FI124792B - Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi - Google Patents

Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi Download PDF

Info

Publication number
FI124792B
FI124792B FI20135681A FI20135681A FI124792B FI 124792 B FI124792 B FI 124792B FI 20135681 A FI20135681 A FI 20135681A FI 20135681 A FI20135681 A FI 20135681A FI 124792 B FI124792 B FI 124792B
Authority
FI
Finland
Prior art keywords
molecules
sample
flow
h2so4
particles
Prior art date
Application number
FI20135681A
Other languages
English (en)
Swedish (sv)
Other versions
FI20135681A7 (fi
Inventor
Mikko Sipilä
Heikki Junninen
Douglas Worsnop
Original Assignee
Helsingin Yliopisto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helsingin Yliopisto filed Critical Helsingin Yliopisto
Priority to FI20135681A priority Critical patent/FI124792B/fi
Priority to CN201480035121.8A priority patent/CN105308715B/zh
Priority to PCT/FI2014/050470 priority patent/WO2014202828A1/en
Priority to US14/897,690 priority patent/US9916972B2/en
Priority to EP14814328.2A priority patent/EP3011585B1/en
Publication of FI20135681A7 publication Critical patent/FI20135681A7/fi
Application granted granted Critical
Publication of FI124792B publication Critical patent/FI124792B/fi

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/12Ion sources; Ion guns using an arc discharge, e.g. of the duoplasmatron type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/0077Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction specific reactions other than fragmentation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

METHOD AND DEVICE FOR IONIZING PARTICLES OF A SAMPLE GAS FLOW
TECHNICAL FIELD OF THE INVENTION
The invention relates to a method and device for ionizing particles of a sample gas flow before a detector, such as a mass spectrometer, in order to determine properties, such as masses or concentrations, of gas phase samples or especially molecules or clusters, for example gas phase bases, such as ammonia and especially amines.
BACKGROUND OF THE INVENTION
An accurate mass spectrometry methods for determining of properties of gas phase samples are in very important role e.g. in atmospheric studies, such as studying e.g. roles of different chemical substances, such as ammonia, amines, in atmospheric nanoparticle formation. Especially there is a need for better knowing or determination of low concentrations and variability of atmospheric ammonia and amines and highly oxidized organics, as an example. In addition very accurate methods for determining of properties of gas phase samples, such as amines, are needed also in other fields, such as in a medical industry and diagnostics, security and food processing industry.
However, measurement of trace amounts of gaseous compounds for example from air is extremely difficult, as their concentration is minimal compared to the total air molecule concentration, and due to the large variety of the different gases compounds and their isotopes. However, some of these molecules have a significant effect on the air chemistry and aerosol formation, even in small amounts. Therefore exact measurements are needed for instance in atmospheric aerosol research.
Very often gas phase samples are analysed by a mass spectrometer, but also other detecting devices can be used, such as IMS-device (Ion Mobility Spectrometry) or DMA-device (Differential Mobility Analyzers). The mass spectrometer is detecting the mass to charge ratio of an ion or ion cluster, whereas IMS and DMA devices are based on the electrical mobility of the sample particles. As majority of sample particles, such as airborne molecules and clusters are initially neutral, they need to be charged before a measurement.
One exemplary method to charge the sample particles, such as ammonia or amine molecules and clusters, before the measurement and thereby provide an ion flow of sample constituents is chemical ionizing (Cl) of the sample constituents using an ionizer.
There are, however, some drawback related to known solutions namely particles to be determined may stick to inner wall structures of the ionizer and afterwards be released back to the sample gas flow and induce signal in a detector. Thus it is said that the wall structures of the ionizer has a memory effect (or wall effect). Anyway this is a very undesired feature because the particles are released very randomly and thus they will disturb the measurement at first by sticking into the structure and thereby reducing a signal to be measured, and secondly by releasing to the later sample flow and increasing the signal of the later sample flow to be detected.
SUMMARY OF THE INVENTION
An object of the invention is to alleviate and eliminate the problems relating to the known prior art. Especially the object of the invention is to provide a method and device for ionizing particles of a sample gas flow for detection of extremely low concentrations of gas phase constituents, comprising especially ammonia and amines. In particularly the object is to eliminate the wall effects so that the sample particles are not inducing undesired signals and interfering measurements.
The object of the invention can be achieved by the features of independent claims. The invention relates to a method according to claim 1. In addition the invention relates to a device according to claim 11, and to an arrangement according to claim 19.
According to an embodiment of the invention particles, such as molecules or clusters, of a sample gas flow is ionized by an ionizer so that properties of the sample gas flow particles can be determined. The particles comprise advantageously base molecules or clusters, such as ammonia or amines. According to the embodiment H2S04 molecules are provided to an interaction region. The H2S04 molecules may be exist e.g. in the form of vapour. In addition reagent primary ions are generated from particles of candidate reagent gas flow in a primary ion production region. Said candidate reagent gas flow may comprise HN03 (nitric acid), CH3COOH (acetic acid), CH3I (methyliodide), 02, as an example whereupon said reagent primary ions may comprise e.g. N03- , I- (iodide), CH3C00-(acetate ion), 02-, or even HS04' as an example. The reagent primary ions can be produced e.g. by ionising said particles of the candidate reagent gas flow using soft X-ray radiation or ionising radiation by an a source for example or a corona discharge source. The sample particles are typically strong bases, like ammonia and amines, stuff like pyridine, quinoline, aniline, or highly oxidized organic molecules. It is to be understood that these are only examples and also other candidate reagent gas flow can be used for generation of also other reagent primary ions.
Said reagent primary ions are advantageously introduced with said H2S04 molecules in said interaction region in order to arrange interaction between the reagent primary ions and the H2S04 molecules. When said reagent primary ions and the H2S04 molecules interacts HS04- ions are produced. Again when said HS04- ions are interacted with other H2S04 molecules e.g. in said interaction region, HS04- ion clusters comprising HS04- ions and least two H2S04 molecules are generated (= H2S04.H2S04.HS04- or H2S04.H2S04.H2S04.H2S04- etc...) via interactions of HS04- with other H2S04 molecules
Again said HS04- ion clusters are introduced with the sample particles, like amines, of the sample gas flow in order to provide reactions between said HS04- ion clusters and the sample particles, and thereby provide a sample cluster comprising the HS04- ion clusters and said base sample, which can be determined by a suitable detector, such as an APi-TOF mass spectrometer quadrupole MS, ion trap MS, or ion mobility analyser.
According to an example said H2S04 molecules can be introduced to the sample gas flow before introduction to the interaction region in order to provide a mixed sample gas flow (having both H2S04 and the sample particles, such as amines). Said H2S04 molecules are introduced from a H2S04 providing means, such as a saturator comprising H2S04 vapour.
In addition a sheath flow may be arranged to flow at least through a primary ion production region and/or said interaction region between the sample gas flow and structure of said ionizer. The sheath flow is e.g. clean air or nitrogen, possibly with small amounts of reagent gas molecules, e.g. nitric acid, sulphuric acid, acetic acid, methyl iodide, oxygen, ammonia, amines, alcohols, or acetone.
According to an embodiment the sample gas flow and candidate reagent gas flow may be configured to flow essentially concentrically at the primary ion production regions. In addition the trajectory of the produced reagent primary ions is advantageously configured to bend inward and towards the sample gas flow and said H2S04 molecules in order to provide effective interactions especially between said H2S04 molecules and said reagent primary ions. The trajectory of the produced reagent ions can be achieved for example by using an electric field for attracting or repulsing said ions, and/or by using flow current guiding means, such as a deflector, wing or throttle, like a venturi tube, for example.
The ionizing process of the embodiments of the invention is advantageously implemented essentially at atmospheric pressure.
The invention offers remarkable advantages over the known prior art solutions, namely because the inner walls and structures of the ionizer are heavily saturated by H2S04 and/or other acids (e.g. HN03), the possible "wall effects" can be controlled. Any possible base particles interacted with the saturated inner walls and structures are not able to drift back to the sample flow because bases when interacting with the acids at the wall/structure form salts, which are non-vaporizable and thus not able to interfere the measurements afterwards.
The exemplary embodiments presented in this text are not to be interpreted to pose limitations to the applicability of the appended claims. The verb "to comprise" is used in this text as an open limitation that does not exclude the existence of also unrecited features. The features recited in depending claims are mutually freely combinable unless otherwise explicitly stated.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific example embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Next the invention will be described in greater detail with reference to exemplary embodiments in accordance with the accompanying drawings, in which:
Figure 1 illustrates a principle of an exemplary device for ionizing particles of a sample gas flow according to an advantageous embodiment of the invention.
DETAILED DESCRIPTION
Figure 1 is a principle-level schematic illustration of both a method and a device 100 for ionizing particles of a sample gas flow according to an advantageous embodiment of the invention. The device 100 comprises an inlet, which can be in the form of a first flow tube 102 for providing the sample gas flow 101. In addition the device comprises a generator 104 for producing reagent primary ions 103a from particles of candidate reagent gas flow 103 essentially in a primary ion production region 112 (region where the ionizing radiation ionizes the candidate reagent gas flow 103). The generator 104 may be an X-ray radiation or α-radiation source or a corona discharge source, as an example. These are only examples and also other types of sources can be used, such as β-radiation source.
In addition the device comprises also providing means 116 for providing and introducing H2S04 molecules, preferably vapour, 114a to an interaction region 113. The H2S04 providing means is advantageously a saturator 116, but also other types of providing means can be applied, such as a device with a space for S02 + H20 solution with a radiation source, such as UV radiation source to produce H2S04 vapour. A carrier medium 117, such as N2 flow, is advantageously used for carrying 118a, 118b said H2S04 molecules to the interaction region 113.
According to an example the saturator 116 as the providing means comprises a rotating means 116a, which is immersed at least partially into H2S04 medium 114b. The rotating means advantageously rotates and thereby introduce fresh H2S04 medium for the carrier medium 117 and thereby saturates the carrier medium 117 with H2S04 when said carrier medium is flown 118a, 118b through the saturator.
It is to be noted that said H2S04 molecules 114a can be introduced by the providing means 116 to the sample gas flow 101 before the interaction region 113 in order to provide a mixed sample comprising said H2S04 vapour and the particles, such as ammonia or amines, to be determined (as is described in Figure 1), whereupon the gas flow with said H2S04 vapour and the particles are introduced to the interaction region 113.
The device is configured to introduce said reagent primary ions with H2S04 molecules 114a in said interaction region 113 in order to arrange interaction between the reagent primary ions 103a and the H2S04 molecules 114a, thereby producing HS04' ions and again to produce HS04' ion clusters comprising HS04' ions and at least two H2S04 molecules (/.e. H2S04.H2S04.HS04- or H2S04.H2S04.H2S04.H2S04- etc...) via interactions of HS04' with other H2S04 molecules in said interaction region 113.
In addition the device is configured to introduce 113a said HS04- ion clusters with the sample particles (e.g. ammonia or amines) 101a of the sample gas flow in order to provide reactions between said HS04- ion clusters and the sample particles, and thereby provide a sample cluster 115 comprising the HS04- ion clusters and said base sample to be determined. The sample cluster 115 is then transferred 111 to the detector 120.
It is to be noted, that according to an embodiment the device may additionally comprise a second flow tube 109 for producing a sheath flow 103b to flow at least through a primary ion production region 112 and/or said interaction region 113 between the sample gas flow 101 and inner wall structure 119 of the device, and thereby preventing or at least minimizing any interactions of the sample and/or reagent ions flow with the wall structure 119 of the ionizer 100. The first 102 and second 109 tubes may advantageously be arranged essentially concentrically in order to arrange said sample gas flow and candidate reagent gas flow to flow essentially concentrically at the primary ion production region. The sheath flow is advantageously essentially laminar flow, and it comprises e.g. clean air or nitrogen, with small amounts of reagent gas molecules, e.g. nitric acid, sulphuric acid, acetic acid methyl iodide or oxygen.
The device is advantageously also configured to bend the trajectory 107 of the produced reagent primary ions 103a inward and towards the mixed sample gas flow and/or H2S04 molecules 114a by the means of electric field 106 produced by suitable electrodes and/or a flow current guiding means, such as a deflector, wing or throttle, like a venturi tube (not shown). According to an embodiment the electrode may be a separate electrode or it may be implemented via the second flow tube 109, which may comprise at least portion of it to function as an electrode and generating an electric field 106 and is thereby configured to bend the trajectory 107 of the produced reagent primary ions inward and towards the sample gas flow 101.
The device 100 as it simplest does not necessary comprise any detecting means 120. Anyhow, in order to also detect the samples ionized by the device 100, the device may be provided with a suitable detector, such as APi-TOF mass spectrometer quadrupole MS, ion trap MS, or ion mobility analyser, for example.
The device may also comprise a shielded area 105 between the X-ray or other radiation source 104 and the flowing media 103 (such as candidate reagent gas flow 103 and sheath flow 103a) for shielding the radiation source about any possible contamination of sample or other particles presented in the flow tubes. The shielded area 105 comprises advantageously beryllium, aluminum or glass, when the radiation source 104 is the X-ray source.
In addition the device may comprise also a laminarizer 108 for producing an essentially laminar sheath flow 103a between the reagent primary ions flow 107 and structure 115 of the device 100 and/or said second tube 109 in order to prevent or minimize the interaction between the structure of the device and the produced reagent primary ion flow.
Moreover, the device may comprise also an outlet channel 110 at the downstream portion of the device for removing the excess flow before the detector to be coupled with the device. The device may also comprise an adjusting means (not shown) for adjusting the flow rates of sample gas flow, candidate reagent gas flow and/or the sheath flow; as well as adjusting means for adjusting the current and/or voltage of the used X-ray source.
The invention has been explained above with reference to the aforementioned embodiments, and several advantages of the invention have been demonstrated. It is clear that the invention is not only restricted to these embodiments, but comprises all possible embodiments within the spirit and scope of the inventive thought and the following patent claims.

Claims (20)

1. Menetelmä näytekaasuvirtauksen (101) näytepartikkelien (101a) ionisoimiseksi ionisoijalla (100), jolloin partikkelit käsittävät emäsmolekyylejä tai niitä sisältäviä ryppäitä (101a), tunnettu siitä, että menetelmä käsittää seuraavat vaiheet, joissa: a) järjestetään H2S04-molekyylejä (114a) vuorovaikutusalueelle (113), b) tuotetaan primaarisia reagenssi-ioneja (103a) ehdokkaana olevan reagenssikaasuvirtauksen (103) partikkeleista primaarisella ionintuotantoalueella (112), c) toimitetaan mainittuja primaarisia reagenssi-ioneja H2S04-molekyylien kanssa mainitulle vuorovaikutusalueelle (113) primaaristen reagenssi-ionien (103a) ja H2S04-molekyylien (114a) välisen vuorovaikutuksen järjestämiseksi tuottaen siten HS04' -ioneja ja sitten HS04' -ioneja ja vähintään kaksi H2S04-molekyyliä käsittävien HS04' -ioniryppäiden tuottamiseksi HS04':n vuorovaikutuksilla muiden H2S04-molekyylien kanssa mainitulla vuorovaikutusalueella (113), ja d) toimitetaan (113a) mainittuja HS04' -ioniryppäitä näytekaasuvirtauksen näytepartikkelien (101a) kanssa mainittujen HS04' -ioniryppäiden ja näytepartikkelien välisten reaktioiden aikaansaamiseksi ja siten sellaisen näyteryppään (115) muodostamiseksi, joka käsittää HS04' -ioniryppäät ja mainitun määriteltävän emäsnäytteen.
2. Patenttivaatimuksen 1 mukainen menetelmä, jossa mainitut H2S04-molekyylit (114a) toimitetaan näytekaasuvirtaukseen (101) ennen toimittamista vuorovaikutusalueelle (113) sekoitetun näytekaasuvirtauksen muodostamiseksi toimitettavaksi mainitulle vuorovaikutusalueelle.
3. Kumman tahansa edellä olevan patenttivaatimuksen mukainen menetelmä, jossa mainitut H2S04-molekyylit (114a) toimitetaan H2S04:n muodostamisvälineestä, kuten H2S04-höyryä käsittävästä saturaattorista (116), käyttämällä kantoainetta (117), kuten N2-virtausta, joka kuljettaa (118a, 118b) mainitut H2S04-molekyylit mainitulle vuorovaikutusalueelle (113).
4. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, jossa mainitut primaariset reagenssi-ionit (103a) tuotetaan ionisoimalla ehdokkaana olevan reagenssikaasuvirtauksen (103) mainittuja partikkeleita käyttämällä pehmeätä röntgensäteilyä (104a) tai ionisoivaa säteilyä (104a) a-lähteen (104) tai koronapurkauslähteen toimesta.
5. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, jossa mainittu ehdokkaana oleva reagenssikaasuvirtaus (103) käsittää HN03:a, CH3COOH:ta (etikkahappo), CH3l:tä (metyylijodidi), H2S04, tai 02:ta, ja mainitut primaariset reagenssi-ionit (103a) ovat N03' -ioneja, Γ (jodidi), CH3COOH" (asetaatti), 02' tai HS04', ja jossa mainitut näyte-emäkset ovat emäksiä, ammoniakin ja amiinien tapaan ainetta kuten pyridiini, kinoliini, aniliini tai voimakkaasti oksidoidut orgaaniset molekyylit.
6. Patenttivaatimuksen 4 mukainen menetelmä, jossa käytetyn pehmeän röntgensäteen fotonien energia on vaihteluvälillä 1-10 keV tai edullisemmin vaihteluvälillä 1-5 keV.
7. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, jossa suojavirtaus (103b) järjestetään virtaamaan ainakin primaarisen ionintuotantoalueen (112) tai mainitun vuorovaikutusalueen (113) läpi näytekaasuvirtauksen (101) ja mainitun ionisoijan rakenteen (119) välillä ja jossa mainittu suojavirtaus on esim. puhdasta ilmaa tai typpeä, jossa on pieniä määriä reagenssikaasumolekyylejä, esim. typpihappoa, rikkihappoa, etikkahappoa, metyylijodidia, happea, ammoniakkia, amiineja, alkoholeja tai asetonia.
8. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, jossa näytekaasuvirtaus ja ehdokkaana oleva reagenssikaasuvirtaus konfiguroidaan virtaamaan olennaisesti samankeskisesti primaaristen ionintuotantoalueiden kohdalla tai jossa tuotettujen primaaristen reagenssi-ionien liikerata (107) konfiguroidaan kaartumaan sisäänpäin ja kohti näytekaasuvirtausta vuoro-vaikutusalueen kohdalla.
9. Patenttivaatimuksen 8 mukainen menetelmä, jossa tuotettujen reagenssi-ionien liikerata aikaansaadaan käyttämällä sähkökenttää (106) ja/tai käyttämällä virtauksen kulun ohjainvälinettä, kuten poikkeutinta, siipeä tai kuristinta.
10. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, jossa ionisointiprosessi toteutetaan olennaisesti ilmakehän paineessa.
11. Laite (100) näytekaasuvirtauksen (101) näytepartikkelien (101a) ionisoi-miseksi, jossa partikkelit käsittävät emäsmolekyylejä tai niitä sisältäviä ryppäitä (101a), tunnettu siitä, että laite käsittää: - ensimmäisen virtausputken (102) näytekaasuvirtauksen järjestämiseksi, - toimitusvälineen (116) H2S04-molekyylien (114a) järjestämiseksi vuorovaikutusalueelle (113), - generaattorin (104) primaaristen reagenssi-ionien (103a) muodostamiseksi ehdokkaana olevan reagenssikaasuvirtauksen (103) partikkeleista primaarisella ionintuotantoalueella (112), jolloin mainittu laite (100) on konfiguroitu: - toimittamaan mainittuja primaarisia reagenssi-ioneja H2S04-molekyylien kanssa mainitulle vuorovaikutusalueelle (113) primaaristen reagenssi-ionien (103a) ja H2S04-molekyylien (114a) välisen vuorovaikutuksen järjestämiseksi tuottaen siten HS04' -ioneja ja sitten HS04‘ -ioneja ja vähintään kaksi H2S04-molekyyliä käsittävien HS04-ioniryppäiden tuottamiseksi HS04:n vuorovaikutuksilla muiden H2S04-molekyylien kanssa mainitulla vuorovaikutusalueella, ja - toimittamaan (113a) mainittuja HS04' -ioniryppäitä näytekaasuvirtauksen näytepartikkelien (101a) kanssa mainittujen HS04' -ioniryppäiden ja näytepartikkelien välisten reaktioiden aikaansaamiseksi ja siten sellaisen näyteryppään (115) muodostamiseksi, joka käsittää HS04' -ioniryppäät ja mainitun määriteltävän emäsnäytteen.
12. Patenttivaatimuksen 11 mukainen laite, jossa laite käsittää muodos-tamisvälineen (116) mainittujen H2S04-molekyylien (114a) toimittamiseksi näytekaasuvirtaukseen (101) ennen vuorovaikutusaluetta (113) sekoitetun näytekaasuvirtauksen muodostamiseksi toimitettavaksi mainitulle vuorovaikutus-alueelle.
13. Kumman tahansa patenttivaatimuksen 11-12 mukainen laite, jossa laite käsittää H2S04:n muodostamisvälineen, kuten saturaattorin (116), ja jossa laite on konfiguroitu käyttämään kantoainetta (117), kuten N2- virtausta, joka kuljettaa (118a, 118b) mainitut H2S04-molekyylit mainitulle vuorovaikutusalueelle (113).
14. Patenttivaatimuksen 13 mukainen laite, jossa muodostamisväline on laite H2S04-molekyylien (114a) tuottamiseksi manipuloimalla S02 + H20 -liuosta säteilylähteellä, kuten UV-säteilyn lähteellä.
15. Patenttivaatimuksen 13 mukainen laite, jossa muodostamisväline on saturaattori (116), joka käsittää pyöritysvälineen (116a), joka on ainakin osittain upotettu H2S04-nesteeseen ja konfiguroitu siirtämään (118a, 118b) H2S04 saturaattorista (116) ja siten saturoimaan kantoaine (117) H2S04:llä saatettaessa mainittu kantoaine virtaamaan (118a, 118b) saturaattorin läpi.
16. Jonkin patenttivaatimuksen 11-15 mukainen laite, jossa laite käsittää röntgensäteilyn tai a-säteilyn lähteen tai koronapurkauksen lähteen generaattorina (104) mainittujen primaaristen reagenssi-ionien (103a) tuottamiseksi.
17. Jonkin patenttivaatimuksen 11-16 mukainen laite, jossa laite käsittää toisen virtausputken (109) suojavirtauksen (103b) muodostamiseksi virtaamaan ainakin primaarisen ionintuotantoalueen (112) tai mainitun vuorovaikutusalueen (113) näytekaasuvirtauksen (101) ja laitteen sisäseinärakenteen (119) välissä, ja jossa mainittu suojavirtaus on esim. puhdasta ilmaa tai typpeä, jossa on pieniä määriä reagenssikaasumolekyylejä, esim. typpihappoa, rikkihappoa, etikkahappoa, metyylijodidia tai happea.
18. Jonkin patenttivaatimuksen 11-16 mukainen laite, jossa laite on konfiguroitu kaartamaan tuotettujen primaaristen reagenssi-ionien (103a) liikerata (107) sisäänpäin ja kohti sekoitettua näytekaasuvirtausta tai H2S04-molekyylejä (114a) elektrodin (106) ja/tai virtauksen kulun ohjainvälineen, kuten poikkeuttimen, siiven tai kuristimen, avulla.
19. Jonkin edellä olevan patenttivaatimuksen 11-18 mukaisen laitteen ja ilmaisimen käsittävä järjestely, jossa HS04-ioniryppäät ja mainitulla laitteella tuotetun emäsnäytteen käsittävä mainittu näyterypäs (115) toimitetaan mainittuun ilmaisimeen määritystä varten.
20. Patenttivaatimuksen 19 mukainen järjestely, jossa mainittu ilmaisin on APi-TOF kvadrupoli-massaspektrometri MS, ioniloukku MS tai ionien liikkuvuuden analysaattori.
FI20135681A 2013-06-20 2013-06-20 Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi FI124792B (fi)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FI20135681A FI124792B (fi) 2013-06-20 2013-06-20 Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi
CN201480035121.8A CN105308715B (zh) 2013-06-20 2014-06-11 用于对样品气体流的粒子离子化的方法和装置
PCT/FI2014/050470 WO2014202828A1 (en) 2013-06-20 2014-06-11 Method and device for ionizing particles of a sample gas flow
US14/897,690 US9916972B2 (en) 2013-06-20 2014-06-11 Method and device for ionizing particles of a sample gas flow
EP14814328.2A EP3011585B1 (en) 2013-06-20 2014-06-11 Method and device for ionizing particles of a sample gas flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20135681A FI124792B (fi) 2013-06-20 2013-06-20 Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi
FI20135681 2013-06-20

Publications (2)

Publication Number Publication Date
FI20135681A7 FI20135681A7 (fi) 2014-12-21
FI124792B true FI124792B (fi) 2015-01-30

Family

ID=52104001

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20135681A FI124792B (fi) 2013-06-20 2013-06-20 Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi

Country Status (5)

Country Link
US (1) US9916972B2 (fi)
EP (1) EP3011585B1 (fi)
CN (1) CN105308715B (fi)
FI (1) FI124792B (fi)
WO (1) WO2014202828A1 (fi)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239066B2 (en) 2015-03-06 2022-02-01 Micromass Uk Limited Cell population analysis
EP3726562B1 (en) 2015-03-06 2023-12-20 Micromass UK Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
EP3671216A1 (en) 2015-03-06 2020-06-24 Micromass UK Limited Imaging guided ambient ionisation mass spectrometry
GB2555921B (en) 2015-03-06 2021-09-15 Micromass Ltd Endoscopic tissue identification tool
GB2551669B (en) 2015-03-06 2021-04-14 Micromass Ltd Physically guided rapid evaporative ionisation mass spectrometry ("Reims")
KR101934663B1 (ko) 2015-03-06 2019-01-02 마이크로매스 유케이 리미티드 급속 증발 이온화 질량 분광분석 (“reims”) 디바이스에 커플링된 이온 분석기용 유입구 기기장치
CN107530064B (zh) * 2015-03-06 2021-07-30 英国质谱公司 气态样品的改进电离
US10026599B2 (en) 2015-03-06 2018-07-17 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
WO2016142681A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis of microbes
EP3264989B1 (en) 2015-03-06 2023-12-20 Micromass UK Limited Spectrometric analysis
US11342170B2 (en) 2015-03-06 2022-05-24 Micromass Uk Limited Collision surface for improved ionisation
CA2978048A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Liquid trap or separator for electrosurgical applications
WO2016142679A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
EP3265822B1 (en) 2015-03-06 2021-04-28 Micromass UK Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
GB201517195D0 (en) 2015-09-29 2015-11-11 Micromass Ltd Capacitively coupled reims technique and optically transparent counter electrode
EP3443354B1 (en) 2016-04-14 2025-08-20 Micromass UK Limited Spectrometric analysis of plants
US11131658B2 (en) 2016-04-29 2021-09-28 The Solubility Company Oy Method and device for physicochemical characterization of materials
FI20175460A (fi) * 2016-09-19 2018-03-20 Karsa Oy Ionisaatiolaite
US10896814B2 (en) 2016-09-19 2021-01-19 Karsa Oy Ionization device
CN108499499B (zh) * 2018-04-03 2020-11-27 同济大学 一种可控温的微型连续流动管反应器
CN110026144B (zh) * 2019-04-18 2020-06-16 中国科学院化学研究所 一种气相离子催化分子宏量转化的装置及方法
CN110706997A (zh) * 2019-09-25 2020-01-17 安徽医科大学第一附属医院 一种软x射线离子源
FI20206161A1 (fi) * 2020-11-17 2022-05-18 Karsa Oy Biasoimaton ionien identifiointi useiden ionien avulla
CN115808462B (zh) * 2022-12-05 2025-01-07 海能基石技术有限公司 一种离子迁移谱中氨气信号和/或挥发性有机胺的消除方法及检测样本的方法
FI20235661A1 (fi) * 2023-06-13 2024-12-14 Univ Helsinki Kaasuionitislaus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005291A (en) * 1972-01-04 1977-01-25 Massachusetts Institute Of Technology Ionization method for mass spectrometry
US5175431A (en) * 1991-03-22 1992-12-29 Georgia Tech Research Corporation High pressure selected ion chemical ionization interface for connecting a sample source to an analysis device
JPH05174782A (ja) 1991-12-25 1993-07-13 Shimadzu Corp 試料イオン化方法
US6259091B1 (en) 1996-01-05 2001-07-10 Battelle Memorial Institute Apparatus for reduction of selected ion intensities in confined ion beams
JP3718971B2 (ja) 1997-09-19 2005-11-24 株式会社島津製作所 質量分析計
US6037587A (en) 1997-10-17 2000-03-14 Hewlett-Packard Company Chemical ionization source for mass spectrometry
AU2002257177B2 (en) 2001-04-17 2004-11-25 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry
JP5111399B2 (ja) 2006-02-07 2013-01-09 アプライド バイオシステムズ (カナダ) リミテッド 質量分析のための化学ノイズの低減
US8003936B2 (en) * 2007-10-10 2011-08-23 Mks Instruments, Inc. Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
US20090194679A1 (en) 2008-01-31 2009-08-06 Agilent Technologies, Inc. Methods and apparatus for reducing noise in mass spectrometry
FI20090232A0 (fi) * 2009-06-05 2009-06-05 Joonas Jalmari Vanhanen Aerosolipartikkeleiden detektoiminen
EP2423945A3 (en) * 2010-08-25 2015-11-18 Hitachi High-Technologies Corporation Drug detection equipment
EP2780930A4 (en) 2011-11-15 2015-07-22 Univ Helsinki METHOD AND DEVICE FOR DETERMINING THE PROPERTIES OF GAS PHASE BASES OR ACIDS
US20140284204A1 (en) * 2013-03-22 2014-09-25 Airmodus Oy Method and device for ionizing particles of a sample gas glow

Also Published As

Publication number Publication date
WO2014202828A1 (en) 2014-12-24
US9916972B2 (en) 2018-03-13
EP3011585A4 (en) 2017-03-08
US20160126079A1 (en) 2016-05-05
CN105308715B (zh) 2018-03-06
FI20135681A7 (fi) 2014-12-21
EP3011585B1 (en) 2021-04-14
CN105308715A (zh) 2016-02-03
EP3011585A1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
FI124792B (fi) Menetelmä ja laite näytekaasuvirtauksen partikkelien ionisoimiseksi
US20140284204A1 (en) Method and device for ionizing particles of a sample gas glow
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
US20110297821A1 (en) Ion mobility spectrometer detection method using dopants
JP5738997B2 (ja) イオン移動度分光計を用いた気体の検出及び同定のための方法及び装置
CN105806689B (zh) 一种原子荧光法测砷的装置及方法
JP2011503805A (ja) ガス中の蒸気としての化合物を分析するための高感度イオン検出装置及び方法
JP2008508511A (ja) コロナ放電イオン化エレメントを備えたイオン移動度分光器
CN106841367A (zh) 一种时间分辨动态热解析的离子迁移谱检测方法
CN107195529B (zh) 一种基于激发态质子电子协同转移反应的离子化方法及其装置
CN105340053A (zh) 双极性火花离子源
US20090032699A1 (en) Ion mobility spectrometer and method for determining an analyte substance or an analyte substance mixture in the presence of a dopant mixture by means of an ion mobility spectrometer
US20140302616A1 (en) Method and device for determining properties of gas phase bases or acids
US20060022132A1 (en) Ion drift-chemical ionization mass spectrometry
Attoui et al. Flow driven transmission of charged particles against an axial field in antistatic tubes at the sample outlet of a Differential Mobility Analyzer
Stano et al. Ion mobility spectrometry study of negative corona discharge in oxygen/nitrogen mixtures
CN108169321B (zh) 高纯氮气检测方法及装置
CN207425794U (zh) 一种基于激发态质子电子协同转移反应的离子源
RU2475882C1 (ru) Биполярный ионизационный источник
GB2485970A (en) Ion mobility spectrometer detection method and apparatus using dopant
CN205808992U (zh) 常压下气相离子分子碰撞截面测量仪
WO2016092156A1 (en) Method and device for detecting ambient clusters
JP2004028585A (ja) 火薬類から発生する気体の測定法及び火薬類から発生する気体の測定装置
Kolomiets et al. Vortex focusing of ions produced in corona discharge
CN105074448A (zh) 表面电离源

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 124792

Country of ref document: FI

Kind code of ref document: B

MM Patent lapsed