EP4348823A1 - Unité d'entraînement électrique pour un outil motorisé à main - Google Patents

Unité d'entraînement électrique pour un outil motorisé à main

Info

Publication number
EP4348823A1
EP4348823A1 EP22732408.4A EP22732408A EP4348823A1 EP 4348823 A1 EP4348823 A1 EP 4348823A1 EP 22732408 A EP22732408 A EP 22732408A EP 4348823 A1 EP4348823 A1 EP 4348823A1
Authority
EP
European Patent Office
Prior art keywords
motor
drive unit
hall
control unit
interrupts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22732408.4A
Other languages
German (de)
English (en)
Inventor
Torsten Engler
Michael Herzig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP4348823A1 publication Critical patent/EP4348823A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0077Characterised by the use of a particular software algorithm

Definitions

  • the present invention relates to an electric drive unit with a brushless DC motor and with a switching bridge for sensor-controlled commutation of the DC motor by means of at least one Hall sensor included in the DC motor, the Hall sensor being connected to the switching bridge and set up to detect a rotation angle of the DC motor.
  • the drive unit also has a control unit which is connected to the switching bridge and by means of which a setpoint speed for the DC motor can be specified.
  • the present invention also relates to a method for determining the actual speed of a brushless DC motor of an electric drive unit, the drive unit being equipped with a brushless DC motor and with a switching bridge for sensor-controlled commutation of the DC motor by means of at least one Hall sensor included in the DC motor, the Hall sensor having connected to the switching bridge and set up to detect an angle of rotation of the DC motor, and wherein the drive unit also has a control unit connected to the switching bridge, by means of which a target speed for the DC motor can be specified.
  • Brushless DC motors are typically referred to as BLDC motors and are commutated using a jumper. As part of the sensor-controlled commutation, this is done using at least one Hall sensor whose signal controls the switching bridge.
  • the object is achieved in that the control unit is set up to process Hall interrupts that are dependent on the angle of rotation and are caused by the at least one Hall sensor, and on the basis of time interrupts that are independent of the angle of rotation and the Hall interrupts that are dependent on the angle of rotation determine the DC motor.
  • the DC motor is designed as a 3-phase DC motor with 3 Hall sensors.
  • the invention includes the knowledge that a precise determination of the actual speed of DC motors, in particular with regard to electric handheld power tools, has not yet been satisfactorily solved in the prior art.
  • the electric drive unit according to the invention creates a basis for such a precise determination of the actual speed, in particular at low speeds of the DC motor.
  • control unit is designed to count how many Hall interrupts occur in a clock period that is defined by two consecutive time interrupts. It has proven to be advantageous if the determined actual speed of the DC motor corresponds to the quotient of counted Hall interrupts, which represent the angle of rotation, and the clock period.
  • control unit is designed to determine an offset time period between that Hall interrupt which immediately follows a time interrupt in terms of time and this time interrupt.
  • control unit can be designed to determine an offset time period between that Hall interrupt which immediately precedes a time interrupt and this time interrupt.
  • control unit is designed to correct the timing of the clock period using the offset period. It has turned out to be advantageous if the control unit is designed to additionally correct the clock period by means of the respectively preceding offset period.
  • a corrected clock period may be referred to as a reference period. It has proven to be advantageous if the offset period and/or the previous offset period can be stored in the control unit and/or can be read out from the control unit.
  • control unit is designed to set the determined speed of the DC motor as a quotient of a constant motor-specific sector angle and the offset period if the respective clock period is free of a Hall interrupt.
  • the time interrupt has a constant clock frequency.
  • the clock frequency of the time interrupt is between 0.5 kHz and 1.5 kHz. It turned out to be advantageous if the Clock frequency of the time interrupt is 1 kHz, ie a time interrupt is generated in the control unit every millisecond.
  • control unit is designed to first measure and/or correct the offset period and then to process the Hall interrupts that are dependent on the angle of rotation.
  • all interrupts are deactivated during a memory read operation, for example for reading out an offset time period and/or a preceding offset time period from the control unit.
  • a Hall interrupt that occurs is given a higher priority than the memory read operation. It has proven to be advantageous if a Hall interrupt that occurs interrupts the memory reading process.
  • the control unit is designed to measure and/or compensate for a delay which arises as a result of a Hall interrupt which interrupts the memory reading process.
  • the control unit is designed to use a memory register assigned to the Hall interrupts to detect any unconsidered switching operation in the switching bridge and, if necessary, to repeat and/or compensate for a determination of the offset period.
  • control unit is designed for block commutation of the DC motor.
  • the control unit can be provided as an integrated chip, for example as an ASIC or the like. It has proven to be advantageous if the drive unit is provided as a cordless screwdriver, rotary hammer or combination hammer.
  • the object is achieved in that the actual speed of the DC motor is determined on the basis of time interrupts that are independent of the angle of rotation and Hall interrupts that are dependent on the angle of rotation, the control unit being set up to cause Hall interrupts that are dependent on the angle of rotation and caused by at least one Hall sensor become to process.
  • the method according to the invention can be further developed in a corresponding manner by the feature described with reference to the drive unit, and vice versa. For example, if it is described with regard to the drive unit that the control unit is designed to correct the clock period using the offset period, a corresponding method feature is correcting the clock period using the offset period using the control unit.
  • FIG. 1 shows a preferred exemplary embodiment of an electric drive unit
  • FIG. 2 shows a first diagram which represents the function of the control unit
  • FIG. 3 shows a second diagram which represents the function of the control unit; and
  • FIG. 4 shows a third diagram which represents the function of the control unit.
  • Fig. 1 shows, in a highly schematic form, a preferred embodiment of an electric drive unit 100 according to the invention.
  • the drive unit 100 is equipped with a brushless DC motor 10, present in the form of a 3-phase DC motor with 3 pairs of motor poles and three Hall sensors 1, 2, 3.
  • the DC motor 10 has a constant motor specific sector angle SW (angle between adjacent stator elements) of 60 degrees.
  • the drive unit 100 is also equipped with a switching bridge 20 for sensor-controlled commutation of the DC motor 10.
  • the switching bridge 20 is electrically connected to the Hall sensors 1, 2, 3, as a result of which the DC motor 10 can be commutated depending on the angle of rotation DW.
  • the drive unit 100 is also equipped with a control unit 30, by means of which a setpoint speed for the DC motor 10 can be specified.
  • a typical setpoint speed for an electric drive unit 100 of an electric handheld power tool, not shown here, is over 5,000 rpm in normal operation, in particular over 6,000 rpm, particularly preferably over 8,000 rpm.
  • the control unit 30 is set up to process Hall interrupts H1 . .. Z3 (cf. Fig. 2 - 4) and the angle of rotation-dependent Hall interrupts H1 ... H3 to determine an actual speed of the DC motor 10.
  • FIGS. 2-4 each of which shows a diagram explaining the function of the control unit 30 of FIG. 2 symbolizes the function of the control unit 30 at an actual speed of the DC motor 10 of well over 5000 rpm
  • FIG 4 shows the function of the control unit 30 at an actual speed of the DC motor 10 of well below 5000 rpm.
  • the control unit 30 is set up, for example, to generate the time interrupts Z1 . . . Z3 with a constant clock frequency of 1 kHz, ie a new time interrupt is generated every millisecond.
  • the time interrupts Z1 . Interrupt Z2 and the first time interrupt Z1 is spanned, and the second clock period TZ2, is spanned by the third time interrupt Z3 and the second time interrupt Z2, each of equal size.
  • FIG. 2 symbolizes the function of the control unit 30 at an actual speed of the DC motor 10 of well over 5000 rpm.
  • the Hall interrupts H1...H3 occur with high frequency, since the mechanical rotation of the DC motor 10 is higher in one millisecond than the "electrical rotation" (for each 60 degrees of mechanical rotation, one of the Hall sensors 1, 2, 3 its switching status).
  • the control unit 30 is designed to first count how many Hall interrupts H1 . . . H3 occur in a respective clock period TZ1, TZ2. In the example in FIG. 2, these are exactly three Hall interrupts H1...H3 in the first clock period TZ1 and exactly three Hall interrupts H1...H3 in the second clock period TZ2.
  • the actual speed of the DC motor 10 corresponds to the quotient of counted Hall interrupts H1 . . . H3, which represent the angle of rotation DW, and a respective clock period TZ1, TZ2.
  • control unit 30 is designed to correct the timing of the clock period TZ1 by an offset period DT1.
  • the offset time period is the time period between that Hall interrupt which immediately follows a time interrupt in time and this time interrupt itself.
  • Three offset time periods DT1...DT3 are accordingly determined in the time profile of FIG.
  • a first offset period DT1 is spanned between the first time interrupt Z1 and the Hall interrupt H3 which is immediately thereafter
  • a second offset time period DT2 is spanned between the second time interrupt Z2 and the Hall interrupt H3' which is immediately thereafter
  • a third offset time period DT3 between the third time interrupt Z3 and the third Hall interrupt H3 which is immediately behind.
  • the control unit 30 is also designed to additionally correct the clock period using the respectively preceding offset period.
  • the current third offset period DT3 i.e. furthest to the right in the diagram in FIG. 2
  • the second offset period DT2 preceding it are taken into account for the correction of the current, second clock period TZ2.
  • a current reference period BZ for the clock period TZ2 is calculated by the formula:
  • the actual speed DZ of the DC motor 10 can be calculated using the formula:
  • DW H1...H3
  • the three Hall interrupts H1 . . . H3 correspond to an angle of rotation DW of 180 degrees in relation to the exemplary embodiment in FIG. 1 (this corresponds to a triple sector angle of the DC motor of 60 degrees).
  • a first offset period DT1 is spanned between the first time interrupt Z1 and the Hall interrupt H1 which is immediately behind in terms of time, a second offset period DT2 between the second time interrupt Z2 and the Hall interrupt HT which is immediately behind in terms of time, and a third offset period DT3 between the third time interrupt Z3 and the Hall interrupt H2 which is immediately behind in terms of time.
  • a current reference period BZ for the clock period TZ2 is calculated using the formula:
  • the current reference period BZ is calculated again, with the current (here third) offset period DT3 being stored as the preceding value.
  • the following calculation rule results for the first cycle time period TZ1, which precedes the second cycle time period TZ2:
  • the actual speed DZ of the DC motor 10 can be calculated using the formula:
  • DZ DW (H1...H2) / BZ, Where DW (H1 . . . H2) corresponds to that angle of rotation which is represented by the one Hall interrupt H1' in the first clock period TZ1 or by the two Hall interrupts H1", H2 in the clock period TZ2.
  • the Hall interrupt HT corresponds to a rotation angle DW of 60 degrees.
  • the Hall interrupts H1", H2 correspond to an angle of rotation DW of 120 degrees (this corresponds to twice the sector angle of the DC motor of 60 degrees).
  • control unit 30 is advantageously designed to set the determined actual speed of the DC motor as a quotient of a constant motor-specific sector angle SW and the offset period DT1 if the respective clock period (clock period DT1 in Fig. 4) is free of a Hall interrupt is.
  • the actual speed DZ of the DC motor 10 in the clock period TZ1 can be calculated using the formula:
  • the sector angle SW of the DC motor is 60 degrees.
  • the actual speed DZ of the DC motor 10 in the clock period TZ1 can be calculated using the formula:
  • the Hall interrupt HT corresponds to a rotation angle DW of 60 degrees.
  • a current reference period BZ for the clock period TZ2 is calculated by the formula:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Unité d'entraînement électrique comportant un moteur CC sans balais et comportant un pont de commutation pour la commutation commandée par capteur du moteur CC au moyen d'au moins un capteur à effet Hall compris dans le moteur CC, le capteur à effet Hall étant connecté au pont de commutation et étant conçu pour capturer un angle de rotation du moteur CC, et l'unité d'entraînement comprenant également une unité de commande qui est connectée au pont de commutation et qui peut être utilisée pour prédéfinir une vitesse cible pour le moteur CC, l'unité de commande étant conçue pour traiter des interruptions à effet Hall qui dépendent de l'angle de rotation et sont provoquées le ou les capteurs à effet Hall et pour déterminer une vitesse réelle du moteur CC sur la base d'interruptions temporelles qui sont indépendantes de l'angle de rotation et des interruptions à effet Hall qui dépendent de l'angle de rotation.
EP22732408.4A 2021-05-27 2022-05-23 Unité d'entraînement électrique pour un outil motorisé à main Pending EP4348823A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21176289.3A EP4096087A1 (fr) 2021-05-27 2021-05-27 Unité d'entraînement électrique pour une machine portative
PCT/EP2022/063846 WO2022248383A1 (fr) 2021-05-27 2022-05-23 Unité d'entraînement électrique pour un outil motorisé à main

Publications (1)

Publication Number Publication Date
EP4348823A1 true EP4348823A1 (fr) 2024-04-10

Family

ID=76159368

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21176289.3A Withdrawn EP4096087A1 (fr) 2021-05-27 2021-05-27 Unité d'entraînement électrique pour une machine portative
EP22732408.4A Pending EP4348823A1 (fr) 2021-05-27 2022-05-23 Unité d'entraînement électrique pour un outil motorisé à main

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21176289.3A Withdrawn EP4096087A1 (fr) 2021-05-27 2021-05-27 Unité d'entraînement électrique pour une machine portative

Country Status (3)

Country Link
EP (2) EP4096087A1 (fr)
CN (1) CN117121364A (fr)
WO (1) WO2022248383A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845626A1 (de) * 1998-10-05 2000-04-06 Papst Motoren Gmbh & Co Kg Elektronisch kommutierter Motor
EP1087232B1 (fr) * 1999-09-22 2008-01-09 ebm-papst St. Georgen GmbH & Co. KG Procédé pour la mesure d'une information fréquentielle, en particulier l'information de vitesse de rotation, et dispositif pour l'exécution d'un tel procédé
CA2421129C (fr) * 2000-08-30 2009-04-14 Papst-Motoren Gmbh & Co. Kg Procede de commande et de reglage du courant dans la machine a courant continu d'un ventilateur
KR20160007780A (ko) * 2014-06-27 2016-01-21 삼성전자주식회사 모터 구동 장치 및 그 제어방법
JP6901329B2 (ja) * 2017-06-15 2021-07-14 株式会社マキタ 電動作業機

Also Published As

Publication number Publication date
EP4096087A1 (fr) 2022-11-30
WO2022248383A1 (fr) 2022-12-01
CN117121364A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
DE69914242T2 (de) Steuervorrichtung für einen bürstenlosen Motor und Maschine mit bürstenlosem Motor
DE19549882B4 (de) Steuervorrichtung für eine elektrische Servolenkung
DE10261509A1 (de) Elektrowerkzeug
DE102013200602A1 (de) Elektrowerkzeug mit verbesserter Bedienbarkeit
DE10326606A1 (de) Verfahren zur Kommutierung eines bürstenlosen Gleichstrommotors
DE102005009341A1 (de) Schaltungsananordnung und Verfahren zur Steuerung eines Elektromotors, insbesondere einer Waschmaschine
DE10054594A1 (de) Vorrichtung zum Erfassen der Rotorposition in einem bürstenlosen Gleichstrommotor
EP1734648B1 (fr) Excitation asymétrique d'un moteur électrique sans capteur et sans balai
EP2347504B1 (fr) Dispositif de commande destiné à un moteur et procédé pour commander ce moteur
EP2221412A1 (fr) Procédé de surveillance d'un chargement d'un tambour de lavage et/ou d'un degré de séchage de pièces de linge et agencement de commutation correspondant
DE102014212554A1 (de) Diagnose eines Antriebssystems sowie Antriebssystem
DE60208052T2 (de) Steuereinrichtung für die werkzeugabnutzung und/oder werkzeugausfall für ein maschinenwerkzeug
EP4348823A1 (fr) Unité d'entraînement électrique pour un outil motorisé à main
EP3864746B1 (fr) Procédé de détermination d'une position de rotor d'un moteur à courant continu sans balai
WO2012038274A2 (fr) Procédé et dispositif de détermination, sans l'aide de capteur, d'une position d'induit d'une machine électrique
DE112016003094T5 (de) Elektrowerkzeug und Verfahren zum Antreiben eines bürstenlosen Motors des Elektrowerkzeuges
EP1679777A1 (fr) Dispositif pour la détection du blocage d'un moteur commuté à courant continue basé sur les ondulations du courant
EP2596579A2 (fr) Procédé et dispositif pour reconnaître, sans capteur, la position d'une machine électrique à commutation électronique
EP1219011B1 (fr) Moteur a commutation electronique
WO2016116250A1 (fr) Procédé pour faire fonctionner un moteur électrique d'un outil électrique
WO2023232446A1 (fr) Commutation de bloc sans capteur
WO2020064536A1 (fr) Procédé pour déterminer une valeur de correction décrivant une différence angulaire entre une position supposée et une position réelle un axe d, unité de commande et onduleur
DE102008041549A1 (de) Verfahren zur Erfassung der Rotorlage einer elektrischen Maschine und Vorrichtung hierzu
DE102014221406A1 (de) Verfahren zum Ermitteln eines mechanischen Drehwinkels eines Rotors aufgrund eines elektrischen Drehwinkels
DE10300634A1 (de) Verfahren zur Steuerung eines elektronisch kommutierten Gleichstrommotors

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR