JPS6136693A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPS6136693A
JPS6136693A JP15636884A JP15636884A JPS6136693A JP S6136693 A JPS6136693 A JP S6136693A JP 15636884 A JP15636884 A JP 15636884A JP 15636884 A JP15636884 A JP 15636884A JP S6136693 A JPS6136693 A JP S6136693A
Authority
JP
Japan
Prior art keywords
copper
pipe
heat
groove
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15636884A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakajima
博 中島
Aritaka Tatsumi
辰巳 有孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15636884A priority Critical patent/JPS6136693A/en
Publication of JPS6136693A publication Critical patent/JPS6136693A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain a heat pipe excellent in a heat transfer performance at a low cost by using non-oxygen copper as a vessel material and forcibly forming an oxidized film on the surface of a groove formed in the inner wall surface of the vessel by use of chemical or thermal means. CONSTITUTION:A tubular vessel 1 is made up of non-oxygen copper, and an oxidized film is formed on the surface of the groove 8. In a case where pure copper is oxidized with chemical means, the surface of copper is covered with a mixture of Cu2O, CuO and Cu2O3 at a ratio depending on the degree of oxidation. These oxides have each an irregular and slender shape, and the surface area thereof is greatly increased, as compared with the flat surface of pure copper. Further since extremely minute recessions and projections are formed between particles of respective oxides, the capillary tube effect with respect to the working liquid greatly increases and wettability is improved. By subjecting the inner surface of the pipe to a chemical treatment in this manner, it can be recognized that the heat transfer performance of the pipe is improved by the formation of the oxidized film.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、ヒートパイプ、特に、管状容器の内壁面に軸
方向に延びる多数の細い溝を有する、いわゆるグルーブ
タイプヒートパイプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a heat pipe, and particularly to a so-called groove type heat pipe having a large number of thin grooves extending in the axial direction on the inner wall surface of a tubular container.

[従来の技術] 第2図及び第3図は最も基本的なヒートパイプの機能を
説明すると、第2図に於て、水平に置かれた密閉容器1
の内部が作動液2とその蒸気のみで満されている時、一
端に矢印3の方向に熱を加えることによって作動液2が
蒸発する。
[Prior art] Figures 2 and 3 explain the most basic function of a heat pipe. In Figure 2, a closed container 1 placed horizontally
When the inside is filled only with the working fluid 2 and its vapor, the working fluid 2 is evaporated by applying heat to one end in the direction of the arrow 3.

一方、他端を冷却しく矢印4の方向に吸熱することによ
り容器1内にJf力差が生じて蒸気が矢印5の方向へ移
動し、冷却部の壁面及び液面に凝縮する。その結果、凝
縮部の液面が高まり、重力によって矢印6の方向に還流
する。
On the other hand, by cooling the other end and absorbing heat in the direction of the arrow 4, a Jf force difference is generated in the container 1, and the steam moves in the direction of the arrow 5, condensing on the wall surface and liquid surface of the cooling section. As a result, the liquid level in the condensing section rises, and reflux occurs in the direction of arrow 6 due to gravity.

このサイクルの繰返しにより作動液の蒸発及び凝縮とい
う相変化に伴って熱が輸送される。然るにこのような平
滑な内壁面を有する管材を容器とし、作動液の還流を重
力で行わせる方式では、加熱部で壁に凝縮する効率も悪
い。
By repeating this cycle, heat is transported as the working fluid undergoes a phase change of evaporation and condensation. However, in such a system in which a tube material having a smooth inner wall surface is used as a container and the working fluid is returned by gravity, the efficiency of condensation on the wall in the heating section is poor.

更に、加熱部が冷却部より^い位置に来る、いわゆるヒ
ートバイブモードでの使用は不可能により、また加熱部
の乾き1−りを生じやすいので、ヒートパイプどしての
機能をう失いやすい等の欠点がある。このため通常のヒ
ートパイプでは、第3図及び第4図に示1ように、容器
1の内壁面を覆うようにウィック7を設iノ、作動液2
を染み込ませている。こうすることにより前記の欠点は
除かれるが、通常用いらてるウィック7は金網や金属繊
維を内壁面に何らかの方法で貼付けるものであって、組
立に多大の手間を要し、製造コストが高(なり、また蒸
発部及び凝縮部の熱抵抗が増し、ウィックの流体抵抗に
より最大熱輸送mが仰られる等の欠点がある。
Furthermore, it is impossible to use it in so-called heat-vibe mode, where the heating part is located at a position higher than the cooling part, and the heating part tends to dry out, making it easy to lose its function as a heat pipe. There are drawbacks such as. For this reason, in a normal heat pipe, as shown in FIGS. 3 and 4, a wick 7 is provided to cover the inner wall surface of the container 1, and a working fluid 2 is provided.
It is imbued with This eliminates the above-mentioned drawbacks, but the normally used wick 7 involves attaching wire mesh or metal fibers to the inner wall surface by some method, which requires a lot of effort to assemble and increases manufacturing costs. (Also, there are drawbacks such as increased thermal resistance in the evaporation section and condensation section, and a rise in the maximum heat transport m due to the fluid resistance of the wick.

一方、ウィックどして容器の長手方向に連続した複数の
満を用いるグルーブタイプヒートバイブ、も良く知られ
ている。第1図はイのようなグループウィックを有づる
容器1の断面の一例を示したものである。
On the other hand, a groove type heat vibrator using a plurality of wicks continuous in the longitudinal direction of the container is also well known. FIG. 1 shows an example of a cross section of a container 1 having a group wick as shown in A.

同図に於て、グループ8の幅Wの値が小さいほど一般に
作動液に対する毛IIl管効果が増し、作動液を重力に
逆って上方に吸い上゛げるillさが大きくなることが
知られている。ところが、−・般に最す広い用途を右す
る銅−水の組合Uによるヒートバイブの場合、工業的に
使用される銅の表面に対づろ水の濡れ性は悪く、銅製容
器の内壁面に前記のようなグループ8を加工しても「へ
のl’1llll管力は、理論上そ予測される舶よりも
か’tI:り悪くなる、。
In the figure, it is known that the smaller the value of the width W of group 8, the greater the capillary effect on the hydraulic fluid, and the greater the illumination that sucks up the hydraulic fluid upward against gravity. It is being However, in the case of a heat vibrator using the copper-water combination U, which is generally used in the widest range of applications, the wettability of copper water to the surface of industrially used copper is poor, and the inner wall surface of a copper container is Even if Group 8 is processed as described above, the force on the vessel will be worse than that theoretically predicted.

この原因は多くの場合、製造^低に於て銅の表面に極く
薄い酸化膜などが形成され、水と銅の接触角が大きくな
るためである。
The reason for this is that, in many cases, a very thin oxide film is formed on the copper surface during manufacturing, increasing the contact angle between water and copper.

従ってグルーツタイブヒートバイブの熱輸送能力は、内
表面処理を−1−分行わなりればウィックが弱くなるこ
とに起因して小さく、グループを設置)ることのみでは
高性能で低コストのヒートバイブを得ることは難しい、
Therefore, the heat transport capacity of the group-type heat vibrator is small due to the weakening of the wick if the inner surface is treated for -1- minutes, and it is not possible to produce a high-performance, low-cost heat vibrator by simply installing the group. It's hard to get a vibe,
.

[発明が解決しJ、うとする問題点] 本発明【よ、作動液(水)による溝部表面の漏れ性を改
善することばより、熱伝達性能の優れた安li!liな
ヒートバイブを捉供せんとづるbのである。
[Problems to be Solved by the Invention] The present invention improves the leakage of the groove surface caused by the working fluid (water), and improves the heat transfer performance. It is designed to capture and provide a unique heat vibe.

E問題点を解決するだめの手段] 本発明では、容器材料として無酸素銅を用い、その′f
V器の内壁面に設【ノられIこ溝の表面に、化学的ない
1ノ熱的手段によって強制的に酸化皮膜を形成でること
で、前記目的を達成するようにしている。
[Means for Solving Problem E] In the present invention, oxygen-free copper is used as the container material, and its 'f
The above object is achieved by forcibly forming an oxide film on the surface of the groove formed on the inner wall surface of the V vessel by chemical or thermal means.

1作 II ] 面部表面に酸化被覆を形成μしめることによつ(’ f
ll液液よる濡れ性が改善される理由は次の通りCある
1 work II] By forming an oxide coating on the surface of the surface (' f
The reason why wettability with liquid is improved is as follows.

一例として純銅を化学的手段によって酸化した場合、酸
化の程度に応じた1、11合で表面はCIJzO。
For example, when pure copper is oxidized by chemical means, the surface becomes CIJzO at 1 or 11 degrees depending on the degree of oxidation.

CuO及びCuz 03の混合物で覆われるが、これら
の酸化物は不規則で細い形状を有してJ3す、表面積が
純銅のill滑而(面比較しく大幅に増加しくいる。ま
た、各酸化物の粒子11■に極め【微細G凹凸が形成き
れているため、作動液に刻1〕るし細管効果が大幅に増
しC濡れ竹が改71iされる1、このJ、うな酸化面を
4!する7J法どしては、従来から知られCいる[ b
 On OI  C法や、・般的% Q9処jL’ F
iイ濃リす酸/濃1ITI酸/水の混液中に浸)clす
る方法。
These oxides have an irregular and thin shape, and the surface area of each oxide increases significantly compared to that of pure copper. The fine G unevenness is completely formed in the particles 11 ■, so the oxidized surface of the eel is 4! The 7J method to do this has been known for a long time [b
On OI C method, general % Q9 treatmentjL' F
i. Method of soaking in a mixture of concentrated phosphorous acid/concentrated ITI acid/water.

重り[1ム酸ソーダ水溶液中(−1fi解処理する方法
Weight [1 method of dissolving in sodium chloride solution (-1fi).

加熱した管中に空気イ【いし酸素を流して酸化さける方
法など、各種の1段を用いることがて・え\る。
Various one-step methods can be used, such as flowing air or oxygen through a heated tube to avoid oxidation.

何れの場合ら、1分酸化を進11さl!(、、Cu0(
ないしQ LJ 20:+ )の割合を増加さL!でお
く方が毛細管効果が大きくなるが、CIJ Of、L−
・般(二脆く、母材表面から剥離しゃ覆い。特に、リン
含右鍛が3pI)mを越えると急激に剥離しやりくなる
ので、母材として無Fl?索銅を使用りることにより長
期間にねlJ・)と(r+能を安定さUることがぐきる
In either case, oxidize for 1 minute. (,,Cu0(
Or increase the ratio of Q LJ 20:+) L! The capillary effect will be larger if you keep CIJ Of, L-
・General (2 brittle, peeling from the surface of the base material.Especially for phosphorus-containing right forgings, if it exceeds 3pI), it will rapidly peel off, so why not use Fl as a base material? By using copper wire, it is possible to maintain the stability of the functions of 1J and (r+) over a long period of time.

1実施例J まヂ、外径15.9a*、低肉JIJ!1.2sぐ、内
面に溝幅は0./I朧、溝深さ0.3.渦数36の溝を
イ1する継11焦(〕の無酸素鋼管を用意し、この無酸
素鋼管の内面を、化学処理1例えば約90℃に熱lられ
た水酸化ノ1〜リウムの水溶液の存在上ぐ陽極酸化法に
、1、り処理して前記内面に酸化被膜を形成した、。
1 Example J Real, outer diameter 15.9a*, low thickness JIJ! After 1.2 seconds, the groove width on the inner surface is 0. /I hazy, groove depth 0.3. An oxygen-free steel pipe with a diameter of 11 cores and a groove with a vortex number of 36 is prepared, and the inner surface of this oxygen-free steel pipe is treated with chemical treatment 1, for example, an aqueous solution of 1 to 3 hydroxides heated to about 90°C. 1. An oxide film was formed on the inner surface by an anodic oxidation method.

次いで、この化学処理剤の斜管を常法にしたかっ(容器
に成形し、f1動液として純水を8 m114人し、長
さ/100 mmのヒバ−1−バイブを得た。
Next, the diagonal pipe of this chemical treatment agent was formed into a container using a conventional method, and 8 ml of pure water was added as the fl dynamic fluid to obtain a Hiba-1 Vibe with a length of 100 mm.

得られたヒートバイブと、内面を化学処理しなかったし
−1へバイブの伝熱性能を比較した結束、本発明による
し−用・バイブは、酸化被膜の形成によっC伝熱性能が
向上することが認められた。
Comparing the heat transfer performance of the obtained heat vibrator and the vibrator 1 whose inner surface was not chemically treated, the heat transfer performance of the heat vibrator according to the present invention is improved by the formation of an oxide film. It was approved to do so.

し発明の効果1 以」の説明から明らかなよう(S、本発明は、無酸素銅
からなるへ状容器の内壁面に形成された稙1部表面に′
、酸化被膜を形成することによって作動液による儒れ性
を改舊したものであるから、溝のキトピクリ効果が増加
され、熱輸送特性に優れ、長期間にねたつ−Cf[能の
安定したヒートパイプを得るこが(゛ぎる利魚がある。
Effects of the Invention 1 As is clear from the explanation below (S), the present invention has the advantage of providing
By forming an oxide film, the brittleness caused by the working fluid has been changed, so the chitoplic effect of the groove is increased, the heat transport properties are excellent, and the heat is stable for a long period of time. It is extremely profitable to obtain a pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、グルーブタイプヒートパイプの例を承り横断
面図、第2図はヒートパイプの機能を示り縦断面図、第
3図はその横断面図、第4図はウィックを有するヒート
パイプの例を示ず縦断面図。 第5図はその横断面図である。 1:管状容器、2:作動液、8:溝。 兇 1 回
Figure 1 is a cross-sectional view of an example of a groove type heat pipe, Figure 2 is a longitudinal cross-sectional view showing the function of the heat pipe, Figure 3 is its cross-sectional view, and Figure 4 is a heat pipe with a wick. A longitudinal sectional view showing no example. FIG. 5 is a cross-sectional view thereof. 1: Tubular container, 2: Working fluid, 8: Groove.兇 once

Claims (1)

【特許請求の範囲】[Claims] (1)内壁面に軸方向に伸びる多数の細い溝を有する管
状容器内に作動液を封入してなるグルーブタイプのヒー
トパイプに於て、管状容器が無酸素銅から成り、前記溝
部表面には酸化皮膜が形成されていることを特徴とする
ヒートパイプ。
(1) In a groove type heat pipe in which a working fluid is sealed in a tubular container having a large number of thin grooves extending in the axial direction on the inner wall surface, the tubular container is made of oxygen-free copper, and the groove surface is A heat pipe characterized by the formation of an oxide film.
JP15636884A 1984-07-26 1984-07-26 Heat pipe Pending JPS6136693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15636884A JPS6136693A (en) 1984-07-26 1984-07-26 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15636884A JPS6136693A (en) 1984-07-26 1984-07-26 Heat pipe

Publications (1)

Publication Number Publication Date
JPS6136693A true JPS6136693A (en) 1986-02-21

Family

ID=15626222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15636884A Pending JPS6136693A (en) 1984-07-26 1984-07-26 Heat pipe

Country Status (1)

Country Link
JP (1) JPS6136693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006847A1 (en) * 2005-07-11 2007-01-18 Luvata Oy Method for improving the liquid flow properties of a heat transfer surface and its use.
CN111906312A (en) * 2020-07-08 2020-11-10 广东工业大学 Method for preparing flexible liquid absorption core by laser-induced reduction sintering of copper oxide ink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478559A (en) * 1977-12-05 1979-06-22 Toshiba Corp Heat exchanger
JPS5551456B2 (en) * 1977-07-06 1980-12-24
JPS57188998A (en) * 1981-05-18 1982-11-20 Hitachi Cable Ltd Fin member for radiator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551456B2 (en) * 1977-07-06 1980-12-24
JPS5478559A (en) * 1977-12-05 1979-06-22 Toshiba Corp Heat exchanger
JPS57188998A (en) * 1981-05-18 1982-11-20 Hitachi Cable Ltd Fin member for radiator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006847A1 (en) * 2005-07-11 2007-01-18 Luvata Oy Method for improving the liquid flow properties of a heat transfer surface and its use.
CN111906312A (en) * 2020-07-08 2020-11-10 广东工业大学 Method for preparing flexible liquid absorption core by laser-induced reduction sintering of copper oxide ink
CN111906312B (en) * 2020-07-08 2022-06-14 广东工业大学 Method for preparing flexible liquid absorption core by laser-induced reduction sintering of copper oxide ink

Similar Documents

Publication Publication Date Title
JPS6136693A (en) Heat pipe
JPS5468554A (en) Manufacturing of condensation heat conducting wall
JPS5457264A (en) Heat exchanger
JPS5758092A (en) Condensing heat transfer pipe
JPH01203894A (en) Heat pipe
JPS5553698A (en) Finned tube type heat exchanger
SU985701A1 (en) Capillary structure of heat pipe
JPS56137095A (en) Thermal conductive pipe
JPS531360A (en) Indirect heat exchanger
SU1136003A1 (en) Heat pipe
SU1255851A1 (en) Heat tube
SU628401A1 (en) Thermogravitation heating pipe
JPS5969695A (en) Heat exchanger for heating water
SU1027501A1 (en) Heat pipe
JPS5543345A (en) Heat pipe
SU805046A1 (en) Heating pipe
SU620790A1 (en) Method of operation of heating pipe
SU1408191A1 (en) Condenser horizontal pipe
JPS58140598A (en) Heat transfer pipe
SU1245848A1 (en) Heat pipe
SU774665A1 (en) Method of producing tube heat exchange surface
SU639946A1 (en) Device for introducing reagent in liquid metal
JPH09273882A (en) Heat pipe and its manufacture
SU877305A1 (en) Thermal tube
JPS5359961A (en) Heat exchanger