JP3212479B2 - Plate fin heat exchanger and method of manufacturing the same - Google Patents

Plate fin heat exchanger and method of manufacturing the same

Info

Publication number
JP3212479B2
JP3212479B2 JP09980095A JP9980095A JP3212479B2 JP 3212479 B2 JP3212479 B2 JP 3212479B2 JP 09980095 A JP09980095 A JP 09980095A JP 9980095 A JP9980095 A JP 9980095A JP 3212479 B2 JP3212479 B2 JP 3212479B2
Authority
JP
Japan
Prior art keywords
heat exchanger
fin heat
plate fin
aluminum alloy
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09980095A
Other languages
Japanese (ja)
Other versions
JPH08269680A (en
Inventor
顕一郎 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14256974&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3212479(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP09980095A priority Critical patent/JP3212479B2/en
Priority to EP96302258A priority patent/EP0735339B1/en
Priority to US08/623,848 priority patent/US5699855A/en
Priority to DE69625635T priority patent/DE69625635T2/en
Publication of JPH08269680A publication Critical patent/JPH08269680A/en
Application granted granted Critical
Publication of JP3212479B2 publication Critical patent/JP3212479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/51Heat exchange having heat exchange surface treatment, adjunct or enhancement
    • Y10S165/512Coated heat transfer surface
    • Y10S165/513Corrosion resistant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水銀を含む原料を熱交
換するアルミニウム合金製のプレートフィン熱交換器お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate fin heat exchanger made of an aluminum alloy for heat-exchanging a raw material containing mercury and a method for producing the same.

【0002】[0002]

【従来の技術】プレートフィン熱交換器は、低温におい
て優れた機械的強度を有するアルミニウム合金により形
成されていると共に、被冷却流体路と冷媒路とを交互に
配置した簡単な構成にされていることから、特に低温で
の熱交換を要する液化天然ガスプラント等のプラント設
備において多用されている。
2. Description of the Related Art A plate fin heat exchanger is formed of an aluminum alloy having excellent mechanical strength at a low temperature and has a simple structure in which fluid passages to be cooled and refrigerant passages are alternately arranged. For this reason, it is widely used in plant equipment such as a liquefied natural gas plant that requires heat exchange at a low temperature.

【0003】ところで、プラント設備の原料中には、水
銀が含まれていることが多く、プレートフィン熱交換器
には、この原料を熱交換することによって、水銀が滞留
し易い状態となっている。この際、アルミニウム合金
は、水銀と反応して水銀アマルガムを形成する。そし
て、水銀アマルガムは、水分の存在により加水分解を起
こして水酸化アルミを生成すると共に、金属水銀を再生
することになる。従って、プレートフィン熱交換器は、
原料中に水銀および水分が存在すると、原料に接触する
被冷却流体路や冷媒路を構成する流路部材が継続的に腐
食して耐用年数が低下することになる。
[0003] By the way, mercury is often contained in the raw materials of plant equipment, and the plate fin heat exchanger is in a state in which mercury is easily retained by exchanging the raw materials with heat. . At this time, the aluminum alloy reacts with mercury to form mercury amalgam. Then, the mercury amalgam is hydrolyzed by the presence of water to generate aluminum hydroxide and regenerate metallic mercury. Therefore, the plate fin heat exchanger is
If mercury and moisture are present in the raw material, the flow path member constituting the fluid path to be cooled and the refrigerant path in contact with the raw material will be continuously corroded, and the useful life will be reduced.

【0004】そこで、従来は、腐食の原因物質である水
銀および水分の少なくとも一方を除去するように、プ
ラント設備への水分の侵入を完全に防止する対策や、
水分を固定するように低温に保持する対策、滞留した
水銀を完全に排出可能な構造にする対策が施されること
によって、プレートフィン熱交換器の腐食が防止される
ようになっている。
Therefore, conventionally, measures to completely prevent intrusion of moisture into plant equipment, such as removal of at least one of mercury and moisture, which are substances causing corrosion,
By taking measures to maintain the temperature at a low temperature so as to fix the moisture and to make the structure capable of completely discharging the retained mercury, corrosion of the plate fin heat exchanger is prevented.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のように、水銀や水分等の原因物質を除去する対策で
は、プラント設備の運転休止時において設備が完全に停
止された状態になると、原因物質の除去が不十分になり
易いため、プレートフィン熱交換器を腐食させる危険性
がある。
However, as in the above-described conventional measures for removing the causative substances such as mercury and moisture, when the plant is completely shut down when the operation of the plant equipment is stopped, the causative substance is not used. There is a danger that the plate fin heat exchanger will be corroded since the removal of the fins tends to be insufficient.

【0006】従って、本発明は、プラント設備の運転休
止時においても確実に腐食を防止することができるプレ
ートフィン熱交換器およびその製造方法を提供しようと
するものである。
Accordingly, an object of the present invention is to provide a plate fin heat exchanger capable of reliably preventing corrosion even when plant equipment is not operating, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、請求項1〜6のプレートフィン熱交換器およびその
製造方法は、プレートフィン熱交換器本体が被冷却流体
路および冷媒路を構成する流路部材がアルミニウム合金
により形成されており、下記の特徴を有している。
In order to solve the above-mentioned problems, a plate fin heat exchanger and a method of manufacturing the same according to claims 1 to 6, wherein the plate fin heat exchanger main body constitutes a fluid passage to be cooled and a refrigerant passage. The flow path member is formed of an aluminum alloy and has the following characteristics.

【0008】即ち、請求項1のプレートフィン熱交換器
は、水銀を含む被冷却流体や冷媒が流動する被冷却流体
路および冷媒路を構成する流路部材の表面に、該流路部
材のアルミニウム合金と酸化性ガス中の酸化成分との反
応により生成された酸化皮膜が上記水銀を上記アルミニ
ウム合金に接触させないように形成されていることを特
徴としている。また、請求項2のプレートフィン熱交換
器は、上記の酸化性ガスが、25〜35%の酸素濃度の
大気ガスであることを特徴としている。また、請求項3
のプレートフィン熱交換器の製造方法は、水銀を含む被
冷却流体や冷媒が流動する被冷却流体路および冷媒路に
25〜35%の酸素濃度の大気ガスを封入してプレート
フィン熱交換器本体を250〜350℃の加熱雰囲気中
に数時間放置することによって、該流路部材のアルミニ
ウム合金と酸化性ガス中の酸化成分とを反応させること
により上記水銀を上記アルミニウム合金に接触させない
ように酸化皮膜を流路部材の表面に形成させることを特
徴としている。
That is, the plate fin heat exchanger according to the first aspect of the present invention is characterized in that the surface of the flow path member forming the cooling fluid path and the cooling medium path through which the cooling fluid or the refrigerant containing mercury flows has the aluminum of the flow path member. An oxide film formed by a reaction between the alloy and an oxidizing component in the oxidizing gas is formed so that the mercury does not contact the aluminum alloy. The plate fin heat exchanger according to claim 2 is characterized in that the oxidizing gas is an atmospheric gas having an oxygen concentration of 25 to 35%. Claim 3
The method of manufacturing the plate fin heat exchanger, the mercury-containing
Atmosphere gas having an oxygen concentration of 25 to 35% is sealed in a cooling fluid path and a cooling medium path through which a cooling fluid or a refrigerant flows, and the plate fin heat exchanger body is left in a heating atmosphere of 250 to 350 ° C for several hours. by, Rukoto by reacting an oxidizing component in the oxidizing gas and aluminum alloy of the flow path member
Prevents the mercury from contacting the aluminum alloy
As described above, the oxide film is formed on the surface of the flow path member.

【0009】[0009]

【0010】[0010]

【作用】上記の構成によれば、被冷却流体路および冷媒
路を構成する流路部材の表面に酸化皮膜や水酸化皮膜を
積極的に形成し、これらの皮膜により被冷却流体や冷媒
となる原料中に含まれる水銀と流路部材のアルミニウム
合金との直接的な接触を防止するようになっているた
め、プラント設備の運転休止時においても確実に腐食を
防止することができるようになっている。
According to the above construction, an oxide film or a hydroxide film is positively formed on the surface of the flow path member constituting the fluid path to be cooled and the refrigerant path, and these films become the fluid to be cooled and the refrigerant. Because it prevents direct contact between the mercury contained in the raw material and the aluminum alloy of the flow path member, corrosion can be reliably prevented even when plant equipment is not operating. I have.

【0011】また、未処理のアルミニウム合金表面にも
自然に生成した酸化皮膜が存在しているが、この場合に
は、酸化皮膜の膜厚が十分でないため、流動する被冷却
流体や冷媒により容易に削り取られ、運転時の応力変動
或いは振動によって水銀が皮膜欠陥部に侵入し、水銀腐
食が進行することになる。ところが、上記の構成によれ
ば、酸化皮膜や水酸化皮膜を積極的に形成して容易に削
り取られない程度の十分な膜厚とすることができるた
め、原料による削れや稼働時の応力変動および振動によ
る皮膜の欠損を防止することが可能になり、結果として
プラント設備の運転時および休止時の全期間において水
銀とアルミニウム合金との接触を防止して水銀による腐
食を防止することが可能になっている。
An oxide film naturally formed also exists on the surface of an untreated aluminum alloy. In this case, the thickness of the oxide film is not sufficient, so that the oxide film is easily formed by a flowing fluid to be cooled or a refrigerant. Mercury penetrates into the film defect due to stress fluctuation or vibration during operation, and mercury corrosion proceeds. However, according to the above configuration, an oxide film or a hydroxide film can be actively formed to have a sufficient film thickness not to be easily scraped off. It is possible to prevent the loss of the film due to vibration, and as a result, it is possible to prevent the contact between mercury and the aluminum alloy during the entire period of operation and shutdown of the plant equipment, thereby preventing corrosion by mercury. ing.

【0012】尚、酸化性ガスとして大気ガスを用いた場
合の酸素濃度を25〜35%の範囲とした理由および酸
化皮膜を形成する際の加熱雰囲気を250〜350℃の
範囲とした理由は、酸素濃度および加熱雰囲気の何れか
一方が下限値(25%、250℃)未満であると、酸素
濃度や加熱温度が低過ぎて酸化物皮膜の生成時間が長く
なると共に、皮膜厚さを増大させることが困難になり、
結果として水銀粒子がアルミ素材面に到達しない程度の
皮膜欠陥を生成することが困難になるからである。一
方、酸素濃度および加熱雰囲気の何れか一方が上限値
(35%、350℃)を越えると、酸化物皮膜が成長し
易くなる反面、酸素濃度や加熱温度が高過ぎて結晶粒が
大粒となるため、水銀粒子がアルミ素材面に到達する程
度の皮膜欠陥が生成されることになるからである。
The reasons why the oxygen concentration in the case of using atmospheric gas as the oxidizing gas is in the range of 25 to 35% and the reason why the heating atmosphere in forming the oxide film is in the range of 250 to 350 ° C. are as follows. If either the oxygen concentration or the heating atmosphere is lower than the lower limit (25%, 250 ° C.), the oxygen concentration or the heating temperature is too low, so that the formation time of the oxide film becomes longer and the film thickness increases. It becomes difficult,
As a result, it is difficult to generate a film defect to such an extent that the mercury particles do not reach the aluminum material surface. On the other hand, if one of the oxygen concentration and the heating atmosphere exceeds the upper limit (35%, 350 ° C.), the oxide film tends to grow, but the oxygen concentration and the heating temperature are too high, and the crystal grains become large. Therefore, a film defect is generated to such an extent that the mercury particles reach the aluminum material surface.

【0013】また、アルカリ水溶液として水酸化ナトリ
ウム水溶液を用いた場合の濃度を1〜7%とした理由
は、1%未満であると、アルカリ濃度が低過ぎて水酸化
物皮膜の生成時間が長くなると共に、皮膜厚さを増大さ
せることが困難になり、結果として水銀粒子がアルミ素
材面に到達しない程度の皮膜欠陥を生成することが困難
になるからである。一方、7%を越えると、アルカリ濃
度が高過ぎて結晶粒が大粒となるため、水銀粒子がアル
ミ素材面に到達する程度の皮膜欠陥が生成されることに
なるからである。
The reason why the concentration of sodium hydroxide aqueous solution is set to 1 to 7% when the alkaline aqueous solution is less than 1% is that the alkali concentration is too low and the formation time of the hydroxide film becomes long. At the same time, it becomes difficult to increase the film thickness, and as a result, it becomes difficult to generate a film defect to such an extent that mercury particles do not reach the aluminum material surface. On the other hand, if it exceeds 7%, the alkali concentration is too high and the crystal grains become large, so that a film defect is generated to the extent that mercury particles reach the aluminum material surface.

【0014】[0014]

【実施例】本発明に係る一実施例を図1および図2を用
いて説明する。本実施例に係るプレートフィン熱交換器
は、図1に示すように、波状に形成された複数のプレー
トフィン1…と平板2…とを交互に積層させ、被冷却流
体と冷媒とが平板2…を介して接触するように、隣接す
る平板2・2間に被冷却流体路と冷媒路とを交互に配置
した構成のプレートフィン熱交換器本体3(以下、熱交
換器本体3と称する)を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the plate fin heat exchanger according to the present embodiment has a plurality of wavy plate fins 1... And flat plates 2. The plate-fin heat exchanger main body 3 (hereinafter, referred to as the heat exchanger main body 3) having a configuration in which fluid passages to be cooled and refrigerant passages are alternately arranged between the adjacent flat plates 2 so as to be in contact with each other via the. have.

【0015】上記の被冷却流体路および冷媒路を構成す
る流路部材(プレートフィン1…、平板2)には、30
03材や5083材等のアルミニウム合金が用いられて
おり、流路部材の表面には、水銀による腐食を防止する
ように酸化皮膜や水酸化皮膜が形成されている。これら
の皮膜は、流動する被冷却流体や冷媒により容易に削り
取られない程度の20〜170μmの膜厚に設定されて
おり、被冷却流体や冷媒中に存在する水銀と流路部材の
材料であるアルミニウム合金との直接的な接触を防止す
るようになっている。
The passage members (plate fins 1,.
An aluminum alloy such as 03 material or 5083 material is used, and an oxide film or a hydroxide film is formed on the surface of the flow path member so as to prevent corrosion by mercury. These coatings are set to a thickness of 20 to 170 μm, which is not easily scraped off by the flowing fluid to be cooled or the refrigerant, and are a material of the mercury and the flow path member present in the fluid to be cooled or the refrigerant. It prevents direct contact with the aluminum alloy.

【0016】上記の皮膜は、酸化皮膜の場合、熱交換器
本体3の内部(被冷却流体路および冷媒路)に酸化性ガ
スを導入し、全流路の出入口を密栓した後、熱交換器本
体3を加熱炉内に載置し、加熱雰囲気中に数時間放置す
ることによって、アルミニウム合金と酸化性ガス中の酸
化成分とを反応させることにより形成されるようになっ
ている。
When the above-mentioned film is an oxide film, an oxidizing gas is introduced into the interior of the heat exchanger main body 3 (fluid passage to be cooled and refrigerant passage), and the inlets and outlets of all the passages are sealed. The main body 3 is placed in a heating furnace and left in a heating atmosphere for several hours so that the aluminum alloy reacts with an oxidizing component in an oxidizing gas.

【0017】尚、酸化性ガスとしては、25〜35%の
酸素濃度の大気ガスやオゾン(O3)、塩素ガス(Cl
2 )、NOx 等を用いることができる。また、酸化性ガ
スとして25〜35%の酸素濃度の大気ガスを用いた場
合には、加熱雰囲気の温度が250〜350℃の範囲で
あることが望ましく、放置時間(処理時間)が5時間程
度であることが望ましい。
The oxidizing gas may be air gas having an oxygen concentration of 25 to 35%, ozone (O 3 ), chlorine gas (Cl 3 ).
2 ), NOx or the like can be used. When an air gas having an oxygen concentration of 25 to 35% is used as the oxidizing gas, the temperature of the heating atmosphere is preferably in the range of 250 to 350 ° C., and the leaving time (processing time) is about 5 hours. It is desirable that

【0018】一方、皮膜が水酸化皮膜である場合には、
熱交換器本体3の内部(被冷却流体路および冷媒路)に
常温のアルカリ水溶液を導入し、このアルカリ水溶液を
数十秒保持させることによって、アルミニウム合金とア
ルカリ水溶液中のアルカリ成分とを反応させることによ
り形成されるようになっている。
On the other hand, when the film is a hydroxide film,
An aqueous alkali solution at room temperature is introduced into the interior of the heat exchanger body 3 (the fluid passage to be cooled and the refrigerant passage), and the alkali aqueous solution is held for several tens of seconds to react the aluminum alloy with the alkali component in the alkaline aqueous solution. It is formed by this.

【0019】尚、アルカリ水溶液としては、水酸化ナト
リウム溶液(NaOH)や水酸化カリウム(KOH)、
水酸化カルシウム(Ca(OH)2 )、水酸化マグネシ
ウム(Mg(OH)2 )等を用いることができる。ま
た、アルカリ水溶液に水酸化ナトリウム溶液を用いた場
合には、水酸化ナトリウム濃度が1〜7%の範囲である
ことが望ましく、放置時間(処理時間)が90秒程度で
あることが望ましい。
The alkaline aqueous solution includes sodium hydroxide solution (NaOH), potassium hydroxide (KOH),
Calcium hydroxide (Ca (OH) 2 ), magnesium hydroxide (Mg (OH) 2 ) and the like can be used. When a sodium hydroxide solution is used as the alkaline aqueous solution, the sodium hydroxide concentration is preferably in the range of 1 to 7%, and the standing time (treatment time) is preferably about 90 seconds.

【0020】上記の構成において、熱交換器本体3に形
成された皮膜により耐腐食性が向上することを下記の試
験を行うことにより確認した。
In the above configuration, it was confirmed by performing the following test that the corrosion resistance was improved by the film formed on the heat exchanger body 3.

【0021】先ず、板厚が3mmの3003材および5
083材からなる2種類のアルミニウム合金板を用意し
た。そして、これらのアルミニウム合金板を10mm×
150mmに切断することによって、3003材の試験
片と5083材の試験片とを得た。そして、表1に示す
ように、成膜形成条件として20%の酸素濃度を有する
200℃の加熱雰囲気中に試験片を放置し、各材質の試
験片について、1時間放置して酸化皮膜を形成したもの
と、10時間放置して酸化皮膜を形成したものとを得
た。この後、成膜形成条件の加熱雰囲気を300℃と4
00℃とに変更し、上記と同様の手順によって、酸化皮
膜が形成された各材質の試験片を得た。
First, a 3003 material having a thickness of 3 mm and 5
Two kinds of aluminum alloy plates made of 083 material were prepared. And, these aluminum alloy plates are 10 mm ×
By cutting to 150 mm, 3003 test pieces and 5083 test pieces were obtained. Then, as shown in Table 1, the test pieces were left in a heating atmosphere of 200 ° C. having a 20% oxygen concentration as a film formation condition, and the test pieces of each material were left for 1 hour to form an oxide film. And an oxide film was formed by leaving it for 10 hours. Thereafter, the heating atmosphere under the film formation conditions is set to 300 ° C. and 4 ° C.
The temperature was changed to 00 ° C., and a test piece of each material on which an oxide film was formed was obtained in the same procedure as above.

【0022】[0022]

【表1】 [Table 1]

【0023】次に、各試験片の重量を測定した後、浸漬
腐食試験機(スガ試験機製DW−UD−3型)に試験片
を装着し、図2に示すように、40mm厚の水銀と30
mm厚のイオン交換水とを貯留した水槽に対して試験片
を上下動させることによって、試験片を大気中に存在さ
せた状態(乾燥状態)と、試験片とイオン交換水および
水銀とを接触させた状態(浸漬状態)とを繰り返させ
た。尚、乾燥状態は、30℃で25分とし、浸漬状態
は、30℃で5分とした。
Next, after measuring the weight of each test piece, the test piece was mounted on an immersion corrosion tester (DW-UD-3 type manufactured by Suga Test Instruments Co., Ltd.), and as shown in FIG. 30
By moving the test piece up and down with respect to a water tank storing ion-exchanged water having a thickness of mm, the test piece is brought into the air (dry state), and the test piece is contacted with ion-exchanged water and mercury. The state (immersion state) was repeated. The drying state was 30 ° C. for 25 minutes, and the immersion state was 30 ° C. for 5 minutes.

【0024】この後、乾燥と浸漬とを1400回繰り返
した後、各試験片の重量を測定し、腐食による重量増加
を求めた。また、比較用の試験片として、3003材お
よび5083材からなる2種類のアルミニウム合金板を
用意し、酸化皮膜を形成しない(未処理)状態で各試験
片を浸漬腐食試験機に装着し、同様の条件で乾燥と浸漬
とを1400回繰り返して重量増加を求めた。この結
果、表1に示すように、酸素濃度20%、熱処理温度2
00〜400℃、および処理時間1〜10時間の形成条
件下においては、未処理の試験片と比較して腐食による
重量増加が軽減されており、特に、処理温度300℃に
おける効果が著しいことが確認された。
Thereafter, drying and immersion were repeated 1400 times, and then the weight of each test piece was measured to determine the weight increase due to corrosion. Further, two kinds of aluminum alloy plates made of 3003 material and 5083 material were prepared as test pieces for comparison, and each test piece was attached to an immersion corrosion tester in a state where an oxide film was not formed (untreated). Drying and immersion were repeated 1,400 times under the conditions described in (1) to determine the weight increase. As a result, as shown in Table 1, the oxygen concentration was 20% and the heat treatment temperature was 2%.
Under the forming conditions of 00 to 400 ° C and the processing time of 1 to 10 hours, the weight increase due to corrosion is reduced as compared with the untreated test piece, and the effect at the processing temperature of 300 ° C is particularly remarkable. confirmed.

【0025】次に、3003材および5083材からな
る2種類のアルミニウム合金板の試験片について、表2
に示すように、加熱温度(300℃)および処理時間
(5分)を一定として酸素濃度を変化させながら酸化皮
膜を形成した。そして、これらの各試験片と、未処理の
比較用の試験片とを用いてSSRT(Slow Strain RateT
est) 試験を実施し、破断するまでの伸び(mm)を測
定した。
Next, two kinds of test pieces of aluminum alloy plates composed of 3003 material and 5083 material are shown in Table 2 below.
As shown in Table 2, an oxide film was formed while changing the oxygen concentration while keeping the heating temperature (300 ° C.) and the processing time (5 minutes) constant. Then, an SSRT (Slow Strain Rate T) is used by using each of these test pieces and an untreated test piece for comparison.
est) A test was performed, and the elongation (mm) until breaking was measured.

【0026】[0026]

【表2】 [Table 2]

【0027】この結果、表2に示すように、酸素濃度5
〜40%、熱処理温度300℃、処理時間5時間の形成
条件下のおいて、破断特性は、5083材が25〜35
%で良好な値を示し、3003材が濃度の高い程、良好
な値を示していることから、熱交換器内部の酸素濃度を
25〜35%に保持し、300℃近辺で5時間程度加熱
することによって、熱交換器の耐水銀腐食性を5083
材および3003材の両方の材料について向上させるこ
とが可能になることが確認された。
As a result, as shown in Table 2, the oxygen concentration 5
Under the forming conditions of 4040%, heat treatment temperature of 300 ° C., and treatment time of 5 hours, 5083 material shows 25-35
%, The higher the concentration of the 3003 material, the better the value. Therefore, the oxygen concentration inside the heat exchanger is maintained at 25 to 35%, and heating is performed at about 300 ° C. for about 5 hours. By doing so, the mercury corrosion resistance of the heat exchanger is reduced to 5083.
It has been confirmed that it is possible to improve both the material and the 3003 material.

【0028】次に、5083材からなるアルミニウム合
金板の試験片について、表3に示すように、水酸化ナト
リウム濃度が1%および7%の常温の水溶液に90秒浸
漬することにより水酸化皮膜を形成した。そして、これ
らの各試験片と、未処理の比較用の試験片とを用いてS
SRT試験を実施し、破断するまでの伸び(mm)を測
定した。
Next, as shown in Table 3, a test piece of an aluminum alloy plate made of a 5083 material was immersed in an aqueous solution having a sodium hydroxide concentration of 1% and 7% at room temperature for 90 seconds to form a hydroxide film. Formed. Then, using each of these test pieces and an untreated comparative test piece,
An SRT test was performed, and the elongation (mm) until breaking was measured.

【0029】[0029]

【表3】 [Table 3]

【0030】この結果、表3に示すように、上述の形成
条件下で水酸化皮膜が形成された試験片は、未処理の試
験片と比較して水銀腐食環境下における破断特性が向上
しており、本処理を熱交換器内部に施すことによって、
熱交換器の耐水銀腐食特性を向上させることが可能にな
ることが確認された。
[0030] As a result, as shown in Table 3, the test piece on which the hydroxide film was formed under the above-mentioned formation conditions had improved fracture characteristics in a mercury corrosive environment as compared with the untreated test piece. By performing this treatment inside the heat exchanger,
It was confirmed that the mercury corrosion resistance of the heat exchanger could be improved.

【0031】[0031]

【発明の効果】本発明は、以上のように、流路部材の表
面に、該流路部材のアルミニウム合金と酸化性ガス中の
酸化成分とを反応させて酸化皮膜を形成したり、或い
は、流路部材の表面に、該流路部材のアルミニウム合金
とアルカリ水溶液中のアルカリ成分とを反応させて水酸
化皮膜を形成させる構成である。
According to the present invention, as described above, the oxide film is formed on the surface of the flow channel member by reacting the aluminum alloy of the flow channel member with the oxidizing component in the oxidizing gas. On the surface of the flow path member, an aluminum alloy of the flow path member is reacted with an alkali component in an alkaline aqueous solution to form a hydroxide film.

【0032】これにより、被冷却流体路および冷媒路を
構成する流路部材の表面に酸化皮膜や水酸化皮膜を積極
的に形成することによって、流動する原料等の被冷却流
体や冷媒により削り取られない程度の膜厚とすることが
できるため、プラント設備の運転時および休止時の全期
間において水銀とアルミニウム合金との接触を防止して
水銀による腐食を防止することが可能になるという効果
を奏する。
The oxide film or the hydroxide film is positively formed on the surface of the flow path member forming the fluid passage to be cooled and the refrigerant passage, thereby being scraped off by the fluid to be cooled and the coolant such as the flowing raw material. It is possible to prevent the contact between mercury and the aluminum alloy during the entire period of the operation and suspension of the plant equipment, thereby preventing the corrosion by mercury. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】プレートフィン熱交換器の斜視図である。FIG. 1 is a perspective view of a plate fin heat exchanger.

【図2】浸漬腐食試験の説明図である。FIG. 2 is an explanatory diagram of an immersion corrosion test.

【符号の説明】[Explanation of symbols]

1 プレートフィン 2 平板 3 プレートフィン熱交換器本体 DESCRIPTION OF SYMBOLS 1 Plate fin 2 Plate 3 Plate fin heat exchanger main body

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 8/14 F25J 5/00 F28F 19/02 501 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8/14 F25J 5/00 F28F 19/02 501

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水銀を含む被冷却流体や冷媒が流動する
被冷却流体路および冷媒路を構成する流路部材がアルミ
ニウム合金により形成されたプレートフィン熱交換器本
体を有し、 上記流路部材の表面には、該流路部材のアルミニウム合
金と酸化性ガス中の酸化成分との反応により生成された
酸化皮膜が上記水銀を上記アルミニウム合金に接触させ
ないように形成されていることを特徴とするプレートフ
ィン熱交換器。
1. A plate fin heat exchanger body in which a cooling fluid path through which a cooling fluid or a refrigerant containing mercury flows and a flow path member forming a refrigerant path have a plate fin heat exchanger body made of an aluminum alloy. An oxide film formed by the reaction between the aluminum alloy of the flow path member and the oxidizing component in the oxidizing gas is formed on the surface of the channel member so that the mercury does not contact the aluminum alloy. Plate fin heat exchanger.
【請求項2】 上記酸化性ガスは、25〜35%の酸素
濃度の大気ガスであることを特徴とする請求項1記載の
プレートフィン熱交換器。
2. The plate fin heat exchanger according to claim 1, wherein the oxidizing gas is an atmospheric gas having an oxygen concentration of 25 to 35%.
【請求項3】 水銀を含む被冷却流体や冷媒が流動する
被冷却流体路および冷媒路を構成する流路部材がアルミ
ニウム合金により形成されたプレートフィン熱交換器本
体の上記被冷却流体路および冷媒路に25〜35%の酸
素濃度の大気ガスを封入し、該プレートフィン熱交換器
本体を250〜350℃の加熱雰囲気中に数時間放置す
ることによって、上記流路部材のアルミニウム合金と酸
化性ガス中の酸化成分とを反応させることにより上記水
銀を上記アルミニウム合金に接触させないように酸化皮
膜を上記流路部材の表面に形成させることを特徴とする
プレートフィン熱交換器の製造方法。
3. The cooling target of the plate fin heat exchanger main body in which a cooling fluid path and a cooling medium path through which a cooling fluid or a refrigerant containing mercury flows is formed of an aluminum alloy. An air gas having an oxygen concentration of 25 to 35% is sealed in the fluid passage and the refrigerant passage, and the plate fin heat exchanger body is left in a heated atmosphere at 250 to 350 ° C. for several hours, whereby the aluminum of the flow passage member is formed. the water by Rukoto by reacting an oxidizing component in the alloy with an oxidizing gas
A method for manufacturing a plate-fin heat exchanger, comprising forming an oxide film on the surface of the flow path member so that silver does not contact the aluminum alloy .
JP09980095A 1995-03-31 1995-03-31 Plate fin heat exchanger and method of manufacturing the same Expired - Lifetime JP3212479B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09980095A JP3212479B2 (en) 1995-03-31 1995-03-31 Plate fin heat exchanger and method of manufacturing the same
EP96302258A EP0735339B1 (en) 1995-03-31 1996-03-29 Method of making a plate fin heat exchanger
US08/623,848 US5699855A (en) 1995-03-31 1996-03-29 Plate fin heat exchanger and method of making thereof
DE69625635T DE69625635T2 (en) 1995-03-31 1996-03-29 Method for producing a ribbed plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09980095A JP3212479B2 (en) 1995-03-31 1995-03-31 Plate fin heat exchanger and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08269680A JPH08269680A (en) 1996-10-15
JP3212479B2 true JP3212479B2 (en) 2001-09-25

Family

ID=14256974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09980095A Expired - Lifetime JP3212479B2 (en) 1995-03-31 1995-03-31 Plate fin heat exchanger and method of manufacturing the same

Country Status (4)

Country Link
US (1) US5699855A (en)
EP (1) EP0735339B1 (en)
JP (1) JP3212479B2 (en)
DE (1) DE69625635T2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512945A1 (en) * 1995-03-28 1996-10-24 Mannesmann Ag Catalyst tube
JP3892647B2 (en) 2000-06-28 2007-03-14 株式会社神戸製鋼所 Welded structure and heat exchanger provided with the same
DK1349726T3 (en) * 2001-01-08 2006-10-09 Flamm Ag The present invention relates to an evaporator plate for a refrigerator with refrigerant ducts disposed between two adjacent plates and a method of producing evaporator plates
FI118181B (en) * 2005-07-11 2007-08-15 Luvata Oy A method for improving the fluid flow properties of a heat transfer surface
US10557671B2 (en) * 2015-01-16 2020-02-11 Hamilton Sundstrand Corporation Self-regulating heat exchanger

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE272110C (en) *
FR1007070A (en) * 1948-02-19 1952-04-30 Vernal S A Process for improving the appearance of the surface of objects made of aluminum or aluminum alloys
US3039899A (en) * 1961-02-03 1962-06-19 Aluminum Co Of America Treating aluminum surfaces
US3380860A (en) * 1964-01-27 1968-04-30 Lord Corp Treatment of aluminum, compositions therefor and products thereof
JPS4810699B1 (en) * 1969-10-13 1973-04-06
CH540350A (en) * 1970-05-28 1973-08-15 Ito Hikaru Chemical oxide formation on aluminium (alloys) - using soln contg hydroxide former and dehydrating agent
FR2254654A1 (en) * 1973-12-13 1975-07-11 Benhaim Albert Corrosion protection of water circulating circuits - by chemical copper plating
US4189330A (en) * 1975-01-30 1980-02-19 Ab Svenska Flaktfabriken Method for making humidity and heat exchanger apparatus
LU83165A1 (en) * 1981-02-25 1982-09-10 Liege Usines Cuivre Zinc TUBES FOR CONDENSERS OR HEAT EXCHANGERS OF CORROSION RESISTANT COPPER ALLOYS AND METHOD FOR THE PRODUCTION THEREOF
US4473110A (en) * 1981-12-31 1984-09-25 Union Carbide Corporation Corrosion protected reversing heat exchanger
GB2125833B (en) * 1982-08-11 1985-12-18 Bnf Metals Tech Centre Conversion coatings
DE3476818D1 (en) * 1983-12-16 1989-03-30 Showa Aluminum Corp Process for producing aluminum material for use in vacuum
JPS61184395A (en) * 1985-02-12 1986-08-18 Sanden Corp Corrosion preventive process for aluminum heat exchanger
JPH02254140A (en) * 1989-03-28 1990-10-12 Sumitomo Light Metal Ind Ltd Production of aluminum foil for electrolytic capacitor
JPH0722094B2 (en) * 1989-10-04 1995-03-08 昭和アルミニウム株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrode
JP2500272B2 (en) * 1991-04-26 1996-05-29 日本碍子株式会社 Method for manufacturing heat resistant alloy
JP3323568B2 (en) * 1993-01-11 2002-09-09 株式会社神戸製鋼所 Multi-stage thermosiphon with built-in plate fin heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
軽金属 26巻7号 356−377頁

Also Published As

Publication number Publication date
JPH08269680A (en) 1996-10-15
DE69625635D1 (en) 2003-02-13
EP0735339A2 (en) 1996-10-02
US5699855A (en) 1997-12-23
EP0735339B1 (en) 2003-01-08
EP0735339A3 (en) 1997-10-22
DE69625635T2 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
Burleigh et al. Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy
JP3212479B2 (en) Plate fin heat exchanger and method of manufacturing the same
RU2681090C1 (en) High-strength corrosion-resistant aluminum alloys for application as blank for plates and methods for production thereof
JP2620606B2 (en) High purity flexible expanded graphite sheet and method for producing the same
KR101507939B1 (en) Surface treatment method for magnesium or magnesium alloy
Tierce et al. Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters
JP3367086B2 (en) Alloy steel with excellent corrosion resistance to molten salts containing alkali metal oxides
EP0347106A1 (en) Treating aluminium workpieces
US3646946A (en) Copper alloy cleaning process
Berkeley et al. The effect of pH on the mechanism of corrosion and stress corrosion and degradation of mechanical properties of AA6061 and Nextel 440 fiber-reinforced AA6061 composite
WO2022149266A1 (en) Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method
RU2112087C1 (en) Method of producing of protective coatings on aluminum and its alloys
CN1103904C (en) Outdoor heat exchanger unit and air-conditioner using the unit
JP3629029B1 (en) Heat transfer medium and manufacturing method thereof
JPS6214622B2 (en)
Lee et al. Determination of the Critical Potentials for Pitting, Protection, and Stress Corrosion Cracking of 67‐33 Brass in Fluoride Solutions
JP4886131B2 (en) Brine and method for preventing corrosion of metal using the same
JPS6024267A (en) Production of aluminum heat exchanger
JPS61202772A (en) Aluminum alloy made fin material having both sacrifical anode effect and zn coating effect
JPS60165335A (en) Copper alloy for fin of heat exchanger of automobile
JPH06128671A (en) Alloy excellent in resistance to stress corrosion cracking
JPH09287062A (en) Production of pure aluminum material excellent in pitting corrosion resistance
CN117721472A (en) Zinc-aluminum-magnesium alloy sacrificial anode material for power plant slag conveyor chain
JPH10130862A (en) Corrosion preventive treatment of vacuum brazed articles
JP4218167B2 (en) Bright annealing method for copper and copper alloys

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term