EP4348797A1 - Procede de gestion energetique d'une batterie de servitude au lithium-ion - Google Patents

Procede de gestion energetique d'une batterie de servitude au lithium-ion

Info

Publication number
EP4348797A1
EP4348797A1 EP22717241.8A EP22717241A EP4348797A1 EP 4348797 A1 EP4348797 A1 EP 4348797A1 EP 22717241 A EP22717241 A EP 22717241A EP 4348797 A1 EP4348797 A1 EP 4348797A1
Authority
EP
European Patent Office
Prior art keywords
voltage
battery
minimum
maximum
setpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22717241.8A
Other languages
German (de)
English (en)
Inventor
Yannick BOTCHON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
Stellantis Auto SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stellantis Auto SAS filed Critical Stellantis Auto SAS
Publication of EP4348797A1 publication Critical patent/EP4348797A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the invention relates to an energy management method for a lithium-ion service battery of a vehicle, in particular a motor vehicle, as well as a motor vehicle equipped with at least one computer arranged to put in implements the method according to the invention.
  • Motor vehicles generally include lead batteries connected to the on-board network, also called service batteries, to supply the equipment of these vehicles.
  • lead-acid batteries generally comprising a voltage of 12V, are commonly used because they carry a reduced cost.
  • Lead-acid batteries weighing approximately 20 to 25 kg are however relatively heavy compared to the quantity of electrical energy stored.
  • they are currently subject to a derogation from European Commission legislation which prohibits lead. This derogation could be removed one day, prohibiting the sale of these batteries, which obliges manufacturers to provide replacement solutions.
  • Lithium-ion batteries with a voltage level close to the current one by combining four cells in series could replace lead-acid batteries.
  • this type of batteries poses problems related to the operating temperature. It is in fact not possible, when recharging such a lithium-ion battery, to apply to its terminals a voltage equivalent to that which it is possible to apply to the terminals of a lead-acid battery. , which lead battery accepts for example a voltage of 15.2V. Applying such a voltage of 15.2V to the terminals of a lithium-ion battery over a fairly long period would overheat the latter and rapidly degrade its performance.
  • the object of the invention is to overcome the drawbacks of the prior art by proposing a method for energy management of a lithium-ion service battery making it possible to avoid overheating of the latter.
  • the invention thus relates, in its broadest sense, to a method for energy management of a lithium-ion service battery belonging to a low-voltage network of a vehicle, the method comprising the steps executed by at least one computer of: determining, as a function of a measured battery temperature, a maximum stress voltage and a minimum stress voltage acceptable for the battery; determining a voltage setpoint to be applied to the terminals of the battery to maintain a predetermined state of charge, the voltage setpoint being a function of the measured battery temperature; determining a secure voltage setpoint by limiting said voltage setpoint by said maximum stress voltage and said minimum stress voltage; transmitting said secure voltage setpoint to a voltage generator arranged to drive a voltage across the terminals of the battery in accordance with the secure voltage setpoint.
  • the secure voltage setpoint transmitted to the voltage generator is limited by the minimum and maximum constraint voltages determined according to a measured battery temperature.
  • the risk of excessive heating of the battery which could be due to excessive voltage applied by the voltage generator to the terminals of the battery is eliminated.
  • the method according to the invention may have one or more additional characteristics among the following, considered individually or according to all technically possible combinations.
  • the method comprises a step of applying a correction voltage to the secure voltage setpoint, the correction voltage being a function of a voltage variation measured in the low voltage network .
  • the maximum constraint voltage is equal to a no-load voltage of the battery + (an internal resistance of the battery * a maximum safe battery current); the minimum stress voltage is equal to the battery no-load voltage + (the internal resistance of the battery * a safe minimum battery current).
  • the step of determining a maximum stress voltage and a minimum stress voltage acceptable for the battery comprises the sub-steps of: determining, as a function of the measured battery temperature, a maximum battery current and a minimum battery current acceptable by the battery, determining a maximum secure battery current and a minimum secure battery current, the maximum secure battery current being equal to: the maximum battery current determined during the sub-step of determining a maximum battery current and a minimum battery current acceptable by the battery when the determined maximum battery current is between a minimum threshold battery current and a maximum threshold battery current; at the minimum threshold battery current when the determined maximum battery current is less than the minimum threshold battery current; to the maximum threshold battery current when the determined maximum battery current is greater than the maximum threshold battery current.
  • the secure minimum battery current being equal to: the determined minimum battery current when the determined minimum battery current is between the minimum threshold battery current and the maximum threshold current; at the minimum threshold battery current when the determined minimum battery current is less than the minimum threshold battery current; to the maximum threshold battery current when the determined minimum battery current is greater than the maximum threshold battery current.
  • the maximum stress voltage is also equal to: the maximum stress voltage calculated when the maximum stress voltage calculated is between a minimum threshold battery voltage and a maximum battery voltage threshold ; the minimum threshold battery voltage when the calculated maximum stress voltage is lower than the minimum threshold battery voltage; the maximum threshold battery voltage when the calculated maximum stress voltage is greater than the maximum threshold battery voltage;
  • the minimum constraint voltage is also equal to: the calculated minimum constraint voltage when the calculated minimum constraint voltage is between the minimum threshold battery voltage and the maximum battery voltage threshold ; the minimum threshold battery voltage when the calculated minimum stress voltage is lower than the minimum threshold battery voltage; the maximum threshold battery voltage when the calculated minimum stress voltage is greater than the maximum threshold battery voltage.
  • the method comprises a step of determining an off-load voltage of the battery, the off-load voltage being equal to a measured battery voltage - (a measured battery current * the internal resistance of battery).
  • the minimum stress voltage is greater than or equal to a minimum safety voltage and if: the determined voltage setpoint is between the maximum stress voltage and the minimum stress voltage then the secure voltage setpoint is equal to the determined voltage setpoint; the voltage setpoint determined is lower than the minimum constraint voltage then the secure voltage setpoint is equal to the minimum constraint voltage; the voltage setpoint determined is greater than the maximum stress voltage then the secure voltage setpoint is equal to the maximum stress voltage.
  • a minimum safety voltage is between the maximum stress voltage and the minimum stress voltage and if: the voltage setpoint determined is between the maximum stress voltage and the minimum safety stress voltage then the safe voltage setpoint is equal to the determined voltage setpoint; the voltage setpoint determined is lower than the minimum safety stress voltage then the safe voltage setpoint is equal to the minimum safety stress voltage; the voltage setpoint determined is greater than the maximum stress voltage then the secure voltage setpoint is equal to the maximum stress voltage.
  • the secure voltage setpoint is equal to the maximum stress voltage if the maximum stress voltage is lower than the determined voltage setpoint.
  • Another aspect of the invention relates to a vehicle comprising a low-voltage network, a lithium-ion service battery belonging to said low-voltage network and a voltage generator arranged to drive a voltage across the terminals of said battery.
  • the vehicle further comprises at least one computer arranged to implement the method according to one of the aforementioned aspects of the invention.
  • FIG. 1 schematically represents a vehicle according to a non-limiting aspect of the invention.
  • FIG. 2 schematically illustrates a step diagram of a non-limiting mode of implementation of the method according to the invention.
  • Figure 1 illustrates a vehicle 1 comprising a low voltage network 2, for example 12V.
  • the low voltage network 2 comprises in particular:
  • BMS Battery Management System
  • the vehicle 1 further comprises a voltage generator 6 for example formed by a DCDC type voltage converter.
  • Figure 2 shows a step diagram of an implementation mode of the method 100 according to one aspect of the invention. It is used to control a voltage at the terminals of the lithium-ion service battery 3.
  • the steps of the method 100 are executed by means of the computer 4 of the BMS type and the computer 5 for managing the engine of the vehicle 1 .
  • the method 100 comprises a step of determining 101 an open-load voltage of the battery 3.
  • the off-load voltage is equal to a measured battery voltage - (a measured battery current * an internal resistance of the battery).
  • the measured battery voltage and the measured battery current can be transmitted by the BMS computer 4 to the engine management computer 5.
  • the internal resistance of the battery is itself determined according to a measured battery temperature.
  • This measured battery temperature can be transmitted by the BMS computer 4 to the engine management computer 5.
  • the measured battery temperature is then compared to a map making it possible to determine the internal resistance as a function of the battery temperature.
  • the calculated no-load voltage is then filtered, for example by means of a 1st order low-pass filter. This filtering thus makes it possible to reduce the noise of the no-load voltage used by the method 100 according to the invention.
  • the method 100 further comprises a step of determining 102, depending on the measured battery temperature, a maximum stress voltage and a minimum stress voltage acceptable by the battery. This step makes it possible to determine the minimum and maximum voltage limits which must be respected at the terminals of the lithium-ion service battery 3, in particular to guarantee that the current flowing in the battery 3 respects, on average, a minimum limit and a limit maximum.
  • the maximum constraint voltage is equal to the open circuit voltage of the battery + (the internal resistance of the battery * a maximum secure battery current).
  • the minimum stress voltage is equal to the open-load voltage of the battery + (the internal resistance of the battery * a minimum safe battery current).
  • the step of determining 102 a maximum constraint voltage and a minimum constraint voltage comprises a first sub-step 102a of determining, as a function of the temperature measured battery, a maximum battery current and a minimum battery current acceptable for the battery.
  • the method 100 uses a map illustrating a maximum battery current as a function of the battery temperature. At a battery temperature of +20°, this maximum battery current can for example be formed by a charging current of 60A.
  • the method 100 uses a map illustrating a minimum battery current as a function of the battery temperature.
  • this minimum battery current can for example be formed by a discharge current of -300A.
  • Step 102 further comprises a second sub-step of determining 102b the maximum secure battery current and the minimum secure battery current.
  • the maximum secure battery current is equal to: the maximum battery current determined during the first sub-step 102a when the determined maximum battery current is between a minimum threshold battery current and a maximum threshold battery current; at the minimum threshold battery current when the determined maximum battery current is less than the minimum threshold battery current; at the maximum threshold battery current, when the determined maximum battery current is greater than the maximum threshold battery current.
  • the minimum secure battery current is equal: to the minimum battery current determined during the first sub-step 102a when the minimum battery current determined is between the minimum battery current threshold and the maximum battery current threshold; at the minimum threshold battery current when the determined minimum battery current is less than the minimum threshold battery current; - at the maximum threshold battery current when the determined minimum battery current is greater than the maximum threshold battery current.
  • the maximum stress voltage is also equal to: the previously calculated maximum stress voltage when the calculated maximum stress voltage is between a minimum threshold battery voltage and a maximum threshold battery voltage; the minimum threshold battery voltage when the calculated maximum stress voltage is lower than the minimum threshold battery voltage; the maximum threshold battery voltage when the calculated maximum stress voltage is greater than the maximum threshold battery voltage.
  • the minimum stress voltage is also equal to: the minimum stress voltage previously calculated when the calculated minimum stress voltage is between the minimum threshold battery voltage and the battery voltage maximum threshold; the minimum threshold battery voltage when the calculated minimum stress voltage is lower than the minimum threshold battery voltage; the maximum threshold battery voltage when the calculated minimum stress voltage is greater than the maximum threshold battery voltage.
  • the method 100 comprises a step of determining 103 a voltage setpoint to be applied to the terminals of the battery 3 to maintain a predetermined state of charge, for example of 85%.
  • the voltage setpoint is a function of a measured battery temperature.
  • the method uses a map illustrating a battery voltage as a function of the temperature of the battery.
  • the method 100 also comprises a step of determining 104 a secure voltage setpoint by applying the maximum stress voltage and the minimum stress voltage, determined during step 102, to the voltage setpoint determined during step 103.
  • determining 104 a secure voltage setpoint by applying the maximum stress voltage and the minimum stress voltage, determined during step 102, to the voltage setpoint determined during step 103.
  • the method 100 makes it possible to set a minimum security voltage, configurable (eg 12.3V), of the battery 3 to be respected.
  • This minimum safety voltage makes it possible to ensure a minimum level of performance for the electrical components constituting the low voltage network 2 of the vehicle 1, for example multimedia systems or lighting devices.
  • the minimum stress voltage is greater than or equal to the minimum safety voltage and if: the voltage setpoint determined is between the maximum stress voltage and the minimum stress voltage then the secure voltage setpoint is equal to the determined voltage setpoint; - the voltage setpoint determined is lower than the minimum constraint voltage then the secure voltage setpoint is equal to the minimum constraint voltage; the voltage setpoint determined is greater than the maximum stress voltage then the secure voltage setpoint is equal to the maximum stress voltage.
  • the secure voltage setpoint is equal to the determined voltage setpoint; the voltage setpoint determined is lower than the minimum safety stress voltage then the safe voltage setpoint is equal to the minimum safety stress voltage; the voltage setpoint determined is greater than the maximum stress voltage then the secure voltage setpoint is equal to the maximum stress voltage.
  • the safe voltage setpoint is equal to the maximum stress voltage.
  • the voltage variations of the secure voltage setpoint can be limited by a maximum voltage gradient, for example 2V/s, and a minimum voltage gradient, for example -2V/s .
  • the method 100 also includes a step of applying 105 a correction voltage to the secure voltage setpoint according to a voltage variation measured in the low voltage network 2.
  • This step 105 makes it possible to take into account the voltage drops in the low voltage network 2 which may occur. These voltage drops can for example be linked to the wiring impedances of the low voltage network 2.
  • the correction voltage thus makes it possible to reduce the error between the secure voltage setpoint to be applied to the terminals of the battery 3 and the voltage actually measured at its terminals. This correction voltage is permanently determined.
  • an error voltage is determined. This error voltage is equal to the safe voltage setpoint determined - a voltage measured at the terminals of battery 3.
  • an intermediate correction voltage is determined by means of a PID type regulator. This intermediate correction voltage is continuously determined in order to reduce the determined error voltage.
  • this intermediate correction voltage is compared with a minimum threshold error voltage and a maximum threshold error voltage authorized for the voltage correction.
  • the correction voltage is equal to the intermediate correction voltage if the intermediate correction voltage is between the minimum threshold error voltage and the maximum threshold error voltage.
  • the correction voltage is equal to the minimum threshold error voltage if the intermediate correction voltage is lower than the minimum threshold error voltage.
  • the correction voltage is equal to the maximum threshold error voltage if the intermediate correction voltage is greater than the maximum threshold error voltage.
  • the method 100 also includes a step of transmitting 106 the secure voltage setpoint to the voltage generator 6 arranged to control the voltage across the terminals of the battery 3 in accordance with the secure voltage setpoint.
  • This voltage generator 6 is formed in our example by a DC/DC voltage converter.
  • the voltage generator 6 could for example be formed by a rotary electrical machine of the alternator type.

Abstract

Un aspect de l'invention concerne un procédé (100) de gestion énergétique d'une batterie (3) de servitude au lithium-ion, ledit procédé (100) comportant les étapes de : - déterminer (102), en fonction d'une température batterie mesurée, une tension de contrainte maximale et une tension de contrainte minimale acceptables pour la batterie (3); - déterminer (103) une consigne de tension à appliquer aux bornes de ladite batterie (3) pour maintenir un état de charge prédéterminé, ladite consigne de tension étant fonction de la température batterie mesurée; - déterminer (104) une consigne de tension sécurisée en limitant ladite consigne de tension par ladite tension de contrainte maximale et ladite tension de contrainte minimale; - transmettre (106) ladite consigne de tension sécurisée à un générateur de tension (6) agencé pour piloter la tension aux bornes de ladite batterie (3) conformément à ladite consigne de tension sécurisée.

Description

DESCRIPTION
TITRE DE L’INVENTION : PROCEDE DE GESTION ENERGETIQUE D’UNE BATTERIE DE SERVITUDE AU LITHIUM-ION
[0001] La présente invention revendique la priorité de la demande française N°2105449 déposée le 26.05.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[0002] Un aspect de l’invention se rapporte à un procédé de gestion énergétique une batterie de servitude au lithium-ion d’un véhicule, notamment automobile, ainsi qu’un véhicule automobile équipé d’au moins un calculateur agencé pour mettre en œuvre le procédé selon l’invention.
[0003] Les véhicules automobiles comportent généralement des batteries au plomb reliées au réseau de bord, appelées aussi batteries de servitude, pour alimenter les équipements de ces véhicules. Ces batteries au plomb, comprenant généralement une tension de 12V, sont couramment utilisées car elles comportent un coût réduit.
[0004] Les batteries au plomb pesant environ 20 à 25kg sont toutefois relativement lourdes par rapport à la quantité d’énergie électrique stockée. De plus, elles font pour l’instant l’objet d’une dérogation par rapport à la législation de la commission européenne qui interdit le plomb. Cette dérogation pourrait être supprimée un jour, interdisant la vente de ces batteries, ce qui oblige les constructeurs à prévoir des solutions de remplacement.
[0005] Les batteries au lithium-ion comportant un niveau de tension proche de celui actuel en associant quatre cellules en série, pourraient remplacer les batteries au plomb. Cependant, ce type de batteries pose des problèmes liés à la température de fonctionnement. Il n’est en effet pas envisageable, lors de la recharge d’une telle batterie au lithium-ion, d’appliquer à ses bornes une tension équivalente à celle qu’il est possible d’appliquer aux bornes d’une batterie au plomb, laquelle batterie au plomb accepte par exemple une tension de 15,2V. Appliquer une telle tension de 15,2V aux bornes d’une batterie au lithium-ion sur une période assez longue échaufferait cette dernière et dégraderait rapidement ses performances. [0006] Le but de l’invention est de pallier les inconvénients de l’art antérieur en proposant un procédé de gestion énergétique d’une batterie de servitude au lithium- ion permettant d’éviter un échauffement de cette dernière.
[0007] Dans ce contexte, l’invention se rapporte ainsi, dans son acceptation la plus large, à un procédé de gestion énergétique d’une batterie de servitude au lithium-ion appartenant à un réseau basse tension d’un véhicule, le procédé comportant les étapes exécutées par au moins un calculateur de : déterminer, en fonction d’une température batterie mesurée, une tension de contrainte maximale et une tension de contrainte minimale acceptables pour la batterie ; déterminer une consigne de tension à appliquer aux bornes de la batterie pour maintenir un état de charge prédéterminé, la consigne de tension étant fonction de la température batterie mesurée ; déterminer une consigne de tension sécurisée en limitant ladite consigne de tension par ladite tension de contrainte maximale et ladite tension de contrainte minimale ; transmettre ladite consigne de tension sécurisée à un générateur de tension agencé pour piloter une tension aux bornes de la batterie conformément à la consigne de tension sécurisée.
[0008] Grâce à l’invention, la consigne de tension sécurisée transmise au générateur de tension est limitée par les tensions de contrainte minimale et maximale déterminées en fonction d’une température batterie mesurée. Ainsi, le risque d’échauffement excessif de la batterie qui pourrait être dû à une tension trop excessive appliquée par le générateur de tension aux bornes de la batterie est supprimé.
[0009] Outre les caractéristiques qui viennent d’être évoquées dans le paragraphe précédent, le procédé selon l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles.
[0010] Selon un aspect non limitatif de l’invention, le procédé comporte une étape d’appliquer une tension de correction à la consigne de tension sécurisée, la tension de correction étant fonction d’une variation de tension mesurée dans le réseau basse tension. [0011 ] Selon un aspect non limitatif de l’invention, la tension de contrainte maximale est égale à une tension à vide de la batterie + (une résistance interne de la batterie * un courant batterie maximal sécurisé); la tension de contrainte minimale est égale à la tension à vide de la batterie + (la résistance interne de la batterie * un courant batterie minimal sécurisé).
[0012] Selon un aspect non limitatif de l’invention, l’étape de déterminer une tension de contrainte maximale et une tension de contrainte minimale acceptables pour la batterie comporte les sous-étapes de : déterminer, en fonction de la température batterie mesurée, un courant batterie maximal et un courant batterie minimal acceptables par la batterie, déterminer un courant batterie maximal sécurisé et un courant batterie minimal sécurisé, le courant batterie maximal sécurisé étant égal : au courant batterie maximal déterminé au cours de la sous-étape de déterminer un courant batterie maximal et un courant batterie minimal acceptables par la batterie lorsque le courant batterie maximal déterminé est compris entre un courant batterie minimal seuil et un courant batterie maximal seuil ; au courant batterie minimal seuil lorsque le courant batterie maximal déterminé est inférieur au courant batterie minimal seuil ; au courant batterie maximal seuil lorsque le courant batterie maximal déterminé est supérieur au courant batterie maximal seuil. le courant batterie minimal sécurisé étant égal : au courant batterie minimal déterminé lorsque le courant batterie minimal déterminé est compris entre le courant batterie minimal seuil et le courant maximal seuil ; au courant batterie minimal seuil lorsque le courant batterie minimal déterminé est inférieur au courant batterie minimal seuil ; au courant batterie maximal seuil lorsque le courant batterie minimal déterminé est supérieur au courant batterie maximal seuil.
[0013] Selon un aspect non limitatif de l’invention, la tension de contrainte maximale est en outre égale à : la tension de contrainte maximale calculée lorsque la tension de contrainte maximale calculée est comprise entre une tension batterie minimale seuil et une tension batterie maximale seuil ; la tension batterie minimale seuil lorsque la tension de contrainte maximale calculée est inférieure à la tension batterie minimale seuil ; la tension batterie maximale seuil lorsque la tension de contrainte maximale calculée est supérieure à la tension batterie maximale seuil ;
[0014] Selon un aspect non limitatif de l’invention, la tension de contrainte minimale est en outre égale à : la tension de contrainte minimale calculée lorsque la tension de contrainte minimale calculée est comprise entre la tension batterie minimale seuil et la tension batterie maximale seuil ; la tension batterie minimale seuil lorsque la tension de contrainte minimale calculée est inférieure à la tension batterie minimale seuil ; la tension batterie maximale seuil lorsque la tension de contrainte minimale calculée est supérieure à la tension batterie maximale seuil. [0015] Selon un aspect non limitatif de l’invention, le procédé comporte une étape de déterminer une tension à vide de la batterie, la tension à vide étant égale à une tension batterie mesurée - (un courant batterie mesuré * la résistance interne de la batterie).
[0016] Selon un aspect non limitatif de l’invention, si la tension de contrainte minimale est supérieure ou égale à une tension minimale de sécurité et si: la consigne de tension déterminée est comprise entre la tension de contrainte maximale et la tension de contrainte minimale alors la consigne de tension sécurisée est égale à la consigne de tension déterminée; la consigne de tension déterminée est inférieure à la tension de contrainte minimale alors la consigne de tension sécurisée est égale à la tension de contrainte minimale ; la consigne de tension déterminée est supérieure à la tension de contrainte maximale alors la consigne de tension sécurisée est égale à la tension de contrainte maximale.
[0017] Selon un aspect non limitatif de l’invention, si une tension minimale de sécurité est comprise entre la tension de contrainte maximale et la tension de contrainte minimale et si: la consigne de tension déterminée est comprise entre la tension de contrainte maximale et la tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à la consigne de tension déterminée ; la consigne de tension déterminée est inférieure à la tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à la tension de contrainte minimale de sécurité; la consigne de tension déterminée est supérieure à la tension de contrainte maximale alors la consigne de tension sécurisé est égale à la tension de contrainte maximale.
[0018] Selon un aspect non limitatif de l’invention, si la tension de contrainte maximale est inférieure à la consigne de tension déterminée, alors la consigne de tension sécurisée est égale à la tension de contrainte maximale.
[0019] Un autre aspect de l’invention se rapporte à un véhicule comportant un réseau basse tension, une batterie de servitude au lithium-ion appartenant audit réseau basse tension et un générateur de tension agencé pour piloter une tension aux bornes de ladite batterie. Le véhicule comporte en outre au moins un calculateur agencé pour mettre en œuvre le procédé selon l’un des aspects de l’invention précités.
[0020] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. [0021] [Fig. 1] représente de façon schématique un véhicule selon un aspect non limitatif de l’invention.
[0022] [Fig. 2] illustre de façon schématique un diagramme d’étapes d’un mode de mise en œuvre non limitatif du procédé selon l’invention.
[0023] La figure 1 illustre un véhicule 1 comportant un réseau basse tension 2, par exemple de 12V.
[0024] Le réseau basse tension 2 comporte notamment :
Une batterie de servitude au lithium-ion 3, par exemple de 12V , un calculateur 4 de type BMS pour battery management System en anglais , et un calculateur 5 de gestion du moteur du véhicule 1 .
[0025] Le véhicule 1 comporte en outre un générateur de tension 6 par exemple formé par un convertisseur de tension de type DCDC.
[0026] La figure 2 montre un diagramme d’étapes d’un mode de mise en œuvre du procédé 100 selon un aspect de l’invention. Il permet de piloter une tension aux bornes de la batterie de servitude au lithium-ion 3.
[0027] Dans un exemple de réalisation non limitatif, les étapes du procédé 100 sont exécutées au moyen du calculateur 4 de type BMS et du calculateur 5 de gestion du moteur du véhicule 1 .
[0028] Le procédé 100 comporte une étape de déterminer 101 une tension à vide de la batterie 3.
[0029] La tension à vide est égale à une tension batterie mesurée - (un courant batterie mesuré * une résistance interne de la batterie).
[0030] La tension batterie mesurée et le courant batterie mesuré peuvent être transmis par le calculateur BMS 4 au calculateur de gestion 5 du moteur.
[0031] La résistance interne de la batterie est quant à elle déterminée en fonction d’une température batterie mesurée. Cette température batterie mesurée peut être transmise par le calculateur BMS 4 au calculateur de gestion 5 du moteur. La température batterie mesurée est ensuite comparée à une cartographie permettant de déterminer la résistance interne en fonction de la température batterie. [0032] Selon une mise en œuvre non limitative, la tension à vide calculée est ensuite filtrée, par exemple au moyen d’un filtre passe bas du 1er ordre. Ce filtrage permet ainsi de diminuer le bruit de la tension à vide utilisée par le procédé 100 selon l’invention. [0033] Le procédé 100 comporte en outre une étape de déterminer 102, en fonction de la température batterie mesurée, une tension de contrainte maximale et une tension de contrainte minimale acceptables par la batterie. Cette étape permet de déterminer les limites de tension minimale et maximale qui doivent être respectées aux bornes de la batterie de servitude au lithium-ion 3, pour notamment garantir que le courant circulant dans la batterie 3 respecte en moyenne, une limite minimale et une limite maximale.
[0034] Selon un exemple non limitatif, la tension de contrainte maximale est égale à la tension à vide de la batterie + (la résistance interne de la batterie * un courant batterie maximal sécurisé). [0035] Selon un exemple non limitatif, la tension de contrainte minimale est égale à la tension à vide de la batterie + (la résistance interne de la batterie * un courant batterie minimal sécurisé).
[0036] Afin de déterminer le courant batterie maximale sécurisé et le courant batterie minimal sécurisé, l’étape de déterminer 102 une tension de contrainte maximale et une tension de contrainte minimale comporte une première sous-étape 102a de déterminer, en fonction de la température batterie mesurée, un courant batterie maximal et un courant batterie minimal acceptables pour la batterie.
[0037] Pour déterminer le courant batterie maximal, le procédé 100 utilise une cartographie illustrant un courant batterie maximal en fonction de la température batterie. A une température batterie de +20°, ce courant batterie maximal peut par exemple être formé par un courant de charge de 60A.
[0038] Pour déterminer le courant batterie minimal, le procédé 100 utilise une cartographie illustrant un courant batterie minimal en fonction de la température batterie. A une température batterie de +20°, ce courant batterie minimal peut par exemple être formé par un courant de décharge de -300A.
[0039] L’étape 102 comporte en outre une deuxième sous-étape de déterminer 102b le courant batterie maximal sécurisé et le courant batterie minimal sécurisé. [0040] Le courant batterie maximal sécurisé est égal : au courant batterie maximal déterminé lors de la première sous- étape 102a lorsque le courant batterie maximal déterminé est compris entre un courant batterie minimal seuil et un courant batterie maximal seuil ; au courant batterie minimal seuil lorsque le courant batterie maximal déterminé est inférieur au courant batterie minimal seuil ; au courant batterie maximal seuil, lorsque le courant batterie maximal déterminé est supérieur au courant batterie maximal seuil.
[0041] Le courant batterie minimal sécurisé est égal : au courant batterie minimal déterminé lors de la première sous- étape 102a lorsque le courant batterie minimal déterminé est compris entre le courant batterie minimal seuil et le courant batterie maximal seuil ; au courant batterie minimal seuil lorsque le courant batterie minimal déterminé est inférieur au courant batterie minimal seuil ; - au courant batterie maximal seuil lorsque le courant batterie minimal déterminé est supérieur au courant batterie maximal seuil.
[0042] Cette deuxième sous-étape 102b permet de vérifier que les courants batteries minimal et maximal déterminés lors de la première sous-étape 102a sont compatibles avec les limites en courant (courant batterie minimal seuil et courant batterie maximal seuil) fournis directement par le calculateur BMS 4 de la batterie de servitude au lithium ion 3. Ces courants batteries minimal et maximal sécurisés permettent ainsi de respecter des contraintes d’utilisation compatibles avec la sécurité de la batterie 3 et donc du véhicule 1. [0043] Selon un aspect non limitatif de l’invention, la tension de contrainte maximale est en outre égale à : la tension de contrainte maximale précédemment calculée lorsque la tension de contrainte maximale calculée est comprise entre une tension batterie minimale seuil et une tension batterie maximale seuil ; la tension batterie minimale seuil lorsque la tension de contrainte maximale calculée est inférieure à la tension batterie minimale seuil ; la tension batterie maximale seuil lorsque la tension de contrainte maximale calculée est supérieure à la tension batterie maximale seuil.
[0044] Selon cet aspect non limitatif de l’invention, la tension de contrainte minimale est en outre égale à : la tension de contrainte minimale précédemment calculée lorsque la tension de contrainte minimale calculée est comprise entre la tension batterie minimale seuil et la tension batterie maximale seuil ; la tension batterie minimale seuil lorsque la tension de contrainte minimale calculée est inférieure à la tension batterie minimale seuil ; la tension batterie maximale seuil lorsque la tension de contrainte minimale calculée est supérieure à la tension batterie maximale seuil.
[0045] Ces tensions batteries minimale et maximale seuils sont des limites de tension minimale et maximale à respecter pour la batterie de façon à ne pas l’endommager.
[0046] Le procédé 100 comporte une étape de déterminer 103 une consigne de tension à appliquer aux bornes de la batterie 3 pour maintenir un état de charge prédéterminé, par exemple de 85%.
[0047] La consigne de tension est fonction d’une température de la batterie mesurée. A cette fin, le procédé utilise une cartographie illustrant une tension batterie en fonction de la température de la batterie.
[0048] Le procédé 100 selon l’invention comporte également une étape de déterminer 104 une consigne de tension sécurisée en appliquant la tension de contrainte maximale et la tension de contrainte minimale, déterminées au cours de l’étape 102, à la consigne de tension déterminée au cours de l’étape 103. [0049] Ces tensions de contrainte permettent de respecter les limites (courant et tension), tout en maîtrisant le courant notamment de charge qui circule dans la batterie 3.
[0050] De plus, dans une mise œuvre non limitative, le procédé 100 permet de fixer une tension minimale de sécurité, paramétrable (par ex 12.3V), de la batterie 3 à respecter. Cette tension minimale de sécurité permet d’assurer un niveau de performance minimum aux composants électriques constituants le réseau basse tension 2 du véhicule 1, par exemple des systèmes multimédia ou des dispositifs d’éclairage. [0051] Dans une première mise en œuvre, si la tension de contrainte minimale est supérieure ou égale à la tension minimale de sécurité et si : la consigne de tension déterminée est comprise entre la tension de contrainte maximale et la tension de contrainte minimale alors la consigne de tension sécurisée est égale à la consigne de tension déterminée; - la consigne de tension déterminée est inférieure à la tension de contrainte minimale alors la consigne de tension sécurisée est égale à la tension de contrainte minimale ; la consigne de tension déterminée est supérieure à la tension de contrainte maximale alors la consigne de tension sécurisée est égale à la tension de contrainte maximale.
[0052] Dans une deuxième mise en œuvre, si la tension minimale de sécurité est comprise entre la tension de contrainte maximale et la tension de contrainte minimale et si: la consigne de tension déterminée est comprise entre la tension de contrainte maximale et la tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à la consigne de tension déterminée ; la consigne de tension déterminée est inférieure à la tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à la tension de contrainte minimale de sécurité; la consigne de tension déterminée est supérieure à la tension de contrainte maximale alors la consigne de tension sécurisé est égale à la tension de contrainte maximale.
[0053] Dans une troisième mise en œuvre, si la tension de contrainte maximale est inférieure à la tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à la tension de contrainte maximale.
[0054] Dans un exemple de réalisation non limitatif, les variations de tension de la consigne de tension sécurisée peuvent être limitées par un gradient de tension maximal, par exemple 2V/s, et un gradient de tension minimal, par exemple -2V/s.
[0055] Le procédé 100 comporte également une étape d’appliquer 105 une tension de correction à la consigne de tension sécurisée en fonction d’une variation de tension mesurée dans le réseau basse tension 2.
[0056] Cette étape 105 permet de prendre en compte les chutes de tension dans le réseau basse tension 2 qui peuvent se produire. Ces chutes de tension peuvent par exemple être liées aux impédances de câblage du réseau basse tension 2. La tension de correction permet ainsi de réduire l’erreur entre la consigne de tension sécurisée à appliquer aux bornes de la batterie 3 et la tension réellement mesurée à ses bornes. Cette tension de correction est déterminée en permanence.
[0057] Dans un exemple de mise en œuvre non limitatif, une tension d’erreur est déterminée. Cette tension d’erreur est égale à la consigne de tension sécurisée déterminée - une tension mesurée aux borne de la batterie 3.
[0058] Ensuite, une tension de correction intermédiaire est déterminée au moyen d’un régulateur de type PID. Cette tension de correction intermédiaire est déterminée en permanence afin de réduire la tension d’erreur déterminée.
[0059] Finalement, cette tension de correction intermédiaire est comparée à une tension d’erreur minimale seuil et une tension d’erreur maximale seuil autorisées pour la correction de tension.
[0060] Ainsi, la tension de correction est égale à la tension de correction intermédiaire si la tension de correction intermédiaire est comprise entre la tension d’erreur minimale seuil et la tension d’erreur maximale seuil.
[0061] La tension de correction est égale à la tension d’erreur minimale seuil si la tension de correction intermédiaire est inférieure à la tension d’erreur minimale seuil. [0062] La tension de correction est égale à la tension d’erreur maximale seuil si la tension de correction intermédiaire est supérieure à la tension d’erreur maximale seuil.
[0063] Le procédé 100 comporte également une étape de transmettre 106 la consigne de tension sécurisée au générateur de tension 6 agencé pour piloter la tension aux bornes de la batterie 3 conformément à la consigne de tension sécurisée. Ce générateur de tension 6 est formé dans notre exemple par un convertisseur de tension DC/DC.
[0064] Dans un mode de réalisation différent, le générateur de tension 6 pourrait par exemple être formé par une machine électrique tournante de type alternateur.

Claims

REVENDICATIONS
1. Procédé (100) de gestion énergétique d’une batterie (3) de servitude au lithium- ion appartenant à un réseau basse tension (2) d’un véhicule (1), ledit procédé (100) comportant les étapes exécutées par au moins un calculateur (4, 5) de : - déterminer (102), en fonction d’une température batterie mesurée, une tension de contrainte maximale et une tension de contrainte minimale acceptables pour la batterie (3) ;
- déterminer (103) une consigne de tension à appliquer aux bornes de ladite batterie (3) pour maintenir un état de charge prédéterminé, ladite consigne de tension étant fonction de la température batterie mesurée ;
- déterminer (104) une consigne de tension sécurisée en limitant ladite consigne de tension par ladite tension de contrainte maximale et ladite tension de contrainte minimale ;
- transmettre (106) ladite consigne de tension sécurisée à un générateur de tension (6) agencé pour piloter la tension aux bornes de ladite batterie
(3) conformément à ladite consigne de tension sécurisée.
2. Procédé (100) selon la revendication précédente caractérisé en ce qu’il comporte une étape d’appliquer (105) une tension de correction à la consigne de tension sécurisée, ladite tension de correction étant fonction d’une variation de tension mesurée dans le réseau basse tension (2).
3. Procédé (100) selon l’une quelconque des revendications précédentes caractérisé en ce que:
- la tension de contrainte maximale est égale à une tension à vide de ladite batterie (3) + (une résistance interne de ladite batterie (3) * un courant batterie maximal sécurisé);
- la tension de contrainte minimale est égale à ladite tension à vide de ladite batterie (3) + (ladite résistance interne de ladite batterie (3) * un courant batterie minimal sécurisé).
4. Procédé (100) selon la revendication 3 caractérisé en ce que l’étape de déterminer (102) comporte les sous-étapes de : - déterminer (102a), en fonction de la température batterie mesurée, un courant batterie maximal et un courant batterie minimal acceptables par la batterie (3),
- déterminer (102b) un courant batterie maximal sécurisé et un courant batterie minimal sécurisé,
- ledit courant batterie maximal sécurisé étant égal : o audit courant batterie maximal déterminé au cours de ladite sous- étape préalable de déterminer (102a) lorsque le courant batterie maximal déterminé est compris entre un courant batterie minimal seuil et un courant batterie maximal seuil ; o audit courant batterie minimal seuil lorsque ledit courant batterie maximal déterminé est inférieur audit courant batterie minimal seuil ; o audit courant batterie maximal seuil, lorsque ledit courant batterie maximal déterminé est supérieur audit courant batterie maximal seuil.
- ledit courant batterie minimal sécurisé étant égal : o audit courant batterie minimal déterminé lorsque ledit courant batterie minimal déterminé est compris entre ledit courant batterie minimal seuil et ledit courant maximal seuil ; o audit courant batterie minimal seuil lorsque ledit courant batterie minimal déterminé est inférieur audit courant batterie minimal seuil ; o audit courant batterie maximal seuil lorsque ledit courant batterie minimal déterminé est supérieur audit courant batterie maximal seuil.
5. Procédé (100) selon la revendication 3 caractérisé en ce que :
- la tension de contrainte maximale est en outre égale à : o la tension de contrainte maximale calculée lorsque ladite tension de contrainte maximale calculée est comprise entre une tension batterie minimale seuil et une tension batterie maximale seuil ; o ladite tension batterie minimale seuil lorsque ladite tension de contrainte maximale calculée est inférieure à ladite tension batterie minimale seuil ; o ladite tension batterie maximale seuil lorsque ladite tension de contrainte maximale calculée est supérieure à ladite tension batterie maximale seuil ;
- la tension de contrainte minimale est en outre égale à : o ladite tension de contrainte minimale calculée lorsque ladite tension de contrainte minimale calculée est comprise entre ladite tension batterie minimale seuil et ladite tension batterie maximale seuil ; o ladite tension batterie minimale seuil lorsque ladite tension de contrainte minimale calculée est inférieure à ladite tension batterie minimale seuil ; o ladite tension batterie maximale seuil lorsque ladite tension de contrainte minimale calculée est supérieure à ladite tension batterie maximale seuil.
6. Procédé (100) selon la revendication 3 caractérisé en ce qu’il comporte une étape de déterminer (101) une tension à vide de la batterie (3), ladite tension à vide étant égale à une tension batterie mesurée - (un courant batterie mesuré
* la résistance interne de la batterie (3)).
7. Procédé (100) selon l’une quelconque des revendications précédentes caractérisé en ce que si la tension de contrainte minimale est supérieure ou égale à une tension minimale de sécurité et si: o la consigne de tension déterminée est comprise entre la tension de contrainte maximale et ladite tension de contrainte minimale alors la consigne de tension sécurisée est égale à ladite consigne de tension déterminée; o ladite consigne de tension déterminée est inférieure à ladite tension de contrainte minimale alors ladite consigne de tension sécurisée est égale à ladite tension de contrainte minimale ; o ladite consigne de tension déterminée est supérieure à ladite tension de contrainte maximale alors ladite consigne de tension sécurisée est égale à ladite tension de contrainte maximale.
8. Procédé (100) selon l’une quelconque des revendications 1 à 6 caractérisé en ce que si une tension minimale de sécurité est comprise entre la tension de contrainte maximale et la tension de contrainte minimale et si: o la consigne de tension déterminée est comprise entre ladite tension de contrainte maximale et ladite tension de contrainte minimale de sécurité alors la consigne de tension sécurisée est égale à ladite consigne de tension déterminée ; o ladite consigne de tension déterminée est inférieure à ladite tension de contrainte minimale de sécurité alors ladite consigne de tension sécurisée est égale à ladite tension de contrainte minimale de sécurité; o ladite consigne de tension déterminée est supérieure à ladite tension de contrainte maximale alors ladite consigne de tension sécurisé est égale à ladite tension de contrainte maximale.
9. Procédé (100) selon l’une quelconque des revendications précédentes caractérisé en ce que si la tension de contrainte maximale est inférieure à la tension de contrainte minimale de sécurité, alors la consigne de tension sécurisée est égale à ladite tension de contrainte maximale.
10. Véhicule (1) comportant un réseau basse tension (2), une batterie (3) de servitude au lithium-ion appartenant audit réseau basse tension (2) et un générateur de tension (6) agencé pour piloter une tension aux bornes de ladite batterie (3), ledit véhicule (1) étant caractérisé en ce qu’il comporte au moins un calculateur (4, 5) agencé pour mettre en œuvre le procédé (100) selon l’une quelconque des revendications précédentes.
EP22717241.8A 2021-05-26 2022-03-30 Procede de gestion energetique d'une batterie de servitude au lithium-ion Pending EP4348797A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105449A FR3123518A1 (fr) 2021-05-26 2021-05-26 Procede de gestion energetique d’une batterie de servitude au lithium-ion
PCT/FR2022/050593 WO2022248780A1 (fr) 2021-05-26 2022-03-30 Procede de gestion energetique d'une batterie de servitude au lithium-ion

Publications (1)

Publication Number Publication Date
EP4348797A1 true EP4348797A1 (fr) 2024-04-10

Family

ID=77317074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22717241.8A Pending EP4348797A1 (fr) 2021-05-26 2022-03-30 Procede de gestion energetique d'une batterie de servitude au lithium-ion

Country Status (4)

Country Link
EP (1) EP4348797A1 (fr)
CN (1) CN117426039A (fr)
FR (1) FR3123518A1 (fr)
WO (1) WO2022248780A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2105449A5 (fr) 1970-09-08 1972-04-28 Sepial
JP3859982B2 (ja) * 2001-04-27 2006-12-20 株式会社神戸製鋼所 ハイブリッド建設機械の電力制御装置
FR2894728A1 (fr) * 2005-12-08 2007-06-15 Renault Sas Dispositif et procede de gestion d'une batterie alimentant une machine electrique, comme un moteur de traction pour un vehicule
FR2925793B1 (fr) * 2007-12-21 2010-01-15 Peugeot Citroen Automobiles Sa Procede de pilotage d'un alternateur de vehicule automobile et systeme de pilotage associe
US8253387B2 (en) * 2009-04-24 2012-08-28 GM Global Technology Operations LLC Battery charging control methods and apparatus
JP6324248B2 (ja) * 2014-07-17 2018-05-16 日立オートモティブシステムズ株式会社 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
FR3092212A1 (fr) * 2019-01-29 2020-07-31 Psa Automobiles Sa Procede et systeme de gestion de l’alimentation d’un reseau de bord d’un vehicule automobile

Also Published As

Publication number Publication date
CN117426039A (zh) 2024-01-19
FR3123518A1 (fr) 2022-12-02
WO2022248780A1 (fr) 2022-12-01

Similar Documents

Publication Publication Date Title
EP2957018B1 (fr) Gestion de la charge d'une batterie
EP3011630B1 (fr) Systeme et procede de regulation de la temperature d'une batterie electrochimique
FR2918027A1 (fr) Procede de pilotage de systeme micro-hybride pour vehicule, ainsi qu'unite de stockage d'energie et systeme hybride pour la mise en oeuvre de celui-ci
FR2893770A1 (fr) Dispositif de gestion d'alimentation d'un reseau de consommateurs pour vehicule automobile
EP2994341A1 (fr) Système de sécurisation pour module de batterie d'accumulateurs et procédé d'équilibrage d'un module de batterie correspondant
EP4348797A1 (fr) Procede de gestion energetique d'une batterie de servitude au lithium-ion
EP3700053A1 (fr) Système et procédé de précharge d'un condensateur par une batterie comportant une résistance de précharge et un dispositif hacheur
EP3153369A1 (fr) Procede de determination des plages d'utilisation d'une batterie de traction
WO2020260173A1 (fr) Procédé pour optimiser la durée de vie d'une batterie
FR2966294A1 (fr) Procede de recharge d'un module supercondensateur d'un vehicule automobile et vehicule automobile correspondant
WO2011030024A1 (fr) Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
EP2817865B1 (fr) Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en oeuvre un tel procédé
FR3073253A1 (fr) Procede de commande electrique d’un catalyseur scr chauffe electriquement et dispositif de commande electrique d’un tel catalyseur
EP3750377B1 (fr) Procédé de contrôle de l'alimentation de moyens de chauffage électrique d'un système, en fonction de la puissance électrique disponible et des besoins
WO2020157394A1 (fr) Procede de pilotage d'un generateur couple a une roue-libre d'un vehicule automobile
WO2012089950A2 (fr) Procede de gestion de l'arret et du redemarrage automatique d'un moteur thermique de vehicule automobile et vehicule automobile correspondant
WO2023094264A1 (fr) Procede de refroidissement optimise d'une batterie de vehicule electrique ou hybride
FR3128080A1 (fr) Régulateur comprenant un module de sécurité pour une machine électrique tournante
FR3122786A1 (fr) Procede de gestion d’un niveau de charge d’un stockeur d’energie basse tension
WO2013121133A2 (fr) Systeme d'adaptation de tension et de courant d'une batterie au lithium-ion, pour un vehicule automobile
WO2022069811A1 (fr) Procede de gestion de tension d'une batterie pour vehicule
WO2021069356A1 (fr) Procede de stabilisation de l'etat d'une charge d'une batterie de traction
FR3109225A1 (fr) Procede de protection electrique d'un element conducteur d'une chaine de traction hybride ou electrique
FR3094680A1 (fr) Vehicule automobile comprenant un circuit d’alimentation electrique a double accumulateur au lithium
FR3080338A1 (fr) Circuit electrique de vehicule automobile comprenant un alterno-demarreur et un dispositif de maintien de tension

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR