ES2324919T3 - Peptidos para la discriminacion de priones. - Google Patents

Peptidos para la discriminacion de priones. Download PDF

Info

Publication number
ES2324919T3
ES2324919T3 ES05256113T ES05256113T ES2324919T3 ES 2324919 T3 ES2324919 T3 ES 2324919T3 ES 05256113 T ES05256113 T ES 05256113T ES 05256113 T ES05256113 T ES 05256113T ES 2324919 T3 ES2324919 T3 ES 2324919T3
Authority
ES
Spain
Prior art keywords
prp
prion
disease
scrapie
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES05256113T
Other languages
English (en)
Inventor
Jian Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortho Clinical Diagnostics Inc
Original Assignee
Ortho Clinical Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortho Clinical Diagnostics Inc filed Critical Ortho Clinical Diagnostics Inc
Application granted granted Critical
Publication of ES2324919T3 publication Critical patent/ES2324919T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/50Fibroblast growth factor [FGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/968Plasmin, i.e. fibrinolysin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2828Prion diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Un procedimiento para la detección in vitro de PrP Sc que comprende: en primer término poner en contacto una muestra con un péptido que consiste en la secuencia de aminoácidos de WQPPRARI, después detectar PrP Sc .

Description

Péptidos para la discriminación de priones.
I. Antecedentes
Las enfermedades priónicas o encefalopatías espongiformes transmisibles (TSE) han captado el interés de la comunidad científica, no sólo porque desafiaron el pensamiento convencional acerca de la naturaleza de los agentes infecciosos, sino también debido a la amenaza potencialmente grave que representan para la salud pública en la seguridad de alimentos y sangre. Además, en los últimos años se ha puesto de relieve dramáticamente la posibilidad de la transmisión de la enfermedad entre animales y seres humanos por la aparición epidémica de una nueva forma de variante de la enfermedad: vCJD. La presente invención describió el uso de péptidos sintéticos para el diagnóstico de enfermedades de tipo Encefalopatías Espongiformes Transmisibles (TSE) en animales y seres humanos.
Priones - Un agente patógeno que causa TSE
Las Encefalopatías Espongiformes Transmisibles (TSEs) comprenden un grupo de enfermedades neurodegenerativas fatales de rápido avance que afectan tanto a seres humanos como a animales. Las TSEs poseen características clínicas y neuropatológicas que incluyen demencia devastadora, signos piramidales y extrapiramidales con mioclono, cambios espongiformes multifocales, astrogliosis, placas de amiloide, pérdida neuronal, ausencia de reacción inflamatoria y usualmente se caracterizan por un largo período de incubación.
Una vez se sugirió que las enfermedades de tipo TSE podrían ser causadas por "virus lentos" o viroides (Gajdusek 1977). Sin embargo, la extrema resistencia de la infectividad del scrapie a la radiación, las nucleasas y otros reactivos que dañan los materiales genéticos no es coherente con la teoría del "virus". Todas estas características "inusuales" del agente infeccioso de TSE llevaron a que el Dr. Stanley Prusiner propusiera el concepto de "priones" en 1982 (Prusiner 1982). El prion (PrP), que significa partícula infecciosa proteica libre de ácidos nucleicos, es una glicoproteína presente en seres humanos y animales. La forma celular de esta proteína (PrP^{C}) posee dos sitios de glicosilación con enlace a N y un ancla GPI en el extremo C-terminal. Se ha encontrado más comúnmente en neuronas y, en mucho menor medida, también se ha encontrado en otras células tales como leucocitos, monocitos y plaquetas (Holada 2000). La forma de enfermedad transmisible scrapie de la proteína priónica (PrP^{Sc}) es una isoforma resistente a las proteasas de su precursor celular y se encuentra predominantemente en el cerebro. En un nivel mucho menor, también se ha encontrado en amígdala, bazo y ganglios linfáticos en pacientes con vCJD (Parizek 2001). Como resultado del concepto de Prusiner del "prion" como agente infeccioso responsable de la enfermedad scrapie y, por extensión, de todas las enfermedades de tipo TSE, surgió la noción de lo que comúnmente se denomina Enfermedades Priónicas para describir una clase de patologías que se cree están ligadas a esta proteína.
La enfermedad priónica humana se conoce como enfermedad de Creutzfeldt-Jakob (CJD) y usualmente afecta a personas de edad avanzada. Dependiendo del fenotipo de enfermedad, (sCJD) esporádica se refiere a la mayoría de los casos de CJD, mientras que aproximadamente el 10% son CJD familiares (fCJD). Sólo recientemente, ha surgido una nueva variante de CJD (vCJD) que aparece en adultos jóvenes. Desde 1995, se han informado más de 100 casos. Las Enfermedades Priónicas afectan a muchas especies de animales domésticos y salvajes, a cuyas manifestaciones a menudo se les dan nombres únicos, por ejemplo scrapie en ovejas y cabras (McGowan 1922), enfermedad por consunción crónica (CWD, Williams 1980) en cérvidos y encefalopatía espongiforme bovina (BSE, o enfermedad de la "vaca loca", Wells 1987) en vacunos.
Características de PrP^{C} y PrP^{Sc}
Conforme a la hipótesis de "sólo proteína" de Prusiner, el agente patógeno transmisible que causa enfermedades priónicas es una proteína. El principal componente del prion parece ser el PrP plegado anormalmente, designado PrP^{Sc} (isoforma "scrapie", específica de la enfermedad). Se cree que PrP^{Sc} se genera a partir de su contraparte normal, PrP^{C}, a través de un cambio en la conformación (Cohen, 1998). Aunque aún existe ambigüedad con respecto al mecanismo de la conversión, aún se acepta ampliamente que en presencia de PrP^{Sc}, el PrP^{C} normal, actuando como sustrato, sufre un cambio en la estructura conformacional, y se convierte en PrP^{Sc} a través de un proceso autocatalítico y da como resultado una agregación de PrP^{Sc} y formación de bastones de amiloide, causando por lo tanto la muerte celular (Hope 1986, Horwich 1997). El cambio estructural de PrP^{C} a PrP^{Sc} está respaldado en su mayor parte por un cambio conformacional crucial, que involucra un aumento sustancial en la proporción de estructura de lámina Beta de la proteína, posiblemente con una pequeña reducción en la proporción de hélice alfa, indicada por el dicroísmo circular y la espectroscopía infrarroja (Pan 1993, Caughey 1991). Parece que la eficiencia de la conversión de PrP^{C} en PrP^{Sc} depende del grado de homología de secuencia entre los dos confórmeros de PrP. Debido a este mecanismo singular, las enfermedades priónicas pueden transmitirse fácilmente dentro de la misma especie, y cuando la homología de secuencia de PrP es suficiente, de especie a especie (Raymond, 2000). Por ello, si es correcto, el mecanismo de transmisión propuesto de las enfermedades priónicas proporciona el potencial para desencadenar epidemias por transmisión de estos trastornos cerebrales entre animales y seres humanos.
La resistencia a las proteasas es otra característica que distingue a PrP^{Sc} de PrP^{C}. En las células cultivadas y en cerebro o en muestras de muchos pacientes con GSS, PrP^{Sc} es más pequeño que su precursor celular PrP^{C}. Aunque el prion celular y el prion scrapie son dos isoformas del mismo producto genómico de PRNP, PrP^{C} es completamente degradado por tratamiento con la Proteinasa K mientras que PrP^{Sc} sufre sólo una digestión limitada. La digestión produce una forma de proteína denominada PrP 27-30, en la que se ha eliminado el extremo N-terminal. Se ha postulado que PrP 27-30 es el núcleo PrP^{Sc} requerido para la replicación de PrP^{Sc} albergado por PrP^{C}. La molécula priónica tratada con proteasa, PrP 27-30 o PrP^{res}, está estrechamente ligada a la infectividad de scrapie (Gabizon 1988) y proporciona evidencia adicional de que PrP^{Sc} es una proteína infecciosa.
