FI118181B - A method for improving the fluid flow properties of a heat transfer surface - Google Patents

A method for improving the fluid flow properties of a heat transfer surface Download PDF

Info

Publication number
FI118181B
FI118181B FI20050741A FI20050741A FI118181B FI 118181 B FI118181 B FI 118181B FI 20050741 A FI20050741 A FI 20050741A FI 20050741 A FI20050741 A FI 20050741A FI 118181 B FI118181 B FI 118181B
Authority
FI
Finland
Prior art keywords
heat transfer
transfer surface
fluid flow
water
copper
Prior art date
Application number
FI20050741A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20050741A0 (en
FI20050741A (en
Inventor
Petri Rissanen
Original Assignee
Luvata Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luvata Oy filed Critical Luvata Oy
Priority to FI20050741A priority Critical patent/FI118181B/en
Publication of FI20050741A0 publication Critical patent/FI20050741A0/en
Priority to PCT/FI2006/000246 priority patent/WO2007006847A1/en
Priority to CNA2006800253687A priority patent/CN101218368A/en
Publication of FI20050741A publication Critical patent/FI20050741A/en
Application granted granted Critical
Publication of FI118181B publication Critical patent/FI118181B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Description

1 1181811118181

MENETELMÄ PARANTAA LÄMMÖNSIIRTOPINNAN NESTEVIRTAUS-OMINAISUUKSIAMETHOD IMPROVES THE LIQUID FLOW CHARACTERISTICS OF THE HEAT EXCHANGE SURFACE

5 Tämä keksintö kohdistuu menetelmään parantaa lämmönsiirtopinnan nestevlr-tausominaisuuksia, kuten kostutuskykyä ja kapillaarivirtausta, hapettamalla lämmönsiirtopinta kemiallisesti tai kuumentamalla happipitoisessa atmosfäärissä.This invention relates to a process for improving the fluid transfer properties of a heat transfer surface, such as wetting ability and capillary flow, by chemical oxidation of the heat transfer surface or by heating in an oxygen-containing atmosphere.

10 Lämmönsiirtopinnalla tarkoitetaan mitä tahansa pintaa, joka osallistuu lämpö-energian siirtoon lämmönsiirtonesteen avulla pinnan suuntaisesti tai sitä vastaan kohtisuoraan suuntaan. Lämmönsiirtoneste voi olla mikä tahansa neste erityisesti neste, joka koostuu sähköisesti polarisoituneista molekyyleistä, kuten 15 vesi. Sähköisesti polarisoituneessa molekyylissä positiivinen ja negatiivinen sähköinen varaus on epähomogeenisesti jakautunut.10 A heat transfer surface is any surface that participates in the transfer of heat energy by means of heat transfer fluid in a direction perpendicular to the surface or perpendicular thereto. The heat transfer fluid may be any liquid, especially a liquid consisting of electrically polarized molecules such as water. In an electrically polarized molecule, the positive and negative electrical charges are inhomogeneously distributed.

Lämmönsiirtopinta on tavallisesti olennaisesti sileästä pinnasta eroava, jolloin lämmönsiirtopintaan on eri menetelmillä aikaansaatu pintarakenteen hienora- ' 20 kennetta kuten uria, rihloja, verkkomaista rakennetta, pulverilla pinnoitettua ra- • · kennetta, vaahtomaista rakennetta, syvennyksiä, nykämiä, erilaisia ripoja tai • · huokosia. Lämmönsiirtopinta on metallia, keräämiä, polymeeriä tai komposiitti- • · /*;’ materiaalia. Lämmönsiirtopinnassa käytettävä metalli on edullisesti kuparia, ku- • * · pariseosta, alumiinia, alumiiniseosta tai terästä. Lämmönsiirtopinnan pintara- ♦ ♦ • · 25 kenteen hienorakennetta voidaan synnyttää esim. valssaamalla, vetämällä, pursottamalla, vaahdottamalla, hiekkapuhalluksella tai liittämällä pintaan metal- • ·· [··♦. lista erityisesti kupari- tai kuparlseoksesta valmistettua hienorakennetta kuten • · \ pulveria, neulasia, lastuja, granuleja, lankoja, verkkoa tai niiden yhdistelmää.The heat transfer surface is usually substantially different from the smooth surface, whereby the heat transfer surface is provided by various methods with fine surface structure such as grooves, grates, mesh structure, powder-coated structure, foamed structure, depressions, grooves, various ribs. The heat transfer surface is metal, collector, polymer or composite material. Preferably, the metal used in the heat transfer surface is copper, copper, alloy, aluminum, aluminum alloy or steel. The surface structure of the heat transfer surface ♦ ♦ • · 25 can be fine-grained, eg by rolling, pulling, extruding, foaming, sandblasting or by attaching metal to the surface. a list of fine structures made of copper or copper alloy, such as powder, needles, chips, granules, yarns, mesh, or a combination thereof.

*·· *"i Pintarakenteen hienorakennetta voidaan synnyttää myös em. menetelmien yh- • » • · 30 distelmällä. Liittämismenetelmä voi olla sintraaminen, kovajuottaminen, peh- ·· · * * · \ ·* meäjuottaminen, hitsaaminen, liimaaminen, valssaaminen tai mekaaninen Hit- • * · ** täminen esimerkiksi staattisella mekaanisella puristuksella. Liittämismenetelmä 2 118181 voi myös olla em. menetelmien yhdistelmä. Eri menetelmiä lämmönsiirtopinto-jen aikaansaamiseksi ja liittämiseksi on kuvattu esimerkiksi seuraavissa patenttijulkaisuissa: US-patenteissa 3821018 ja 4064914 kuvataan huokoisen metallisen kerroksen muodostamista kuparin pinnalle, JP-patenttihakemuksessa 5 61228294 esitetään menetelmä huokoisen pinnan muodostamiseksi lämmitysputken sisäpinnalle, JP-patenttihakemuksessa 2175881 on kuvattu pulverimaisen ainekerroksen muodostamista lämmönsiirtoputken sisäpinnalle, CN-patenttihakemuksessa 1449880 esitetään matalan lämpötilan sintrausprosessi ^ huokoisen pinnan muodostamiseksi putken pintaan, ja Fl- ' 10 patenttihakemuksessa 20040760 esitetään kupari- tai kupariseospulverin liittäminen lämmönsiirtopintaan kovajuoteseoksen avulla.* ·· * "i The fine structure of the surface structure can also be created by a combination of the above methods. The bonding method may be sintering, brazing, softening, welding, gluing, rolling or mechanical. Welding, for example, by static mechanical compression The joining method 2 118181 may also be a combination of the above methods Various methods for obtaining and joining heat transfer surfaces are described, for example, in U.S. Patents 3821018 and 4064914, which describe the formation of a porous metal layer. surface, JP patent application 5 61228294 discloses a method of forming a porous surface on the inner surface of a heating pipe, JP patent application 2175881 describes forming a powdery material on the inner surface of a heat transfer tube, CN patent application 1449880 discloses a low temperature sintering process. and a Fl-10 patent application 20040760 discloses attaching a copper or copper alloy powder to a heat transfer surface by brazing alloy.

Lämmönsiirtopinnan nestevirtausominaisuuksia on esimerkiksi pinnan kostu-tuskyky, jolla tarkoitetaan nesteen käyttäytymistä pinnalla, ja kapillaarivirtaus, 15 jolla tarkoitetaan nesteen tunkeutumista kapillaarirakoon ja kapillaarivoiman aikaansaamaa nestevirtausta raossa. Kostutuskyky on hyvä, jos nestepisara levittäytyy ohueksi nestekalvoksi pinnalle. Kostutuskyky on huono, jos neste- ; "**·* pisara muodostaa muodoltaan puolipallomaisen pisaran pinnalle. Kostutusky- / kyyn vaikuttaa nesteen koostumus, pinnan mikrorakenne ja kemiallinen koos- • · : '· 20 tumus, lämpötila ja atmosfäärin laatu ja paine. Kapillaarivoima sen sijaan aiheu- *...· tuu nesteen pyrkimisestä tilaan, jossa sen pintaenergia on mahdollisimman ·*.: : pieni. Kapillaarivirtauksen kannalta ratkaisevan tärkeä suure on raon leveys.The fluid flow properties of the heat transfer surface include, for example, surface wettability, which refers to the behavior of the liquid on the surface, and capillary flow, which refers to the penetration of liquid into the capillary cavity and the flow of liquid by capillary force in the gap. The wetting ability is good if the liquid droplet spreads as a thin liquid film on the surface. The wetting ability is poor if liquid; "** · * The droplet forms a hemispherical droplet shape on the surface. The wetting ability is affected by the composition of the liquid, the surface microstructure and the chemical composition, • ·: '· 20, temperature and atmospheric quality and pressure. ... · Comes from the aiming of a liquid in a state where its surface energy is as high as possible · *:: small The critical width for the capillary flow is the gap width.

• · · • · '···* Raon pienetessä kapillaarivoima kasvaa eksponentiaalisesti kunnes rako on niin pieni, että neste ei pysty siihen tunkeutumaan. Tekniikan tason mukaisissa • · 25 ratkaisuissa ei kuitenkaan ole olennaisesti kiinnitetty huomiota lämmönsiirtopin- • · nan nestevirtausominaisuuksiin, kuten kostutuskykyyn ja kapillaarivirtaukseen.As the gap narrows, capillary force increases exponentially until the gap is small enough for the liquid to penetrate it. However, the prior art solutions do not pay much attention to the fluid flow properties of the heat transfer surface, such as wetting ability and capillary flow.

• · • · • Il * • · · 1 ' *·;·: Esillä olevan keksinnön tarkoituksena on poistaa tekniikan tason mukaisia | haittapuolia ja parantaa lämmönsiirtopinnan nestevirtausominaisuuksia, kuten · 30 kostutuskykyä ja kapillaarivirtausta, hapettamalla lämmönsiirtopinta kemiallisesti tai kuumentamalla happipitoisessa atmosfäärissä sekä käyttää 3 118181 menetelmällä aikaansaatua lämmönsilrtopintaa eri käyttökohteissa. Keksinnön olennaiset tunnusmerkit selviävät oheisista patenttivaatimuksista.The object of the present invention is to remove the prior art | disadvantages and improves fluid flow properties of the heat transfer surface, such as · 30 wetting ability and capillary flow, by oxidizing the heat transfer surface chemically or by heating in an oxygen-containing atmosphere, and utilizing the heat barrier surface obtained by Method 3 118181. The essential features of the invention will be apparent from the appended claims.

Keksinnön mukaista menetelmää sovellettaessa metallia, keräämiä, polymeeriä 5 tai komposiittimateriaalia tai näiden yhdistelmästä olevan kappaleen, edullisesti kuparista, kupariseoksesta, alumiinista, alumiiniseoksesta tai teräksestä, tai näiden metallien yhdistelmästä valmistetun metallikappaleen pintaan muodostetaan ensin struktuuriltaan haluttu lämmönsiirtopinta. Keksinnön mukaisesti lämmönsiirtopinnalla varustettua kappaletta hapetetaan ainakin yhtä kemiallista 10 hapetinta käyttäen tai kuumentamalla happipitoisessa atmosfäärissä nestevir-tausominaisuuksien, kuten kostutuskyvyn ja kapillaarivirtauksen, parantamiseksi. Hapetus voidaan suorittaa myös niin, että halutun hapetustuloksen aikaansaamisessa käytetään osittain ainakin yhtä kemiallista hapetinta ja osittain t kuumennusta happipitoisessa atmosfäärissä.When applying the process of the invention, the desired structure of heat transfer structure is first formed on the surface of a metal, collector, polymer 5 or composite material, or a combination thereof, preferably of copper, copper alloy, aluminum, aluminum alloy or steel, or a combination of these metals. According to the invention, a body having a heat transfer surface is oxidized using at least one chemical oxidant or heated in an oxygen-containing atmosphere to improve fluid flow properties such as wetting ability and capillary flow. The oxidation may also be carried out using partially at least one chemical oxidant and partly t heating in an oxygen-containing atmosphere to achieve the desired oxidation result.

