en) |
JP (1) | JP2530657B2 (en) |
AT (1) | ATE70858T1 (en) |
CA (1) | CA1308940C (en) |
DE (2) | DE3620654A1 (en) |
ES (1) | ES2038620T3 (en) |
FI (1) | FI88623C (en) |
IN (1) | IN168226B (en) |
ZA (1) | ZA874542B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910004078B1 (en) * | 1987-08-31 | 1991-06-22 | 미쯔비시마테리알 가부시기가이샤 | Mold member and rapidly solidifying water looled rotary roll member kazuhiko tabei |
DE10032627A1 (en) * | 2000-07-07 | 2002-01-17 | Km Europa Metal Ag | Use of a copper-nickel alloy |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778318A (en) * | 1969-02-24 | 1973-12-11 | Cooper Range Co | Copper base composition |
US4202688A (en) * | 1975-02-05 | 1980-05-13 | Olin Corporation | High conductivity high temperature copper alloy |
GB1562870A (en) * | 1977-03-09 | 1980-03-19 | Louyot Comptoir Lyon Alemand | Copper alloys |
JPS5514128A (en) * | 1978-07-13 | 1980-01-31 | Honda Motor Co Ltd | Heat treatment method of in-furnace brazing |
US4305762A (en) * | 1980-05-14 | 1981-12-15 | Olin Corporation | Copper base alloy and method for obtaining same |
JPS5832220A (en) * | 1981-08-19 | 1983-02-25 | Matsushita Electric Ind Co Ltd | Step-up type magnetic head |
US4605532A (en) * | 1984-08-31 | 1986-08-12 | Olin Corporation | Copper alloys having an improved combination of strength and conductivity |
-
1986
- 1986-06-20 DE DE19863620654 patent/DE3620654A1/en not_active Withdrawn
- 1986-06-23 ZA ZA874542A patent/ZA874542B/en unknown
-
1987
- 1987-06-20 AT AT87108853T patent/ATE70858T1/en not_active IP Right Cessation
- 1987-06-20 DE DE8787108853T patent/DE3775474D1/en not_active Expired - Fee Related
- 1987-06-20 ES ES198787108853T patent/ES2038620T3/en not_active Expired - Lifetime
- 1987-06-20 EP EP87108853A patent/EP0250001B1/en not_active Expired - Lifetime
- 1987-06-22 FI FI872760A patent/FI88623C/en not_active IP Right Cessation
- 1987-06-29 JP JP62159587A patent/JP2530657B2/en not_active Expired - Fee Related
- 1987-07-13 IN IN534/CAL/87A patent/IN168226B/en unknown
- 1987-07-21 CA CA000542572A patent/CA1308940C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ZA874542B (en) | 1988-07-27 |
DE3620654A1 (en) | 1987-12-23 |
ES2038620T3 (en) | 1993-08-01 |
ATE70858T1 (en) | 1992-01-15 |
CA1308940C (en) | 1992-10-20 |
JP2530657B2 (en) | 1996-09-04 |
JPS648236A (en) | 1989-01-12 |
FI872760A (en) | 1987-12-21 |
DE3775474D1 (en) | 1992-02-06 |
IN168226B (en) | 1991-02-23 |
FI88623B (en) | 1993-02-26 |
FI872760A0 (en) | 1987-06-22 |
EP0250001A2 (en) | 1987-12-23 |
EP0250001A3 (en) | 1989-06-07 |
EP0250001B1 (en) | 1991-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101234154B1 (en) | Metal foil | |
CN1462318A (en) | High manganese deplex stainless steel having superior hot workabilities and method for manufacturing thereof | |
KR101364542B1 (en) | Copper alloy material for continuous casting mold and process of production same | |
CN104593645B (en) | Aluminum alloy pressure-cast door plank and preparation method thereof | |
CA2710311A1 (en) | Copper-nickel-silicon alloys | |
FI88623C (en) | Copper alloy and process for its preparation | |
PT2333126E (en) | Brass alloys having superior stress corrosion resistance and manufacturing method thereof | |
US9920401B2 (en) | Aluminum base alloy with high thermal conductivity for die casting | |
EP3868911A1 (en) | Composition of heat-resisting stainless steel used for cooking utensil for heating food | |
RU1831510C (en) | Age-hardening alloy on copper base | |
TWI296012B (en) | ||
KR100507793B1 (en) | Nickel-free white copper alloy, and method of producing nickel-free white copper alloy | |
JP2534073B2 (en) | Copper alloy for electronic component construction and method for producing the same | |
RU2001134514A (en) | Aluminum-based alloy, product from it and method of manufacturing the product | |
JPS5547337A (en) | Heat resisting highly conductive copper alloy | |
JP2540161B2 (en) | Copper alloys and their use as work materials for continuous casting molds | |
JPH01208431A (en) | Use of copper alloy as material of continuous casting mold | |
JPS60194032A (en) | Copper material of low softening temperature for high electrical conduction | |
JP2003277896A (en) | Method of producing metal-ceramics composite material | |
CN107350465A (en) | A kind of impact resistance metallic composite and preparation method thereof | |
JPS6179753A (en) | Manufacture of copper material for high electric conduction having low softening temperature | |
SU212537A1 (en) | COPPER BASED ALLOY | |
KR20200117096A (en) | Manufacturing method of casting bronze having high tensile strength and casting bronze made therefrom | |
JPH0533085A (en) | Material for flute | |
CN107435115A (en) | A kind of Mg-Al-Mn-Nb compression casting heat-stable magnesium alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BB | Publication of examined application | ||
FG | Patent granted |
Owner name: KABEL- UND METALLWERKE |
|
MA | Patent expired |