ES302727A1 - Aparato de produccion de material semiconductor dopado. - Google Patents

Aparato de produccion de material semiconductor dopado.

Info

Publication number
ES302727A1
ES302727A1 ES0302727A ES302727A ES302727A1 ES 302727 A1 ES302727 A1 ES 302727A1 ES 0302727 A ES0302727 A ES 0302727A ES 302727 A ES302727 A ES 302727A ES 302727 A1 ES302727 A1 ES 302727A1
Authority
ES
Spain
Prior art keywords
semiconductor
translation
machine
legally binding
google translate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
ES0302727A
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of ES302727A1 publication Critical patent/ES302727A1/es
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • C30B13/12Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials in the gaseous or vapour state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/16Feed and outlet means for the gases; Modifying the flow of the gases
    • C30B31/165Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/129Pulse doping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/169Vacuum deposition, e.g. including molecular beam epitaxy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S252/00Compositions
    • Y10S252/95Doping agent source material
    • Y10S252/951Doping agent source material for vapor transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/914Doping
    • Y10S438/925Fluid growth doping control, e.g. delta doping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
ES0302727A 1963-04-19 1964-08-01 Aparato de produccion de material semiconductor dopado. Expired ES302727A1 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL291753 1963-04-19

Publications (1)

Publication Number Publication Date
ES302727A1 true ES302727A1 (es) 1965-02-16

Family

ID=19754628

Family Applications (2)

Application Number Title Priority Date Filing Date
ES298807A Expired ES298807A1 (es) 1963-04-19 1964-04-17 Un método para producir materiales semiconductores dopados
ES0302727A Expired ES302727A1 (es) 1963-04-19 1964-08-01 Aparato de produccion de material semiconductor dopado.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES298807A Expired ES298807A1 (es) 1963-04-19 1964-04-17 Un método para producir materiales semiconductores dopados

Country Status (11)

Country Link
US (1) US3323954A (es)
AT (1) AT268379B (es)
BE (1) BE646733A (es)
CH (1) CH438232A (es)
DE (1) DE1290924B (es)
DK (1) DK118899B (es)
ES (2) ES298807A1 (es)
FR (1) FR1395147A (es)
GB (1) GB1066593A (es)
NL (2) NL291753A (es)
SE (1) SE307196B (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463715A (en) * 1966-07-07 1969-08-26 Trw Inc Method of cathodically sputtering a layer of silicon having a reduced resistivity
US3880743A (en) * 1968-03-08 1975-04-29 John L Lang Process for preparing organometallic compounds
US4102766A (en) * 1977-04-14 1978-07-25 Westinghouse Electric Corp. Process for doping high purity silicon in an arc heater
IL74360A (en) * 1984-05-25 1989-01-31 Wedtech Corp Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
PL217778B1 (pl) * 2011-06-20 2014-08-29 Piotr Medoń Sposób osuszania glikolu i układ do osuszania glikolu
RU2597389C2 (ru) * 2014-10-06 2016-09-10 Акционерное общество "Рязанский завод металлокерамических приборов" (АО "РЗМКП") Способ легирования кремния
CN111321405A (zh) * 2018-12-15 2020-06-23 兰州交通大学 一种航空发动机机匣阻燃涂层电火花多点并行沉积机构

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616843A (en) * 1947-07-31 1952-11-04 Sheer Charles Arc process for the reduction of metals
US2763581A (en) * 1952-11-25 1956-09-18 Raytheon Mfg Co Process of making p-n junction crystals
US2845894A (en) * 1953-03-04 1958-08-05 Oran T Mcilvaine Metallurgy
US2921892A (en) * 1954-12-08 1960-01-19 Amalgamated Growth Ind Inc Apparatus and process for conducting chemical reactions
BE544843A (es) * 1955-02-25
US2895858A (en) * 1955-06-21 1959-07-21 Hughes Aircraft Co Method of producing semiconductor crystal bodies
BE547665A (es) * 1955-06-28
DE1029941B (de) * 1955-07-13 1958-05-14 Siemens Ag Verfahren zur Herstellung von einkristallinen Halbleiterschichten
US3099614A (en) * 1958-12-10 1963-07-30 Sheer Korman Associates Process for reduction of multiple oxides
US3099588A (en) * 1959-03-11 1963-07-30 Westinghouse Electric Corp Formation of semiconductor transition regions by alloy vaporization and deposition
US3065391A (en) * 1961-01-23 1962-11-20 Gen Electric Semiconductor devices
US3162526A (en) * 1961-10-26 1964-12-22 Grace W R & Co Method of doping semiconductor materials
US3234051A (en) * 1962-08-07 1966-02-08 Union Carbide Corp Use of two magnetic fields in a low pressure arc system for growing crystals

Also Published As

Publication number Publication date
CH438232A (de) 1967-06-30
BE646733A (es) 1964-10-19
SE307196B (es) 1968-12-23
NL291753A (es)
ES298807A1 (es) 1964-10-16
AT268379B (de) 1969-02-10
DE1290924B (de) 1969-03-20
GB1066593A (en) 1967-04-26
US3323954A (en) 1967-06-06
NL142824C (es)
FR1395147A (fr) 1965-04-09
DK118899B (da) 1970-10-19

Similar Documents

Publication Publication Date Title
ES302727A1 (es) Aparato de produccion de material semiconductor dopado.
ES301569A1 (es) Mejoras introducidas en la fabricacion de lamparas electricas de descarga.
ES324156A1 (es) Mejoras en pararrayos de gran potencia ionizante.
ES304443A1 (es) Procedimiento para la produccion de clorotrifluoroetilo.
ES294824A1 (es) Un metodo para fabricar un dispositivo semiconductor
ES326761A1 (es) Procedimiento y dispositivo de produccion de un arco electrico.
ES322805A1 (es) Mejoras en la fabricacion de electrodos de wolfram para la soldadura de arco voltaico
ES101836U (es) Aislado de conductores eléctricos
ES252723A1 (es) Perfeccionamientos en la protecciën de reactancias electricas
ES354054A1 (es) Sistema y dispositivos de encendido electrico para quemado-res a gas.
ES318553A1 (es) Procedimiento y sistema de conmutaciën para el funcionamiento de generadores con transistores de potencia para maquinas de erosiën de chispas
ES281072A1 (es) Mejoras introducidas en la fabricacion de una hoja delgada, en particular una hoja delgada de material sintético
ES304444A1 (es) Procedimiento para la obtencion de tetrafluoroetileno.
AU272877B2 (en) Process for use ofan organic fuel ina fuel cell
ES285394A1 (es) Un aparato para formar, a partir de chapas, elementos embutidos para automóviles
ES99225U (es) Antena para frecuencias elevadas
ES216648A1 (es) Un dispositivo detonador eléctrico de seguridad
CA675196A (en) Anode structure for glow discharge apparatus
CA657227A (en) Method for producing electronic semiconductor devices with at least one alloy-bonded metal electrode
AU3399363A (en) Process for use ofan organic fuel ina fuel cell
ES259407A1 (es) Mejoras introducidas en la fabricacion de aisladores
CA673526A (en) Method for burning fuel
ES421870A1 (es) Un dispositivo de desacoplo.
CA657371A (en) Burner for gaseous fuel
CA655360A (en) Electrically ignited gas torch