1515

Keksinnön mukaisessa menetelmässä metallia, keräämiä, polymeeriä tai komposiittimateriaalia tai näiden yhdistelmästä valmistettua, edullisesti metallista, *:·: kuten kupari, kupariseos, alumiini, alumiiniseos tai teräs tai näiden metallien tt;:* yhdistelmä, valmistettua ja lämmönsiirtopinnalla varustettua metallikappaletta | 20 hapetetaan lämpötilassa 50 - 1200 °C, edullisesti lämpötilassa 250 - 450 °C ja ϊ.,,ϊ vielä edullisimmin lämpötilassa 300 - 400 °C hapetusajan ollessa 0,1 - 60 mi- / * · : nuuttia, edullisesti 0,1 - 15 minuuttia, vielä edullisimmin 1-5 minuuttia atmo- • · · sfäärissä, jonka happipitoisuus on 0,01 -100 tilavuus-%, edullisesti 15-50 tila-vuus-%, vielä edullisimmin 20 - 30 tilavuus-%. Yksi keksinnön edullinen sovel- • · : 25 lutusmuoto on käyttää atmosfäärissä ilma-atmosfääriä.In the process of the invention, metal, collector, polymer or composite material, or a combination thereof, preferably metal, *: ·: such as copper, copper alloy, aluminum, aluminum alloy or steel or the like;: * combination, made of metal with heat transfer surface | The oxidation is carried out at a temperature of 50-1200 ° C, preferably 250-450 ° C and more preferably 300-400 ° C, with an oxidation time of 0.1-60 mi- / * · nuts, preferably 0.1-60 ° C. 15 minutes, more preferably 1 to 5 minutes, in an atmosphere having an oxygen content of 0.01 to 100% by volume, preferably 15 to 50% by volume, most preferably 20 to 30% by volume. One preferred embodiment of the invention is the use of an atmospheric atmosphere in the atmosphere.

• · · * · • · ♦ ·· • · • *·· Keksinnön mukainen lämmönsiirtopinnalla varustetun kappaleen hapetus voi- ««* daan suorittaa myös ainakin yhtä kemiallista hapetinta käyttäen. Keksinnön ·:··: mukaiseen menetelmään soveltuvia hapettimia ovat edullisesti esimerkiksi nat- *:·*: 30 riumkloriitti, natriumkloraatti, kaliumpermanganaatti tai vetyperoksidi, jolloin ha- petusaika on välillä 0,1-15 min.The oxidation of a body having a heat transfer surface according to the invention may also be carried out using at least one chemical oxidant. The oxidizing agents suitable for the process of the invention:: ··: are preferably sodium chloride: sodium chloride, potassium permanganate or hydrogen peroxide, for example, with an oxidation time of between 0.1 and 15 minutes.

118181 ' 4118181 '4

Keksinnön mukaisella menetelmällä hapetettua pintaa verrattaessa hapettamat-tomaan pintaan saatiin tuloksena, että hapetetun pinnan lämmönsiirtonesteenä toimivan veden kostutuskyky oli huomattavasti parempi kuin hapettumattoman pinnan. Vastaavan menettelyn tuloksena strukturoidun pinnan veden kostutus-5 kyky parani vielä enemmän verrattuna hapettumattomaan pintaan, jota vesi kostutti huonosti. Lisäksi kapillaarivirtaus tehostui siten, että neste virtausta tapahtui paitsi vaakasuoralla myös pystysuoralla pinnalla. Hapettumattomalla pinnalla tapahtui kapillaarivirtausta huomattavasti hitaammin.Comparing the oxidized surface with the non-oxidized surface by the process of the invention, it was found that the wetting capacity of the water, which acts as a heat transfer fluid for the oxidized surface, was significantly better than that of the non-oxidizing surface. As a result of this procedure, the water wetting ability of the structured surface was further improved compared to the non-oxidized surface, which was poorly wetted by water. In addition, the capillary flow was enhanced so that the liquid flow occurred not only on the horizontal but also on the vertical surface. Capillary flow on the non-oxygenated surface was much slower.

10 Keksinnön mukaista menetelmää voidaan edullisesti käyttää lämmönsiirtopin-nan nestevirtausominaisuuksien tehostamiseen esimerkiksi seuraavissa sovelluksissa: sähkö- ja elektroniikkasovellukset, kuten esimerkiksi lämpöputket (heat pipes), höyrysäiliöt (vapour chambers), lämpöveitset (heat spreaders), kiehumispinnat (boiling surfaces), ilmastointi- ja pakastussovellukset, kuten 15 esimerkiksi ilmastointiputket (ACR-putket), aurinkoenergian keräimet, erilaiset lämmönvaihtimet ja jäähdyttimet, kuten esimerkiksi levylämmönvaihtimet, au-tonjäähdyttimet, valukokillit, valujäähdyttimet, mikrojäähdyttimet.The method of the invention can advantageously be used to enhance the fluid flow properties of a heat transfer surface, for example in the following applications: electrical and electronic applications such as heat pipes, vapor chambers, heat spreaders, boiling surfaces, air conditioning freezing applications such as air conditioning tubes (ACR tubes), solar collectors, various heat exchangers and coolers such as plate heat exchangers, auto coolers, casting dies, drain coolers, microcoolers.

·:*·· Keksintöä selostetaan lähemmin seuraavassa viitaten oheisiin piirustuksiin, ·.*· 20 joissa • · · · kuvio 1 esittää oheisen keksinnön mukaisen esimerkin 1 mittaustuloksia ai-ka/veden kulkema matka-koordinaatistossa lämmönsiirtopinnan muodostavan • · ·.: - kuparipulverin raekoon ollessa välillä 71 - 90 pm, · · kuvio 2 esittää oheisen keksinnön mukaisen esimerkin 1 mittaustuloksia ai-25 ka/veden kulkema matka-koordinaatistossa lämmönsiirtopinnan muodostavan • · • · kuparipulverin raekoon ollessa välillä 125 -160 pm, ja • · *':** kuvio 3 esittää oheisen keksinnön mukaisen esimerkin 1 mittaustuloksia ai- ka/veden kulkema matka-koordinaatistossa lämmönsiirtopinnan muodostavan * · · • · '*:** kuparipulverin raekoon ollessa välillä 180-250 pm.The invention will be described in more detail below with reference to the accompanying drawings, in which: Figure 1 shows the results of the measurement of time / water travel in the travel coordinate system forming the heat transfer surface of Example 1 of the present invention. with a grain size of between 71 and 90 µm, Figure 2 shows the measurement results of ai-25 ka / water travel of ai-25 ka / water of the powdered powder forming a heat transfer surface of 125-160 µm in the coordinate system, and · · * ': ** Figure 3 shows the measurement results of Example 1 of the present invention, the time / water travel in the travel coordinate system of the heat transfer surface forming * · · • · '*: ** with a grain size of copper powder between 180 and 250 µm.

30 ··· • * • · * · · 5 11818130 ··· • * • · * · · 5 118181

Esimerkki 1Example 1

Hapettomasta kuparinauhasta (Cu-OF) leikattiin kuusi nauhan pätkää. Kaikkien nauhojen pinnalle sintrattiin lämpötilassa 900 °C 1 tunnin aikana typpisuojakaa-5 sussa kaasuatomisoidusta kuparipulverista 149, 319 ja 330 μΓη paksut huokoiset kerrokset lämmönsiirtopinnaksi. Kuparipulverin keskimääräiset raekoot olivat 80, 140 ja 215 pm. Kutakin raekokoa vastasi kaksi pinnoitettua nauhaa. Pinnoituksen jälkeen nauhojen pinnat olivat täysin kirkkaat ja hapettumattomat.Six strips of cut copper-free (Cu-OF) were cut. On all strips, thick porous layers of 149, 319, and 330 μΓη of gas-atomized copper powder were sintered at 900 ° C for 1 hour to form a heat transfer surface. The average grain sizes of the copper powder were 80, 140 and 215 µm. Each coated size was matched by two coated strips. After coating, the surfaces of the strips were completely clear and non-oxidizing.

Kutakin raekokoa vastaava yksi nauha hapetettiin putkiuunissa ilma-10 atmosfäärissä lämpötilan ollessa 350 °C ja hehkutusaika 3 minuuttia. Hehkutuksen jälkeen nauhojen annettiin jäähtyä ilma-atmosfäärissä. Hehkutuksen jälkeen nauhojen pinnat olivat tummanruskeiksi hapettuneita. Hapetuksen vaikutusta veden kapillaarivirtaukseen huokoisessa pinnoitteessa tutkittiin asettamalla nauhat maan pintaan nähden kohtisuoraan asentoon. Nauhojen alapäät saa-15 tettiin kosketuksiin ionivaihdetun veden kanssa. Vesirintaman nousema matka huokoisessa pinnoitteessa mitattiin ajan funktiona. Hapetetuissa pinnoitteissa vesi nousi selvästi nopeammin ja pidemmän matkan kuin vastaavissa hapetta-·:··: mattomissa pinnoitteissa, kuten oheisissa kuvioissa 1 - 3 on esitetty kuparipul- verin keskimääräisten raekokojen ollessa vastaavasti 80, 140 ja 215 pm.One strip corresponding to each particle size was oxidized in a tube oven at an air-10 atmosphere of 350 ° C and annealing time of 3 minutes. After annealing, the strips were allowed to cool in an air atmosphere. After annealing, the surfaces of the strips were oxidized to dark brown. The effect of oxidation on the capillary flow of water in a porous coating was investigated by placing the strips perpendicular to the ground surface. The lower ends of the strips were contacted with deionized water. The distance traveled by the water front in the porous coating was measured as a function of time. In the oxidized coatings, the water rose significantly faster and longer distance than the corresponding non-oxidative coatings, such as the accompanying Figures 1-3, with average copper powder sizes of 80, 140 and 215 µm, respectively.

2020

Esimerkki 2 1 « · • · · • 1 · * 1 ·Example 2 1 «· · · · 1 · * 1 ·

Esimerkin 1 mukaisilla hapettamattomilla ja hapetetuilla nauhoilla tehtiin vastaava kapillaarivirtauskoe asettamalla nauhat maan pintaan nähden vaa- • e ·: : 25 kasuoraan asentoon siten, että nauhan tasomainen pinta oli kohtisuorassa ί • · · • · *···1 maan pintaa vastaan. Nauhojen toisten päiden päälle pudotettiin pipetillä ioni- 1♦· vaihdettua vettä. Hapettamattomissa nauhoissa vesipisarat imeytyivät hitaasti • · ♦ ' huokoiseen pinnoitteeseen ja vesirintama eteni hitaasti kohti nauhan toista pää-·:·1♦ tä. Hapetetuissa nauhoissa vesipisarat imeytyivät välittömästi huokoiseen pin- *:··: 30 noitteeseen ja vesirintama eteni selvästi nopeammin kohti nauhan toista päätä kuin vastaavissa hapettamattomissa nauhoissa.The unoxidized and oxidized strips of Example 1 were subjected to a corresponding capillary flow test by positioning the strips in a horizontal position relative to the surface of the earth with the planar surface of the strip perpendicular to the surface of the earth. A second drop of ion-exchange water was dropped on the other ends of the tapes. In non-oxidizing tapes, water droplets were slowly absorbed into the · · ♦ 'porous coating and the water front proceeded slowly toward the other end of the tape. In the oxidized tapes, water droplets were immediately absorbed into the porous surface *: ··: 30 wadding and the water front proceeded much faster toward the other end of the tape than in the corresponding non-oxidized tapes.

6 1181816 118181

Esimerkki 3 -Example 3 -

Esimerkin 1 mukainen vastaava koe tehtiin pinnaltaan pitkittäissuunnassa uritetuilla nauhoilla ja toisilla uritetuilla nauhoilla, joissa urat muodostivat 15 asteen 5 kulman (nousukulman) nauhan pituusakselin suhteen. Lämpötilassa 350 °C hapetetuissa nauhoissa vesirintama eteni nopeasti pystysuunnassa. Hapetta-mattomissa nauhoissa vesirintama ei noussut ollenkaan pystysuunnassa.The corresponding test of Example 1 was performed on longitudinally extensively ribbed ribbons and other ribbed ribbons where the grooves formed a 15 degree 5 angle (pitch) with respect to the longitudinal axis of the ribbon. At 350 ° C oxidized strips, the water front advanced rapidly in a vertical direction. In oxygen-free tapes, the water front did not rise at all vertically.

;7 ····· * · * · · ·1·· ' .? • « * · • «· « • · « • · • 1 * · ♦ • · • 1 · • · · •M · » · ·; 7 ····· * · * · · 1 ·· '.? • «* · •« · «• ·« • 1 * · ♦ • · • 1 · • · · M · »· ·

* I* I

• · ··1 · " • « • 1 · * · · M» t • · · • · • · • · · « « • 1 ♦ 1 · * · · • 1 · ·«1 • , » • · · · · • · ·• · ·· 1 · „•« • 1 · * · · M »t • · · • • • • • · ·« «1 ♦ 1 · * · · 1 · ·« 1 •, »• · · · · · ·

Claims (3)

1. Förfarandeförattförbättravätskeflödesegenskaperna,säsomvätnings-förmägan och kapillarflödet, hos en värmeöverföringsyta bildat pä ett stycke tillverkat av koppar, vid vilket förfarande värmeöverföringsytan utsätts för 5 oxidation genom att stycket uppvärms i en syrehaltig atmosfär, kännetecknat av att oxidationstemperaturen uppgar tili över 350 °C och glödgningstiden tili ätminstone 3 minuter. ς1. A process further enhances the fluid flow characteristics, such as wetting ability and capillary flow, of a heat transfer surface formed on a piece made of copper, in which process til at least 3 minutes. ς 2. Förfarande i enlighet med patentkrav 1, kännetecknat av att oxidationen ) - Λ utförs i en atmosfär, vars syrehalt uppgar tili 15-50 volym-%. - -¾ 10Process according to claim 1, characterized in that the oxidation) - Λ is carried out in an atmosphere whose oxygen content is up to 15-50% by volume. - -¾ 10 3. Förfarande i enlighet med patentkrav 1, kännetecknat av att oxidationen utförs i en atmosfär, vars syrehalt uppgar tili 20-30 volym-%. : 1 ' | ·····.' • * • ·* • · * · · • · 'p • · • · · • * • * • * * . ::1- • · * ··· · • · * • « > • · • · · • · Φ · • ·· • · · • · • · * · · ♦ ·;··· i • · · • » • · ··· • ·/ • · · • · * ♦ · ' • * · ···' • · • · • · · /'.vProcess according to claim 1, characterized in that the oxidation is carried out in an atmosphere whose oxygen content is up to 20-30% by volume. : 1 '| ·····. ' • * • · * • · * · · • · 'p • · • · · • * • * • * *. :: 1- • · * ··· · • · * • «> • · • · · · · Φ · • ·· • · · · · · · · · ♦ ·; ··· i • · · • »• · ··· • · / • · · • · * ♦ · '• * · ···' • · • · • · · /'.v
FI20050741A 2005-07-11 2005-07-11 A method for improving the fluid flow properties of a heat transfer surface FI118181B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI20050741A FI118181B (en) 2005-07-11 2005-07-11 A method for improving the fluid flow properties of a heat transfer surface
PCT/FI2006/000246 WO2007006847A1 (en) 2005-07-11 2006-07-10 Method for improving the liquid flow properties of a heat transfer surface and its use.
CNA2006800253687A CN101218368A (en) 2005-07-11 2006-07-10 Method for improving the liquid flow properties of a heat transfer surface and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20050741 2005-07-11
FI20050741A FI118181B (en) 2005-07-11 2005-07-11 A method for improving the fluid flow properties of a heat transfer surface

Publications (3)

Publication Number Publication Date
FI20050741A0 FI20050741A0 (en) 2005-07-11
FI20050741A FI20050741A (en) 2007-01-12
FI118181B true FI118181B (en) 2007-08-15

Family

ID=34803204

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20050741A FI118181B (en) 2005-07-11 2005-07-11 A method for improving the fluid flow properties of a heat transfer surface

Country Status (3)

Country Link
CN (1) CN101218368A (en)
FI (1) FI118181B (en)
WO (1) WO2007006847A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493150B (en) * 2012-11-30 2015-07-21 Ind Tech Res Inst Heat pipe and method for forming the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3260791D1 (en) * 1981-01-15 1984-10-31 Courtaulds Plc A heat exchanger having a plastics membrane
JPS5997498A (en) * 1982-11-29 1984-06-05 Toshiba Corp Surface treatment of fin of heat exchanger
JPS6136693A (en) * 1984-07-26 1986-02-21 Hitachi Cable Ltd Heat pipe
JPH0533116A (en) * 1991-07-25 1993-02-09 Hitachi Zosen Corp Surface treatment of stainless steel member
JP3212479B2 (en) * 1995-03-31 2001-09-25 株式会社神戸製鋼所 Plate fin heat exchanger and method of manufacturing the same
JP2000054159A (en) * 1998-08-07 2000-02-22 Hitachi Chem Co Ltd Heat transfer material, heat transfer body, production of heat transfer material, and production of heat transfer body
JP2001192853A (en) * 1999-10-29 2001-07-17 Matsumoto Shika Univ Method for depositing oxidized film on metallic member for cementing and method for cementing metallic member
FI120359B (en) * 2002-12-18 2009-09-30 Cupori Group Oy Method and apparatus for treating an inner surface of a copper or copper alloy tube

Also Published As

Publication number Publication date
WO2007006847A1 (en) 2007-01-18
CN101218368A (en) 2008-07-09
FI20050741A0 (en) 2005-07-11
FI20050741A (en) 2007-01-12

Similar Documents

Publication Publication Date Title
Patil et al. Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling
Yao et al. Effects of nanowire height on pool boiling performance of water on silicon chips
Singh et al. Review of pool and flow boiling heat transfer enhancement through surface modification
Rishi et al. Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer
Das et al. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure
EP1991824B1 (en) Method for forming a surface layer on a substrate
US10100411B2 (en) Supernucleating multiscale copper surfaces for high performance phase change heat transfer
Tang et al. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer
JP4889271B2 (en) Metal glass composite material and member for electronic and electrical equipment using the same
Lee et al. Layer-by-layer assembled carbon nanotube-polyethyleneimine coatings inside copper-sintered heat pipes for enhanced thermal performance
FI118181B (en) A method for improving the fluid flow properties of a heat transfer surface
Ng et al. Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes
WO2013184210A2 (en) Hierarchical structured surfaces
Chen et al. Solder wetting behavior enhancement via laser-textured surface microcosmic topography
Lv et al. Heat transfer and fouling rate at boiling on superhydrophobic surface with TiO 2 nanotube-array structure
Kim et al. Enhanced thermal performances of PCM heat sinks enabled by layer-by-layer-assembled carbon nanotube–polyethylenimine functional interfaces
Sezer et al. Enhanced nucleate boiling heat transfer on bubble-induced assembly of 3D porous interconnected graphene oxide/silver nanowire hybrid network
Hong et al. Capillary-assisted evaporation characteristics of TiO2-CNT-Cu-nanocomposite-coated plates and finned plates
CN113155914B (en) Interdigital electrode material with vertical orientation three-dimensional structure, and preparation method and application thereof
US20070207931A1 (en) Grooved porous surface, production method and application in heat transfer
Jiang et al. Laser microstructuring of extremely-thin vapor chamber with hybrid configuration for excellent heat dissipation
CN113661551B (en) Solid electrolytic capacitor
JP2014157801A (en) Battery corrosion-resistant metal member
JP2017115204A (en) Aluminum-based porous body and manufacturing method therefor
JP7045634B2 (en) Solid electrolytic capacitors and their manufacturing methods

Legal Events

Date Code Title Description
PC Transfer of assignment of patent

Owner name: LUVATA OY

Free format text: LUVATA OY

FG Patent granted

Ref document number: 118181

Country of ref document: FI