ES2640459T3 - Confinamiento de plasma de campo magnético para reactor de energía de fusión compacto - Google Patents

Confinamiento de plasma de campo magnético para reactor de energía de fusión compacto Download PDF

Info

Publication number
ES2640459T3
ES2640459T3 ES14729118.1T ES14729118T ES2640459T3 ES 2640459 T3 ES2640459 T3 ES 2640459T3 ES 14729118 T ES14729118 T ES 14729118T ES 2640459 T3 ES2640459 T3 ES 2640459T3
Authority
ES
Spain
Prior art keywords
magnetic field
processor
plasma confinement
magnetic coils
fusion energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES14729118.1T
Other languages
English (en)
Inventor
Thomas John MCGUIRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Corp
Lockheed Martin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Corp, Lockheed Martin Corp filed Critical Lockheed Corp
Application granted granted Critical
Publication of ES2640459T3 publication Critical patent/ES2640459T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/052Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/14Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Image Processing (AREA)

Abstract

Reactor de fusión (110) que comprende: una pluralidad de bobinas magnéticas internas (140) suspendidas en el interior de un recinto (120); una o más bobinas magnéticas centrales (130) coaxiales con la pluralidad de bobinas magnéticas internas (140); una pluralidad de bobinas magnéticas de encapsulamiento (150) coaxiales con las bobinas magnéticas internas (140), en el que las de bobinas magnéticas de encapsulamiento (150), en funcionamiento, mantienen una pared magnética que impide que se expanda plasma (310) en el interior del recinto (120); y una pluralidad de bobinas magnéticas espejo (160) coaxiales con las bobinas magnéticas internas (140).

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
imagen7
imagen8
120 puede tener un grosor total 125 de aproximadamente 80 cm en muchos lugares. En otras realizaciones, el recinto 120 puede tener un grosor total 125 de aproximadamente 1,50 m en muchos lugares. Sin embargo, el grosor 125 puede variar a lo largo de la longitud del recinto 120 dependiendo de la forma del campo magnético en el interior del recinto 120 (es decir, la forma interna del recinto 120 puede ajustarse al campo magnético, tal como se ilustra en la figura 3b y, de este modo, puede no ser un grosor uniforme 125).
En algunas realizaciones, las partes de manto interior 810 tienen un grosor combinado 815 de aproximadamente 70 cm. En otras realizaciones, las partes de manto interior 810 tienen un grosor combinado 815 de aproximadamente 126 cm. En algunas realizaciones, las partes de manto están realizadas en materiales tales como Be, FLiBe y similares.
El manto exterior 820 es cualquier material de baja activación que no tienda radiactivarse bajo irradiación. Por ejemplo, el manto exterior 820 puede ser de hierro o de acero. En algunas realizaciones, el manto exterior 820 puede tener un grosor 825 de aproximadamente 10 cm.
La figura 9 ilustra un sistema informático de ejemplo 900. En realizaciones particulares, el reactor de fusión 110 utiliza uno o más sistemas informáticos 900 para cualquier aspecto que requiera un control informático. Realizaciones particulares incluyen una o más partes de uno o más sistemas informáticos 900. Aquí, la referencia a un sistema informático puede comprender un dispositivo informático, y viceversa, según corresponda. Además, la referencia a un sistema informático puede comprender uno o más sistemas informáticos, según corresponda.
Esta descripción contempla cualquier número adecuado de sistemas informáticos 900. Esta descripción contempla un sistema informático 900 que adopte cualquier forma física adecuada. Como ejemplo y no a modo de limitación, el sistema informático 900 puede ser un sistema informático integrado, un sistema en chip (SOC), un sistema informático de una sola placa (SBC) (tal como, por ejemplo, un ordenador en módulo (COM) o un sistema en módulo (SOM)), un sistema de ordenador de escritorio, un sistema de ordenador portátil o notebook, un quiosco interactivo, un ordenador central, una red de sistemas informáticos, un teléfono móvil, un asistente digital personal (PDA), un servidor, un sistema de tableta o una combinación de dos o más de estos. Según corresponda, el sistema informático 900 puede incluir uno o más sistemas informáticos 900; ser unitario o distribuido; abarcar múltiples ubicaciones; abarcar múltiples máquinas; abarcar múltiples centros de datos; o residir en una nube, que puede incluir uno o más componentes de nube en uno o más una o más redes. Según corresponda, uno o más sistemas informáticos 900 pueden realizar, sin limitación espacial o temporal sustancial, una o más etapas de uno o más procedimientos descritos o ilustrados aquí. Como ejemplo y no a modo de limitación, uno o más sistemas informáticos 900 pueden realizar en tiempo real o en modo discontinuo una o más etapas de uno o más procedimientos descritos o ilustrados aquí. Uno o más sistemas informáticos 900 pueden realizar en diferentes momentos o en diferentes ubicaciones una o más etapas de uno o más procedimientos descritos o ilustrados aquí, donde proceda.
En realizaciones particulares, el sistema informático 900 incluye un procesador 902, una memoria 904, un almacenamiento 906, una interfaz de entrada/salida (E/S) 908, una interfaz de comunicación 910 y un bus 912. Aunque esta descripción describe e ilustra un sistema informático particular que tiene un número particular de componentes particulares en una disposición particular, esta descripción contempla cualquier sistema informático adecuado que tenga cualquier número apropiado de cualquier componente adecuado en cualquier disposición apropiada.
En realizaciones particulares, el procesador 902 incluye hardware para ejecutar instrucciones, tales como las que componen un programa de ordenador. Como ejemplo y no a modo de limitación, para ejecutar instrucciones, el procesador 902 puede recuperar (o extraer) las instrucciones de un registro interno, una memoria caché interna, una memoria 904, o un almacenamiento 906; decodificarlos y ejecutarlos; y después escribir uno o más resultados en un registro interno, una memoria caché interna, una memoria 904 o un almacenamiento 906. En realizaciones particulares, el procesador 902 puede incluir una o más cachés internas para datos, instrucciones o direcciones. Esta descripción contempla el procesador 902 incluyendo cualquier número adecuado de cualquier caché interna adecuada, según corresponda. Como ejemplo y no a modo de limitación, el procesador 902 puede incluir una o más cachés de instrucciones, una o más cachés de datos, y uno o más búferes de traducción anticipada (TLBs). Las instrucciones pueden ser copias de instrucciones en la memoria 904 o el almacenamiento 906 y las cachés de instrucciones pueden acelerar la recuperación de esas instrucciones por el procesador 902. Los datos en las cachés de datos pueden ser copias de datos en la memoria 904 o el almacenamiento 906 para instrucciones que se ejecutan en el procesador 902 para operar; los resultados de las instrucciones anteriores ejecutadas en el procesador 902 para el acceso por instrucciones subsiguientes que se ejecutan en el procesador 902 o para escribir en la memoria 904 o en el almacenamiento 906; u otros datos adecuados. Las cachés de datos pueden acelerar las operaciones de lectura o escritura por el procesador 902. Los TLBs pueden acelerar la traducción de direcciones virtuales para el procesador 902. En realizaciones particulares, el procesador 902 puede incluir uno o más registros internos para datos, instrucciones o direcciones. Esta descripción contempla el procesador 902 incluyendo cualquier
10
imagen9
imagen10

Claims (1)

  1. imagen1
    imagen2
    imagen3
ES14729118.1T 2013-04-03 2014-04-03 Confinamiento de plasma de campo magnético para reactor de energía de fusión compacto Active ES2640459T3 (es)

Applications Claiming Priority (23)

Application Number Priority Date Filing Date Title
US201361808122P 2013-04-03 2013-04-03
US201361808110P 2013-04-03 2013-04-03
US201361808089P 2013-04-03 2013-04-03
US201361808131P 2013-04-03 2013-04-03
US201361808066P 2013-04-03 2013-04-03
US201361807932P 2013-04-03 2013-04-03
US201361808136P 2013-04-03 2013-04-03
US201361808101P 2013-04-03 2013-04-03
US201361808093P 2013-04-03 2013-04-03
US201361808154P 2013-04-03 2013-04-03
US201361808131P 2013-04-03
US201361808110P 2013-04-03
US201361808154P 2013-04-03
US201361808136P 2013-04-03
US201361808093P 2013-04-03
US201361808122P 2013-04-03
US201361808101P 2013-04-03
US201361807932P 2013-04-03
US201361808089P 2013-04-03
US201361808066P 2013-04-03
US201414242999 2014-04-02
US14/242,999 US9947420B2 (en) 2013-04-03 2014-04-02 Magnetic field plasma confinement for compact fusion power
PCT/US2014/032757 WO2014165641A1 (en) 2013-04-03 2014-04-03 Magnetic field plasma confinement for compact fusion power reactor

Publications (1)

Publication Number Publication Date
ES2640459T3 true ES2640459T3 (es) 2017-11-03

Family

ID=51654470

Family Applications (1)

Application Number Title Priority Date Filing Date
ES14729118.1T Active ES2640459T3 (es) 2013-04-03 2014-04-03 Confinamiento de plasma de campo magnético para reactor de energía de fusión compacto

Country Status (18)

Country Link
US (3) US9947420B2 (es)
EP (3) EP2981969B1 (es)
JP (2) JP6571634B2 (es)
KR (2) KR102197522B1 (es)
AU (2) AU2014248145B2 (es)
BR (1) BR112015025235B1 (es)
CA (2) CA2908465C (es)
CL (1) CL2015002948A1 (es)
DK (1) DK2981967T3 (es)
ES (1) ES2640459T3 (es)
IL (1) IL241924B (es)
NZ (1) NZ712921A (es)
PL (1) PL2981967T3 (es)
PT (1) PT2981967T (es)
SA (1) SA515361258B1 (es)
SG (2) SG11201508212SA (es)
WO (3) WO2014204558A2 (es)
ZA (1) ZA201507819B (es)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934876B2 (en) 2013-04-03 2018-04-03 Lockheed Martin Corporation Magnetic field plasma confinement for compact fusion power
US9947420B2 (en) 2013-04-03 2018-04-17 Lockheed Martin Corporation Magnetic field plasma confinement for compact fusion power
US10049773B2 (en) 2013-04-03 2018-08-14 Lockheed Martin Corporation Heating plasma for fusion power using neutral beam injection
US9959942B2 (en) 2013-04-03 2018-05-01 Lockheed Martin Corporation Encapsulating magnetic fields for plasma confinement
US9959941B2 (en) 2013-04-03 2018-05-01 Lockheed Martin Corporation System for supporting structures immersed in plasma
CN103778971B (zh) * 2013-12-23 2016-08-17 狼嗥出版社有限公司 一种核聚变炉
US9406405B2 (en) 2014-09-28 2016-08-02 Joel Guild Rogers Fusion energy device with internal ion source
US10354761B2 (en) 2016-04-26 2019-07-16 John Fenley Method and apparatus for periodic ion collisions
DE102017000653A1 (de) 2016-11-22 2018-05-24 Horst Wochnowski Neuartiges offenes Reaktordesign eines Fusionsreaktors gestaltet als offener Durchflussreaktor
WO2018208953A1 (en) * 2017-05-09 2018-11-15 Energy Matter Conversion Corporation Generating nuclear fusion reactions with the use of ion beam injection in high pressure magnetic cusp devices
US10784001B2 (en) * 2018-01-17 2020-09-22 Lockheed Martin Corporation Passive magnetic shielding of structures immersed in plasma using superconductors
CN108630377B (zh) * 2018-04-04 2023-09-19 杭州佩伟拓超导磁体技术有限公司 多箱式超导磁体低温容器系统及方法
US10615890B1 (en) 2018-05-01 2020-04-07 Ball Aerospace & Technologies Corp. Radio frequency phase correction systems and methods
US11672074B2 (en) 2019-07-11 2023-06-06 Lockheed Martin Corporation Shielding structures in plasma environment
CN110618290B (zh) * 2019-09-09 2021-09-28 中国船舶重工集团公司第七0七研究所九江分部 一种速度信息融合方法
EP3819913A1 (en) * 2019-11-11 2021-05-12 JFP Jäderberg Fusion Power AB Plasma confinement device and method for plasma confinement
US11049619B1 (en) * 2019-12-23 2021-06-29 Lockheed Martin Corporation Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp
WO2023172373A2 (en) * 2022-02-15 2023-09-14 David Allen Lapoint Controlled fusion reactor
CN114883016B (zh) * 2022-05-10 2023-04-18 核工业西南物理研究院 一种托卡马克装置极向场线圈及柔性固定装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117912A (en) 1954-06-17 1964-01-14 Donald H Imhoff Method of producing neutrons
US3141826A (en) * 1958-07-02 1964-07-21 Kurt O Friedrichs Apparatus and method for confining a plasma
BE581270A (es) * 1958-08-07
US3071525A (en) 1958-08-19 1963-01-01 Nicholas C Christofilos Method and apparatus for producing thermonuclear reactions
US3012955A (en) 1958-08-20 1961-12-12 Russell M Kulsrud High temperature reactor
US3005767A (en) 1958-11-10 1961-10-24 Boyer Keith Rotating plasma device
US3072551A (en) 1959-03-06 1963-01-08 Schlelein Friedrich Thermonuclear reactor
US3218562A (en) * 1960-06-17 1965-11-16 James T Serduke Method and apparatus for acceleration of charged particles using a low voltage direct current supplies
US3038099A (en) * 1960-08-26 1962-06-05 William R Baker Cusp-pinch device
US3230418A (en) * 1961-06-23 1966-01-18 Raphael A Dandl Device having high-gradient magnetic cusp geometry
US3069344A (en) * 1961-08-09 1962-12-18 Richard F Post Apparatus for the densification and energization of charged particles
US3324316A (en) 1964-06-08 1967-06-06 Electro Optical Systems Inc Controlled fusion devices
US3361634A (en) 1966-03-18 1968-01-02 Lipha Plasma method and apparatus for generating energy
US3655508A (en) 1968-06-12 1972-04-11 Itt Electrostatic field apparatus for reducing leakage of plasma from magnetic type fusion reactors
US3664921A (en) 1969-10-16 1972-05-23 Atomic Energy Commission Proton e-layer astron for producing controlled fusion reactions
US4233537A (en) 1972-09-18 1980-11-11 Rudolf Limpaecher Multicusp plasma containment apparatus
US3831101A (en) 1973-03-05 1974-08-20 Physics Int Co Particle beam injection system
US4065351A (en) 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US4401618A (en) 1976-08-09 1983-08-30 Occidental Research Corporation Particle-induced thermonuclear fusion
US4125431A (en) * 1977-06-16 1978-11-14 The United States Of America As Represented By The United States Department Of Energy Tandem mirror plasma confinement apparatus
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4252608A (en) * 1979-03-16 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas
US4354998A (en) 1979-09-17 1982-10-19 General Atomic Company Method and apparatus for removing ions trapped in a thermal barrier region in a tandem mirror fusion reactor
US4615861A (en) 1983-03-22 1986-10-07 The United States Of America As Represented By The United States Department Of Energy Oscillatory nonhmic current drive for maintaining a plasma current
US4641060A (en) 1985-02-11 1987-02-03 Applied Microwave Plasma Concepts, Inc. Method and apparatus using electron cyclotron heated plasma for vacuum pumping
US4960990A (en) 1989-12-26 1990-10-02 The United States Of America As Represented By The Secretary Of The Army Non coherent photoneutralizer
JPH0722231A (ja) 1993-06-21 1995-01-24 Toshiba Corp Mri装置用超電導マグネット
JPH07191169A (ja) 1993-12-24 1995-07-28 Toshiba Corp イオン偏向磁石及びイオン偏向方法
JPH095466A (ja) 1995-06-22 1997-01-10 Toshiba Corp 中性粒子入射装置
JP2001066389A (ja) 1999-08-27 2001-03-16 Japan Atom Energy Res Inst 第一壁/増殖ブランケット
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
AT6636U1 (de) 2003-04-02 2004-01-26 Plansee Ag Verbundbauteil für fusionsreaktor
US7691243B2 (en) 2004-06-22 2010-04-06 Tokyo Electron Limited Internal antennae for plasma processing with metal plasma
US7244311B2 (en) 2004-10-13 2007-07-17 Lam Research Corporation Heat transfer system for improved semiconductor processing uniformity
CA2600421C (en) 2005-03-07 2016-05-03 The Regents Of The University Of California Plasma electric generation system
US20080226011A1 (en) 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
JP5322093B2 (ja) 2007-03-29 2013-10-23 日立化成株式会社 プラズマ対向材およびその製造方法
RU2494484C2 (ru) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Устройство и способ производства медицинских изотопов
US8471476B2 (en) 2010-10-08 2013-06-25 Varian Semiconductor Equipment Associates, Inc. Inductively coupled plasma flood gun using an immersed low inductance FR coil and multicusp magnetic arrangement
CA2855698C (en) 2011-11-14 2020-03-10 The Regents Of The University Of California Systems and methods for forming and maintaining a high performance frc
US9947420B2 (en) 2013-04-03 2018-04-17 Lockheed Martin Corporation Magnetic field plasma confinement for compact fusion power

Also Published As

Publication number Publication date
WO2014165641A1 (en) 2014-10-09
IL241924B (en) 2020-10-29
CA2908480A1 (en) 2014-10-09
US20140301517A1 (en) 2014-10-09
CA2908465C (en) 2021-04-13
WO2014204553A2 (en) 2014-12-24
JP2016521359A (ja) 2016-07-21
US20140301519A1 (en) 2014-10-09
BR112015025235B1 (pt) 2021-12-14
KR20150139564A (ko) 2015-12-11
KR20150136538A (ko) 2015-12-07
KR102201954B1 (ko) 2021-01-11
DK2981967T3 (en) 2017-10-30
BR112015025235A2 (pt) 2017-07-18
JP6563897B2 (ja) 2019-08-21
EP2981967B1 (en) 2017-08-02
JP6571634B2 (ja) 2019-09-04
EP2981971A2 (en) 2016-02-10
NZ712921A (en) 2018-02-23
AU2014281138B2 (en) 2017-12-14
SG11201508228SA (en) 2015-11-27
EP2981969A2 (en) 2016-02-10
US9947420B2 (en) 2018-04-17
WO2014204558A2 (en) 2014-12-24
EP2981971B1 (en) 2018-02-14
US9928926B2 (en) 2018-03-27
EP2981969B1 (en) 2018-06-06
PL2981967T3 (pl) 2018-01-31
WO2014204558A3 (en) 2015-05-07
AU2014248145B2 (en) 2018-03-01
AU2014281138A1 (en) 2015-10-29
CA2908480C (en) 2021-04-13
SG11201508212SA (en) 2015-11-27
AU2014248145A1 (en) 2015-10-29
EP2981967A1 (en) 2016-02-10
WO2014204553A3 (en) 2015-02-19
CL2015002948A1 (es) 2016-12-09
ZA201507819B (en) 2018-05-30
PT2981967T (pt) 2017-11-14
US9928927B2 (en) 2018-03-27
JP2016521358A (ja) 2016-07-21
SA515361258B1 (ar) 2018-07-30
KR102197522B1 (ko) 2020-12-31
CA2908465A1 (en) 2014-12-24
US20140301518A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
ES2640459T3 (es) Confinamiento de plasma de campo magnético para reactor de energía de fusión compacto
US20200145199A1 (en) Management of keys for use in cryptographic computing
US20180225212A1 (en) Processors having virtually clustered cores and cache slices
CN105637492A (zh) 多核异构系统转换后备缓冲器相干性
CN110557254A (zh) 基于进程的多密钥全存储器加密
US20160092354A1 (en) Hardware apparatuses and methods to control cache line coherency
JP2015507810A5 (es)
WO2014055136A1 (en) Parallelized counter tree walk for low overhead memory replay protection
TW201617855A (zh) 管理內核之間的緩衝通信
US9418018B2 (en) Efficient fill-buffer data forwarding supporting high frequencies
García-Bellido Primordial black holes and the origin of the matter–antimatter asymmetry
US9569361B2 (en) Pre-fetch chaining
US20150287234A1 (en) Techniques for efficient gpu triangle list adjacency detection and handling
Pérez et al. Baryon asymmetry and dark matter through the vector-like portal
US9767024B2 (en) Cache closure and persistent snapshot in dynamic code generating system software
Santos et al. Exploring cache size and core count tradeoffs in systems with reduced memory access latency
CN104657328B (zh) 在移动设备之间共享存储器的方法和系统
CN103365799A (zh) 检测对掉电设备的访问
US9292683B2 (en) Computing device security
US20160092369A1 (en) Partner-Aware Virtual Microsectoring for Sectored Cache Architectures
US10146698B2 (en) Method and apparatus for power reduction in a multi-threaded mode
GB201304024D0 (en) Improved mechanism for copying data in memory
US20110218944A1 (en) Distributed-Type Markov Chain Monte Carlo
US20190138450A1 (en) Method to avoid cache access conflict between load and fill
US10078601B2 (en) Approach for interfacing a pipeline with two or more interfaces in a processor