JPS6179753A - Manufacture of copper material for high electric conduction having low softening temperature - Google Patents
Manufacture of copper material for high electric conduction having low softening temperatureInfo
- Publication number
- JPS6179753A JPS6179753A JP20188884A JP20188884A JPS6179753A JP S6179753 A JPS6179753 A JP S6179753A JP 20188884 A JP20188884 A JP 20188884A JP 20188884 A JP20188884 A JP 20188884A JP S6179753 A JPS6179753 A JP S6179753A
- Authority
- JP
- Japan
- Prior art keywords
- copper material
- softening temperature
- pure copper
- low softening
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、軟化温度が低くて加工性に優れた高導電用銅
材料の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a highly conductive copper material having a low softening temperature and excellent workability.
周知の如く、銅及び銅合金は導電性に優れ、且つ良好な
加工性を有することから、導電用細線、プリント配線基
板用圧延箔、フラットケーブル用銅箔条等多様な用途に
用いられている。As is well known, copper and copper alloys have excellent conductivity and good workability, so they are used in a variety of applications such as thin conductive wires, rolled foils for printed wiring boards, and copper foil strips for flat cables. .
従来、これらの用途には無酸素銅、タフピッチ銅、銅−
銀合金等の銅合金が多く用いられている。Traditionally, oxygen-free copper, tough pitch copper, copper-
Copper alloys such as silver alloys are often used.
近年、省資源化のため上記材料の極細線化、薄板化が求
められている。しかしながら、これら材料の焼鈍処理は
、例えば極薄板の場合、コイル状で焼鈍処理を行なおう
とすると、焼付キ、シわ等の不良が生じ易く、また、フ
ープ状で連続的に焼鈍処理を行なおうとすると、傷が付
き易い等という太き表困難が伴うので、このようなこと
が極細線化、薄板化に対するネックとなっていた。In recent years, there has been a demand for ultra-thin wires and thinner plates of the above-mentioned materials in order to save resources. However, when annealing these materials, for example, in the case of an ultra-thin plate, if annealing is attempted in a coil shape, defects such as seizure marks and wrinkles are likely to occur; If this is attempted, it would be difficult to make a thick surface such as being easily scratched, and this has been a bottleneck in making thinner wires and thinner plates.
この焼鈍処理の際の困難は、焼鈍温度を現状よシ下げら
れれば、相当軽減されるので、好ましい。This difficulty in annealing can be considerably reduced if the annealing temperature can be lowered from the current level, which is preferable.
以上の点から加工性に優れ、且つ軟化温度の低い鋼材料
の開発が望まれていた。From the above points, it has been desired to develop a steel material that has excellent workability and a low softening temperature.
本発明者等は上記の事情に鑑み、導電率が純銅材料のそ
れよシ少くとも低下することなく、軟化温度が上記材料
よシ大幅に低い銅材料を提供すべく、まず、純銅に種々
の第二元素を微量添加して得られる銅合金の中で、第二
元素として硼素、バナジウム、クロム、ハフニウム、ジ
ルコニウム、スカンジウム、イツトリウム、希土類元素
およびマグネシウムを極微量添加したものを提案した(
特願昭58−35515号、同58−124115号お
よび同59−169948号)。また、これらの元素が
軟化温度の低下に有効であるのは、それらが純銅材料中
に極微量存在する不可避不純物である硫黄と化合物を形
成し、硫黄が銅の軟化温度を高める作用を減殺するため
であることを見出し硫黄を1モルppm以下に限定した
純銅材料も提案した(特願昭59−50278号)。In view of the above circumstances, the present inventors first applied various methods to pure copper in order to provide a copper material whose conductivity is at least as low as that of pure copper materials and whose softening temperature is significantly lower than that of the above-mentioned materials. Among the copper alloys obtained by adding trace amounts of secondary elements, we proposed one in which trace amounts of boron, vanadium, chromium, hafnium, zirconium, scandium, yttrium, rare earth elements, and magnesium are added as secondary elements (
Japanese Patent Application No. 58-35515, No. 58-124115 and No. 59-169948). In addition, these elements are effective in lowering the softening temperature because they form compounds with sulfur, an unavoidable impurity that exists in trace amounts in pure copper materials, and reduce the effect of sulfur on increasing the softening temperature of copper. He discovered that this was the case and proposed a pure copper material with sulfur content limited to 1 mol ppm or less (Japanese Patent Application No. 50278/1983).
その後、引続いて、本発明者等は、純銅材料中に通常1
0重量ppm程度もしくはそれ以下含有されている硫黄
を硫化鋼として析出させることができれば、上記のよう
な第二元素を添加することなく、また硫黄含有量を特に
低減させることもなく、硫黄が銅の軟化温度を高める作
用を減殺し得るのではないかと考え、鋭意研究を行なっ
た。Subsequently, the present inventors discovered that normally 1 in pure copper material.
If sulfur containing about 0 ppm by weight or less can be precipitated as sulfide steel, sulfur can be removed from copper without adding a second element as mentioned above or without reducing the sulfur content. We thought that it might be possible to reduce the effect of increasing the softening temperature of , and conducted extensive research.
その結果、電気鋼地金を第二元素を添加することなく溶
解鋳造して製造された、酸素を500重貴ppm以下含
有する純銅材料を450〜650℃で20時間以上熱処
理することによって、前記目的が達成され得ることを見
出したものである。As a result, by heat-treating a pure copper material containing 500 precious ppm or less of oxygen at 450 to 650°C for 20 hours or more, the above-mentioned It has been found that the purpose can be achieved.
以下、本発明を更に説明する。本発明方法において熱処
理する材料を、電気銅地金を第二元素を添加することな
く溶解鋳造して製造された、酸素を500重量ppm以
下含有する純銅材料に限定したのは、上記以外の純銅材
料ではテルル、鉛、ビスマス、アンチモン、セレン、砒
素等が混入して、その軟化温度が高くな)易いからであ
る。酸素については500重量ppm以下であれば、本
発明の目的を充分達成することができる。The present invention will be further explained below. The materials to be heat treated in the method of the present invention are limited to pure copper materials containing 500 ppm by weight or less of oxygen, which are produced by melting and casting electrolytic copper ingots without adding a second element. This is because materials such as tellurium, lead, bismuth, antimony, selenium, arsenic, etc. are likely to be mixed in, resulting in a high softening temperature. As for oxygen, if it is 500 ppm by weight or less, the object of the present invention can be fully achieved.
電気鋼地金を溶解鋳造する際、雰囲気、炉材等から不可
避的に混入される不純物は、通常程度であれば何ら差し
支えない。従って、溶解鋳造して製造された純銅材料と
しては、タフピッチ銅、無酸素銅も使用することができ
る。また、このような純銅材料に熱処理する前、適宜機
械加工や塑性加工を与えることもできる。When melting and casting electrical steel ingots, there is no problem with impurities that are inevitably mixed in from the atmosphere, furnace materials, etc., as long as they are at a normal level. Therefore, tough pitch copper and oxygen-free copper can also be used as the pure copper material produced by melting and casting. Moreover, before heat-treating such a pure copper material, mechanical processing or plastic working can be applied as appropriate.
上記純銅材料を熱処理する際、熱処理温度を450〜6
50℃、熱処理時間を20時間以上に限定したのは、上
記熱処理温度範囲外および熱処理時間が20時間未満で
は、軟化温度の低下が不十分であるからである。なお、
熱処理時間は200時間を超えると、軟化温度の低下が
飽和すると共に熱的に不経済であるので、好ましくは2
0〜200時間である。When heat treating the above pure copper material, the heat treatment temperature is 450~6
The reason why the heat treatment time was limited to 50° C. and 20 hours or more is because if the heat treatment temperature is outside the above range or the heat treatment time is less than 20 hours, the softening temperature is insufficiently lowered. In addition,
If the heat treatment time exceeds 200 hours, the reduction in the softening temperature will reach saturation and it will be thermally uneconomical, so it is preferably 200 hours.
0 to 200 hours.
次に本発明の実施例を比較例と共に説明する。 Next, examples of the present invention will be described together with comparative examples.
実施例
電気銅(JIS H2121)を高周波溶解炉を使用し
、黒鉛ルツボで雰囲気を真空または大気として溶解した
後、この溶解と同一の雰囲気で鋳造して、厚さ35m、
幅105m+、長さ210m++の鋳塊を製造した。な
お、大気雰囲気での鋳造は、溶解後場面を黒鉛系の7ラ
ツクスで覆いながら行なりた。Example Electrolytic copper (JIS H2121) was melted in a graphite crucible in a vacuum or air atmosphere using a high-frequency melting furnace, and then cast in the same atmosphere as this melting, to a thickness of 35 m.
An ingot with a width of 105 m+ and a length of 210 m++ was produced. Incidentally, casting in an atmospheric atmosphere was carried out while covering the melted area with graphite-based 7lux.
得られた鋳塊中の不純物は第1表のようであった。The impurities in the obtained ingot were as shown in Table 1.
第 1 表
(注)表に掲載以外の元素については検出されなかっも
次に、これらの鋳塊表面を面削して板厚25■とした後
800℃で熱間圧延し厚さ12mmとして、幅30m、
長さ80mの板材を26枚(夫にの鋳塊部から13枚宛
)作成した。これらの板材のうち24枚は、アルゴン雰
囲気下、400〜700℃、12〜240時間の熱処理
を行なった後、板厚10wmまで面削して導電率を測定
した。他の2枚の板材は、上記の熱処理を行なうことな
く、板厚10雷まで面削して導電率を測定した。Although no elements other than those listed in Table 1 (Note) were detected, the surfaces of these ingots were milled to a thickness of 25 mm, and then hot rolled at 800°C to a thickness of 12 mm. Width 30m,
26 plates (13 from the ingot section) with a length of 80 m were made. Twenty-four of these plates were heat treated in an argon atmosphere at 400 to 700°C for 12 to 240 hours, then face-faced to a thickness of 10 wm, and the conductivity was measured. The other two plates were face-milled to a thickness of 10 mm without being subjected to the heat treatment described above, and their conductivities were measured.
これらの板材は、更に、厚さ0.5 wmまで冷間圧延
を行なった後、得られた冷間圧延材から一辺20畷の正
方形の板片を、裁断して作成し、軟化温度を測定する試
料とした。軟化温度の測定は、40、80、100.
120、140、160.200および240℃に設定
した油浴中に30分間浸漬加熱された試料のビッカース
硬度を測定することによシ行なった。得られた結果を第
2表に示す。These plate materials were further cold-rolled to a thickness of 0.5 wm, and then square plate pieces of 20 m on a side were cut from the obtained cold-rolled materials, and the softening temperature was measured. It was used as a sample. The softening temperature was measured at 40, 80, 100.
This was done by measuring the Vickers hardness of samples that were immersed and heated in oil baths set at 120, 140, 160, and 240°C for 30 minutes. The results obtained are shown in Table 2.
第2表
第2表から明らかなように、電気銅を真空溶解および大
気溶解し、塑性加工して得られた純銅材料を500およ
び600℃で24〜240時間熱処理したものは、いず
れも導電率が102 * 1.A。Table 2 As is clear from Table 2, pure copper materials obtained by vacuum melting and atmospheric melting of electrolytic copper and plastic working were heat treated at 500 and 600°C for 24 to 240 hours. is 102 * 1. A.
C,S、よυ大きく、真空溶解して熱処理しなかった純
銅材料(試験随15)のそれと同程度であシ、且つ半軟
化温度が135℃以下で、この熱処理しなかった純銅材
料よ930℃以上低い。一方、熱処理をしないか、熱処
理はしても熱処理条件が本発明の範囲外であるものは、
いずれも半軟化温度が上記熱処理しなかった純銅材料の
それと同程度か低くても30℃未満に止まることが判る
。C, S, υ are as large as that of the pure copper material (Test No. 15) that was vacuum melted and not heat treated, and the semi-softening temperature was 135℃ or less, which was 930℃ compared to this pure copper material that was not heat treated. Lower than ℃. On the other hand, those that are not heat-treated or that are heat-treated but whose heat treatment conditions are outside the scope of the present invention,
It can be seen that the semi-softening temperature of all the materials remains at the same level or lower than 30° C. as that of the pure copper material which was not heat treated.
以上から明らかなように、本発明によれば、第二元素を
微量添加することなく、また硫黄含有量を1モルppm
以下に抑えることもなく、軟化温度が従来の純銅材料の
それよシ大幅に低い加工性に優れた銅材料を提供しうる
ものである。As is clear from the above, according to the present invention, the sulfur content can be reduced to 1 mol ppm without adding a trace amount of a second element.
It is possible to provide a copper material with excellent workability, which has a softening temperature significantly lower than that of conventional pure copper materials, without having to suppress the softening temperature below that of conventional pure copper materials.
Claims (1)
造して製造された、酸素を500重量ppm以下含有す
る純銅材料を450〜650℃で20時間以上熱処理す
ることを特徴とする軟化温度の低い高導電用銅材料の製
造方法。(1) A pure copper material containing 500 ppm by weight or less of oxygen, produced by melting and casting an electrolytic copper ingot without adding a second element, is heat-treated at 450 to 650°C for 20 hours or more. A method for producing a highly conductive copper material with a low softening temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20188884A JPS6179753A (en) | 1984-09-28 | 1984-09-28 | Manufacture of copper material for high electric conduction having low softening temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20188884A JPS6179753A (en) | 1984-09-28 | 1984-09-28 | Manufacture of copper material for high electric conduction having low softening temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6179753A true JPS6179753A (en) | 1986-04-23 |
JPH0373620B2 JPH0373620B2 (en) | 1991-11-22 |
Family
ID=16448496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20188884A Granted JPS6179753A (en) | 1984-09-28 | 1984-09-28 | Manufacture of copper material for high electric conduction having low softening temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6179753A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63310931A (en) * | 1987-06-10 | 1988-12-19 | Furukawa Electric Co Ltd:The | Copper alloy for flexible print |
JP2006274382A (en) * | 2005-03-30 | 2006-10-12 | Hitachi Cable Ltd | Method for producing copper material and the copper material |
JP2008255418A (en) * | 2007-04-05 | 2008-10-23 | Hitachi Cable Ltd | Method for producing copper material, and copper material |
-
1984
- 1984-09-28 JP JP20188884A patent/JPS6179753A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63310931A (en) * | 1987-06-10 | 1988-12-19 | Furukawa Electric Co Ltd:The | Copper alloy for flexible print |
JP2006274382A (en) * | 2005-03-30 | 2006-10-12 | Hitachi Cable Ltd | Method for producing copper material and the copper material |
JP2008255418A (en) * | 2007-04-05 | 2008-10-23 | Hitachi Cable Ltd | Method for producing copper material, and copper material |
Also Published As
Publication number | Publication date |
---|---|
JPH0373620B2 (en) | 1991-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101127000B1 (en) | Copper alloy for electronic material and method for the same | |
KR101628583B1 (en) | Cu-ni-si alloy and method for manufacturing same | |
JP2007092135A (en) | Cu-Ni-Si-BASED ALLOY HAVING EXCELLENT STRENGTH AND BENDING WORKABILITY | |
CN110218899B (en) | High-strength corrosion-resistant Cu-Ti alloy foil and preparation method thereof | |
JP4459067B2 (en) | High strength and high conductivity copper alloy | |
US4059437A (en) | Oxygen-free copper product and process | |
JPS6179753A (en) | Manufacture of copper material for high electric conduction having low softening temperature | |
JP4166196B2 (en) | Cu-Ni-Si copper alloy strip with excellent bending workability | |
JPS6247936B2 (en) | ||
JPS6017040A (en) | Copper alloy for high electric conduction having low softening temperature | |
JPS591653A (en) | Copper alloy for fin of radiator | |
KR950014423B1 (en) | A copper-based metal alloy of improved type particularly for the contruction of electronic components | |
JP4130593B2 (en) | High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics | |
JP2614210B2 (en) | Cu alloy for continuous casting mold | |
JPS6158535B2 (en) | ||
US20060198757A1 (en) | Oxygen-free copper alloy and method for its manufacture and use of copper alloy | |
CN113981265A (en) | Copper alloy having excellent hot rolling properties and method for producing same | |
CN1276107C (en) | Electronic tough copper and its production | |
JP2009185324A (en) | Cu-cr-sn-zn based alloy for press work | |
KR102345805B1 (en) | Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION | |
KR19990048845A (en) | Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Su) -aluminum (Al) alloy for high-strength wire and plate and its manufacturing method | |
JP2007291516A (en) | Copper alloy and its production method | |
JP3293241B2 (en) | Aluminum foil material for electrodes of electrolytic capacitors with excellent surface area expansion effect | |
JPH0356290B2 (en) | ||
JPH029660B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |