WO2022069811A1 - Procede de gestion de tension d'une batterie pour vehicule - Google Patents

Procede de gestion de tension d'une batterie pour vehicule Download PDF

Info

Publication number
WO2022069811A1
WO2022069811A1 PCT/FR2021/051567 FR2021051567W WO2022069811A1 WO 2022069811 A1 WO2022069811 A1 WO 2022069811A1 FR 2021051567 W FR2021051567 W FR 2021051567W WO 2022069811 A1 WO2022069811 A1 WO 2022069811A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
minimum
maximum
setpoint
Prior art date
Application number
PCT/FR2021/051567
Other languages
English (en)
Inventor
Yannick BOTCHON
Mickael Mornet
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Publication of WO2022069811A1 publication Critical patent/WO2022069811A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the automotive field, in particular that of the energy management of an electric storage device, under thermal stress, for thermal, hybrid or electric vehicles.
  • Document FR2941 102B1 discloses a control method for super capacitors in which, in the event of a thermal problem, regulation of the super capacitors at a predetermined fixed voltage is provided. This process therefore does not make it possible to dynamically adapt the electrical regulation.
  • the aim of the invention is to overcome at least one of the drawbacks of the aforementioned state of the art.
  • a method for managing the voltage of a vehicle battery equipped with an on-board network with at least one electrical consumer comprising a temperature measurement of the battery, characterized in that that: -on the basis of the battery temperature, a minimum battery voltage and a maximum battery voltage are determined between which the thermal protection of the battery is deemed to be ensured,
  • a preliminary battery voltage setpoint is determined, a final battery voltage set point is determined as a function of the prior set point and the minimum and maximum battery voltages authorized.
  • the technical effect is to make it possible to adjust continuously and as precisely as possible the value of the setpoint voltage according to the thermal stress of the battery.
  • the final voltage setpoint is:
  • the minimum battery voltage and the maximum battery voltage are determined respectively from a minimum intensity and a maximum intensity.
  • a level of thermal criticality is determined from the temperature measurement and the minimum intensity and the maximum intensity are determined from this level of thermal criticality.
  • information relating to a load shedding request from at least one electrical consumer of the on-board network is determined from the level of thermal criticality.
  • the level of thermal criticality comprises three levels of increasing criticality determined according to whether the battery temperature is respectively lower than a first temperature threshold, or between the first temperature threshold and a second temperature threshold, or higher than the second temperature threshold, the second temperature threshold being greater than the first temperature threshold.
  • the first temperature threshold is 60°C and the second temperature threshold is 80°C.
  • an off-load voltage of the battery is determined, an internal resistance of the battery is determined, the minimum battery voltage then being equal to the maximum value chosen between:
  • the invention also relates to a vehicle comprising a battery and an on-board network equipped with at least one electric consumer, characterized in that it comprises the means for acquisition, processing by software instructions stored in a memory as well as the control means required to implement the method according to any one of the previously described variants.
  • the battery is a Lithium-Ion battery.
  • FIG 1 schematically represents steps and sub-steps of the vehicle battery voltage management method according to the present invention.
  • Figure 1 shows the steps and sub-steps of the battery voltage management method for a vehicle battery.
  • the vehicle includes the battery 10 which is a low voltage electrical storage device operating at around 12 volts.
  • This battery 10 is preferably of the Lithium-Ion type.
  • the vehicle comprises the means of acquisition, processing by software instructions stored in a memory as well as the control means required to implement the method of the invention.
  • This invention describes a method making it possible, when the temperature of the battery exceeds certain thresholds, to dynamically adapt the current flowing in the battery on the one hand, to limit overheating.
  • this process makes it possible to act on the consumption of the vehicle's 12V electrical network, by preventively reducing the consumption of non-essential electrical consumers, so as to prioritize the energy of the electrical generator for any future needs related to safety.
  • this invention performs the following actions:
  • the method determines a minimum and maximum battery current to be respected, within the framework of the operation of the battery 10, as well as a need for load shedding of consumers electrical non-essential, which can be more or less important.
  • This invention can be broken down mainly into five sub-functions and steps described below.
  • a level of criticality for heating the battery 10 is determined, depending on its temperature measured by a computer (Battery Management System in English or BMS), linked to the battery 10 and whose role is to measure and calculate the useful parameters of the battery 10.
  • This level of criticality is used to adapt the energy management of the vehicle's 12V on-board network, to reduce, if necessary, the of the battery 10.
  • This function 30 uses as input parameter the temperature 11 of the battery. From this input data, the block 30 outputs the thermal criticality level 31 .
  • the thermal criticality level 31 can take 3 values (Level_0, Level_1 and Level_2) which will reflect the need to act, to limit or reduce the energy demands on the battery 10, having an impact on its temperature.
  • thermal criticality level information will be defined as follows:
  • the thermal criticality level 31 For a battery temperature 11 less than or equal to a first temperature threshold T0, the thermal criticality level 31 will be Level_0.
  • the thermal criticality level 31 For a battery temperature 11 greater than the first temperature threshold T0 but less than or equal to a second temperature threshold T1, the thermal criticality level 31 will be Level_1.
  • the thermal criticality level 31 For a battery temperature 11 greater than the second temperature threshold T1, the thermal criticality level 31 will be Level_2.
  • a map according to different storer temperature thresholds can be used to determine the level of thermal criticality 31 at the output.
  • the level of thermal criticality 31 of battery 10 is converted into electrical stresses on the current flowing in battery 10, both on charge and on discharge, so as to limit, if necessary, the energy stresses on battery 10 which may have a impact on its temperature.
  • an additional mechanism makes it possible to request load shedding, in other words deactivation of at least one electrical consumer from the low voltage network, of certain so-called non-priority electrical components such as the thermal comfort components of the vehicle such as for example heated seats, heated window, etc.
  • This load shedding which can be more or less significant, depending on the heating criticality of the battery 10.
  • This load shedding is to reduce the electrical consumption of the vehicle's on-board network, to prioritize the electrical energy supply capacities of the vehicle's 12V electrical producer.
  • This electrical producer can be an alternator or DC / DC voltage converter associated with a so-called high voltage battery (for example 48V or 400V), towards possible future power needs of the vehicle's safety consumers such as for example a trajectory controller electronic, usually referred to as ESP, electric power steering, in the event of an emergency maneuver such as braking or evasive action.
  • ESP trajectory controller electronic
  • the battery 10 being at a temperature that can be critical, it is necessary to act on the one hand on its energy demand, to prevent it from going into protection, which would result in its disconnection from the network of 12V board of the vehicle and therefore by the impossibility for it, to ensure the security needs which are allocated to it, within the framework of the emergency maneuvers of the vehicle.
  • the performance of the battery 10 can be degraded depending on the temperature, a preventive reduction of the consumption of the on-board network in this case, makes it possible to prioritize the energy of the producer of electrical energy of the vehicle towards user safety needs battery stabilization time 10.
  • this function 40 uses as input parameter the level of thermal criticality 31 defined in block 30. From this input data, block 40 outputs information relating to a load shedding request 41 , a minimum intensity of battery 42, a maximum intensity of battery 43. To do this, we can consider the current parameters below: l_batt_min_0: 1st minimum battery current threshold, in A (for example -100 A). I_batt_min_1: 2 nd minimum battery current threshold, in A (for example -30 A) l_batt_max_0: 1 st maximum battery current threshold, in A (for example 80 A) l_batt_max_1: 2 nd maximum battery current threshold, in A ( for example 30 A)
  • the limit battery currents i.e. the minimum battery current 42 and the maximum battery current 43
  • the limit battery currents i.e. the minimum battery current 42 and the maximum battery current 43
  • the request for load shedding 41 of the non-essential electrical consumers of the on-board network will be defined as follows:
  • the no-load voltage 61 of the battery 10 is estimated, from the instantaneous parameters of battery voltage 14, battery intensity 13 and internal resistance 12 of the battery known at each instant, thanks to the BMS computer. From these input data, the block 60 outputs the no-load voltage 61 .
  • the open circuit voltage 61 of the battery 10 is equal to the voltage of the battery 14 minus the product of the current of the battery 13 and the internal resistance 12 of the battery 10. This open circuit voltage can then be filtered, using by example a 1 st order low pass filter, so as to have less noisy information.
  • the minimum 52 and maximum 51 voltages authorized at the terminals of the battery 10 are determined, as a function of the minimum 42 and maximum 43 current limits desired for this battery 10, so as to limit its heating.
  • the maximum voltage 51 and the minimum voltage 52 of the battery 10, to respect its thermal constraints are then calculated, according to the authorized limit currents, 42.43, of the internal resistance 12 and of the no-load voltage 61 estimated.
  • the maximum voltage 51 is equal to the no-load voltage 61 plus the product of the internal resistance 12 and the maximum battery current 43.
  • an additional parameter defining the minimum regulation voltage constraint of the battery 10, to be considered in all life situations, in particular to guarantee a minimum voltage at the terminals of the on-board network of the vehicle will be taken into account.
  • the minimum regulation voltage of the battery 10 to be applied to the terminals of the battery 10 to guarantee the operation of the on-board network of the vehicle will for example be a predetermined constant value, for example 12.3V.
  • the minimum battery voltage 52 is then equal to the maximum value chosen between:
  • the voltage setpoint 71 to be applied to the terminals of the battery 10 is determined, from a previously calculated voltage setpoint, for the purposes of regulating the state of charge of the storer in particular and taking into account voltage limitations to reduce battery overheating 10.
  • the method determines the final voltage setpoint 71 that must be applied to the terminals of the battery 10, from a voltage setpoint 21 previously defined in a block 20, while taking into account the need for adapting the energy regulation of said storer to the thermal constraints to which it is subjected.
  • the voltage setpoint 21 previously defined is a voltage setpoint which can in particular be constructed, to regulate the state of charge of the battery 10 to a certain level, for example 85% of its state of its maximum capacity.
  • the final voltage setpoint 71 to be applied to the battery terminals is defined as below according to different voltage conditions:
  • This invention makes it possible to dynamically adapt the very low voltage energy regulation of a vehicle, depending on the temperature of the battery 10. This method makes it possible to avoid excessive heating of the battery 10, which can lead to its protection by disconnection from the on-board network.
  • the invention allows great flexibility and precision in the electrical regulation of the entire low voltage (12V) on-board network of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

La présente concerne un procédé de gestion de tension d'une batterie (10) de véhicule équipé d'un réseau de bord avec au moins un consommateur électrique, comprenant une mesure de température (11) de la batterie (10), caractérisé en ce qu'on détermine (50) partir de la température (11) de la batterie (10) une tension minimale batterie (52) et une tension maximale de batterie (52) entre lesquelles la protection thermique de la batterie (10) est jugée assurée, on détermine (20) une consigne préalable (21) de tension de batterie, on détermine (70) une consigne finale (71) de tension de la batterie (10) en fonction de la consigne préalable (21) et des tensions minimale et maximale de batterie autorisées.

Description

DESCRIPTION
TITRE : PROCEDE DE GESTION DE TENSION D’UNE BATTERIE POUR VEHICULE
La présente invention revendique la priorité de la demande française N 02010076 déposée le 02.10.2020 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
La présente invention concerne le domaine automobile, notamment celui de la gestion énergétique d’un stockeur électrique, sous contrainte thermique, pour des véhicules thermiques, hybrides ou électriques.
L’utilisation de stockeurs électriques 12V au Lithium, comme batteries de servitude dans l’automobile, sera de plus en plus répandue. Ce type de stockeur apporte des avantages certains, notamment en terme de poids, de densité d’énergétique. Néanmoins, il est nécessaire de systématiquement s’assurer que ce type de composant opère dans des limites en températures, permettant une utilisation en toute sécurité.
On connaît du document FR2941 102B1 un procédé de pilotage de super condensateurs dans lequel en cas de problème thermique il est prévu une régulation des super condensateurs à une tension fixe prédéterminée. Ce procédé ne permet donc pas d’adapter en dynamique la régulation électrique.
L’invention a pour objectif de pallier au moins un des inconvénients de l’état de la technique susmentionné.
Pour atteindre cet objectif, il est prévu selon l’invention un procédé de gestion de tension d’une batterie de véhicule équipé d’un réseau de bord avec au moins un consommateur électrique, comprenant une mesure de température de la batterie, caractérisé en ce que : -on détermine à partir de la température de la batterie une tension minimale batterie et une tension maximale de batterie entre lesquelles la protection thermique de la batterie est jugée assurée,
-on détermine une consigne préalable de tension de batterie, -on détermine une consigne finale de tension de la batterie en fonction de la consigne préalable et des tensions minimale et maximale de batterie autorisées.
L’effet technique est de permettre d’ajuster en continu et au plus juste la valeur de la tension de consigne en fonction de la contrainte thermique de la batterie.
Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaisons :
Selon une réalisation, la consigne finale de tension est :
-égale à la tension minimale si la consigne de tension préalable est inférieure à la tension minimale,
-égale à la consigne de tension préalable si la consigne de tension préalable est comprise entre la tension minimale et la tension maximale,
-égale à la tension maximale si la tension maximale est inférieure à la consigne de tension préalable.
Selon une réalisation, la tension minimale batterie et la tension maximale de batterie sont déterminés respectivement à partir d’une intensité minimale et d’une intensité maximale.
Selon une réalisation, on détermine à partir de la mesure de température un niveau de criticité thermique et on détermine à partir de ce niveau de criticité thermique l’intensité minimale et l’intensité maximale.
Selon une réalisation, on détermine à partir du niveau de criticité thermique une information relative à une demande de délestage d’au moins un consommateur électrique du réseau de bord.
Selon une réalisation, le niveau de criticité thermique comprend trois niveaux de criticité croissante déterminés selon que la température de batterie est respectivement inférieure à un premier seuil de température, ou compris entre le premier seuil de température et un deuxième seuil de température, ou supérieure au second seuil de température, le second seuil de température étant supérieur au premier seuil de température.
Selon une réalisation, le premier seuil de température est de 60 °C et le second seuil de température est de 80 °C. Selon une réalisation, on détermine une tension à vide de la batterie, on détermine une résistance interne de la batterie, la tension minimale de batterie étant alors égale à la valeur maximum choisie entre :
-la valeur d’une tension minimale garantissant le fonctionnement du réseau de bord du véhicule et
-la valeur de la tension à vide plus le produit de la résistance interne et de l’intensité minimale de batterie.
L’invention a aussi pour objet un véhicule comprenant une batterie et un réseau de bord équipé d’au moins un consommateur électrique, caractérisé en ce qu’il comprend les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en œuvre du procédé selon l’une quelconque des variantes précédemment décrites.
Selon une réalisation, la batterie est une batterie Lithium-Ion.
D’autres particularités et avantages apparaîtront à la lecture de la description ci-après d’un mode particulier de réalisation, non limitatif de l’invention, faite en référence aux figures dans lesquelles :
[Fig 1] : représente schématiquement des étapes et sous-étapes du procédé de gestion de tension de batterie de véhicule selon la présente invention.
La figure 1 représente les étapes et sous-étapes du procédé de gestion de tension de batterie pour une batterie de véhicule.
Le véhicule comprend la batterie 10 qui est un stockeur électrique basse tension fonctionnant aux environs de 12 volts. Cette batterie 10 est de préférence de type Lithium- Ion. Le véhicule comprend les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en œuvre du procédé de l’invention.
Cette invention décrit un procédé permettant, lorsque la température de la batterie dépasse certains seuils, d’adapter dynamiquement le courant circulant dans la batterie d’une part, pour limiter les échauffements. D’autre part ce procédé permet d’agir sur la consommation du réseau électrique 12V du véhicule, en réduisant préventivement, la consommation de consommateurs électriques non indispensables, de façon à prioriser l’énergie du générateur électrique à d’éventuelles besoins futurs liés à la sécurité.
Dans le cas d’un véhicule utilisant une batterie 10, ce procédé permet d’éviter son échauffement trop important, qui peut conduire à sa mise en protection par déconnexion du réseau de bord.
Cette situation est problématique car dans ce cas, la batterie n’est plus reliée au réseau de bord 12V du véhicule et ne peut donc plus être utilisée en support du générateur, pour alimenter les organes sécuritaires en cas de manœuvre d’urgence.
Pour cela, cette invention réalise les actions suivantes :
D’une part, elle détermine le niveau de criticité de la contrainte thermique de la batterie 10 à prendre en compte.
D’autre part, à partir de l’évolution thermique de la batterie 10, le procédé détermine un courant batterie minimal et maximal à respecter, dans le cadre de l’exploitation de la batterie 10, ainsi qu’un besoin de délestage de consommateurs électriques non indispensables, pouvant être plus ou moins important.
Par ailleurs, elle calcule la tension en circuit ouvert de la batterie 10.
Elle détermine également les contraintes en tension minimale et maximale à respecter pour la consigne de tension de régulation devant être appliquée aux bornes de la batterie 10.
Enfin, elle détermine une consigne de tension à appliquer aux bornes de la batterie 10, pour respecter des besoins pouvant notamment être liés à la régulation de son état de charge, tout en prenant en compte le besoin de limiter réchauffement du dit stockeur.
Cette invention peut se décomposer principalement en cinq sous fonctions et étapes décrites ci-après.
Au bloc 30 on détermine un niveau de criticité de réchauffement la batterie 10, en fonction de sa température mesurée par un calculateur (Battery Management System en anglais ou BMS), lié à la batterie 10 et dont le rôle est de mesurer et calculer les paramètres utiles de la batterie 10. Ce niveau de criticité sert à adapter la gestion énergétique du réseau de bord 12V du véhicule, pour réduire si nécessaire, les sollicitations de la batterie 10. Cette fonction 30 utilise comme paramètre d’entrée la température 11 de la batterie. A partir de cette donnée d’entrée, le bloc 30 fournit en sortie le niveau de criticité thermique 31 .
Le niveau de criticité thermique 31 pourra prendre 3 valeurs (Niveau_0, Niveau_1 et Niveau_2) qui seront l’image de la nécessité d’agir, pour limiter ou réduire les sollicitations énergétiques de la batterie 10, ayant un impact sur sa température.
Ainsi l’information de niveau de criticité thermique sera définie de la façon suivante :
Pour une température batterie 1 1 inférieure ou égale à un premier seuil de température T0, le niveau de criticité thermique 31 sera Niveau_0.
Pour une température batterie 1 1 supérieure au premier seuil de température T0 mais inférieure ou égale à un second seuil de température T1 , le niveau de criticité thermique 31 sera Niveau_1 .
Pour une température batterie 1 1 supérieure au second seuil de température T1 , le niveau de criticité thermique 31 sera Niveau_2.
A titre indicatif les deux seuils en température peuvent être T0 = 60°C et T1 = 80°C. Une cartographie en fonction de différents seuils de température du stockeur peut être utilisée pour déterminer en sortie le niveau de criticité thermique 31 .
Au bloc 40, le niveau de criticité thermique 31 de la batterie 10 est converti en contraintes électriques sur le courant circulant dans la batterie 10, en charge comme en décharge, de façon à limiter si nécessaire les sollicitations énergétiques de la batterie 10 pouvant avoir un impact sur sa température.
Plus précisément, plus la criticité thermique 31 liée à réchauffement de la batterie 10 sera importante, plus il faudra limiter sa plage d’utilisation en courant pour limiter son échauffement. Cette fonction 40 produit donc les limites minimales et maximales à ne pas dépasser, pour le courant circulant dans la batterie 10, en charge comme en décharge, de façon à limiter son échauffement.
Par ailleurs, un mécanisme supplémentaire permet de demander le délestage autrement dit une désactivation d’au moins un consommateur électrique du réseau basse tension, de certains composants électriques dit non prioritaires comme les organes de confort thermiques du véhicule tels que par exemple des sièges chauffants, lunette chauffante, etc. Cette délestage qui peut être plus ou moins important, selon la criticité de réchauffement de la batterie 10.
Ce délestage a pour objectif de réduire la consommation électrique du réseau de bord du véhicule, pour prioriser les capacités de fourniture en énergie électrique du producteur électrique 12V du véhicule. Ce producteur électrique peut être un alternateur ou convertisseur de tension DC/ DC associé à une batterie dite haute tension par exemple 48V ou 400V), vers d’éventuels besoins d’alimentation futurs des consommateurs sécuritaires du véhicule tels que par exemple un contrôleur de trajectoire électronique, usuellement désigné ESP, une direction à assistance électrique, en cas de manœuvre d’urgence tels par exemple un freinage ou un évitement.
En effet, la batterie 10 étant à une température pouvant être critique, il est nécessaire d’agir d’une part sur sa sollicitation énergétique, pour éviter qu’elle ne se mette en protection, ce qui se traduirait par sa déconnexion du réseau de bord 12V du véhicule et donc par l’impossibilité pour elle, d’assurer les besoins sécuritaires qui lui sont alloués, dans le cadre des manœuvre d’urgence du véhicule.
D’autre part, les performances de la batterie 10 pouvant être dégradées en fonction de la température, une réduction préventive de la consommation du réseau de bord dans ce cas de figure, permet de prioriser l’énergie du producteur d’énergie électrique du véhicule vers les besoins liés à la sécurité de l’utilisateur le temps de la stabilisation de la batterie 10.
Ainsi, cette fonction 40 utilise comme paramètre d’entrée le niveau de criticité thermique 31 défini au bloc 30. A partir de cette donnée d’entrée, le bloc 40 fournit en sortie une information relative à une demande de délestage 41 , une intensité minimale de batterie 42, une intensité maximale de batterie 43. Pour cela nous pourrons considérer les paramètres en courant ci-dessous : l_batt_min_0 : 1 er Seuil de courant batterie minimal, en A (par exemple -100 A). I_batt_min_1 : 2ème Seuil de courant batterie minimal, en A (par exemple -30 A) l_batt_max_0 : 1 er Seuil de courant batterie maximal, en A (par exemple 80 A) l_batt_max_1 : 2ème Seuil de courant batterie maximal, en A (par exemple 30 A)
Avec, par convention une intensité négative qui désigne un courant de charge de la batterie et une intensité positive qui désigne un courant de décharge de la batterie.
Les courants de batterie limites (i.e. l’intensité minimale de batterie 42 et l’intensité maximale de batterie 43) autorisés, ainsi que la demande de délestage 41 des consommateurs électriques non essentiels du réseau de bord, seront définis de la façon suivante :
[Tableaux 1 ]
Figure imgf000009_0001
Au bloc 60 on estime la tension à vide 61 de la batterie 10, à partir des paramètres instantanés de tension de batterie 14, intensité de batterie 13 et de résistance interne 12 de la batterie connus à chaque instant, grâce au calculateur BMS. A partir de ces données d’entrée, le bloc 60 fournit en sortie la tension à vide 61 .
La tension à vide 61 de la batterie 10 est égale à la tension de batterie 14 moins le produit de l’intensité de batterie 13 et de la résistance interne 12 de la batterie 10. Cette tension à vide peut être ensuite filtrée, en utilisant par exemple un filtre passe bas du 1 er ordre, de façon à disposer d’une information moins bruitée.
Au bloc 50, on détermine les tensions minimales 52 et maximales 51 autorisées aux bornes de la batterie 10, en fonction des limites de courant minimal 42 et maximal 43 voulus pour cette batterie 10, de façon à limiter son échauffement. La tension maximale 51 et la tension minimale 52 de la batterie 10, pour respecter ses contraintes thermiques sont alors calculées, en fonction des courants limites autorisés, 42,43, de la résistance interne 12 et de la tension à vide 61 estimées.
La tension maximale 51 est égale à la tension à vide 61 plus le produit de la résistance interne 12 et de l’intensité maximale de batterie 43.
Pour calculer la tension minimale 52 de batterie autorisée, un paramètre supplémentaire définissant la contrainte de tension minimale de régulation de la batterie 10, à considérer dans toutes les situations de vie, pour garantir notamment une tension minimale aux bornes du réseau de bord du véhicule sera prise en compte.
Si la tension de la batterie 10 est comprise entre la tension maximale 51 et tension minimale 52, la protection thermique de la batterie 10 est considérée comme assurée.
La tension minimale de régulation de la batterie 10 à appliquer aux bornes de la batterie 10 pour garantir le fonctionnement du réseau de bord du véhicule sera par exemple une valeur constante prédéterminée, par exemple 12.3V.
La tension minimale 52 de batterie est alors égale à la valeur maximum choisie entre :
-la valeur de la tension minimale de régulation et
-la valeur de la tension à vide 61 plus le produit de la résistance interne 12 et de l’intensité minimale de batterie 42.
Au bloc 70, on détermine la consigne de tension 71 à appliquer aux bornes de la batterie 10, à partir d’une consigne de tension préalablement calculée, pour des besoins de régulation de l’état de charge du stockeur notamment et en prenant en compte les limitations de tension permettant de réduire les échauffements de la batterie 10.
Dans ce bloc 70, le procédé détermine la consigne finale de tension 71 qu’il faut appliquer aux bornes de la batterie 10, à partir d’une consigne de tension 21 préalablement définie dans un bloc 20, tout en prenant en compte le besoin d’adapter la régulation énergétique du dit stockeur aux contraintes thermiques auxquelles il est soumis. La consigne de tension 21 préalablement définie est une consigne de tension qui peut notamment être construite, pour réguler l’état de charge de la batterie 10 à un certain niveau, par exemple 85 % de son état de sa capacité maximale. La consigne finale de tension 71 à appliquer aux bornes de la batterie est définie de la façon ci-dessous selon différentes conditions de tension :
[Tableaux 2]
Figure imgf000011_0001
Cette invention permet d’adapter dynamiquement la régulation énergétique très basse tension d’un véhicule, en fonction de la température de la batterie 10. Ce procédé permet d’éviter un échauffement trop important de la batterie 10, qui peut conduire à sa mise en protection par déconnexion du réseau de bord. L’invention permet une grande flexibilité et précision dans la régulation électrique de l’ensemble du réseau de bord basse tension (12V) du véhicule.

Claims

REVENDICATIONS
1. Procédé de gestion de tension d’une batterie (10) de véhicule équipé d’un réseau de bord avec au moins un consommateur électrique, comprenant une mesure de température (1 1 ) de la batterie (10), caractérisé en ce que :
-on détermine (50) à partir de la température (1 1 ) de la batterie (10) une tension minimale batterie (52) et une tension maximale de batterie (52) entre lesquelles la protection thermique de la batterie (10) est jugée assurée,
-on détermine (20) une consigne préalable (21 ) de tension de batterie,
-on détermine (70) une consigne finale (71 ) de tension de la batterie (10) en fonction de la consigne préalable (21 ) et des tensions minimale et maximale de batterie autorisées, la consigne finale (71 ) de tension étant :
-égale à la tension minimale (52) si la consigne de tension préalable (21 ) est inférieure à la tension minimale (52),
-égale à la consigne de tension préalable (21 ) si la consigne de tension préalable (21 ) est comprise entre la tension minimale (52) et la tension maximale (51 ),
-égale à la tension maximale (51 ) si la tension maximale (51 ) est inférieure à la consigne de tension préalable (21 ).
2. Procédé selon la revendication 1 , caractérisé en ce que la tension minimale batterie (52) et la tension maximale de batterie (52) sont déterminés respectivement à partir d’une intensité minimale (42) et d’une intensité maximale (41 ).
3. Procédé selon la revendication précédente, caractérisé en ce qu’on détermine (30) à partir de la mesure de température (11 ) un niveau de criticité thermique (31 ) et on détermine (40) à partir de ce niveau de criticité thermique (31 ) l’intensité minimale (42) et l’intensité maximale (41 ), le niveau de criticité thermique comprenant trois niveaux de criticité croissante déterminés selon que la température de batterie est respectivement inférieure à un premier seuil de température, ou compris entre le premier seuil de température et un deuxième seuil de température, ou supérieure au second seuil de température, le second seuil de température étant supérieur au premier seuil de température.
4. Procédé selon la revendication précédente, caractérisé en ce qu’on détermine (40) à partir du niveau de criticité thermique (31 ) une information (41 ) relative à une demande de délestage d’au moins un consommateur électrique du réseau de bord.
5. Procédé selon la revendication précédente, caractérisé en ce que le premier seuil de température est de 60 °C et le second seuil de tempé'ature est de 80 °C.
6. Procédé selon l’une des revendications 2 à 5, caractérisé en qu’on détermine (60) une tension à vide (61 ) de la batterie (10), on détermine (10) une résistance interne (12) de la batterie (10), la tension minimale (52) de batterie étant alors égale à la valeur maximum choisie entre :
-la valeur d’une tension minimale garantissant le fonctionnement du réseau de bord du véhicule et
-la valeur de la tension à vide (61 ) plus le produit de la résistance interne (12) et de l’intensité minimale de batterie (42).
7. Véhicule comprenant une batterie (10) et un réseau de bord équipé d’au moins un consommateur électrique, caractérisé en ce qu’il comprend les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en œuvre du procédé selon l’une quelconque des revendications précédentes.
8. Véhicule selon la revendication précédente, caractérisé en ce que la batterie (10) est une batterie Lithium-Ion.
PCT/FR2021/051567 2020-10-02 2021-09-14 Procede de gestion de tension d'une batterie pour vehicule WO2022069811A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2010076 2020-10-02
FR2010076A FR3114913B1 (fr) 2020-10-02 2020-10-02 Procede de gestion de tension d’une batterie pour vehicule

Publications (1)

Publication Number Publication Date
WO2022069811A1 true WO2022069811A1 (fr) 2022-04-07

Family

ID=75278060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051567 WO2022069811A1 (fr) 2020-10-02 2021-09-14 Procede de gestion de tension d'une batterie pour vehicule

Country Status (2)

Country Link
FR (1) FR3114913B1 (fr)
WO (1) WO2022069811A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010076A1 (fr) 1968-06-04 1970-02-13 Beecham Group Ltd
US20030210017A1 (en) * 2002-05-10 2003-11-13 Toyota Jidosha Kabushiki Kaisha Storage battery control apparatus and control method thereof
US20080211457A1 (en) * 2005-07-25 2008-09-04 Conti Temic Microelectronic Gmbh Energy Storage Unit
DE102007038586A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur Lebensdauerüberwachung und optimalen Nutzung einer Batterie eines Hybridfahrzeugs
FR2941102B1 (fr) 2009-01-12 2016-04-15 Valeo Equip Electr Moteur Procede de pilotage d'une unite de stockage d'energie dans un systeme micro-hybride pour vehicule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010076A1 (fr) 1968-06-04 1970-02-13 Beecham Group Ltd
US20030210017A1 (en) * 2002-05-10 2003-11-13 Toyota Jidosha Kabushiki Kaisha Storage battery control apparatus and control method thereof
US20080211457A1 (en) * 2005-07-25 2008-09-04 Conti Temic Microelectronic Gmbh Energy Storage Unit
DE102007038586A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur Lebensdauerüberwachung und optimalen Nutzung einer Batterie eines Hybridfahrzeugs
FR2941102B1 (fr) 2009-01-12 2016-04-15 Valeo Equip Electr Moteur Procede de pilotage d'une unite de stockage d'energie dans un systeme micro-hybride pour vehicule

Also Published As

Publication number Publication date
FR3114913A1 (fr) 2022-04-08
FR3114913B1 (fr) 2023-03-03

Similar Documents

Publication Publication Date Title
EP2774240B1 (fr) Dispositif d'equilibrage de charge des elements d'une batterie de puissance
US9168881B2 (en) Automotive electrical system provided with an alternator electronic control system
WO2014177793A1 (fr) Procede de gestion de la temperature d'une batterie de vehicule electrique ou hybride
FR2994027A1 (fr) Vehicule comprenant une batterie et des moyens de determination d'une puissance maximale admissible pour la batterie, et procede correspondant
WO2019122696A1 (fr) Procédé de contrôle d'un convertisseur de courant continu dans un réseau de bord d'un véhicule automobile
EP2346711A2 (fr) Procede et dispositif de commande d'un systeme micro-hybride a freinage recuperatif apte a equiper un vehicule automobile
FR2965128B1 (fr) Procede et dispositif de gestion d'un generateur d'un systeme de recuperation d'energie d'un vehicule automobile
JP2005269825A (ja) ハイブリッドシステム
WO2022069811A1 (fr) Procede de gestion de tension d'une batterie pour vehicule
EP2859217A1 (fr) Procédé de démarrage d'un moteur à combustion interne, système et calculateur associés
CN114919425B (zh) 一种汽车起步控制方法、装置、设备及存储介质
Debelov et al. Charging balance management technology for low-voltage battery in the car control unit with combined power system
JP3352534B2 (ja) 電動車両のハイブリッド電源装置
EP3188923B1 (fr) Procédé de régulation d' un groupe motopropulseur hybride et dispositif associé
EP3170242B1 (fr) Circuit électrique et procédé de gestion associé
WO2011030024A1 (fr) Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
EP4072893B1 (fr) Procede de controle dynamique du courant de charge d'un stockeur d'energie electrique de vehicules automobiles
WO2020157394A1 (fr) Procede de pilotage d'un generateur couple a une roue-libre d'un vehicule automobile
FR3119581A1 (fr) Procede de gestion de la consommation electrique des equipements dits securitaires
FR2990579A1 (fr) Procede de pilotage d'un generateur d'un vehicule automobile
EP2313288B1 (fr) Systeme micro-hybride prevu pour alimenter un reseau de distribution electrique d'un vehicule automobile
WO2021165590A1 (fr) Procede de priorisation d'une alimentation electrique d'un reseau de bord
EP4338252A1 (fr) Procédé de protection thermique d'un dispositif de charge embarqué de vehicule électrifié
WO2013124561A2 (fr) Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en œoeuvre un tel procédé
FR3084026A1 (fr) Procede de commande d’un circuit de commande electrique d’un systeme de freinage de vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE