EP4403345B1 - Bras oscillant pour un compresseur à rouleaux pour comprimer des déchets - Google Patents

Bras oscillant pour un compresseur à rouleaux pour comprimer des déchets

Info

Publication number
EP4403345B1
EP4403345B1 EP24152812.4A EP24152812A EP4403345B1 EP 4403345 B1 EP4403345 B1 EP 4403345B1 EP 24152812 A EP24152812 A EP 24152812A EP 4403345 B1 EP4403345 B1 EP 4403345B1
Authority
EP
European Patent Office
Prior art keywords
coupling part
coupling
pendulum arm
elements
part element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP24152812.4A
Other languages
German (de)
English (en)
Other versions
EP4403345A1 (fr
Inventor
Heinz Bermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heinz Bergmann oHG Maschinen Fuer Die Abfallwirtschaft
Original Assignee
Heinz Bergmann oHG Maschinen Fuer Die Abfallwirtschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinz Bergmann oHG Maschinen Fuer Die Abfallwirtschaft filed Critical Heinz Bergmann oHG Maschinen Fuer Die Abfallwirtschaft
Publication of EP4403345A1 publication Critical patent/EP4403345A1/fr
Application granted granted Critical
Publication of EP4403345B1 publication Critical patent/EP4403345B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/30Presses specially adapted for particular purposes for baling; Compression boxes therefor
    • B30B9/3082Presses specially adapted for particular purposes for baling; Compression boxes therefor with compression means other than rams performing a rectilinear movement

Definitions

  • the invention relates to a pendulum arm for a roller compactor for compacting waste materials, with the features of the preamble of claim 1.
  • FIG. 1 shows a waste compaction device in which an approximately cylindrical container is provided, with an axis arranged in its center.
  • a driven roller body is arranged perpendicular to the axis. It is driven by a rotary motion and runs around the axis in a circular path within the container.
  • roller compactor was first presented by the applicant in the DE 30 23 508 C1 As described, a roller, guided at the end of a pivoting arm, compacts the waste. The roller's rotation redistributes the surface layers of waste within the container, allowing them to move lengthwise. This roller compactor is particularly well-suited for dry waste with large voids, such as bulky waste or wooden crates. The container's capacity is significantly increased compared to uncompacted waste.
  • the support arm is positioned on a tripod outside the container to utilize the entire container volume for waste.
  • This also makes it possible to use a stationary roller compactor with multiple interchangeable containers.
  • a two-part articulated arm is provided. The first part of the articulated arm, connected to the tripod, can be raised by an actuator, such as a hydraulic cylinder, to lift the roller out of the container.
  • a pendulum arm is attached to the other end of the first part via a pivot joint, and the rotatable roller is mounted at the end of the pendulum arm. The compaction is achieved solely by virtue of its own weight, i.e., without any contact pressure from the arm.
  • the object of the invention is therefore to improve a pendulum arm of the type mentioned above in such a way that the torsional loads on the pendulum arm and in particular on its upper pivot bearing are reduced.
  • This pendulum arm is a self-contained unit, making it ideal for retrofitting existing roller compactors. Together with a tripod and a support arm (at least one-piece), it forms a complete roller compactor.
  • All embodiments of the invention have in common that between the transmission holder element and the adjoining sections of the pendulum arm or within a pendulum arm divided into several parts, at least one torsional compensation coupling is arranged, which comprises at least two coupling element components that can be coupled together.
  • the basic principle of the invention is based on the fact that the coupling elements are freely rotatable over a small angle in both possible pivot directions and do not collide hard with each other at the end of the pivot range. This is achieved, firstly, by the coupling elements having effective stop surfaces around the compensating axis in both possible pivot directions, and secondly, by the presence of at least one elastomeric stop element between the contacting stop surfaces of the coupling elements.
  • Effective means that the pivot angle is limited by the contacting stop surfaces and that direct contact between, in particular, metallic stop surfaces is prevented.
  • the position and design of the elastomeric stop element can vary. It can be an elastomeric coating or covering of one or both stop surfaces, or it can be a separate element positioned between the stop surfaces.
  • the invention therefore does not provide for an element such as a torsion spring that is twisted, or another spring element that is tensioned directly at the beginning of the twisting.
  • the coupling components are, in particular, flange-like plates aligned parallel to each other. Preferably, they have at least one recess in the center to allow electrical, pneumatic, or hydraulic lines to pass through the torsional coupling from the pendulum arm to the transmission mounting element or to a further section of the pendulum arm.
  • the coupling components can be pivoted relative to each other with respect to a compensating axis extending parallel to the longitudinal direction of the pendulum arm, with the pivot angle being positively limited in each case. At least when the end ranges of the possible pivot angle are reached, and possibly even earlier during the pivoting movement, at least one spring element and/or an elastomeric stop element arranged between the coupling components is deformed, so that torque peaks are mitigated and the torsional load on the pendulum arm and its bearing on the support arm is reduced.
  • a coupling component has an axle stub which is aligned parallel to or in line with the longitudinal axis of the pendulum arm and which engages in a bearing bushing on the other coupling component and is positively secured there in such a way that tensile and compressive forces as well as bending moments can be transmitted via it.
  • At least one protruding element on an elastomeric stop element engages in a recess on the other coupling component, so that the possible swivel angle is positively limited.
  • one of the coupling components has brackets for elastomeric stop elements on both sides of a central axis.
  • at least one pair of elastomeric stop elements can be arranged above and below the axis, with a gap-like space between each pair.
  • projecting, wing-like drive elements are provided above and/or below an axis receptacle. The drive element initially moves freely in the space between the paired stop elements and then, at the end of the intended pivoting movement, abuts one of the stop elements.
  • At least one radially projecting, wing-like drive element is attached to the central axis, and at least two elastomeric stop elements are spaced apart from each other on the other coupling component, which has the bearing bushing for the axis.
  • the drive element initially moves freely in the space between the stop elements and then, at the end of the intended pivoting movement, abuts one of the stop elements.
  • a torsional compensation coupling is constructed in which the swivel angle is limited by the fact that both coupling elements each have an X-shaped rib structure on their facing sides.
  • the X-shaped rib structure of one coupling element is narrower than the X-shaped rib structure of the other coupling element and projects further axially forward. This allows the rib structures to interlock positively and remain pivotable relative to each other until the ribs touch.
  • Elastomeric stop elements are attached at the contact points between the rib structures to decelerate and then stop the movement when the end position is reached.
  • a pendulum bearing is formed off-center between the coupling elements via a common axis, particularly in the upper or lower edge region.
  • a guide pin is also provided in the vertically opposite lower or upper edge region of one coupling element, which engages in a circular arc-shaped guide groove on the other coupling element.
  • the torsional compensation coupling has flange-like coupling elements which are pivotably coupled to each other via a bearing bushing on one coupling element and an axle engaging therein on the other coupling element.
  • a stop element is inserted between several corner regions of the rectangular flanges of the coupling elements, by which the coupling elements are articulated to each other.
  • the pivot angle between the coupling elements is positively limited by guide pins on one coupling element that engage in guide grooves on the other coupling element.
  • At least one limit switch such as an inductive proximity switch, is provided in the torsional compensation coupling. which may already give a signal for an emergency shutdown of the roller drive when the end position of the swivel movement is reached, but at the latest when there is strong compression of the spring and/or stop elements provided in the end positions.
  • FIG. 1 shows a roller compactor 100 for compacting waste materials 203.
  • a container 200 has a front end wall 201 and a rear end wall 202. The line in the container 200 indicates the top of a load of waste materials 203. Behind the rear end wall 202, a tripod 12 of the roller compactor 100 is arranged, which extends with forward-projecting skids to below the bottom of the container 200 to improve support.
  • a support arm 10 is connected to the tripod 12 via a joint 15.
  • a pendulum arm 20 is connected via another joint 11. No actuators are provided between the support arm 10 and the pendulum arm 20, so that the pendulum arm 20 can pivot freely about the joint 11.
  • a gear mounting element is attached, which includes, among other things, bearing elements and a gearbox for a roller unit 30 to drive a roller 31.
  • a lifting cylinder (not shown) is provided between the stand 12 and the support arm 10 as an actuator to raise and lower the support arm 10. As the support arm 10 is raised and lowered, the joint 11 moves along a circular arc path 17.
  • Fig. 1 Near the end walls 201 and 202, the end of the pendulum arm 20 with the roller unit 30 is shown again. These are the end positions that the roller unit 30 can reach by moving the support arm 10 relative to the stand 12, thereby moving the axis of the joint 11 along the circular path 17. No contact force is exerted via the support arm 10; that is, the compaction of the waste material 203 in the container 200 occurs solely due to the rotation and mass of the roller unit 30. as well as the sharp-edged web elements attached to the outer shell of the rollers 31 for conveying and crushing the waste materials.
  • the invention relates in particular to the pendulum arm 20 together with the roller unit 30 of the roller compactor 100; in the illustrated embodiment, a torsional compensation coupling 40 is provided between the pendulum arm 20 and the roller unit 30.
  • the pendulum arm 20 is in Fig. 2
  • the pendulum arm 20 is shown separately from the other parts of a roller compactor, in a top view of a central axis 36 of the roller unit 30.
  • the pendulum arm 20 comprises two outer support profiles 22, which connect to a common head element 26.
  • This head element has bearing receptacles 21 for forming the pivot bearing 11.
  • a hollow base element 23 is connected via the torsional compensation coupling 40.
  • This base element 23 houses an electric motor 39.
  • the base element 23 On the side facing away from the support profiles 22, the base element 23 has a connecting flange 24 to which the gearbox mounting element 25 for a gearbox 35 is attached.
  • the pendulum arm 20 is connected to a motor unit which, in addition to the electric motor 39, includes a compensating clutch 38, a drive shaft 37 and a Fig. 2 It has a non-visible plug-in coupling for connecting the drive shaft 37 to the gearbox 35.
  • the roller unit 30 comprises the roller bodies 31, 32, each of which is attached to flanges 33, 34 of an output shaft of the gearbox 35.
  • the two roller bodies 31, 32 together form a cylinder body that is almost continuous in external view, inside of which a part of the gearbox mounting element 25 is accommodated, to which the gearbox 35 is in turn attached.
  • a first preferred embodiment of a torsional compensation coupling 40 which is in Figure 3
  • the exploded view shows the assembly comprising two coupling elements 41 and 42.
  • the plate-shaped coupling element 41 The assembly has a rectangular flange plate 41.1, which is rigidly connected to a cylindrical axis 44.
  • a retaining bracket 41.2 is arranged on each side of the flange plate 41.1.
  • the retaining brackets 41.2 serve to attach a support element 43 to which two elastomeric stop elements 45 can be attached. Because the stop elements 45 are attached to the support element 43, which can be easily detached from the coupling element 41 via screws, they are easily replaceable.
  • both support elements 43 are attached to the retaining brackets 41.2, the stop elements 45 are positioned with their surfaces parallel to each other, with a narrow gap between them.
  • a second coupling element 42 projecting, wing-like drive elements 46 are attached above and/or below a bearing receptacle 47 for the cylindrical shaft 44 in a flange plate 42.1.
  • Each drive element 46 is stiffened by a triangular plate 42.2 connected to the flange plate 42.1.
  • Wear-reducing bearing shells 48 are slid onto an end section 44.1 of the shaft 44, which is inserted into the bearing receptacle 47 on the coupling element 42, to form a sliding bearing.
  • the end section 44.1 of the shaft 44 has a groove that, when the torsional compensation coupling 40 is mounted, projects beyond the rear surface of the flange plate 42.
  • a two-part shaft locking plate 42.3 is provided, which in the assembled state engages in the groove on the end section 44.1 of the shaft 44 and thus provides the axial securing.
  • FIG. 4 Figure 1 shows the assembled torsional compensation coupling 40 in a perspective view.
  • the end section 44.1 of the shaft, which passes through the coupling element 42, is secured by a retaining ring, so that the coupling elements 41 and 42 can rotate relative to each other but are axially secured.
  • the rotation is limited to a small angle because the drive elements 46 of the coupling element 42 are located close to the The stop elements 45 of the coupling component 41 are located.
  • the drive element 46 moves in the space between the paired stop elements 45 and then, at the end of its intended pivoting movement, strikes one of the elastomeric stop elements 45.
  • the free pivoting movement then ends, and a slight elastic deformation of the stop elements 45 is still possible.
  • This small pivoting movement through a small angle is sufficient to reduce high torsional stresses during operation of the pendulum arm.
  • FIG. 5 The torsional compensation coupling 40 is shown in a side view, illustrating its small size in the Fig. 5
  • FIG. 6 shows an end section of a pendulum arm 20 according to a further embodiment in a perspective view from the side and front.
  • a torsional compensation coupling 40' according to a second embodiment is mounted between the pendulum arm 20 and the transmission mounting element 25.
  • the torsional compensation coupling 40' comprises two coupling elements, one of which is connected to the transmission mounting element 25 and the other to the pendulum arm 20.
  • One coupling element has an axis 44' which is mounted in a bearing receptacle in the other coupling element such that pivoting by a small angle of a maximum of 10° to each side is possible.
  • the pivoting is limited by the fact that the axis 44' has lateral drive elements 46' and each drive element 46' is positioned in a clearance between two elastomeric stop elements 45'.
  • the drive elements 46' each abut against one of the Stop elements 45'.
  • Tensile forces and bending moments are transmitted through the axis 44' and the bearing between the pendulum arm 20 and the gear mounting element 25.
  • This embodiment also realizes the basic principle of the invention that the coupling elements are still freely rotatable over a small angle in both possible pivot directions and do not strike each other hard at the end of the pivot range, since the coupling elements have stop surfaces on both sides with which they contact an elastomeric stop element and can be supported against each other by means of this.
  • Figure 7 shows a first coupling component 41' of the torsional compensation coupling 40' made of Figure 6
  • This includes a rectangular flange 41.1' for connection to either the pendulum arm 20 or the gear mounting element 25.
  • the flange 41.1' has a central bearing receptacle 47' designed as a sliding bearing for receiving the axle 44'.
  • Angle profiles 43' are attached laterally to opposite edges of the flange 41.1', holding cuboid rubber blocks that serve as stop elements 45'.
  • the stop elements 45' are spaced apart from each other, forming a gap 45.1'.
  • Figure 8 Figure 41 shows the coupling element 41' from the rear. As soon as the axle 44' connected to the other coupling element 42' is inserted into the bearing receptacle 47', a retaining ring 49' is placed on the end of the axle and secured there, so that tensile and compressive forces from the pendulum arm 20 can be transmitted to the roller unit via the torsional compensation coupling 40'.
  • Figure 9 shows the second coupling element 42' of the torsional compensation coupling 40' from an oblique rear view.
  • This element also has a rectangular flange 42.1' for connection either to the pendulum arm 20 or the gear mounting element 25.
  • An axle 44' is rigidly connected to the flange 42.1'.
  • Drive elements 46' are welded to the outer circumference of the axle 44' on diametrically opposite sides. can be positioned in the spaces 45.1' of the other coupling element 41'.
  • Figure 10 shows parts of the pendulum arm 20 and the roller unit with a third embodiment of a torsional compensation coupling 50 in a perspective view.
  • a coupling element 51 is connected to the gear mounting element 25 and is designed as a flange-like plate.
  • a recess in the center serves for the routing of signal and power lines.
  • a self-aligning bearing 55 is formed at the upper edge.
  • a guide pin 53 is provided in the lower area.
  • the pendulum arm 20 terminates with a flange-like coupling element 52. This also has a self-aligning bearing 54 at its upper edge.
  • a pivot axis 56 connects the two self-aligning bearings 54 and 55.
  • a circular arc-shaped guide track 58 is formed, into which the guide pin 53 of the coupling element 51 engages.
  • the possible swivel angle is thus positively limited by the guide pin 53 guided in the guide track 59.
  • FIG. 11 A fourth embodiment of a torsional compensation coupling 60 is shown in perspective view.
  • Two flange-like coupling elements 61, 62 are provided, which are to be connected to the pendulum arm and the gear mounting element, respectively. They can be pivotally coupled to each other via an axle 64 on coupling element 62 and a bearing bushing 65 on coupling element 61. Tensile and compressive forces can be transmitted from the pendulum arm 20 to the roller unit 30 via this connection. Rotation is limited by a positive fit between the coupling elements 61, 62. To achieve this, both coupling elements 61, 62 have an X-shaped web structure 66, 67.
  • the X-shaped web structure 67 on coupling element 61 is narrower than the X-shaped web structure 66 on coupling element 62. This allows the web structures 66, 67 to interlock. The webs are pivoted against each other until the web structure 66 laterally abuts the webs in the web structure 67. To dampen the impact, at least one of the web structures 66, 67 is provided with stop elements 63 at the contact points. In the embodiment shown in Fig. 11 These stop elements 63 are attached laterally on the outside of the web structure 67 on the coupling element 61.
  • Fig. 12 The coupling element 62 with the web structure 66 and the central axis 64 is shown from the front.
  • FIG. 13 A fifth embodiment of a torsional compensation coupling 70 is shown in perspective view. It features two flange-like coupling elements 71 and 72, each with a bearing bushing 77 and an axle 75, respectively, at its center. The central axle 75 is inserted into the centrally located bearing bushing 77.
  • This connection which allows the coupling elements 71 and 72 to pivot relative to each other, enables the transmission of tensile and compressive forces from the pendulum arm 20 to the roller unit 25.
  • An elastomeric stop element 76 is inserted between several corner regions of the rectangular flanges of the coupling elements 71 and 72. The four stop elements 76 pivotally connect the coupling elements 71 and 72 to one another.
  • the swivel angle of the rotation between the coupling element components 71, 72 or the pendulum arm 20 and the roller unit 25 is again positively limited by guide pins 73 on the coupling element 71 engaging in guide cams 74 on the coupling element 72.
  • the in Fig. 14 The sixth embodiment of a torsional compensation coupling 90, shown in perspective view, comprises two annular coupling elements 91, 92. These are connected to each other via a ball bearing slewing ring 93, so that the roller unit 30 can pivot relative to the pendulum arm 20.
  • the pivoting movement is limited by axially projecting drive elements 95 on coupling element 91, each positioned between a pair of stop elements 94 on coupling element 92. intervene.
  • the stop elements 94 and/or the drive elements 95 are preferably covered with rubber elements on their mutual contact surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Machines (AREA)

Claims (13)

  1. Bras oscillant (20) pour un compacteur à rouleaux (100) destiné à compacter des déchets (203),
    comprenant au moins :
    - une articulation pivotante (11) agencée à une extrémité supérieure pour rattacher de manière librement pivotante le bras oscillant (20) à un bras porteur (10) du compacteur à rouleaux (100) ;
    - un élément de support de transmission (25) à une extrémité inférieure du bras oscillant (20) ;
    - une unité à rouleaux (30) qui est montée sur l'élément de support de transmission (25) et qui comporte au moins deux corps de rouleaux rotatifs (31, 32) qui sont agencés de part et d'autre de l'élément de support de transmission (25),
    caractérisé
    - en ce qu'à l'extrémité du bras oscillant (20) et/ou à l'intérieur du bras oscillant (20) est agencé au moins un accouplement à compensation de torsion (40 ; 40', 50 ; 60 ; 70 ; 90) qui comprend au moins deux éléments partiels d'accouplement (41, 42 ; 41' ; 42', 51, 52 ; 61, 62 ; 71, 72 ; 91, 92) pouvant être couplés l'un à l'autre, qui peuvent pivoter l'un par rapport à l'autre autour d'un axe de compensation, et
    - en ce que les éléments partiels d'accouplement (41, 42 ; 41' ; 42', 51, 52 ; 61, 62 ; 71, 72 ; 91, 92) présentent, dans les deux direction de pivotement possibles autour de l'axe de compensation, des surfaces de butée actives par l'intermédiaire desquelles ils peuvent s'appuyer les uns contre les autres, et
    - en ce qu'entre les surfaces de butée en contact des éléments partiels d'accouplement (41, 42 ; 41' ; 42', 51, 52 ; 61, 62 ; 71, 72 ; 91, 92) au moins un élément de butée élastomère (45, 45' ; 55 ; 65 ; 75 ; 95) est actif.
  2. Bras oscillant (20) selon la revendication 1, caractérisé en ce que l'au moins un élément de buté élastomère (45, 45' ; 55 ; 65 ; 75 ; 95) est relié de manière fixe à l'une des deux surfaces de butée qui se soutiennent mutuellement.
  3. Bras oscillant (20) selon la revendication 1 ou 2, caractérisé en ce que l'accouplement à compensation de torsion (40) comprend au moins :
    - un premier élément d'accouplement (41) avec une plaque à bride (41.1) et un axe central (44) sur lequel sont montés au moins deux éléments de butée élastomères (45) à distance l'un de l'autre ;
    - un deuxième élément d'accouplement (42) avec une plaque à bride (42.1) sur laquelle est monté au moins un élément d'entraînement (46) en saillie radialement et qui présente une douille de palier (47) pour recevoir l'axe (44),
    l'axe (44) de l'un des éléments partiels d'accouplement (42) étant guidé de manière pivotante dans la douille de palier (47) de l'autre élément partiel d'accouplement (41) et l'élément d'entraînement (46) de l'un des éléments partiels d'accouplement (42) étant agencé entre les éléments de butée élastomères (45) de l'autre élément partiel d'accouplement (41).
  4. Bras oscillant (20) selon la revendication 1, caractérisé en ce que l'accouplement à compensation de torsion (40') comprend au moins :
    - un premier élément partiel d'accouplement (41') avec une plaque à bride (41.1') et un axe central (44') sur lequel est monté au moins un élément d'entraînement (46') faisant saillie radialement,
    - un deuxième élément partiel d'accouplement (42') avec une plaque à bride (42.1') sur laquelle sont montés au moins deux éléments de butée élastomères (45') à distance l'un de l'autre et qui présente une douille de palier (47') pour recevoir l'axe (44'),
    l'axe (44') de l'un des éléments partiels d'accouplement (42') étant guidé de manière pivotante dans la douille de palier (47') de l'autre élément partiel d'accouplement (41) et l'élément d'entraînement (46') de l'un des éléments partiels d'accouplement (42') étant agencé entre les éléments de butée élastomères (45') de l'autre élément partiel d'accouplement (41').
  5. Bras oscillant (20) selon la revendication 1, caractérisé
    - en ce que l'accouplement à compensation de torsion (50) comprend des éléments partiels d'accouplement (51, 52) dans lesquels un palier oscillant (54 ; 55) avec un axe commun (56) est réalisé respectivement dans la zone de bord périphérique supérieure ou inférieure, et
    - en ce qu'une goupille de guidage (53) est prévue sur au moins un élément partiel d'accouplement (51) dans une position espacée du palier oscillant (54 ; 55), et au moins une coulisse de guidage (58) en forme d'arc de cercle est réalisée sur l'autre élément partiel d'accouplement (52) respectif, dans laquelle la goupille de guidage (53) est guidée par complémentarité de forme.
  6. Bras oscillant (20) selon la revendication 1, caractérisé
    - en ce que l'accouplement à compensation de torsion (60) comprend des éléments partiels d'accouplement de type bride (61, 62) qui sont couplés de manière pivotante l'un à l'autre par l'intermédiaire d'une douille de palier (65) sur l'un des éléments partiels d'accouplement (61) et d'un axe (64) s'engageant dans celle-ci sur l'autre élément partiel d'accouplement (62),
    - en ce que les deux éléments partiels d'accouplement (61, 62) possèdent chacun, sur leurs côtés tournés l'un vers l'autre, une structure d'entretoises en forme de X (66, 67), la structure d'entretoises en forme de X (67) de l'un des élément partiels d'accouplement (61) étant plus étroite que la structure d'entretoises en forme de X (66) de l'autre élément partiel d'accouplement (62), les structures d'entretoises en forme de X (66, 67) s'emboîtant l'une dans l'autre et pouvant pivoter l'une par rapport à l'autre jusqu'à ce que les entretoises de la structure d'entretoises (66) s'appuient latéralement contre la structure d'entretoises (67) et
    - en ce que des éléments de butée élastomères (63) sont montés sur le éléments partiels d'accouplement (61, 62) au niveau des points de contact entre les structures d'entretoises (66, 67).
  7. Bras oscillant (20) selon la revendication 1, caractérisé
    - en ce que l'accouplement à compensation de torsion (70) comprend des éléments partiels d'accouplement de type bride (71, 72) qui sont couplés de manière pivotante l'un à l'autre par l'intermédiaire d'une douille de palier (75) sur l'un des éléments partiels d'accouplement (71) et d'un axe (74) s'engageant dans celle-ci sur l'autre élément partiel d'accouplement (72),
    - en ce qu'entre plusieurs zones d'angle des brides rectangulaires des éléments partiels d'accouplement 71, 72 est inséré respectivement un élément de butée 76, grâce auquel les éléments partiels d'accouplement 71, 72 sont reliés entre eux de manière articulée,
    - en ce que l'angle de pivotement entre les éléments partiels d'accouplement (71, 72) est limité par complémentarité de forme par des goupilles de guidage (73) sur l'un des éléments partiels d'accouplement (71), qui s'engagent dans des coulisses de guidage (74) sur l'autre élément partiel d'accouplement (72).
  8. Bras oscillant (20) selon la revendication 1, caractérisé en ce que l'accouplement à compensation de torsion (90) est réalisé avec deux éléments partiels d'accouplement annulaires (91, 92) et une couronne rotative à billes (93) insérée entre ceux-ci, le mouvement de pivotement entre les éléments partiels d'accouplement (91, 92) étant limité par au moins un élément d'entraînement (95) en saillie axialement sur un élément partiel d'accouplement (91), qui s'engage entre une paire d'éléments de butée (94) sur l'autre élément partiel d'accouplement (92).
  9. Bras oscillant (20) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un capteur ou interrupteur de proximité est monté sur au moins un élément partiel d'accouplement (41, 42 ; 41' ; 42', 51, 52 ; 61, 62 ; 71, 72 ; 91, 92).
  10. Bras oscillant (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments partiels d'accouplement (41, 42 ; 41' ; 42', 51, 52 ; 61, 62 ; 71, 72 ; 91, 92) peuvent pivoter les uns par rapport aux autres autour d'un axe de compensation s'étendant parallèlement à la direction longitudinale du bras oscillant (20).
  11. Compacteur à rouleaux (100) destiné à compacter des déchets (30), comprenant au moins :
    - une unité de trépied fixe (12) ;
    - un bras porteur (10) relié à l'unité de trépied (12) par l'intermédiaire d'une articulation (15) et d'au moins un élément d'actionnement, et
    - un bras oscillant (20) avec une unité à rouleaux (30) et un accouplement à compensation de torsion (40 ; 40', 50 ; 60 ; 70 ; 90) selon l'une quelconque des revendications précédentes, qui est relié au bras porteur (10) par l'intermédiaire de l'articulation pivotante (11).
  12. Compacteur à rouleaux (100) selon la revendication 11, caractérisé en ce que l'accouplement à compensation de torsion (40 ; 40', 50 ; 60 ; 70 ; 90) est agencé entre l'élément de support de transmission (25) et le bras oscillant (20).
  13. Compacteur à rouleaux (100) selon la revendication 11, caractérisé en ce que l'accouplement à compensation de torsion (40 ; 40', 50 ; 60 ; 70 ; 90) est agencé entre l'articulation (15) et le bras oscillant (20).
EP24152812.4A 2023-01-19 2024-01-19 Bras oscillant pour un compresseur à rouleaux pour comprimer des déchets Active EP4403345B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102023101271.1A DE102023101271A1 (de) 2023-01-19 2023-01-19 Pendelarm für einen Walzenverdichter zum Verdichten von Abfallstoffen

Publications (2)

Publication Number Publication Date
EP4403345A1 EP4403345A1 (fr) 2024-07-24
EP4403345B1 true EP4403345B1 (fr) 2025-11-05

Family

ID=89716031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP24152812.4A Active EP4403345B1 (fr) 2023-01-19 2024-01-19 Bras oscillant pour un compresseur à rouleaux pour comprimer des déchets

Country Status (2)

Country Link
EP (1) EP4403345B1 (fr)
DE (1) DE102023101271A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422795A (en) * 1979-04-09 1983-12-27 Berrange Aubrey R Compactor
DE3023508C1 (de) 1980-06-24 1981-12-10 Heinz 4474 Lathen Bergmann Vorrichtung zum Verdichten von aus Verpackungsmaterial und leicht preßbaren Abfällen bestehendem Müll
DE3326007A1 (de) 1982-10-15 1984-04-19 Heinz 4474 Lathen Bergmann Vorrichtung zum verdichten von aus verpackungsmaterial und leicht pressbaren abfaellen bestehenden muell
DE202011000241U1 (de) 2011-02-01 2011-06-01 Heinz Bergmann Maschine für die Abfallwirtschaft e.K., 49762 Walzenverdichtervorrichtung zum Verdichten von Abfällen und Wertstoffen
EP2808161B1 (fr) 2013-05-31 2016-09-28 Heinz Bergmann e.Kfm. Maschinen für die Abfallwirtschaft Dispositif de compacteur à rouleaux pour le compactage de déchets et de matières recyclables
DE102019100001A1 (de) * 2019-01-01 2020-07-02 Heinz Bergmann Maschinen für die Abfallwirtschaft OHG Pendelarm für einen Walzenverdichter zum Verdichten von Abfallstoffen in einem oben offenen Container
JP2021025562A (ja) * 2019-08-02 2021-02-22 Nok株式会社 カップリング
EP3885597B1 (fr) * 2020-03-25 2024-07-10 Flender GmbH Embrayage et méthode de détection sans contact de l'usure de l'embrayage

Also Published As

Publication number Publication date
DE102023101271A1 (de) 2024-07-25
EP4403345A1 (fr) 2024-07-24

Similar Documents

Publication Publication Date Title
EP2301506B1 (fr) Rouleau supplémentaire installé dans un cadre rigide
EP1275535B1 (fr) Transmission, en particulier pour un ensemble de barres stabilisatrices destiné au chassis d' automobile
DE102009026092A1 (de) Crimpzange
DE102009024308A1 (de) Antriebsanordnung für einen länglichen Schwingkörper
EP2250117A1 (fr) Grue à chenilles, ainsi que procédé de réglage d'une position de man uvre au sol d'une grue à chenilles de ce type
DE102020125969A1 (de) Linearer ausdehnungsmechanismus
EP3105433B1 (fr) Mécanisme à manivelle multiarticulé d'un moteur à combustion interne ainsi que moteur à combustion interne correspondant
EP4403345B1 (fr) Bras oscillant pour un compresseur à rouleaux pour comprimer des déchets
EP2808161B1 (fr) Dispositif de compacteur à rouleaux pour le compactage de déchets et de matières recyclables
EP0562598A1 (fr) Assemblage à rotule entre deux véhicules articulés
DE2730959A1 (de) Zuspannvorrichtung fuer reibungsbremsen, insbesondere von schienenfahrzeugen
DE3149411A1 (de) Ausleger eines ladebaums fuer das verladen von guetern
DE102005021460A1 (de) Verstelleinrichtung für Kupplungen und Getriebebremsen, insbesondere von Kraftfahrzeugen zum Verstellen eines einen Auflage- und Drehpunkt eines gebogenen Hebels bildenden Auflagerelements
EP1982085A2 (fr) Arbre de longueur variable
EP3677351B1 (fr) Bras de pendule pour un compresseur à rouleaux permettant de comprimer des déchets dans un conteneur ouvert
EP2369958B1 (fr) Double entraînement pour meubles
DE112007002890T5 (de) Lenkvorrichtung mit einer Kugelumlaufspindel
EP0924338B1 (fr) Unité d' entraínement avec support de couple mobil pour rouleaux
DE202008016051U1 (de) Doppelantrieb für Möbel
EP0122965B1 (fr) Portail coulissant
EP2252756A1 (fr) Porte à vantail d'issue de secours stabilisable
DE102018122952A1 (de) Regalbediengerät
DE19839384C1 (de) Zugmaschine
DE102022112753B4 (de) Vorrichtung zum Beeinflussen eines Faltvorgangs einer faltbaren Plattform, faltbare Plattform welche die Vorrichtung umfasst
AT354195B (de) Universalgelenk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20250114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20250527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: F10

Free format text: ST27 STATUS EVENT CODE: U-0-0-F10-F00 (AS PROVIDED BY THE NATIONAL OFFICE)

Effective date: 20251105

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502024000353

Country of ref document: DE