Un atributo adicional, quizás asociado al aumento considerable en la estructura de lámina Beta y la simultánea resistencia a las proteasas, es la diferencia observada en la solubilidad entre PrP^{Sc} y PrP^{C}. Mientras PrP^{C} es una proteína soluble, la isoforma PrP^{Sc} es sumamente insoluble. Además, PrP^{C} se encuentra unida a la superficie de las neuronas a través de una cola GPI con ancla en la membrana (Shyng 1994) mientras que PrP^{res} se encuentra en el citoplasma de las células afectadas (Taraboulos 1990), muy probablemente asociada a los compartimentos endosómico tardío y lisosómico (Arnold 1995), y PrP^{Sc} también se localiza en agregados amorfos en fracciones enriquecidas de cerebro infectado (Meyer 1986).
Existe evidencia cada vez mayor que indica una conexión estrecha entre la infectividad de scrapie y PrP 27-30. Aún en las muestras más puras, la relación estimada de moléculas de PrP a unidades infecciosas es de \sim10^{4} a 10^{5} (Horwich 1997, Bolton 2001). Con semejantes niveles bajos de infectividad, es posible que se requieran para la infectividad otros componentes, co-factores o modificaciones covalentes. Los estudios transgénicos sobre la susceptibilidad de los ratones que expresan PrP^{C} quimérico de ser humano-ratón- sugieren la presencia de al menos un factor huésped distinto de PrP^{C}, provisionalmente denominado factor X, que podría funcionar como una chaperona molecular en la formación de PrP^{Sc} (Telling 1995).
Infectividad y Transmisibilidad de las Enfermedades Priónicas
Las enfermedades priónicas son transmisibles. La transmisibilidad de las enfermedades priónicas en animales se han establecido experimentalmente hace tiempo por inoculación de homogenatos cerebrales de animales afectados en animales saludables, tal como el caso del scrapie de oveja a oveja (Cuille 1936) y entre especies a cabra (Pattison 1957), kuru y CJD de seres humanos a chimpancés (Gajdusek 1966, Gibbs 1968). El avance significativo fue la exitosa transmisión de scrapie a ratones (Chandler 1961), que facilitó enormemente la investigación de TSE proporcionando un modelo experimental. La causa de la BSE reciente en bovinos y la nueva variante de CJD en el ser humano (vCJD) fue considerada una consecuencia de la exposición dietaria a la mezcla de cadáveres de ovejas con scrapie destinados a la alimentación de animales en el caso de BSE (Brown 1997) y a la carne de ganado vacuno afectado con BSE en el caso de vCJD (Bruce 1997). La conexión entre vCJD y BSE está además respaldada por la evidencia neuropatológica obtenida a partir de macacos adaptados a BSE, el modelo más cercano a seres humanos, y del estudio sobre ratones endogámicos inoculados con el agente causal de BSE y vCJD (Lasmezas 1996). Es de particular preocupación por una posible epidemia en expansión de CWD en ciervo mula y alce en América del Norte si CWD, como BSE, pudiera transmitirse a seres humanos que puedan estar expuestos a la enfermedad a través de la caza o la manipulación e ingestión de carne infectada. Se ha documentado la transmisión trágica y no intencional de la enfermedad priónica en seres humanos, tal como la epidemia de kuru causada por la ingestión canibalística de tejido cerebral de personas muertas, y la transmisión iatrogénica de CJD a través del uso de hormonas, trasplantes de tejidos y dispositivos médicos contaminados.
No existe evidencia concluyente que indique que alguna de las enfermedades CJD esté relacionada con TSEs en animales que puedan haber cruzado las barreras entre especies. La epidemia de kuru ha proporcionado el cuerpo de evidencia más importante de enfermedad priónica humana adquirida. Aunque no se ha documentado ningún paciente con vCJD como víctima de transmisión de ser humano a ser humano, la conexión cercana entre BSE y vCJD atrajo una considerable atención. Las preocupaciones acerca de la infección en seres humanos se han basado en la observación de que PrP^{Sc} es fácilmente detectable en tejidos linforreticulares con BSE y vCJD, pero no en la CJD clásica (Hill 1997), seguida de la presunción de que el agente patógeno de scrapie del pasaje de oveja a bovino puede haber alterado el ámbito de los huéspedes y haberse vuelto más adaptable al ser humano. Los precedentes experimentales para tal comportamiento son bien conocidos: el pasaje de cepas de scrapie adaptadas a ratones a través de hámsters alteró su transmisibilidad en el pasaje de vuelta a ratones (Kimberlin 1987, Kimberlin 1989); las cepas humanas de kuru o CJD no se transmitieron a hurones o cabras hasta que se pasó a través de primates o gatos (Gibbs 1979); y una cepa bovina de BSE no se transmitió a hámsters hasta que se pasó a través de ratones (Foster 1994). Alternativamente, si la BSE se originó en una mutación espontánea en bovinos, los estudios experimentales de la susceptibilidad de las especies a esta nueva cepa de encefalopatía espongiforme transmisible (TSE) no habían avanzado lo suficiente para prever que los seres humanos no serían susceptibles.
El estudio sobre la enfermedad CJD y vCJD humana indicó que la susceptibilidad genómica podría ser aun otro factor que puede influir sobre la propagación de TSE en seres humanos. Se descubrió que la mayoría de los pacientes con CJD esporádico era homocigota para Met/Met o para Val/Val en el codón 129 (Belay 1999). No obstante, se ha descubierto que todos los casos informados de vCJD son homocigotos para Met/Met.
El tamaño y duración de la epidemia de vCJD aún sigue siendo incierto. Dependiendo de las presunciones realizadas y los cálculos de modelado empleados, se propusieron diferentes predicciones. Una estimación de vCJD total prevé una cantidad de casos tan baja como 205 (Valleron 2001). Por otra parte, otra predicción para la mortalidad por vCJD para los próximos 80 años oscila entre 50 y 50.000 si la infección proviene sólo de BSE. Podría elevarse hasta 150.000 si resulta que BSE infecta a la oveja y si posteriormente se permite que ingrese en la cadena alimentaria humana (Ferguson 2002). Aunque es imposible realizar predicciones exactas si se confunden los parámetros necesarios o los mismos no están disponibles, una cosa es cierta: si la infectividad de vCJD está presente en la sangre, cualquier predicción se estimará por defecto. Además, se ha comprobado que vCJD es una nueva entidad patológica y no simplemente el resultado de la vigilancia incrementada de CJD en seres humanos (Hillier 2002).
Los gobiernos han adoptado medidas preventivas para eliminar la propagación de la incidencia de BSE. En Estados Unidos y el Reino Unido se prohibieron los alimentos a base de proteínas para rumiantes (1988). También se han adoptado una serie de medidas para evitar que la carne potencialmente infectada ingrese en la cadena alimentaria humana. Para reducir más el riesgo en seres humanos, FDA y CBER han decretado una nueva política en agosto de 2001, que posterga indefinidamente a cualquier donante que haya permanecido \geq 6 meses acumulativos durante los años 1980-1996 en el Reino Unido (FDA 2001).
Ensayo Diagnóstico de la Enfermedad Priónica
El desarrollo de ensayos sensibles y confiables para la detección de priones es absolutamente esencial para la vigilancia de la enfermedad, la evaluación de riesgos y cuando se combina con productos terapéuticos futuros, para la prevención y erradicación de la enfermedad. Actualmente, existen básicamente tres formatos de ensayos para el diagnóstico de enfermedades priónicas. (1) Los bioensayos de infectividad animal son por mucho el procedimiento más sensible para la medición de prion infeccioso en scrapie experimental en roedores, usualmente realizados mediante la inyección intracerebral de homogenatos cerebrales de animales enfermos en animales receptores. Sin embargo, la medición cuantitativa de la infectividad de la enfermedad priónica en diferentes especies animales es limitada debido a la "barrera de especies" y existen diferentes "cepas" priónicas que difieren en términos de patología, tiempo de incubación y características moleculares de PrP^{Sc}. Por ello, este diagnóstico pos-mortem costoso, que lleva mucho tiempo de ejecución, mayormente se utiliza como herramienta de investigación para distinguir diferentes cepas priónicas en roedores, y sirve como referencia para la calibración del material cerebral infeccioso. (2) Los inmunoensayos actuales de PrP se basan en la detección del PrP^{Sc} resistente a las proteasas, el único distintivo molecular conocido de todas las enfermedades priónicas. Durante muchos años, la detección de PrP^{Sc} por procedimientos inmunoquímicos (inmunohistoquímica y transferencia Western) ha proporcionado el diagnóstico más exacto para las enfermedades priónicas en animales y seres humanos (Schaller 1999, Biffiger 2002). Estos se utilizan ampliamente para el diagnóstico pos-mortem. Muchos anticuerpos monoclonales y policlonales se han dirigido contra varias regiones de PrP para este fin, tales como los 3F4, 6H4 ampliamente utilizados descritos en las patentes US4806627 y EP0861900. Sin embargo, se asegura que sólo pocos son capaces de discriminar entre PrP^{C} (a menudo presente en cantidades mucho mayores) y PrP^{Sc}. Los anticuerpos monoclonales informados por Korth en 1997 y por Paramithiotis en 2003 fueron ambos IgMs y estos anticuerpos no desarrollaron ningún ensayo de diagnóstico. En consecuencia, casi todos los procedimientos inmunoquímicos actuales requieren una etapa para reducir o eliminar un PrP^{C}, usualmente por proteólisis no específica tal como digestión con la proteinasa K (PK), previo a la detección de PrP^{Sc}. Semejante pretratamiento escinde los primeros 60 - 70 residuos de PrP^{Sc} para producir un núcleo PrP de 27 kDa-30 kDa resistente a PK denominado PrP^{res}. Después pueden utilizarse anticuerpos anti-PrP que reconocen la región del extremo C-terminal remanente de la proteína para detectar el PrP^{Sc} truncado en el extremo N-terminal, o PrP^{res}, presente sólo en muestras patológicas. Para la tinción inmunohistoquímica, las secciones de tejidos también se pretratan, usualmente mediante hidrólisis ácida para reducir el ambiente relacionado con PrP^{C}. Por ello, PrP^{res} es un sustituto del PrP^{Sc} precursor en estos inmunoensayos. Entre los diferentes formatos de inmunoensayos, la transferencia Western tiene la ventaja de revelar los patrones moleculares detallados de PrP basados en la migración de bandas de PrP di-, mono- y no glicosiladas. Este procedimiento también se ha utilizado ampliamente para distinguir diferentes subtipos de PrP^{res} cerebrales en enfermedades priónicas de seres humanos y animales. Además de la transferencia Western, ahora se han desarrollado otros formatos de ensayos para un rendimiento de muestras más alto, sensibilidad incrementada y mejor cuantificación, que incluyen el ELISA tradicional, inmunoensayo de fluorescencia de lantánidos mejorada por disociación (DELFIA, Barnard 2000 y un procedimiento descrito en la patente US20020137114A1) y un inmunoensayo dependiente de la conformación (CDI) combinado con ELISA y detección de fluorescencia (Safar 1998, US 20010001061A1, US20020001817A1). Sin embargo, sin importar el formato, PrP^{Sc} puede diferenciarse de PrP^{C} sólo después de la digestión obligatoria con PK, que puede ser difícil de optimizar para las muestras biológicas dispares. (3) También se han descrito otros procedimientos para el tratamiento de muestras, que incluyen inmunohistoquímica del tejido linfoide del tercer párpado para el diagnóstico preclínico de scrapie ovino (O'Rourke 2000, US6165784, US6261790), tratamiento químico con fosfotungstato de sodio para enriquecer PrP^{Sc} del cerebro y de otros homogenatos tisulares periféricos (Wadsworth 2001), y detección de una nueva isoforma de la proteína priónica en la orina de animales y seres humanos infectados (Shaked 2001b, WO0233420A2). También se documentaron otros sistemas de detección, que incluyen electroforesis capilar y espectroscopía infrarroja por transformadas de Fourier. Estos procedimientos aún se encuentran en su etapa inicial de desarrollo y son técnicamente complejos. Además de la identificación tradicional del prion patógeno eliminando el prion celular seguido del reconocimiento de anticuerpos anti-prion no discriminatorios, se descubrieron otros reactivos capaces de diferenciar PrP^{Sc} de PrP^{C}, tales como plasminógeno y fibrinógeno. La evidencia suministrada sugirió que una propiedad común al PrP^{Sc} de varias especies, en vez de la secuencia primaria priónica o la estructura terciaria específica de las moléculas individuales de PrP^{Sc}, podría ser responsable de la unión al plasminógeno (Fischer 2000, Maissen 2001). La aplicación para el uso de plasminógeno y otras proteínas séricas/plasmáticas para la captación y detección de la proteína priónica patógena se ha descrito en los documentos WO0200713 y US20010053533A1 (Aguzzi 2001).
Todos los ensayos de diagnóstico priónico fabricados en la actualidad utilizan tejido cerebral como fuente de muestra. La Comisión Europea en 1999 evaluó 4 kits de prueba de BSE de diferentes fabricantes (Moynagh 1999). Todos requerían un procedimiento de preparación de muestras separado. Dependiendo de las instrucciones del kit, el homogenato del tejido cerebral necesitaba ser procesado, incluyendo la desnaturalización, digestión con PK o enriquecimiento en PrP^{Sc}. Los sistemas de detección de ensayos empleados en DELFA, inmunotransferencia o en los formatos de ELISA en placas utilizaban o bien quimioluminiscencia o un sustrato colorimétrico.
La solicitud de patente internacional WO 02/065133 describe un procedimiento para la detección de PrP^{Sc} mediante la digestión de PcP^{C} con proteinasa K, y la unión del PrP^{Sc} no digerido a la fibronectina de longitud completa.
Desafíos al diagnóstico antemortem de la enfermedad priónica
Un problema común a los ensayos antemortem basados en PrP^{Sc} es si PrP^{Sc} está presente en los tejidos periféricos o los fluidos corporales. Debido a las dificultades técnicas, se dispone de pocos datos experimentales sobre la presencia de PrP^{Sc} o su infectividad asociada en líquidos corporales, y este asunto sigue siendo controvertido. En el modelo de scrapie de hámster, puede detectarse un bajo nivel de infectividad en sangre. Aunque la infectividad en concentrado plaquetario rico en linfocitos procedente de la sangre de hámsters enfermos es mayor que en plasma, esto sólo representa una porción relativamente pequeña al compararse con los inóculos sanguíneos totales. La definición molecular de este agente infeccioso presente en la sangre no está clara. La búsqueda de factores de riesgo y posibles fuentes de infección en pacientes con CJD esporádico no reveló una conexión significativa entre la enfermedad y la dieta, la transfusión sanguínea o recibir otro producto sanguíneo. Aunque los primeros informes indicaron la posible presencia de infectividad en sangre obtenida de pacientes con CJD después de la inoculación intracerebral de ratones (Manuelidis 1985, Tateishi 1985), la mayor cantidad de infectividad o PrP^{res} invariablemente se encuentra en el sistema nervioso central (SNC), pero no se encuentra coherentemente en los tejidos periféricos en las enfermedades priónicas humanas clásicas, excepto en el caso de vCJD. La presencia de PrP^{Sc} fácilmente detectable en los tejidos linforreticulares periféricos tales como amígdalas, bazo y ganglios linfáticos de pacientes con CJD ha dado lugar a una seria preocupación de que cantidades abundantes de PrP^{res} presentes en los tejidos linforreticulares podrían interactuar con el sistema circulatorio y, en consecuencia, cantidades a nivel de trazas de PrP^{Sc} pueden estar presentes en la sangre de pacientes con CJD por la posible transmisión sanguínea. Otra infectividad por TSE en sangre también se ha demostrado en diversos animales experimentales. La mayor parte de la sangre para los estudios de infectividad se obtuvo de roedores adaptados a TSE tales como ratones y hámsters. La BSE adaptada a ratones y vCJD adaptada a ratones se han establecido a través de la transmisión intracerebral e intravenosa. El único modelo de excepción fue un estudio realizado en la oveja. En este experimento, una oveja a la que se le transfundió sangre total, tomada de otra oveja inoculada con lisado cerebral con BSE, desarrolló síntomas de BSE (Houston 2000, Hunter 2002). Sin embargo, estos resultados experimentales aún necesitan ser completamente evaluados. Se anticipa que el hallazgo de dicho agente infeccioso en sangre nos ayudaría a entender mejor la relación entre el PrP^{Sc} y la enfermedad TSE.
Es importante observar que el tratamiento riguroso de muestras para eliminar cantidades de fondo de PrP^{C} puede no ser apropiado para otros especímenes de tejidos periféricos o líquidos corporales debido al contenido proteico distinto, a la dificultad de aplicar este ensayo a un gran número de muestras, a la eliminación inevitable de intermediarios con plegamientos de PrP^{Sc} sensibles a proteasas o aún una fracción de PrP^{Sc} auténtico, reduciendo de este modo la sensibilidad de detección. Esto puede ser especialmente importante para los ensayos que utilizan tejidos periféricos y líquidos corporales, ya que sólo pueden estar presentes bajos niveles de PrP^{Sc} (Horiuchi 1999, Jackson1999, Swietnicki 2000). Estos temas necesitan el desarrollo de reactivos inmunológicos con una alta afinidad por PrP^{Sc}, permitiendo la detección específica sin necesidad de tratamiento proteolítico.
Descubrimiento de un nuevo reactivo de captura para la detección de PrP^{Sc}
Se acepte o no la hipótesis de "sólo proteína" o "sólo prion", existen esfuerzos continuos en marcha por buscar agentes o moléculas distintas del prion que puedan contribuir con la patogénesis de la enfermedad priónica. Esta búsqueda está impulsada por muchas preguntas sin respuestas. Por ejemplo, la proteína priónica sintetizada, libre de cualquier contaminación, no provoca la enfermedad; el mecanismo que desencadena la conversión de PrP^{C} normal a la isoforma patógena PrP^{Sc} no se conoce. Otra pregunta no resuelta incluye los diferentes fenotipos de la enfermedad priónica observados en animales y seres humanos, definidos por el período de incubación de la enfermedad, el nivel de glicosilación y los patrones de lesión. Después de un pasaje serial en ratones endogámicos homocigotos para un único genotipo de PRNP, todas las cepas de scrapie retuvieron su perfil de enfermedad original. Estas observaciones llevaron a los investigadores a preguntarse si las cepas fenotípicas variadas fueron dominadas por diferentes isoformas conformacionales del mismo precursor priónico celular, o si existe otro factor que determine el fenotipo de la cepa heredable. En realidad, el PrP^{res} de los modelos de conversión in vitro formados en reacciones libres de células nunca ha demostrado constituir nueva infectividad por TSE en animales (Caughey 2003). Estas preguntas llevaron a muchos a creer que existe un elemento faltante, apodado "proteína X" según sugirió Prusiner, aún no descubierto.
Se propuso la presencia de una molécula de ARN o ADN fuertemente unida en la partícula del prion para explicar la propagación de diferentes cepas del agente de scrapie con diferentes fenotipos en animales homocigotos para el gen PRNP (Weissmann 1991). El análisis de priones de scrapie altamente purificados mediante electroforesis en gel con reenfoque de retorno reveló el pequeño tamaño de los ácidos nucleicos remanentes (Kellings 1992). En un informe reciente, sin embargo, Narang indicó que animales inoculados con ADNss purificado de cerebros de hámster con scrapie mezclados con prion no patógeno desarrollaron la enfermedad clínica (Narang 2002). Sobre la base de estos hallazgos, postuló que la "proteína accesoria" codificada por el ADNss puede estar involucrada en la conversión de PrP^{C} a PrP^{Sc}. Sobre la base de esos estudios de conformación y conversión in vitro, se llegó a la hipótesis de que el ADN actuaría como un guardián de la conformación de PrP^{Sc} así como un catalizador para facilitar la conversión y agregación de PrP^{Sc} (Cordeiro 2001). Muy recientemente, se informó que la transformación estequiométrica in vitro de PrP^{C} en PrP^{res} requiere moléculas de ARN específicas (Deleault 2003). El anticuerpo monoclonal anti-ácido nucleico desarrollado por Ortho-Clinical Diagnostics que puede capturar de forma discriminada PrP^{Sc} pero no PrP^{C} (documentos US60/434.627, US60/446.217) es otra evidencia que demuestra la asociación de PrP^{Sc} con los ácidos nucleicos.
Se sabe que el PrP^{Sc} aislado de cerebro enfermo está también asociado con una variedad de glicanos. Ellos incluyen unidades de glucosa unidas por enlaces 1,4 en bastones de priones, esfingolípidos, polisacáridos y otros componentes de membrana de agregados de PrP^{Sc} (Appel 1999, Klein 1998), y proteoglicano sulfatado en placas priónicas de amiloide (Snow 1990), una propiedad que se ha explotado en la inmunohistoquímica, donde se ha demostrado que la unión mediante anticuerpos contra sulfato de heparano (anti-HS) y anticuerpos contra el proteoglicano de sulfato de heparano (anti-HSPG) se correlaciona con el PrP anormal tan pronto como 70 días después de la infección y a lo largo del transcurso de la enfermedad (McBride 1998). A través de un mecanismo que tal vez es diferente de aquél mediante el que los ácidos nucleicos participan en la conversión del PrP^{C} a PrP^{Sc}, el glicano también convierte la proteína priónica celular a la conformación de lámina-Beta. La conversión in vitro de PrP^{C} a PrP^{Sc} y en experimentos de reconstitución de la infectividad priónica, los glicanos sulfatados han demostrado que o bien facilitan la conversión o intensifican la infectividad (Wong 2001, Shaked 2001a, Diaz-Nido 2002). Con el prion recombinante de longitud completa GST y el fragmento priónico GST, Warner recientemente demostró la unión directa del prion recombinante a la heparina y al sulfato de heparano (Warner 2002). La región peptídica 23-52 de la secuencia priónica fue positiva en todos las pruebas de unión de HS y HSPG. Debido a que el péptido no logró competir con el prion de longitud completa por la unión a la heparina, el autor sugirió que podría haber otro sitio de unión al GAG importante en el PrP^{C} intacto. Otra observación interesante es que se ha informado que el plasminógeno se une al PrP^{Sc} obtenido de cerebro, pero no al PrP^{C}. Aunque no se ha demostrado que el plasminógeno posea una directa interacción con PrP^{Sc}, se sugiere un sitio de unión dentro de la región Kringle del plasminógeno, una región que posee una conocida afinidad por la heparina. Otra observación digna de destacar es que los GAGs de diferentes especies (bovina y porcina) o de diferentes órganos (pulmón, riñón e intestino) han mostrado diferentes afinidades por la unión al prion. La diferencia en afinidad puede deberse a la propia secuencia priónica, o puede depender de la presencia de una unidad de azúcar particular en los GAGs probados.
En vista de estas observaciones, se propuso que un número de péptidos fuera diseñado para capturar selectivamente PrP^{Sc} pero no PrP^{C} a través de la afinidad de los péptidos por la conformación única de PrP^{Sc} o a moléculas asociadas con PrP^{Sc}. Estos se detectaron por su capacidad para identificar y capturar PrP^{Sc} de homogenatos de cerebros enfermos mediante inmunoprecipitación sin pretratamiento con proteasa.
(1) Péptidos del dominio de unión a la heparina/sulfato de heparina
Glicanos (GAG) tales como la heparina y el sulfato de heparina se asociaron con agregados amiloides de PrP^{Sc}. Debido a que la afinidad de asociación fue mucho mayor en GAG::PrP^{Sc} que en GAG::PrP^{C} es posible utilizar péptidos caracterizados como dominio de unión a glicanos para capturar selectivamente PrP^{Sc} pero no PrP^{C}. Por esta razón, se sintetizaron péptidos descritos como dominio de unión a la heparina o al sulfato de heparina: (1) WQPPRARI de fibronectina carboxilo-terminal (Woods 1993, Hines 1994) (2) NWCKRGRKNCKTH del precursor de la proteína amiloide (Small 1994), (3) NYKKPKLG del factor de crecimiento de fibroblastos N-terminal (FGF)-1 (Lou 1996) y (4) KDFLSIELVRGRVK del dominio G C-terminal de la cadena alfa 1 de laminina (Yoshida 1999).
(2) Péptidos "condensados" Kringle
La región Kringle estuvo involucrada en la unión selectiva del plasminógeno al PrP^{Sc}. También se supo que la región Kringle tuvo una actividad de unión a la heparina/sulfato de heparina (Mizuno 1994) para la que estuvieron involucrados aminoácidos cargados positivamente (tales como Arg y Lys) (Soeda 1989).
En una publicación separada, se descubrió que dos tripéptidos conservados "YYR", o más bien tres "YYX" discontinuos de la secuencia priónica según se sugirió, interactuaron con PrP^{Sc} pero no interactuaron con PrP^{C} (Paramithiotis 2003, WO0078344A1). Resultó interesante descubrir que en la secuencia del plasminógeno humano había cuatro secuencias Tyr-Arg-Gly en cuatro de cinco regiones Kringle (regiones Kringle 1, 3, 4 y 5); había seis secuencias Tyr-Arg o Arg-Tyr o Arg-Lys en el plasminógeno. Además, varios residuos de Tyr, Arg o Lys distantes se acercaron estrechamente mediante puentes disulfuro formados en las asas Kringle (Figura 1). Sobre la base de estas observaciones, se postuló que los aminoácidos Tyr, Arg y Lys de la región Kringle del plasminógeno y de la secuencia priónica, posiblemente a través de una interacción con el glicano que estaba asociado con el complejo PrP^{Sc}, podrían explicar la unión selectiva al PrP^{Sc}. Por esta razón, se sintetizaron dos péptidos "condensados Kringle" YRGYRGYRGYRG e YRGRYGYKGKYGYRG.
(3) Péptidos de unión a ácidos nucleicos
Los ácidos nucleicos son otra categoría de moléculas que se asocian con los agregados de PrP^{Sc}.
Se han utilizado anticuerpos anti-ADN de manera efectiva para captar el PrP^{Sc}. Las histonas son un grupo de proteínas que se sabe se unen al ADN nuclear. Por ello, se sintetizaron tres péptidos (1) AQKKDGKKRKRSRKESYSIYV de H2B(21-41), (2) ARTKQTARKSTGGKAPRKQLA de H3(1-21) y (3) SGRGKGGKGLGKGGAKRHRKVLR de H4(2-24) para evaluar su capacidad para captar PrP^{Sc}.
II. Compendio de la invención
El objeto de la presente invención es proporcionar una manera pertinente de aislar, concentrar y monitorear la proteína priónica patógena relacionada con la enfermedad TSE. La descripción desveló ocho péptidos (péptido-1, péptido-2, péptido-3, péptido-5, péptido-6, péptido-7, péptido-8 y péptido-9) y su capacidad de capturar PrP^{Sc} de un homogenato cerebral de un animal y un ser humano infectado con la enfermedad priónica. Estos ocho péptidos no captan la proteína priónica celular del individuo que no padece la enfermedad priónica. La evidencia provista en apoyo de esta invención demostró que el PrP^{Sc} está asociado con gran afinidad a muchas otras moléculas tales como ácidos nucleicos y glicanos, según se investigó. La evidencia también demostró que la asociación era fuerte, resistente al tratamiento de digestión con PK, y que PrP^{Sc} pudo aislarse fácilmente mediante péptidos a través del reconocimiento de tal pareja de unión asociada.
La invención se refiere a un procedimiento para la detección in vitro de PrP^{Sc} que comprende:
en primer término poner en contacto una muestra con un péptido que consiste en la secuencia de aminoácidos de WQPPRARI,
después detectar PrP^{Sc}.
En otro aspecto, la invención se refirió a un procedimiento para la detección in vitro de PrP^{Sc} que comprende:
proporcionar un soporte sólido que tiene unido al mismo un péptido que consiste en la secuencia de aminoácidos de WQPPRARI,
poner en contacto el soporte sólido con una muestra,
lavar el soporte para eliminar cualquier muestra no unida,
poner en contacto el soporte sólido con un anticuerpo específico del prion, y
realizar una etapa de detección para determinar si PrP^{Sc} está unido al soporte sólido.
Aun en otro aspecto, la presente invención se refiere a un kit para la detección de PrP^{Sc} que comprende:
un soporte sólido que posee unido al mismo un péptido que consiste en la secuencia de aminoácidos de WQPPRARI, y un anticuerpo marcado específico del prion.
III. Descripción detallada Preparación de homogenato cerebral
Se obtuvieron lisados cerebrales de hámster normal y con scrapie de Baltimore Research y Education Foundation como homogenatos de tejido de cerebro completo al 10% en PBS (p/v). El lisado además se trató añadiendo 1/10 volumen de tampón de homogenato con detergente 10X, compuesto por desoxicolato de sodio al 5% e Igpal CA-630 al 5% (equivalente a NP-40) en PBS, incubando a 4ºC durante 1 hora, seguido de centrifugación a 1000 g durante 10 minutos. Se recolectó el sobrenadante resultante y se utilizó en el ensayo.
Tejido de cerebro bovino normal y con BSE fue provisto por Veterinary Laboratories Agency (VLA), RU. Tejido cerebral de vCJD humana y de demencia de cuerpos de Lewy fue provisto por National CJD Surveillance Unit (NCJDSU), RU. El tejido cerebral fue procesado de la misma manera (o en forma similar) que la preparación del homogenato de cerebro de hámster.
Péptidos sintéticos
Nueve péptidos fueron sintetizados mediante ResGen (actualmente una división de Invitrogen Corporation), o se adquirieron de Upstate Group, Inc. Cada péptido se marcó con biotina en la Lisina C-terminal portadora de un espaciador de aminohexanoílo (K(Lc)), o en el extremo N-terminal a través de un espaciador de aminohexanoílo (AMCAP).
100
El péptido biotinilado se disolvió en PBS a razón de 1mg/mL y se conservó a -20ºC hasta su uso.
Conjugación del péptido biotinilado a perlas magnéticas de estreptavidina
Se lavaron dos veces con PBS 0,5 ml de cuentas de Estreptavidina Dynabeads® M-280 (Dynal Biotech, NY, EEUU, Cat. # 112,06) y las cuentas se aislaron del tampón con el imán (Dynal Magnetic Particle Concentrator, MPC). Se añadieron 100 ug de péptido y 1 mL de PBS a las cuentas lavadas. Se realizó la incubación con rotación a 37ºC durante 1-2 horas. Las cuentas se aislaron del tampón con el MPC, se lavaron dos veces con 1 ml de PBS (BSA al 0,1%), y se sometieron a rotación durante 5 minutos a temperatura ambiente mientras se lavaban. Las cuentas conjugadas al péptido se bloquearon posteriormente durante 2 horas, a 37ºC con Biotina 1 mM en Tris-HCl 0,2 M, pH 8,0, que contenía BSA al 0,1%. Las cuentas posteriormente se lavaron 2 veces con 1 ml de PBS (BSA al 0,1%) y una vez con 1 ml de PBS (BSA al 0,1%, Tween 20 al 1%), incubando cada vez durante 10 minutos a temperatura ambiente. Las cuentas después se lavaron una vez con 1 ml de PBS (BSA al 0,1%) y después se conservaron en 1ml de PBS (azida de sodio al 0,05%) a 4ºC.
Digestión con proteinasa K
Condiciones para la digestión con PK del lisado cerebral: se suspendió el homogenato cerebral en tampón PBS con o sin detergente no iónico. La concentración total de proteína del homogenato no superó los 2,5 mg/ml. Se añadió PK (Roche Diagnostics, IN, EEUU, Cat. # 1373196) a una concentración final de 50 ug/mL. La incubación se realizó a 37ºC durante 0,5 a 1 hora. La digestión se interrumpió añadiendo Pefabloc SC (Roche Diagnostics, IN, EEUU, Cat.# 1585916) a una concentración final de 4 mM.
Inmunoprecipitación (IP), electroforesis no reductora y detección por inmunotransferencia de PrP^{Sc}
Las cuentas magnéticas conjugadas al péptido se utilizaron para capturar PrP^{Sc} del homogenato cerebral mediante inmunoprecipitación. El procedimiento de IP consiste en el siguiente protocolo: mezclar 50 uL de las cuentas conjugadas al péptido con el homogenato cerebral tratado con PK o no tratado con PK en un total de 1 ml de tampón IP (Tween20 al 3% e Igpal CA-630 al 3% en PBS) e incubar a 25ºC durante 2,5 horas con rotación \rightarrow Separar las cuentas utilizando el dispositivo MPC y lavar las cuentas 3 veces de 30 segundos generando remolinos con tampón de lavado IP (Tween20 al 2% e Igpal CA-630 al 2% en PBS) \rightarrow Eluir el PrP^{Sc} capturado calentando las cuentas con tampón de muestra NuPAGE durante 10-15 minutos. La muestra eluída de la captura por IP se cargó en un gel Bis-Tris NuPAGE® al 4-12% (Invitrogen, CA, EE.UU., Cat. # NP0302) y se sometió a electroforesis no reductora a 200 V durante 45 minutos. El procedimiento de inmunotransferencia se realizó de la siguiente manera: transferir las proteínas separadas en el gel a una membrana de 0,2 um de PVDF (Invitrogen, Cat. # LC2002) a 30 V durante 60 minutos \rightarrow Bloquear la membrana con Caseína en TBS Blocker^{TM} (Tween20 al 0,05%) (Pierce Chemical Corp., IL, EE.UU., Cat. # 37532) a 25ºC durante 1 hora con agitación o a 4ºC durante toda la noche. \rightarrow Como anticuerpo primario, usar 3F4 (Signet, MA, EEUU, Cat. # 9620-02) a una dilución de 1:3000 o 6H4 (Prionics AG, Suiza, Cat. # 01-011) a una dilución de 1:5000 para detectar PrP^{Sc}. Incubar la membrana con anticuerpo primario diluido en Caseína Blocker^{TM} al 10% en tampón TBST (Tri-Cl 25 mM, NaCl 0,2 M, Tween20 al 0,2%, pH 8,0) a 25ºC durante 1 hora con agitación. \rightarrow Lavar 3X 5 minutos con tampón TBST con agitación. \rightarrow Incubar la membrana con IgG (H+L) anti-ratón policlonal de cabra conjugada con peroxidasa de rábano (Jackson ImmunoResearch Laboratories, PA, EE.UU., Cat. # 115-035-003) a una dilución de 1:10.000 a 1:30.000 en Caseína Blocker^{TM} al 50% en tampón TBST a 25ºC durante 1 hora con agitación. \rightarrow Lavar 6X 5 minutos con tampón TBST con agitación. \rightarrow Añadir sustrato para quimioluminiscencia ECL (Amersham Biosciences, NJ, EE.UU., Cat.# RPN2109) o sustrato para quimioluminiscencia SuperSignal West Dura (Pierce) en la membrana para desarrollar durante 5 minutos. \rightarrow Tomar la imagen mediante exposición a película Bio Max MR-2 (Kodak, NY, EE.UU.) o al sistema ChemiDoc Gel Documentation System (Bio-Rad, CA, EEUU).
Descripción de las figuras
Figura 1: Secuencia de Plasminógeno Humano y regiones Kringle. Existen 4 secuencias YRG en 4 de 5 regiones Kringle (rectángulos negros). Existen 6 secuencias YK, RY, RK (rectángulos blancos). Existen muchos Y, R o K alrededor de varios puentes disulfuro de asa Kringle (círculos negros).
Figura 2: Captura por IP e inmunotransferencia de PrP^{Sc} de hámster. Se cargaron homogenato de cerebro de hámster normal (4 ul) y con scrapie (3 ul) directamente en gel o se sometieron a inmunoprecipitación utilizando perlas magnéticas de estreptavidina conjugadas con péptido biotinilado. Se detectó el PrP mediante inmunotransferencia utilizando 3F4. El lisado con scrapie se digirió con PK para carga directa. El homogenato para la captura por IP no se trató con PK.
Figura 3: Captura por IP e inmunotransferencia de PrP^{Sc} de BSE. Se añadió homogenato de cerebro de vacuno normal (10 ul) o de BSE (5 ul) en 1 mL de tampón IP, sometiéndose a inmunoprecipitación con cuentas de péptido. El PrP inmunoprecipitado después se trató con PK y se analizó mediante SDS-PAGE e inmunotransferencia, se detectó mediante 6H4. El PrP capturado del homogenato de cerebro con BSE fue PrP^{Sc} auténtico ya que el tratamiento con PK (50 ug/ml durante 1 hora a 37ºC) genera los fragmentos de PrP^{res} del núcleo resistente a PK. Los homogenatos cerebrales clarificados de BSE y los de control normales también se incubaron en ausencia (-) o presencia (+) de PK (50 ug/ml durante 1 hora a 37ºC) y se cargaron directamente en gel de SDS como controles.
Figura 4: Inmunocaptación de PRP^{Sc} de cerebros de vCJD mediante péptidos. Se utilizaron las cuentas conjugadas al péptido para la inmunoprecipitación de PrP en 5 ul de homogenatos cerebrales clarificados de pacientes afectados por demencia de cuerpos de Lewy (LBD) o por vCJD (99/090). Los inmunoprecipitados después se analizaron mediante SDS-PAGE (gel al 4-12%) y transferencia Western utilizando anticuerpo anti-PrP 3F4. Se cargaron directamente 5 ul de homogenato de LBD no tratado y 5 ul de homogenato cerebral de vCJD tratado o no tratado con PK en gel de SDS para indicar el contenido priónico.
IV. Ventajas
La presente invención utiliza un péptido para capturar PrP^{Sc} mediante el reconocimiento de moléculas asociadas de alta afinidad en el complejo PrP^{Sc} tales como glicanos y ácidos nucleicos. Debido a la estrecha asociación de estas moléculas sólo con PrP^{Sc} pero no con PrP^{C}, la presente invención proporcionó un medio pertinente para la detección de PrP^{Sc} sin requerir la digestión con PK u otro procedimiento de modificación de proteínas. Se anticipa que las condiciones suaves conservarán la estructura original y la conformación de la proteína priónica patógena, brindando de este modo la oportunidad de determinar la presencia del verdadero PrP^{Sc}, minimizando la generación de PrP^{Sc} debido al tratamiento riguroso de las muestras.
El uso de péptidos sintéticos ofrece ventajas en cuanto a que muestran la especificidad de unión pero también se pueden manipular fácilmente en el recubrimiento directo de una fase sólida como así también pueden conjugarse para ligarse a ciertos reactivos de señalización dados, tales como peroxidasa de rábano (HRP), o pueden adoptarse en otro formato de ensayo de diagnóstico deseado.
V. Literatura citada
Aguzzi A, Fischer MB, (2001) Prion-Binding Activity in Serum and Plasma., US 20010053533A1
Appel TR, Dumpitak C, Matthiesen U, Riesner D. (1999) Prion rods contain an inert polysaccharide scaffold. Biol Chem 380(11):1295-306
Arnold, JE, Tipler C, Laszlo L, Hope J, Landon M, Mayer RJ (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J. Pathol. 176:403-411
Barnard G, Helmick B, Madden S, Gilbourne C and Patel R (2000) The measurement of prion protein in bovine brain tissue using differential extraction and DELFIA as a diagnostic test for BSE Luminescence 2000;15:357-362
Belay ED (1999) Transmissible spongiform encephalopaties in humans. Annu. Rev. Microbiol. 53:283-314.
Biffiger K, Zwald D, Kaufmann L, Briner A, Nayki I, Purro M, Bottcher S, Struckmeyer T, Schaller O, Meyer R, Fatzer R, Zurbriggen A, Stack M, Moser M, Oesch B, Kubler E. (2002) Validation of a luminescence immunoassay for the detection of PrP(Sc) in brain homogenate. J Virol Methods 101(1-2):79-84.
Bolton DC (2001) Prions and proteins: distinguishing between conformations. The Lancet 358(9277):164-165
Brown P, Cathala F, Raubertas RF, Gajdusek DC, Castaigne P. (1987) The epidemiology of Creutzfeldt-Jakob disease: conclusion of a 15 year investigation in France and review of the world literature. Neurology 37:895-904.
Brown P. The risk of bovine spongiform encephalopathy ("mad cow disease") to human health. JAMA 1997; 278: 1008-1011
Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H and Bostock CJ. (1997) Transmissions to mice indicate that new variant' CJD is caused by the BSE agent. Nature 389:498-501
Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey, W.S. (1991) Secondary structure analysis of the scrapie-associated protein PrP27-30 in water by infrared spectroscopy. Biochemistry 30:7672-7680.
Caughey B and Kocisko DA. (2003) A nucleic-acid accomplice? Nature Oct 16;425(6959):673-4
Chandler R, (1961) Encephalopathy in mice produced with scrapie brain material. Lancet 1:1378-1379
Cohen FE, Prusiner SB. (1998) Pathologic conformations of prion proteins. Annu Rev Biocem 67:793-819
Cordeiro Y, Machado F, Juliano L, Juliano MA, Brentani RR, Foguel D, Silva JL. (2001) ADN converts cellular prion protein priónica into the beta-sheet conformation and inhibits prion peptide aggregation. J Biol Chem. 276(52):49400-9.
Cuillé J, Chelle PL (1936) La maladie dite tremblante du mouton est-elle inocuable? C. R. Acad. Sci. 203, 1552-1554
Deleault ND, Lucassen RW and Supattapone S. (2003) ARN molecules stimulate prion protein conversion. Nature Oct 16;425(6959):717-20
Díaz-Nido J., Wandosell F. and Avila J (2002) Glycosaminoglicanos and beta-amyloid, prion and tau peptides in neurodegenerative diseases. J Biol Chem Jul;23(7):1323-32
FDA and CBER, U.S. Department of Health and Human Services (2001) IV. RECOMMENDATIONS FOR DONOR DEFERRAL in Guidance for Industry: Revised Preventive Measures to Reduce the Possible Risk of Transmission of Creutzfeldt-Jakob Disease (CJD) and Variant Creutzfeldt-Jakob Disease (vCJD) by Blood and Blood Products
Ferguson NM, Ghani AC, Donnelly CA, Hagenaars TJ, Anderson RM. (2002) Estimating the human health risk from possible BSE infection of the British sheep flock. Nature 415(6870):420-4
Fischer MB, Roeckl C, Parizek P, Schwarz HP, Aguzzi A, (2000) Binding of disease-associated prion protein to plasminogen. Nature 408:479-83.
Foster JD, Hope J, McConnell I, Bruce M, Fraser H. (1994) Transmission of bovine spongiform encephalopathy to sheep, goats, and mice. Ann N Y Acad Sci 724:300-3.
Gabizon R, McKinley MP, Groth D, Prusiner SB (1988). Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl. Acad. Sci. USA 85, 6617-6621.
Gajdusek DC, Gibbs CJJ, Alpers MP (1966) Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209:794-796
Gajdusek DC, (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197:943-60
Gibbs CJJ, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161, 388-389
Gibbs CJ Jr, Gajdusek DC, Amyx H. (1979) Strain variation in the viruses of Creutzfeldt-Jakob disease and kuru. In: Prusiner SB, Hadlow WJ, editors. Slow transmissible diseases of the nervous system. Volume 2. New York: Academic Press; p. 87-110.
Hill AF, Zeidler M, Ironside J, Collinge J (1997) Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349(9045):99-100
Hillier CE, Salmon RL, Neal JW, Hilton DA. (2002) Possible underascertainment of variant Creutzfeldt-Jakob disease: a systematic study. J Neurol Neurosurg Psychiatry 72(3):304-9
Hines KL, Kulkarni AB, McCarthy JB, Tian H, Ward JM, Christ M, McCartney-Francis NL, Furcht LT, Karlsson S, Wahl SM. (1994) Synthetic fibronectin peptides interrupt inflammatory cell infiltration in transforming growth factor beta 1 knockout mice. Proc Natl Acad Sci U S A May 24;91(11):5187-91.
Holada K, Simak J, Vostal JG (2000) Transmission of BSE by blood transfusion. Lancent 356(9243):1772
Hope J, Morton LJD, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH (1986). The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J. 5, 2591-2597.
Horiuchi M, Caughey B, (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J 18(12):3193-203.
Horwich AL, Weissman JS (1997) Deadly Conformations-Protein Misfolding in Prion Disease. Cell, 89:499-510
Houston F (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356(9234):999-1000
Hunter N, Foster J, Chong A, McCutcheon S, Parnham D, Eaton S, MacKenzie C, Houston F. (2002) Transmission of prion diseases by blood transfusion. J Gen Virol Nov;83(Pt 11):2897-905
Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J. (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283(5409):1935-7.
Kellings K, Meyer N, Mirenda C, Prusiner SB, Riesner D. (1992). Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocusing gel electrophoresis. J. Gen. Virol. 73, 1025-1029.
Kimberlin RH, Cole S, Walker CA. (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol 68:1875-81.
Kimberlin RH, Walker CA, Fraser H. (1989) The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol 70:2017-25.
Klein TR, Kirsch D, Kaufmann R. and Riesner D (1998) Biol. Chem. 379:655-666
Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wuthrich K, Oesch B. (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390(6655):74-7
Lasmezas CI, Deslys JP, Demaimay R, Adjou KT, Lamoury F, et al. (1996) BSE transmission to macaques. Nature 381:743-44
Luo Y, Gabriel JL, Wang F, Zhan X, Maciag T, Kan M, McKeehan WL. (1996) Molecular modeling and deletion mutagenesis implicate the nuclear translocation sequence in structural integrity of fibroblast growth factor-1. J Biol Chem. Oct 25;271 (43):26876-83.
Maissen M, Roeckl C, Markus G, Goldman W, Aguzzi A, (2001) Plasminogeno binds to disease-associated prion proteins of multiple species. Lancet 357:2026-8.
\newpage
Manuelidis EE, Kim JH, Mericangas JR, Manuelidis L. (1985) Transmission to animales of Creutzfeldt-Jakob disease from human blood. Lancet 2:896-97
McBride PA, Wilson MI, Eikelenboom P, Tunstall A, Bruce ME (1998) Heparan Sulfate Proteoglycan is
Associated with Amyloid Plaques and Neuroanatomically Targeted PrP Pathology throughout the Incubation Period of Scrapie-Infected Mice. Experimental Neurol. 149:447-454
McGowan JP. (1922) Scrapie in sheep. Scott. J. Agric. 5:365-75
Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986). Separation and properties of cellular and scrapie prion proteins. Proc. Natl. Acad. Sci. USA 83:2310-2314.
Mizuno K, Inoue H, Hagiya M, Shimizu S, Nose T, Shimohigashi Y, Nakamura T. (1994) Hairpin loop and second kringle domain are essential sites for heparina binding and biological activity of hepatocyte growth factor. J Biol Chem. Jan 14;269(2):1131-6. plasminogen
Moynagh J, Schimmel H, (1999) The evaluation of tests for the diagnosis of Transmissible Spongiform Encephalopathy in Bovines (8 July 1999) http://europa.eu.int/comm/food/fs/bse/bse 12-en.html.
Narang HK (2002) A critical review of the nature of the spongiform encephalopathy agent: prion theory versus virus theory. Exp Biol. Med. (Maywood) 227(1):4-19
O'Rourke KI, Baszler TV, Besser TE, Miller JM, Cutlip RC, Wells GA, et al. (2000) Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J Clin Microbiol 38:3254-9.
Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB. (1993) Conversion of -helices into -sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90:10962-10966
Paramithiotis E et al (2003) A prion protein epitope selective for the pathologically misfolded conformation Nat Med Jul;9(7):893-9
Parizek P, Roeckl C, Weber J, Flechsig E, Aguzzi A, Raeber AJ. (2001) Similar turnover and shedding of the cellular prion protein in primary lymphoid and neuronal cells.
Pattison I (1957) Transmission of scrapie to the goat Lancet 272:104-105.
Prusiner SB, Novel proteinaceous infectious particles cause scrapie. Science (1982) 216:136-44
Raymond GJ et al. (2000) Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J Sept 1; 19(17): 4425-30
Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB. (1998) Eight prion strains have PrP (Sc) molecules with different conformations. Nat. Med. 4(10):1157-65
Schaller O, Fatzer R, Stack M, Clark J, Cooley W, Biffiger K, Egli S, Doherr M, Vandevelde M, Heim D, Oesch B, Moser M. (1999) Validation of a western immunoblotting procedure for bovine PrP(Sc) detection and its use as a rapid surveillance method for the diagnosis of bovine spongiform encephalopathy (BSE). Acta Neuropathol (Berl) 98(5):437-43.
Shaked GM, Meiner Z, Avraham I, Taraboulos A, Gabizon R (2001a) Reconstitution of Prion Infectivity from Solubilized Protease-resistant PrP and Nonprotein Components of Prion Rods. J. Biol. Chem. 276(17):14324-14328
Shaked GM, Shaked Y, Kariv-Inbal Z, Halimi M, Avraham I, Gabizon R, (2001b) A Protease-resistant Prion Protein Isoform Is Present in Urine of Animals and Humans Affected with Prion Diseases J. Biol. Chem., 276(34):31479-82
Shyng SL, Heuser JE, Harris DA. (1994) Aglycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125:1239-50
Small DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, Masters CL. (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J Neurosci. Apr;14(4):2117-27
Snow AD (1990) Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann-Straussler syndrome, Creutzfeldt-Jakob disease and scrapie. Lab Invest. 63(5):601-1
\newpage
Soeda S, Ohki H, Shimeno H, Nagamatsu A (1989) Further characterization of the binding of plasminogen to heparin: evidence for the involvement of lysine residues. Biochim Biophys Acta. Nov 9;999(1):29-35. Plasminogen
Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK. (2000) Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 39(2):424-31.
Taraboulos A, Serban D, Prusiner SB. (1990) Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J. Cell. Biol. 110:2117-32
Tateishi J. (1985) Transmission of Creutzfeldt-Jakob disease from human blood and urine into mice. Lancet 2:1074
Telling GC, Scott M, Mastrianni J, Gabizon R., Torchia M, Cohen FE, DeArmond SJ, Prusiner SB (1995). Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaciton of cellular PrP with another protein. Cell 83:79-90.
Valleron AJ, Boelle PY, Will R, Cesbron JY. (2001) Estimation of epidemic size and incubation time based on age characteristics of vCJD in the United Kingdom. Science 294(5547):1726-8
Wadsworth JD, Joiner S, et al. (2001) Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 358(9277):171-80
Warner RG, Hundt C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem. Mayo 24;277(21):18421-30
Wells GAH, Scott AC, Johnson CT, Gunning RF, Hancock RD, et al. (1987) A novel progressive spongiform encephalopathy in cattle. Vet. Rec. 31:419-20
Williams ES, Young S. (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16:89-98
Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B (2001) Sulfated glycans and elevated temperature stimulate PrPSc-dependent cell-free formation of protease-resistant prion protein EMBO J 20 (3):377-386
Woods A. McCarthy JB, Furcht LT, Couchman JR. (1993) A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell. Junio;4(6):605-13
Yoshida I, Tashiro K, Monji A, Nagata I, Hayashi Y, Mitsuyama Y, Tashiro N. (1999) Identification of a heparin binding site and the biological activities of the laminin alpha1 chain carboxy-terminal globular domain. J Cell Physiol. Abril;179(1):18-28.

Claims (3)

1. Un procedimiento para la detección in vitro de PrP^{Sc} que comprende:
en primer término poner en contacto una muestra con un péptido que consiste en la secuencia de aminoácidos de WQPPRARI,
después detectar PrP^{Sc}.
2. Un procedimiento para la detección in vitro de PrP^{Sc} que comprende:
proporcionar un soporte sólido que posee unido al mismo un péptido que consiste en la secuencia de aminoácidos de WQPPRARI,
poner en contacto el soporte sólido con una muestra,
lavar el soporte para eliminar cualquier muestra no unida,
poner en contacto el soporte sólido con un anticuerpo específico del prion, y
realizar una etapa de detección para determinar si PrP^{Sc} está unido al soporte sólido.
3. Un kit para la detección de PrP^{Sc} que comprende
un soporte sólido que posee unido al mismo un péptido que consiste en la secuencia de aminoácidos de WQPPRARI, y
un anticuerpo marcado específico del prion.
ES05256113T 2004-09-30 2005-09-29 Peptidos para la discriminacion de priones. Active ES2324919T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61453304P 2004-09-30 2004-09-30
US614533P 2004-09-30

Publications (1)

Publication Number Publication Date
ES2324919T3 true ES2324919T3 (es) 2009-08-19

Family

ID=35432058

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09075234T Active ES2382935T3 (es) 2004-09-30 2005-09-29 Péptidos para la discriminación de priones
ES05256113T Active ES2324919T3 (es) 2004-09-30 2005-09-29 Peptidos para la discriminacion de priones.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09075234T Active ES2382935T3 (es) 2004-09-30 2005-09-29 Péptidos para la discriminación de priones

Country Status (14)

Country Link
EP (2) EP1643252B1 (es)
JP (1) JP4837353B2 (es)
KR (1) KR101355369B1 (es)
CN (1) CN1804628B (es)
AR (1) AR050965A1 (es)
AT (2) ATE550666T1 (es)
AU (1) AU2005209592B2 (es)
BR (1) BRPI0504220A (es)
CA (1) CA2518372C (es)
DE (1) DE602005014597D1 (es)
ES (2) ES2382935T3 (es)
HK (2) HK1088066A1 (es)
NZ (1) NZ542583A (es)
PT (2) PT2085404E (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1848830A4 (en) * 2005-01-13 2009-05-06 Novartis Vaccines & Diagnostic ISOLATION OF PATHOGENIC PRIONS
NZ566020A (en) 2005-09-09 2012-08-31 Novartis Ag Prion-specific peptoid reagents

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806627A (en) 1987-05-29 1989-02-21 Research Foundation Of Mental Hygiene Inc. Hybrid cell lines producing monoclonal antibodies dircted against scrapie-associated fibril proteins
US5109464A (en) * 1991-05-24 1992-04-28 Amoco Corporation Rib waveguide optimized for low loss coupling to optical fibers and method of determining same
US20010001061A1 (en) 1997-02-21 2001-05-10 Prusiner Stanley B. Assay for disease related conformation of a protein
US6617119B2 (en) 1997-02-21 2003-09-09 The Regents Of The University Of California Assay for specific strains of multiple disease related conformations of a protein
EP0861900A1 (en) 1997-02-21 1998-09-02 Erziehungsdirektion Of The Canton Zurich Immunological detection of prions
US6165784A (en) 1997-10-14 2000-12-26 The United States Of America As Represented By The Secretary Of Agriculture Antibodies for the detection of prion protein as an indication of transmissible spongiform encephalopathies
JP2003521477A (ja) 1999-06-23 2003-07-15 カプリオン ファーマシューティカルズ インコーポレーティッド プリオン蛋白質ペプチドおよびその使用
US6261790B1 (en) 1999-07-15 2001-07-17 The United States Of America As Represented By The Secretary Of Agriculture Monoclonal antibodies and antibody cocktail for detection of prion protein as an indication of transmissible spongiform encephalopathies
WO2002000713A1 (en) 2000-06-26 2002-01-03 Universität Zürich Prion-binding activity in serum and plasma determined as plasminogen and fibrinogen
EP1216258A1 (en) 1999-09-28 2002-06-26 Universität Zürich Factors having prion-binding activity in serum and plasma and agents to detect transmissible spongiform encephalopathitis
GB0014870D0 (en) * 2000-06-16 2000-08-09 King S College London Peptides
IL141950A0 (en) 2000-10-22 2002-03-10 Hadasit Med Res Service Diagnosis of prion diseases
AU2002241909A1 (en) 2001-01-19 2002-07-30 Baxter Healthcare S.A. Method of detecting prp protein and kits therefor
DE10107083C2 (de) * 2001-02-13 2003-02-20 Abdulgabar Salama Pentosan Polysulfat als Ligand zum Nachweis von Prionen
AU2003266801B2 (en) * 2002-12-19 2010-02-25 Ortho-Clinical Diagnostics, Inc Detection and diagnosis of transmissable spongiform encephalopathies

Also Published As

Publication number Publication date
NZ542583A (en) 2007-02-23
ES2382935T3 (es) 2012-06-14
DE602005014597D1 (de) 2009-07-09
KR101355369B1 (ko) 2014-02-03
ATE432473T1 (de) 2009-06-15
AU2005209592A1 (en) 2006-04-13
CA2518372C (en) 2013-07-09
AR050965A1 (es) 2006-12-06
CN1804628A (zh) 2006-07-19
JP2006105988A (ja) 2006-04-20
CA2518372A1 (en) 2006-03-30
ATE550666T1 (de) 2012-04-15
AU2005209592B2 (en) 2012-07-12
PT1643252E (pt) 2009-06-30
EP1643252A3 (en) 2006-05-31
EP1643252A2 (en) 2006-04-05
EP1643252B1 (en) 2009-05-27
KR20060051862A (ko) 2006-05-19
HK1088066A1 (en) 2006-10-27
EP2085404B1 (en) 2012-03-21
CN1804628B (zh) 2012-03-14
PT2085404E (pt) 2012-05-28
EP2085404A1 (en) 2009-08-05
HK1137764A1 (en) 2010-08-06
JP4837353B2 (ja) 2011-12-14
BRPI0504220A (pt) 2006-05-16

Similar Documents

Publication Publication Date Title
US7807386B2 (en) Peptides for discrimination of prions
ES2264691T3 (es) Diagnostico precoz de enfermedades conformacionales.
US20020004586A1 (en) Prion-binding activity in serum and proteins
Zou et al. PrP conformational transitions alter species preference of a PrP-specific antibody
MacGregor Prion protein and developments in its detection
ES2324919T3 (es) Peptidos para la discriminacion de priones.
ES2328027T3 (es) Deteccion y diagnostico de encefalopatias esponjiformes transmisibles.
ES2373762T3 (es) Ensayo de priones.
AU2001250406A1 (en) Prion-binding activity in serum and plasma determined as plasminogen and fibrinogen
US8663943B2 (en) Antibodies for discrimination of prions
EP1445615A1 (en) Method for discrimination between infectious and noninfectious prions
Hatcher et al. Cryptic peptides of the kringle domains preferentially bind to disease-associated prion protein
Morales et al. Advances in prion detection
Khan Metabolic profiling of prions in the gastro-intestinal tract