EP4341971A1 - Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module - Google Patents

Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module

Info

Publication number
EP4341971A1
EP4341971A1 EP22728556.6A EP22728556A EP4341971A1 EP 4341971 A1 EP4341971 A1 EP 4341971A1 EP 22728556 A EP22728556 A EP 22728556A EP 4341971 A1 EP4341971 A1 EP 4341971A1
Authority
EP
European Patent Office
Prior art keywords
module
deflector
magnetic
cut
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22728556.6A
Other languages
German (de)
English (en)
Inventor
Arthur HABERER
Jérôme Hertzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socomec SA
Original Assignee
Socomec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socomec SA filed Critical Socomec SA
Publication of EP4341971A1 publication Critical patent/EP4341971A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/443Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/365Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/42Knife-and-clip contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/302Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/32Insulating body insertable between contacts

Definitions

  • the present invention relates to an electrical disconnection module equipped with a magnetic blow-out device, said disconnection module comprising a non-magnetic and electrically insulating casing, in which are housed at least one fixed contact and one movable contact, said movable contact being arranged to move relative to said fixed contact between a closed position and an open position and vice versa on a path defining a cutoff plane, said fixed contact and said movable contact defining between them a cutoff zone extending in said cutoff plane, in which an electric arc extends when it originates, in particular when the electric circuit is opened, said interrupting module comprising at least one interrupting chamber delimited by the interior walls of said casing and comprising said interrupting zone for managing said electric arc in order to cut off the current, and said magnetic blower device comprising at least one ma field source magnetic disposed in said interrupting chamber facing said interrupting zone.
  • the invention also relates to an electrical cut-off device comprising at least one control module and said electrical cut-off module defined above.
  • the magnetic blowing of the electric arc is a principle commonly used in breaking technologies to manage the electric arc which arises in particular when opening an electrical circuit, with the aim of achieving a gain in breaking performance. and to preserve the integrity of the fixed and mobile contacts of the breaking module.
  • the magnetic field which can be generated by any type of field source magnetic, allows to move the electric arc from its birth and to stretch it quickly to accelerate its cooling until its extinction.
  • the cooling of the arc plasma has the effect of increasing its impedance, which makes it possible to increase the arc voltage during breaking. Breaking a direct current (DC) implies that the breaking module generates more voltage than the voltage of the network to be broken. This is the reason why the principle of magnetic blowing applies particularly well to breaking DC current.
  • DC direct current
  • a high voltage of the electric arc is also interesting for the breaking of an alternating current (AC) since it allows a limitation of the current during the breaking, having the effect of reducing the damage due to the arc, even also to reduce the time of the electric arc by a limiting effect. Consequently, the principle of magnetic blow-out of the arc is just as interesting for DC currents as for AC currents.
  • AC alternating current
  • the magnetic blow-out device comprises for this purpose a source of magnetic field, such as a permanent magnet arranged in such a way that the cut-off response is unchanged regardless of the direction of the current.
  • the arrangement of the magnet in front of the breaking zone allows a significant blowing of the electric arc.
  • the magnetic blow results in an elongation of the electric arc and a column of arc which licks the insulating interior walls of the box.
  • EP 2 980 821 Al proposes a magnetic blowing solution that is unsatisfactory for several reasons.
  • the single central magnet is remote from the zone of breaking, which generates a strong loss of magnetic field in the breaking zone and makes magnetic blowing difficult.
  • the magnetic arms which extend the central magnet generate a concentration and a deformation of the magnetic field, which is counterproductive for the blowing of the arc.
  • the electromotive force induced by the magnetic field on the electric arc is not oriented in the direction of the arms, but perpendicular to them, also counterproductive for the blowing of the arc.
  • the magnetic arms leave a large volume of air around the breaking zone, allowing the electric arc to go back and re-form or re-snap between the fixed and moving contacts, which is dangerous for the equipment and people.
  • the present invention aims to improve the magnetic blow-out device described among other things in the applicant's publication by proposing a solution which makes it possible to further accelerate the cooling of the arc plasma, with a view to generating even more arc voltage during interrupting the current, while maintaining a non-polarized breaking solution, which can be easily adapted to different configurations of electrical breaking devices, and making it possible to choose less efficient and therefore less expensive magnets.
  • the invention relates to an electrical cut-off module of the type indicated in the preamble, characterized in that said magnetic blow-out device comprises furthermore at least one non-magnetic and electrically insulating deflector, arranged in said arcing chamber to form a physical obstacle in the path of the electric arc when it is magnetically blown, and to occupy the major part of the space existing between said zone cutoff and said casing, so as to create in the narrow gap remaining between the insulating walls of said deflector and those of said casing, at least one arc confinement zone in which said electric arc, when it is blown magnetically, is deflected and constrained to promote its cooling and extinction.
  • the addition of the non-magnetic deflector in the interrupting chamber has the effect of immediately deflecting the path of the arc plasma in the direction of the induced electromagnetic force, stretching the blown arc as far as possible from the interrupting zone to prevent it from re-stressing, and to constrain it in a tight space between insulating walls to promote its cooling and accelerate its extinction.
  • said arcing chamber may extend on either side of said arcing plane symmetrically or not, and said deflector may also extend on either side of said arcing plane symmetrically or not, to define at least two arc confinement zones in opposition with respect to said cutting plane.
  • said at least one magnetic field source can be oriented to generate at least one magnetic excitation vector substantially parallel to said cutting plane so that the induced electromagnetic force moves and stretches said electric arc in a direction substantially perpendicular to said cutting plane in the direction of the housing and in said at least one arc confinement zone.
  • said deflector can be mobile and integral with said mobile contact, or fixed and integral with said housing.
  • said deflector may consist of a plurality of fins or plates spaced apart from one another and oriented substantially perpendicular to said cutting plane. It can also consist of a solid or perforated one-piece piece.
  • said deflector may have a C-shaped section, substantially symmetrical with respect to the cutting plane, comprising two lugs separated by a central opening arranged to free a passage for the relative movement of said movable contact or of said fixed contact depending on whether said deflector is fixed or mobile.
  • Said magnetic blower device may further comprise at least one carcass arranged to channel the magnetic flux induced by said at least one source of magnetic field, this carcass possibly being or not integrated into the casing and arranged around at least said source of magnetic field and said deflector.
  • said at least one field source can be static and secured to said casing, or mobile and secured to said moving contact.
  • said movable contact can be movable in rotation around said central axis or in translation parallel to said cut-off plane.
  • the electrical cut-off module comprises two fixed contacts symmetrical with respect to a central axis or a median plane of said box, and a mobile contact common to the two fixed contacts defining two symmetrical cut-off zones, then it advantageously comprises two symmetrical cut-off chambers, and at least two non-magnetic and electrically insulating deflectors, each disposed in one of the arcing chambers.
  • FIG. 1 is a perspective view of an electrical switching device according to the invention
  • FIG. 2 is a top perspective view of a rotary cut-off module of the apparatus of FIG. 1, in the closed position
  • FIG. 1 is a perspective view of an electrical switching device according to the invention
  • FIG. 2 is a top perspective view of a rotary cut-off module of the apparatus of FIG. 1, in the closed position
  • FIG. 1 is a perspective view of an electrical switching device according to the invention
  • FIG. 2 is a top perspective view of a rotary cut-off module of the apparatus of FIG. 1, in the closed position
  • FIG. 3 is a top perspective view of the rotary cut-off module figure 2, in the open position, figure 4 is an enlarged view of detail IV of the cut-off module of figure 3, showing a magnetic blow-out device, figure 5 is an enlarged partial view of the cut-off module of figure 3 , showing the path of an electric arc at its birth in the interrupting chamber, Figure 6 is a view similar to Figure 5, showing the path of the magnetically blown electric arc in the interrupting chamber, Figure 7 is a view p cross-section of the interrupting module of FIG. 3 in line with an interrupting chamber and a magnetic blow-out device, FIG. 8 is a view similar to FIG.
  • FIG. 4 showing an alternative embodiment of the magnetic blow-out device
  • Figure 9 is an exploded view of part of the magnetic blow-out device of Figure 8
  • Figure 10 is a partial cross-sectional view similar to Figure 7, of the interrupting chamber and of the magnetic blow-out device of FIG. 8
  • FIG. 11 is a perspective top view of a linear breaking module of another breaking device according to the invention, in the closed position
  • FIG. 12 is a perspective top view of the cut-off in figure 11, in the open position
  • figure 13 is a cross-sectional view of the breaking module of figure 12 at right angles to the arcing chambers and the magnetic blow-out devices
  • figure 14 is a cross-sectional view of the breaking module of figure 12 according to another variant embodiment of the magnetic blower devices
  • FIG. 15 is a cross-sectional view of the breaking module of FIG. 12 according to a variant of the magnetic blower device
  • FIG. 16 is a perspective view similar to FIG. breaking module of Figure 3, showing another variant of the magnetic blow chamber device.
  • the electrical cut-off device 1 can be either a switch, a switch-disconnector, a contactor, a switch, an inverter switch, a circuit breaker, or any other similar cut-off device. It is intended to be fixed on a standardized rail (DIN), a plate, or any suitable mounting bracket. It can be intended to break a direct current at low voltage (i.e. less than 1500V), such as for example in photovoltaic or similar applications, or a direct current at medium voltage, such as for example 2000V or 3000V for particular applications, without these values and these examples being limiting. It can also be used to break alternating current in all types of industrial, tertiary and domestic applications, whatever the nominal supply voltage.
  • the electrical cut-off device 1 can be based on a modular architecture or not. If the device is modular, then it can control with a single control module 2, one or more cut-off modules 3, 3′, for example one to eight cut-off modules, without this number being limiting.
  • the control module 2 does not form part of the invention and will not be described. Only the cut-off module 3 forms part of the invention and will be described in detail, it being specified that it may be an integral part of said electrical cut-off device when the latter is not modular.
  • the term “module” should therefore not be interpreted in a restrictive sense.
  • Each cut-off module 3, 3' forms a cut-off pole, which can either be a single cut-off pole comprising a fixed contact CF and a moving contact CM, or a double cut-off pole comprising two fixed contacts CF and a moving contact CM common.
  • the movable contact CM is arranged to move relative to the fixed contact(s) CF between a closed position and an open position and vice versa on a trajectory defining a cut-off plane P.
  • the relative displacement of the mobile contact CM can be either rotary or linear.
  • the fixed contacts CF and mobile CM can be indifferently electrical sliding contacts, pressure contacts, or any other type of compatible electrical contacts.
  • the electrical switching device 1, also called switching device 1 or device 1 in the following, according to the invention and as illustrated in FIG. 1, comprises two modules 3 double cut-off, and a manual control module 2 provided with a handle 4. These three modules are superimposed along a central axis A, and held together by complementary interlocking shapes and fasteners (not shown) .
  • Each breaking module 3 can have a defined breaking power, for example equal to 750V, thus making it possible to have, in the example illustrated, a device 1 capable of breaking a voltage of 1500V, without this example being limiting .
  • the breaking modules 3 are preferably identical and a single breaking module 3 will be described later.
  • the cut-off module 3 comprises a non-magnetic and electrically insulating casing 5, in which are housed at least two fixed contacts CF and a movable contact CM.
  • the box 5 is preferably made in two interlocking parts 5a, 5b, delimiting housings between them for receiving the various components of said cut-off module and simultaneously ensuring their positioning, their maintenance and their electrical insulation.
  • the fixed contacts CF are connected to external conductors 6 by screw cages 7, or any other type of suitable connection terminal.
  • the mobile contact CM is a rotary contact, embedded on an electrically isolated rotary pin 8.
  • the rotary spindle 8 is driven in reciprocating rotation around the central axis A by a snap action mechanism (not shown) provided in the control module 2.
  • the snap action mechanism forming part of the control module 2 does not more the object of the invention and will not be described. Any type of control module 2 and snap action mechanism can therefore be suitable for the cut-off module 3 which is the subject of the invention.
  • the fixed contacts CF and the movable contact CM respectively define between them two breaking zones Z, in which extends an electric arc E in particular during the opening of the electric circuit.
  • the electric arc E is represented schematically by a bead in FIGS. 5 to 7 and only in the breaking zone Z to the right of the figures.
  • the cutoff zones Z are, in the example represented, diametrically opposites. They extend in said cutting plane P, in which the electric arc E is inscribed at its birth.
  • the interrupting module 3 comprises two arcing chambers 9, which are in particular delimited by the interior walls of the casing 5 and each comprise one of the arcing zones Z.
  • the arcing chambers 9 make it possible to manage the electric arc E with a view to cutting the stream.
  • the interrupting chambers 9 are diametrically opposed with respect to the central axis A and symmetrical with respect to the median plane coinciding with the interrupting plane P. This example is not limiting, since interrupting chambers asymmetric can be envisaged, without calling into question either the operation or the non-polarity of the magnetic blower devices 10.
  • the breaking module 3 further comprises a magnetic blow-out device 10 for the electric arc E.
  • the magnetic blow-out device 10 comprises two sources of magnetic field 11, static, each arranged close to and opposite of a breaking zone Z. The fact of each being located opposite a breaking zone Z makes it possible to create a maximum magnetic field directly in the breaking zone and a quasi-constant magnetic field throughout the breaking chamber 9 for a optimal magnetic blowing of the electric arc E.
  • the magnetic field sources 11 are isolated from said cutoff zone Z by interior walls of the case 5.
  • each magnetic field source 11 is oriented to generate a vector magnetic excitation M substantially parallel to the cutting plane P.
  • each magnetic field source 11 moves and stretches the corresponding electric arc E in u direction substantially perpendicular to the cutting plane P towards the bottom of the parts 5a, 5b of the housing 5, and this independently in one direction or the other depending on the polarity of the magnetic field source 11 and / or said current.
  • the invention is also suitable for magnetic blow-out devices which may have a different architecture, proposing a cut-off as well non-polarized than polarized, and blowing the electric arc in the direction of other walls of the case 5.
  • the magnetic field source 11 may consist of one or more permanent magnets, or any other equivalent system that can generate a magnetic excitation vector, such as one or more electrically powered coils.
  • the magnetic field source 11 consists of a permanent magnet, of planar, parallelepipedic shape, without this shape being limiting.
  • the reference numeral 11 will be used interchangeably to designate the magnetic field source and the magnet or magnets. Indeed, it is possible to produce a magnetic field source 11 whose shape is adapted to the architecture of the cut-off module, which can be curved in the case for example of a device with rotary cut-off.
  • it may consist of a plurality of parallelepipedic permanent magnets, arranged side by side in a curved line, or of a permanent magnet molded into a curved shape.
  • the characteristics of the permanent magnet, as well as its technical effects on the blowing and the stretching of the electric arc are in particular described in the publication FR 3 006 101 Al of the applicant, and will not be detailed in the present application.
  • This deflector 20 is designed and arranged to occupy, fill or fill the major part of the breaking chamber 9, that is to say the space existing between the breaking zone Z and the box 5, and to provide one or more narrow spaces or intervals between the insulating walls of said deflector and those of said casing.
  • the deflector 20 thus forms an entirely non-magnetic physical obstacle, interposed on the path of the blown electric arc and reduces to a minimum the volume of air remaining in said arcing chamber 9.
  • At least one of the remaining narrow spaces or gaps then constitutes an arc confinement zone 21, in which the electric arc E when it is blown magnetically is deflected and constrained to promote its cooling and extinction.
  • This arc confinement zone 21 is mainly located at a distance and directly above or plumb with the breaking zone Z in the direction of the electromotive force F.
  • FIG. 7 illustrates the arc confinement zones 21 obtained thanks to to the presence of the deflector 20 located mainly between the bottom of the parts 5a, 5b of the casing 5 and the corresponding ends of the lugs 22 of the deflector 20.
  • the confinement zone(s) arc 21 may be located elsewhere, between the corresponding side or transverse walls of said deflector 20 and of said housing 5.
  • the deflector 20 is movable, and is an integral part of the movable contact CM, and therefore of the rotary spindle 8. It has a C-shaped section, symmetrical with respect to the plane of cutoff P. It comprises two lugs 22 separated by a central opening 23. The central opening 23 frees a passage for the relative displacement of the fixed contact CF with respect to the movable contact CM in the cutoff plane P.
  • the deflector 20 comprises a shoulder 24 between the ears 22 and the rotary spindle 8, which delimits with the housing 5 a groove for guiding in rotation of said rotary spindle 8.
  • the shape of the deflector 20 and that of the means for guiding in rotation of the rotary spindle 8 can be different depending on the architecture of the breaking module 3.
  • the deflector 20 consists in this example of a plurality of fins 25, for example five fins 25, without this number being limiting.
  • the fins 25 are oriented perpendicular to the cutoff plane P. They are distributed in the cutoff zone Z, which extends over an angular sector, in the case of a rotary cutoff module.
  • the interval between two consecutive fins 25 is regular, but could be irregular. This exemplary embodiment is therefore not limiting.
  • the interior walls of the casing 5 have a shape that is substantially complementary to the shape of the deflector 20, for example that of the lugs 22, with a determined play to create said arc confinement zones 21.
  • the interior walls of the casing 5 also have a substantially symmetrical geometric shape relative to the cutoff plane P in the example shown, without this example being limiting.
  • the symmetry of the breaking chambers 9 with respect to said breaking plane P makes it possible to guarantee equivalent breaking performance, whatever the polarity of the magnets 11 and the direction of the current, if the magnets are also arranged symmetrically with respect to to said cutting plane P.
  • the same result is possible in the event of non-symmetry of the arcing chambers 9, if the magnets 11 are also arranged in a non-symmetrical manner. In all cases, the non-biased operation of the magnetic blower device 10 is guaranteed.
  • the deflector 20 interposed on the path of the electric arc E blown forms a non-magnetic physical obstacle which has the effect of immediately deflecting the path of the arc plasma in the direction of the electromotive force F, as far as the confinement zone 21 between the end of the lugs 22 of the deflector 20 and the casing 5
  • the gaps existing between the fins 25 of the deflector 20 on the one hand, and between the deflector 20 and the internal walls of the casing 5 on the other hand form unidirectional exhaust columns favoring the expansion of the arc plasma in the direction of the confinement zone 21 and its cooling in contact with the insulating walls of the deflector 20 and of the casing 5.
  • the electric arc E is stretched, elongated and taken out. n vice between the corresponding insulating walls of the housing 5 and the deflector 20.
  • the electric arc E then cools suddenly.
  • the electrically insulating materials constituting the housing 5 and the deflector 20 are preferably non-magnetic materials which produce no effect on the magnetic field generated by the magnets 11 and in no way disturb the magnetic blowing of the arc. These materials can further improve the technical effect described above, in particular if they have gas-forming properties.
  • These may be thermoplastic materials, such as Teflon® or the like, which in contact with the electric arc E release hydrogen particles, which will mix with the arc plasma and accelerate its cooling.
  • This new breaking principle allows a gain in breaking performance because it makes it possible to reach a high arcing voltage. It also makes it possible to reduce the necessary magnetic field and to use magnets 11 of lower quality and cost, such as for example magnets of the ferrite or similar type, instead of high quality magnets, made of rare metals and expensive, of the Neodymium Iron Boron type.
  • the movable deflector 20 as described with reference to FIGS. 2 to 7 is formed of fins 25 embedded in or integrally connected to the rotary pin 8 of the movable contact CM.
  • the deflector 20 consists of a solid one-piece part 26, also movable and integral with the rotary spindle 8 of the movable contact CM.
  • This solid one-piece piece 26 may have a geometry similar to that of the fins 25, that is to say a C-shaped section symmetrical with respect to the cutting plane P. It thus comprises two lugs 22, a central opening 23 and a shoulder 24 guide.
  • a lateral clearance between the deflector 20 and the interior walls of the casing 5 is necessary to create unidirectional exhaust columns favoring the expansion of the arc plasma in the direction of the confinement zones 21 and consequently the displacement and the stretching of the electric arc E perpendicular to the cutting plane P as far as these arc confinement zones 21.
  • the deflector 20 can also be made up of a single piece perforated, not shown, provided with slots, orifices or the like allowing the passage of the arc plasma.
  • Figures 8 to 10 illustrate another variant embodiment of a deflector 20' which is fixed and added to or integrally connected to the casing 5.
  • the deflector 20' consists of a plurality of individual plates 24', in C-shaped, symmetrical with respect to the cutting plane P and attached in lateral grooves 25' provided on an inner wall of the casing 5, facing the cutting zones Z.
  • the deflector 20' consists in this example of five plates 24' , without this number being limiting.
  • the 24' plates are oriented perpendicular to the cut-off plane P. They are distributed in the cut-off zone Z, which extends over an angular sector, in the case of a rotary cut-off module.
  • the interval between two consecutive 24' plates is regular, but could be irregular. This exemplary embodiment is therefore not limiting.
  • the gaps between the plates 24' of the deflector 20' form unidirectional exhaust columns favoring the expansion of the arc plasma in the direction of the electromotive force F and in the direction of the confinement zones 21
  • deflector embodiments 20, 20' are of course not limiting and other embodiments and/or geometric shapes are possible insofar as they form non-magnetic physical obstacles on the path of the blown electric arc E , which occupy and fill the interrupting chambers 9 to reduce to a minimum the volume of air remaining in narrow spaces, baffles and/or exhaust columns, having the effect of constraining and deflecting the path of the plasma d arc and therefore electric arc between non-conductive walls.
  • the deflector 20, 20' can also be made up of a perforated one-piece part, not shown, for example crossed by slots, orifices, pores or the like to allow the expansion of the arc plasma in the direction of the electromotive force F and in the direction of the confinement zones 21, 21'.
  • the cut-off principle of the invention also applies to so-called linear cut-off modules 3', as opposed to the rotary cut-off modules 3 described above.
  • the breaking module 3' is double and comprises two fixed contacts CF and a moving contact CM on board an insulated linear carriage 8'.
  • the linear carriage 8' is driven in alternating translation along an axis T, by a snap action mechanism (not shown) provided in a control module (not shown).
  • the linear cutoff module 3' has a construction substantially similar to the rotary cutoff module 3 of FIGS. 2 to 7, in the sense that it is symmetrical both with respect to a median plane B perpendicular to the cutoff plane P passing through the axis T, and with respect to said cut-off plane P.
  • the symmetry of the module in the two planes P and B is not an obligation, and an asymmetrical design can be envisaged , without calling into question either the operation or the non-polarity of the magnetic blow-out devices 10.
  • the linear breaking module 3′ further comprises two symmetrical breaking chambers 9, in line with two Z breaking zones, a magnetic blow-off device 10 provided with two symmetrical magnets 11 and facing each of the Z breaking zones, and two deflectors 20 symmetrical and embedded on the linear carriage 8'.
  • These deflectors 20 also have the same configuration as the deflectors 20 of FIGS. 2 to 7, bear the same reference numerals, and are not described again.
  • the deflectors 20 fill the interrupting chambers 9, and delimit with the interior walls of the casing 5 confinement zones 21 in which the electric arc E is deflected, stretched and constrained when it is magnetically blown by magnets 11.
  • the magnetic blower device 10 can be amplified by the addition of a ferromagnetic carcass 12 or the like, having the effect of channeling and concentrating the magnetic field M induced by the magnet 11 of the magnetic blower device 10 in each chamber of cutoff 9.
  • the carcass 12 has a C shape, symmetrical with respect to the cutoff plane P and surrounding the magnet 11 and the deflector 20. It is also insulated from the deflector 20 to an inner wall 5' of the casing 5.
  • the shape of the carcass 12 can be different depending on the architecture of the magnetic blower device 10 and of the cut-off module 3, 3'.
  • the magnetic blower device 10 when it is implemented in double cut-off modules 3, 3', as shown in the various figures 2 to 14, may comprise only a single source of magnetic field 11, which is in this case common to the two interrupting chambers 9.
  • An example embodiment is illustrated with reference to FIG. 15, in which the magnet 11 of the magnetic blow-out device 10 is mobile, embedded in the mobile contact CM, and attached integrated in the rotary spindle 8 or the linear carriage 8'.
  • This embodiment variant makes it possible to make the breaking module 3, 3' more compact and to combine the magnetic effect of a single magnet 11 placed facing two opposite breaking zones and blowing the electric arcs E into two breaking chambers 9 opposites.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

L'invention concerne un module de coupure électrique (3) comportant un boitier (5) amagnétique et électriquement isolant, dans lequel sont logés un contact fixe (CF) et un contact mobile (CM) définissant entre eux une zone de coupure (Z) dans laquelle s'étend un arc électrique (E) à sa naissance lors de l'ouverture du circuit électrique. Il comporte un dispositif de soufflage magnétique (10) pourvu d'au moins une source de champ magnétique (11) disposée dans une chambre de coupure (9), en regard de ladite zone de coupure (Z) pour déplacer et étirer ledit arc électrique (E) dans une direction sensiblement perpendiculaire au plan de coupure (P) en direction du boitier (5). Le dispositif de soufflage magnétique (10) comporte en outre un déflecteur (20) amagnétique et électriquement isolant, disposé dans ladite chambre de coupure (9) pour occuper la majeure partie de l'espace existant entre ladite zone de coupure (Z) et ledit boitier (5), de sorte à créer dans l'intervalle étroit restant entre les parois isolantes du déflecteur et celles du boitier au moins une zone de confinement d'arc (21), dans laquelle ledit arc électrique (E) lorsqu'il est soufflé magnétiquement est dévié et contraint pour favoriser son refroidissement et son extinction.

Description

MODULE DE COUPURE ÉLECTRIQUE ÉQUIPÉ D’UN DISPOSITIF DE SOUFFLAGE MAGNÉTIQUE ET APPAREIL DE COUPURE ÉLECTRIQUE
COMPORTANT UN TEL MODULE Domaine technique
La présente invention concerne un module de coupure électrique équipé d’un dispositif de soufflage magnétique, ledit module de coupure comportant un boîtier amagnétique et électriquement isolant, dans lequel sont logés au moins un contact fixe et un contact mobile, ledit contact mobile étant agencé pour se déplacer par rapport audit contact fixe entre une position fermée et une position ouverte et inversement sur une traj ectoire définissant un plan de coupure, ledit contact fixe et ledit contact mobile définissant entre eux une zone de coupure s’étendant dans ledit plan de coupure, dans laquelle s’étend un arc électrique à sa naissance notamment lors de l’ouverture du circuit électrique, ledit module de coupure comportant au moins une chambre de coupure délimitée par les parois intérieures dudit boîtier et comportant ladite zone de coupure pour gérer ledit arc électrique en vue de couper le courant, et ledit dispositif de soufflage magnétique comportant au moins une source de champ magnétique disposée dans ladite chambre de coupure en regard de ladite zone de coupure.
L’invention concerne également un appareil de coupure électrique comportant au moins un module de commande et ledit module de coupure électrique défini ci-dessus.
Technique antérieure
Le soufflage magnétique de l’arc électrique est un principe couramment employé dans les technologies de coupure pour gérer l’arc électrique qui naît en particulier lors de l’ouverture d’un circuit électrique, dans le but de réaliser un gain en performance de coupure et de préserver l’intégrité des contacts fixe et mobile du module de coupure. Le champ magnétique, qui peut être généré par tout type de source de champ magnétique, permet de déplacer l’arc électrique dès sa naissance et de l’étirer rapidement pour accélérer son refroidissement jusqu’à son extinction. Le refroidissement du plasma d’arc a pour effet d’augmenter son impédance, ce qui permet d’augmenter la tension d’arc lors de la coupure. La coupure d’un courant continu (DC) implique que le module de coupure génère plus de tension que la tension du réseau à couper. C’est la raison pour laquelle le principe de soufflage magnétique s’applique particulièrement bien à la coupure du courant DC. Néanmoins, une forte tension de l’arc électrique est aussi intéressante pour la coupure d’un courant alternatif (AC) puisqu’elle permet une limitation du courant lors de la coupure, ayant pour effet de diminuer les dommages dus à l’arc, voire aussi de diminuer le temps de l’arc électrique par un effet limiteur. Par conséquent, le principe de soufflage magnétique de l’arc est tout aussi intéressant pour des courants DC que pour des courants AC.
La publication FR 3 006 101 Al de la demanderesse propose un module de coupure électrique équipé d’un dispositif de soufflage magnétique non polarisé, qui a l’avantage de fonctionner indépendamment du sens du courant dans ledit module de coupure. Le dispositif de soufflage magnétique comporte à cet effet une source de champ magnétique, telle qu’un aimant permanent disposé de telle façon à ce que la réponse en coupure est inchangée quel que soit le sens du courant. La disposition de l’aimant en face de la zone de coupure permet un soufflage de l’arc électrique important. Le soufflage magnétique se traduit par un allongement de l’arc électrique et une colonne d’arc qui vient lécher les parois intérieures isolantes du boîtier. Ces deux phénomènes combinés tendent à refroidir le plasma d’arc qui voit alors son impédance augmenter. Ainsi, la tension d’arc croit de manière brutale, ce qui permet de couper des tensions continues plus importantes.
Toutefois, la recherche du gain en performance de coupure est omniprésente.
La publication EP 2 980 821 Al propose une solution de soufflage magnétique non satisfaisante pour plusieurs raisons. L’aimant central unique est éloigné de la zone de coupure, ce qui engendre une forte perte de champ magnétique dans la zone de coupure et rend le soufflage magnétique difficile. Les bras magnétiques qui prolongent l’aimant central génèrent une concentration et une déformation du champ magnétique, qui est contreproductif pour le soufflage de l’arc. La force électromotrice induite par le champ magnétique sur l’arc électrique n’est pas orientée en direction des bras, mais perpendiculairement à eux, également contreproductif pour le soufflage de l’arc. En outre, les bras magnétiques laissent un volume d’air important autour de la zone de coupure, permettant à l’arc électrique de revenir en arrière et de se reformer ou de reclaquer entre les contacts fixe et mobile, ce qui est dangereux pour le matériel et les personnes.
Et la publication WO 2012/110523 Al propose une solution d’extinction de l’arc non pas par soufflage magnétique mais en créant un confinement de l’arc imposé par un déplacement mécanique, appelé communément une guillotine. Ce principe de gestion d’arc est très violent au niveau du plasma de l’arc et peut générer des surtensions importantes, néfastes voire dangereuses pour le réseau électrique que l’on souhaite interrompre.
Exposé de l'invention
La présente invention vise à améliorer le dispositif de soufflage magnétique décrit entre autre dans la publication de la demanderesse en proposant une solution qui permet d’accélérer encore le refroidissement du plasma d’arc, en vue de générer encore plus de tension d’arc lors de l’interruption du courant, tout en conservant une solution de coupure non polarisée, pouvant s’adapter aisément à différentes configurations d’appareils de coupure électrique, et permettant de faire le choix d’aimants moins performants et donc moins onéreux.
Dans ce but, l'invention concerne un module de coupure électrique du genre indiqué en préambule, caractérisé en ce que ledit dispositif de soufflage magnétique comporte en outre au moins un déflecteur amagnétique et électriquement isolant, disposé dans ladite chambre de coupure pour former un obstacle physique sur le chemin de l’arc électrique lorsqu’il est soufflé magnétiquement, et occuper la majeure partie de l’espace existant entre ladite zone de coupure et ledit boîtier, de sorte à créer dans l’intervalle étroit restant entre les parois isolantes dudit déflecteur et celles dudit boîtier, au moins une zone de confinement d’arc dans laquelle ledit arc électrique, lorsqu’il est soufflé magnétiquement, est dévié et contraint pour favoriser son refroidissement et son extinction.
L’ajout du déflecteur amagnétique dans la chambre de coupure a pour effet de dévier immédiatement le cheminement du plasma de l’arc dans la direction de la force électromagnétique induite, d’étirer l’arc soufflé le plus loin possible de la zone de coupure pour éviter son reclaquage, et de le contraindre dans un intervalle étriqué entre des parois isolantes pour favoriser son refroidissement et accélérer son extinction.
Selon les variantes de réalisation, ladite chambre de coupure peut s’étendre de part et d’autre dudit plan de coupure symétriquement ou non, et ledit déflecteur peut s’étendre également de part et d’autre dudit plan de coupure symétriquement ou non, pour définir au moins deux zones de confinement d’arc en opposition par rapport audit plan de coupure.
Dans une forme préférée de l’invention, ladite au moins une source de champ magnétique peut être orientée pour générer au moins un vecteur d’excitation magnétique sensiblement parallèle audit plan de coupure de sorte que la force électromagnétique induite déplace et étire ledit arc électrique dans une direction sensiblement perpendiculaire audit plan de coupure en direction du boîtier et dans ladite au moins une zone de confinement d’arc.
Selon les formes de réalisation choisies, ledit déflecteur peut être mobile et solidaire dudit contact mobile, ou fixe et solidaire dudit boîtier. En outre, ledit déflecteur peut être constitué d’une pluralité d’ailettes ou de plaques espacées entre elles et orientées sensiblement perpendiculairement audit plan de coupure. Il peut également être constitué d’une pièce monobloc pleine ou ajourée.
Dans la forme préférée de l’invention, ledit déflecteur peut présenter une section en forme de C, sensiblement symétrique par rapport au plan de coupure, comportant deux oreilles séparées par une ouverture centrale agencée pour libérer un passage pour le déplacement relatif dudit contact mobile ou dudit contact fixe selon que ledit déflecteur est fixe ou mobile.
Ledit dispositif de soufflage magnétique peut en outre comporter au moins une carcasse agencée pour canaliser le flux magnétique induit par ladite au moins une source de champ magnétique, cette carcasse pouvant être ou non intégrée au boîtier et disposée autour au moins de ladite source de champ magnétique et dudit déflecteur.
Selon les variantes de réalisation, ladite au moins une source de champ peut être statique et solidaire dudit boîtier, ou mobile et solidaire dudit contact mobile. En outre, ledit contact mobile peut être mobile en rotation autour dudit axe central ou en translation parallèlement audit plan de coupure.
Si le module de coupure électrique comporte deux contacts fixes symétriques par rapport à un axe central ou un plan médian dudit boîtier, et un contact mobile commun aux deux contacts fixes définissant deux zones de coupure symétriques, alors il comporte avantageusement deux chambres de coupure symétriques, et au moins deux déflecteurs amagnétiques et électriquement isolants, chacun disposé dans une des chambres de coupure.
Brève description des dessins La présente invention et ses avantages apparaîtront mieux dans la description suivante de plusieurs modes de réalisation donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, dans lesquels: la figure 1 est une vue en perspective d’un appareil de coupure électrique selon l’invention, la figure 2 est une vue de dessus en perspective d’un module de coupure rotatif de l’appareil de la figure 1, en position fermée, la figure 3 est une vue de dessus en perspective du module de coupure de la figure 2, en position ouverte, la figure 4 est une vue agrandie du détail IV du module de coupure de la figure 3, montrant un dispositif de soufflage magnétique, la figure 5 est une vue partielle agrandie du module de coupure de la figure 3, montrant le trajet d’un arc électrique à sa naissance dans la chambre de coupure, la figure 6 est une vue similaire à la figure 5, montrant le trajet de l’arc électrique soufflé magnétiquement dans la chambre de coupure, la figure 7 est une vue partielle en coupe transversale du module de coupure de la figure 3 au droit d’une chambre de coupure et d’un dispositif de soufflage magnétique, la figure 8 est une vue similaire à la figure 4 montrant une variante de réalisation du dispositif de soufflage magnétique, la figure 9 est une vue éclatée d’une partie du dispositif de soufflage magnétique de la figure 8, la figure 10 est une vue partielle en coupe transversale similaire à la figure 7, de la chambre de coupure et du dispositif de soufflage magnétique de la figure 8, la figure 11 est une vue de dessus en perspective d’un module de coupure linéaire d’un autre appareil de coupure selon l’invention, en position fermée, la figure 12 est une vue de dessus en perspective du module de coupure de la figure 11, en position ouverte, la figure 13 est une vue en coupe transversale du module de coupure de la figure 12 au droit des chambres de coupure et des dispositifs de soufflage magnétique, la figure 14 est une vue en coupe transversale du module de coupure de la figure 12 selon une autre variante de réalisation des dispositifs de soufflage magnétique, la figure 15 est une vue en coupe transversale du module de coupure de la figure 12 selon une variante du dispositif de soufflage magnétique, et la figure 16 est une vue en perspective similaire à la figure 4 du module de coupure de la figure 3, montrant une autre variante du dispositif chambre de soufflage magnétique.
Description des modes de réalisation
Dans les exemples de réalisation illustrés, les éléments ou parties identiques portent les mêmes numéros de référence. En outre, les termes qui ont un sens relatif, tels que vertical, horizontal, droite, gauche, avant, arrière, au-dessus, en-dessous, etc. doivent être interprétés dans des conditions normales d’utilisation de l’invention, et telles que représentées sur les figures. Par ailleurs, les positions géométriques indiquées dans la description et les revendications, telles que « perpendiculaire », « parallèle », « symétrique » ne sont pas limitées au sens strict défini en géométrie, mais s’étendent à des positions géométriques qui sont proches, c’est-à-dire qui acceptent une certaine tolérance dans le domaine technique considéré, sans influence sur le résultat obtenu. Cette tolérance est notamment introduite par l’adverbe « sensiblement », sans que ce terme soit nécessairement répété devant chaque adjectif.
En référence aux figures, l’appareil de coupure électrique 1 selon l’invention peut être indifféremment un interrupteur, un interrupteur-sectionneur, un contacteur, un commutateur, un commutateur-inverseur, un disjoncteur, ou tout autre appareil de coupure similaire. Il est prévu pour être fixé sur un rail normalisé (DIN), une platine, ou tout support de fixation adéquat. Il peut être destiné à couper un courant continu en basse tension (soit inférieur à 1500V), tel que par exemple dans des applications photovoltaïques ou similaires, ou un courant continu en moyenne tension, tel que par exemple 2000V ou 3000V pour des applications particulières, sans que ces valeurs et ces exemples ne soient limitatifs. Il peut également être destiné à couper un courant alternatif dans tous types d’applications industrielles, tertiaires et domestiques, et ce quelle que soit la tension nominale d’alimentation.
L’appareil de coupure électrique 1 peut être basé sur une architecture modulaire ou non. Si l’appareil est modulaire, alors il peut commander avec un seul module de commande 2, un ou plusieurs modules de coupure 3, 3’, par exemple un à huit modules de coupure, sans que ce nombre soit limitatif. Le module de commande 2 ne fait pas partie de l’invention et ne sera pas décrit. Seul le module de coupure 3 fait partie de l’invention et sera décrit en détail, étant précisé qu’il peut faire partie intégrante dudit appareil de coupure électrique lorsque celui-ci n’est pas modulaire. Le terme « module » ne doit donc pas être interprété dans un sens restrictif.
Chaque module de coupure 3, 3’ forme un pôle de coupure, qui peut être indifféremment un pôle de coupure simple comportant un contact fixe CF et un contact mobile CM, ou un pôle de coupure double comportant deux contacts fixes CF et un contact mobile CM commun. Dans tous les cas, le contact mobile CM est agencé pour se déplacer par rapport au(x) contact(s) fixe(s) CF entre une position fermée et une position ouverte et inversement sur une trajectoire définissant un plan de coupure P. Le déplacement relatif du contact mobile CM peut être indifféremment rotatif ou linéaire. En outre, les contacts fixes CF et mobiles CM peuvent être indifféremment des contacts électriques à glissement, à pression, ou tout autre type de contacts électriques compatibles.
L’appareil de coupure électrique 1, également appelé par la suite appareil de coupure 1 ou appareil 1, selon l’invention et tel qu’illustré à la figure 1, comporte deux modules de coupure 3 double, et un module de commande 2 manuel pourvu d’une poignée 4. Ces trois modules sont superposés suivant un axe central A, et maintenus entre eux par des formes d’emboîtement complémentaires et des organes de fixation (non représentés). Chaque module de coupure 3 peut avoir un pouvoir de coupure défini, par exemple égal à 750V, permettant ainsi de disposer, dans l’exemple illustré, d’un appareil 1 capable de couper une tension de 1500V, sans que cet exemple ne soit limitatif. Les modules de coupure 3 sont de préférence identiques et un seul module de coupure 3 sera décrit par la suite.
En référence également aux figures 2 à 8, le module de coupure 3 comporte un boîtier 5 amagnétique et électriquement isolant, dans lequel sont logés au moins deux contacts fixes CF et un contact mobile CM. Le boîtier 5 est préférentiellement réalisé en deux parties 5a, 5b emboîtables, délimitant entre-elles des logements pour recevoir les différents composants dudit module de coupure et assurer simultanément leur positionnement, leur maintien et leur isolation électrique. Les contacts fixes CF sont raccordés à des conducteurs 6 externes par des cages à vis 7, ou tout autre type de borne de raccordement adaptée. Le contact mobile CM est un contact rotatif, embarqué sur une broche rotative 8 électriquement isolée. La broche rotative 8 est entraînée en rotation alternative autour de l’axe central A par un mécanisme à action brusque (non représenté) prévu dans le module de commande 2. Le mécanisme à action brusque faisant partie du module de commande 2 ne fait pas non plus l’objet de l’invention et ne sera pas décrit. Tout type de module de commande 2 et de mécanisme à action brusque peuvent donc convenir au module de coupure 3 objet de l’invention.
Les contacts fixes CF et le contact mobile CM définissent entre eux respectivement deux zones de coupure Z, dans lesquelles s’étend un arc électrique E notamment lors de l’ouverture du circuit électrique. L’arc électrique E est représenté schématiquement par un cordon dans les figures 5 à 7 et uniquement dans la zone de coupure Z à droite des figures. Les zones de coupure Z sont, dans l’exemple représentées, diamétralement opposées. Elles s’étendent dans ledit plan de coupure P, dans lequel l’arc électrique E s’inscrit à sa naissance.
Le module de coupure 3 comporte deux chambres de coupure 9, qui sont notamment délimitées par les parois intérieures du boîtier 5 et comportent chacune une des zones de coupure Z. Les chambres de coupure 9 permettent de gérer l’arc électrique E en vue de couper le courant. Dans l’exemple illustré, les chambres de coupure 9 sont diamétralement opposées par rapport à l’axe central A et symétriques par rapport à plan médian confondu avec le plan de coupure P. Cet exemple n’est pas limitatif, puisque des chambres de coupure asymétriques peuvent être envisagées, sans remettre en cause ni le fonctionnement, ni la non-polarité des dispositifs de soufflage magnétique 10.
Le module de coupure 3 comporte en outre un dispositif de soufflage magnétique 10 de l’arc électrique E. Dans l’exemple représenté, le dispositif de soufflage magnétique 10 comporte deux sources de champ magnétique 11, statiques, disposées chacune à proximité et en regard d’une zone de coupure Z. Le fait d’être chacune située face à une zone de coupure Z permet de créer un champ magnétique maximal directement dans la zone de coupure et un champ magnétique quasi constant dans toute la chambre de coupure 9 pour un soufflage magnétique optimal de l’arc électrique E. Les sources de champ magnétique 11 sont isolées de ladite zone de coupure Z par des parois intérieures du boîtier 5. Dans l’exemple représenté, chaque source de champ magnétique 11 est orientée pour générer un vecteur d’excitation magnétique M sensiblement parallèle au plan de coupure P. Ainsi, la force électromagnétique F induite par chaque source de champ magnétique 11 déplace et étire l’arc électrique E correspondant dans une direction sensiblement perpendiculaire au plan de coupure P en direction du fond des parties 5a, 5b du boîtier 5, et ceci indépendamment dans un sens ou dans l’autre selon la polarité de la source de champ magnétique 11 et/ou dudit courant. Toutefois, l’invention convient également à des dispositifs de soufflage magnétique qui peuvent avoir une architecture différente, proposant une coupure aussi bien non polarisée que polarisée, et soufflant l’arc électrique en direction d’autres parois du boîtier 5.
La source de champ magnétique 11 peut être constituée par un ou plusieurs aimants permanents, ou tout autre système équivalent pouvant générer un vecteur d’excitation magnétique, tel qu’une ou plusieurs bobines alimentées électriquement. Dans les exemples représentés, la source de champ magnétique 11 est constituée d’un aimant permanent, de forme plane, parallélépipédique, sans que cette forme ne soit limitative. La référence numérique 11 sera indifféremment utilisée pour désigner la source de champ magnétique et le ou les aimants. En effet, il est possible de réaliser une source de champ magnétique 11 dont la forme est adaptée à l’architecture du module de coupure, qui peut être courbe dans le cas par exemple d’un appareil à coupure rotative. Dans ce cas, elle peut être constituée d’une pluralité d’aimants permanents parallélépipédiques, disposés côte à côte sur une ligne courbe, ou d’un aimant permanent moulé dans une forme courbe. Les caractéristiques de l’aimant permanent, ainsi que ses effets techniques sur le soufflage et l’étirement de l’arc électrique sont notamment décrits dans la publication FR 3 006 101 Al de la demanderesse, et ne seront pas détaillés dans la présente demande.
Le dispositif de soufflage magnétique 10, conformément à l’invention, se différencie de celui décrit dans la publication mentionnée ci-dessus, par la présence dans ladite chambre de coupure 9, d’un déflecteur 20 amagnétique et électriquement isolant. Ce déflecteur 20 est conçu et agencé pour occuper, combler ou remplir la majeure partie de la chambre de coupure 9, c’est-à-dire l’espace existant entre la zone de coupure Z et le boîtier 5, et ménager un ou plusieurs espaces ou intervalles étroits entre les parois isolantes dudit déflecteur et celles dudit boîtier. Le déflecteur 20 forme ainsi un obstacle physique entièrement amagnétique, interposé sur le chemin de l’arc électrique soufflé et réduit à son minimum le volume d’air restant dans ladite chambre de coupure 9. Au moins un des espaces ou intervalles étroits restants constitue alors une zone de confinement d’arc 21, dans laquelle l’arc électrique E lorsqu’il est soufflé magnétiquement est dévié et contraint pour favoriser son refroidissement et son extinction. Cette zone de confinement d’arc 21 est principalement située à distance et au droit ou à l’aplomb de la zone de coupure Z dans la direction de la force électromotrice F. La figure 7 illustre les zones de confinement d’arc 21 obtenues grâce à la présence du déflecteur 20 situées principalement entre le fond des parties 5a, 5b du boîtier 5 et les extrémités correspondantes des oreilles 22 du déflecteur 20. Toutefois et en fonction de l’architecture du dispositif de soufflage magnétique, la ou les zones de confinement d’arc 21 peuvent se situer ailleurs, entre les parois latérales ou transversales correspondantes dudit déflecteur 20 et dudit boîtier 5.
Dans l’exemple illustré dans les figures 2 à 7, le déflecteur 20 est mobile, et fait partie intégrante du contact mobile CM, et donc de la broche rotative 8. Il présente une section en forme de C, symétrique par rapport au plan de coupure P. Il comporte deux oreilles 22 séparées par une ouverture centrale 23. L’ouverture centrale 23 libère un passage pour le déplacement relatif du contact fixe CF par rapport au contact mobile CM dans le plan de coupure P. Le déflecteur 20 comporte un épaulement 24 entre les oreilles 22 et la broche rotative 8, qui délimite avec le boîtier 5 une rainure de guidage en rotation de ladite broche rotative 8. La forme du déflecteur 20 et celle des moyens de guidage en rotation de la broche rotatif 8 peuvent être différentes en fonction de l’architecture du module de coupure 3. Le déflecteur 20 est constitué dans cet exemple d’une pluralité d’ailettes 25, par exemple de cinq ailettes 25, sans que ce nombre soit limitatif. Les ailettes 25 sont orientées perpendiculairement au plan de coupure P. Elles sont réparties dans la zone de coupure Z, qui s’étend sur un secteur angulaire, s’agissant d’un module de coupure rotatif. L’intervalle entre deux ailettes 25 consécutives est régulier, mais pourrait être irrégulier. Cet exemple de réalisation n’est donc pas limitatif.
Les parois intérieures du boîtier 5 ont une forme sensiblement complémentaire à la forme du déflecteur 20, par exemple à celle des oreilles 22, avec un jeu déterminé pour créer lesdites zones de confinement d’arc 21. Ainsi les parois intérieures du boîtier 5 ont également une forme géométrique sensiblement symétrique par rapport au plan de coupure P dans l’exemple illustré, sans que cet exemple ne soit limitatif. Comme évoqué précédemment, la symétrie des chambres de coupure 9 par rapport audit plan de coupure P permet de garantir des performances de coupure équivalentes, quelle que soit la polarité des aimants 11 et le sens du courant, si les aimants sont également disposés symétriquement par rapport audit plan de coupure P. Le même résultat est possible en cas de non-symétrie des chambres de coupure 9, si les aimants 11 sont également disposés de manière non-symétrique. Dans tous les cas, le fonctionnement non polarisé du dispositif de soufflage magnétique 10 est garanti.
Lors de l’ouverture du circuit électrique, lorsque le contact mobile CM quitte le contact fixe CF, un arc électrique E s’établit dans la zone de coupure Z entre le contact fixe CF et le contact mobile CM, et circule à l’intérieur de l’ouverture centrale 23 du déflecteur 20 (cf. figure 5). Le soufflage magnétique induit par l’aimant 11 dans la zone de coupure Z, tend à pousser l’arc électrique E perpendiculairement au plan de coupure P en direction du boîtier 5. Le déflecteur 20 intercalé sur le chemin de l’arc électrique E soufflé forme un obstacle physique amagnétique qui a pour effet de dévier immédiatement le cheminement du plasma de l’arc dans la direction de la force électromotrice F, jusque dans la zone de confinement 21 entre l’extrémité des oreilles 22 du déflecteur 20 et le boîtier 5. Dans le même temps, les intervalles existants entre les ailettes 25 du déflecteur 20 d’une part, et entre le déflecteur 20 et les parois intérieures du boîtier 5 d’autre part, forment des colonnes d’échappement unidirectionnelles favorisant l’expansion du plasma d’arc en direction de la zone de confinement 21 et son refroidissement au contact des parois isolantes du déflecteur 20 et du boîtier 5. Dans la zone de confinement d’arc 21, l’arc électrique E est étiré, allongé et pris en étau entre les parois isolantes correspondantes du boîtier 5 et du déflecteur 20. L’arc électrique E se refroidit alors brutalement. Cette technique de refroidissement est particulièrement rapide et très efficace. En outre, les matériaux électriquement isolants constituant le boîtier 5 et le déflecteur 20 sont préférentiellement des matériaux amagnétiques qui ne produisent aucun effet sur le champ magnétique généré par les aimants 11 et ne perturbent aucunement le soufflage magnétique de l’arc. Ces matériaux peuvent encore améliorer l’effet technique décrit ci-dessus, notamment s’ils présentent des propriétés gazogènes. Il peut s’agir de matières thermoplastiques, telles que du Téflon® ou similaires, qui au contact de l’arc électrique E libèrent des particules d’hydrogène, qui vont se mélanger au plasma d’arc et accélérer son refroidissement.
Ce nouveau principe de coupure permet un gain en performances de coupure car il permet d’atteindre une importante tension d’arc. Il permet aussi de réduire le champ magnétique nécessaire et d’utiliser des aimants 11 de qualité et de coût moindres, tels que par exemple des aimants de type ferrite ou similaire, en lieu et place d’aimants de haute qualité, en métaux rares et coûteux, de type Néodyme Fer Bore.
Le principe de coupure selon l’invention est en outre facilement déclinable en diverses variantes, dont quelques exemples sont à présent décrits.
Le déflecteur 20 mobile tel que décrit en référence aux figures 2 à 7 est formé d’ailettes 25 embarquées ou liées solidairement à la broche rotative 8 du contact mobile CM. Dans la variante de réalisation illustrée à la figure 16, le déflecteur 20 est constitué d’une pièce monobloc pleine 26, également mobile et solidaire de la broche rotative 8 du contact mobile CM. Cette pièce monobloc pleine 26 peut présenter une géométrie similaire à celle des ailettes 25, c’est à dire une section en forme de C symétrique par rapport au plan de coupure P. Elle comporte ainsi deux oreilles 22, une ouverture centrale 23 et un épaulement 24 de guidage. Dans cette variante, un jeu latéral entre le déflecteur 20 et les parois intérieures du boîtier 5 est nécessaire pour créer des colonnes d’échappement unidirectionnelles favorisant l’expansion du plasma d’arc en direction des zones de confinement 21 et par conséquent le déplacement et l’étirement de l’arc électrique E perpendiculairement au plan de coupure P jusque dans ces zones de confinement d’arc 21. Le déflecteur 20 peut également être constitué d’une pièce ajourée, non représentée, pourvue de fentes, d’orifices ou similaires permettant le passage du plasma d’arc.
Les figures 8 à 10 illustrent une autre variante de réalisation d’un déflecteur 20’ qui est fixe et rapporté ou lié solidairement au boîtier 5. Dans cet exemple, le déflecteur 20’est constitué d’une pluralité de plaques 24’ individuelles, en forme de C, symétriques par rapport au plan de coupure P et rapportées dans des rainures 25’ latérales prévues une paroi intérieure du boîtier 5, en regard des zones de coupure Z. Le déflecteur 20’ est constitué dans cet exemple de cinq plaques 24’, sans que ce nombre soit limitatif. Les plaques 24’ sont orientées perpendiculairement au plan de coupure P. Elles sont réparties dans la zone de coupure Z, qui s’étend sur un secteur angulaire, s’agissant d’un module de coupure rotatif. L’intervalle entre deux plaques 24’ consécutives est régulier, mais pourrait être irrégulier. Cet exemple de réalisation n’est donc pas limitatif. Les intervalles entre les plaques 24’ du déflecteur 20’ forment des colonnes d’échappement unidirectionnelles favorisant l’expansion du plasma d’arc dans la direction de la force électromotrice F et en direction des zones de confinement 21’ .
Ces exemples de réalisation de déflecteur 20, 20’ ne sont bien entendu pas limitatifs et d’autres modes de réalisation et/ou formes géométriques sont possibles dans la mesure où ils forment des obstacles physiques amagnétiques sur le trajet de l’arc électrique E soufflé, qui occupent et remplissent les chambres de coupure 9 pour réduire à son minimum le volume d’air restant dans des espaces étroits, des chicanes et/ou des colonnes d’échappement, ayant pour effet de contraindre et de dévier le cheminement du plasma d’arc et donc de l’arc électrique entre des parois non conductrices. Le déflecteur 20, 20’ peut également être constitué d’une pièce monobloc ajourée, non représentée, par exemple traversée par des fentes, orifices, pores ou similaires pour permettre l’expansion du plasma d’arc dans la direction de la force électromotrice F et en direction des zones de confinement 21, 21’. Le principe de coupure de l’invention s’applique également à des modules de coupure 3’ dits linéaires, par opposition aux modules de coupure 3 rotatifs décrits précédemment. En référence plus particulièrement aux figures 11 à 13, le module de coupure 3’ est double et comporte deux contacts fixes CF et un contact mobile CM embarqué sur un chariot linéaire 8’ isolé. Le chariot linéaire 8’ est entraîné en translation alternative selon un axe T, par un mécanisme à action brusque (non représenté) prévu dans un module de commande (non représenté). Le module de coupure 3’ linéaire a une construction sensiblement similaire au module de coupure 3 rotatif des figures 2 à 7, en ce sens qu’il est symétrique à la fois par rapport à un plan médian B perpendiculaire au plan de coupure P passant par l’axe T, et par rapport audit plan de coupure P. Comme expliqué en référence au module de coupure 3 rotatif, la symétrie du module dans les deux plans P et B n’est pas une obligation, et une conception asymétrique peut être envisagée, sans remettre en cause ni le fonctionnement, ni la non-polarité des dispositifs de soufflage magnétique 10.
Le module de coupure 3’ linéaire comporte en outre deux chambres de coupure 9 symétriques, au droit de deux zones de coupure Z, un dispositif de soufflage magnétique 10 pourvu de deux aimants 11 symétriques et face à chacune des zones de coupure Z, et deux déflecteurs 20 symétriques et embarqués sur le chariot linéaire 8’. Ces déflecteurs 20 ont en outre la même configuration que les déflecteurs 20 des figures 2 à 7, portent les mêmes références numériques, et ne sont pas décrits à nouveau. Conformément à la figure 13, les déflecteurs 20 remplissent les chambres de coupure 9, et délimitent avec les parois intérieures du boîtier 5 des zones de confinement 21 dans lesquels est dévié, étiré et contraint l’arc électrique E lorsqu’il est soufflé magnétique par les aimants 11.
En outre et dans toutes les variantes de réalisation décrites, le dispositif de soufflage magnétique 10 peut être amplifié par l’ajout d’une carcasse 12 ferromagnétique ou similaire, ayant pour effet de canaliser et de concentrer le champ magnétique M induit par l’aimant 11 du dispositif de soufflage magnétique 10 dans chaque chambre de coupure 9. Dans l’exemple illustré à la figure 14, la carcasse 12 présente une forme en C, symétrique par rapport au plan de coupure P et entourant l’aimant 11 et le déflecteur 20. Elle est en outre isolée du déflecteur 20 pour une paroi intérieure 5’ du boîtier 5. La forme de la carcasse 12 peut être différente en fonction de l’architecture du dispositif de soufflage magnétique 10 et du module de coupure 3, 3’.
Le dispositif de soufflage magnétique 10, lorsqu’il est mis en œuvre dans des modules de coupure 3, 3’ double, tels que représentés dans les différentes figures 2 à 14, peut ne comporter qu’une seule source de champ magnétique 11, qui est dans ce cas commune aux deux chambres de coupure 9. Un exemple de réalisation est illustré en référence à la figure 15, dans laquelle l’aimant 11 du dispositif de soufflage magnétique 10 est mobile, embarqué dans le contact mobile CM, et rapporté ou intégré dans la broche rotative 8 ou le chariot linéaire 8’. Cette variante de réalisation permet de rendre le module de coupure 3, 3’ plus compact et de cumuler l’effet magnétique d’un unique aimant 11 disposé face à deux zones de coupure opposées et soufflant les arcs électriques E dans deux chambres de coupure 9 opposées.
La présente invention n'est bien entendu pas limitée aux exemples de réalisation décrits mais s'étend à toute modification et variante évidentes pour un homme du métier dans la limite des revendications annexées. En outre, les caractéristiques techniques des différents modes de réalisation et variantes mentionnés ci-dessus peuvent être, en totalité ou pour certaines d’entre elles, combinées entre elles. Par ailleurs, les flèches M et F qui représentent sur les figures respectivement le vecteur d’excitation magnétique généré par chaque source de champ magnétique 11 et la force électromagnétique induite correspondante, peuvent être orientées différemment en fonction à la fois de la polarité de ladite source de champ magnétique 11 et du sens du courant circulant dans chaque chambre de coupure 9, sans pour cela sortir du champ de protection de l’invention.

Claims

Revendications
1. Module de coupure électrique (3, 3’) équipé d’un dispositif de soufflage magnétique (10), ledit module de coupure comportant un boîtier (5) amagnétique et électriquement isolant, dans lequel sont logés au moins un contact fixe (CF) et un contact mobile (CM), ledit contact mobile (CM) étant agencé pour se déplacer par rapport audit contact fixe (CF) entre une position fermée et une position ouverte et inversement sur une trajectoire définissant un plan de coupure (P), ledit contact fixe (CF) et ledit contact mobile (CM) définissant entre eux une zone de coupure (Z) s’étendant dans ledit plan de coupure (P), dans laquelle s’étend un arc électrique (E) à sa naissance notamment lors de l’ouverture du circuit électrique, ledit module de coupure comportant au moins une chambre de coupure (9) délimitée par les parois intérieures dudit boîtier (5) et comportant ladite zone de coupure (Z) pour gérer ledit arc électrique (E) en vue de couper le courant, ledit dispositif de soufflage magnétique (10) comportant au moins une source de champ magnétique (11) disposée dans ladite chambre de coupure (9) en regard de ladite zone de coupure (Z), caractérisé en ce que ledit dispositif de soufflage magnétique (10) comporte en outre au moins un déflecteur (20, 20’) amagnétique et électriquement isolant, disposé dans ladite chambre de coupure (9) pour former un obstacle physique sur le chemin de l’arc électrique (E) lorsqu’il est soufflé magnétiquement, et occuper la majeure partie de l’espace existant entre ladite zone de coupure (Z) et ledit boîtier (5), de sorte à créer dans l’intervalle étroit restant entre les parois isolantes dudit déflecteur (20) et celles dudit boîtier (5) au moins une zone de confinement d’arc (21, 21’) dans laquelle ledit arc électrique (E), lorsqu’il est soufflé magnétiquement, est dévié et contraint pour favoriser son refroidissement et son extinction.
2. Module de coupure électrique (3, 3’) selon la revendication 1, caractérisé en ce que ladite chambre de coupure (9) s’étend de part et d’autre dudit plan de coupure (P) et ledit déflecteur (20, 20’) s’étend également de part et d’autre dudit plan de coupure (P) pour définir au moins deux zones de confinement (21) en opposition par rapport audit plan de coupure (P).
3. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 1 et 2, caractérisé en ce que ladite chambre de coupure (9) est symétrique par rapport audit plan de coupure (P) et ledit déflecteur (20, 20’) est symétrique par rapport audit plan de coupure (P).
4. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 1 à
3, caractérisé en ce que ladite au moins une source de champ magnétique (11) est orientée pour générer au moins un vecteur d’excitation magnétique (M) sensiblement parallèle audit plan de coupure (P) de sorte que la force électromagnétique (F) induite déplace et étire ledit arc électrique (E) dans une direction sensiblement perpendiculaire audit plan de coupure (P) en direction du boîtier (5) et dans ladite au moins une zone de confinement d’arc (21, 2G).
5. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit déflecteur (20) est mobile et solidaire dudit contact mobile (CM).
6. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 1 à
4, caractérisé en ce que ledit déflecteur (20’) est fixe et solidaire dudit boîtier (5).
7. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit déflecteur (20, 20’) est constitué d’une pluralité d’ailettes (25) ou de plaques (24’) espacées entre elles et orientées sensiblement perpendiculairement audit plan de coupure (P).
8. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 1 à 6, caractérisé en ce que ledit déflecteur (20) est constitué d’une pièce monobloc pleine (26) ou d’une pièce monobloc ajourée.
9. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 7 et 8, caractérisé en ce que ledit déflecteur (20, 20’) présente une section en forme de C, sensiblement symétrique par rapport au plan de coupure (P), comportant deux oreilles (22) séparées par une ouverture centrale (23) agencée pour libérer un passage pour le déplacement relatif dudit contact mobile (CM) ou dudit contact fixe (CF) selon que ledit déflecteur (20, 20’) est fixe ou mobile.
10. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit dispositif de soufflage magnétique (10) comporte au moins une carcasse (12) agencée pour canaliser le flux magnétique (M) induit par ladite au moins une source de champ magnétique (11).
11. Module de coupure électrique (3, 3’) selon la revendication 10, caractérisé en ce que ladite carcasse (12) est intégrée au boîtier (5) et disposée autour au moins de ladite source de champ magnétique (11) et dudit déflecteur (20, 20’).
12. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, caractérisé en ce que ladite au moins une source de champ (11) est statique et solidaire dudit boîtier (5).
13. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications 1 à 11, caractérisé en ce que ladite au moins une source de champ (11) est mobile et solidaire dudit contact mobile (CM).
14. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit contact mobile (CM) est mobile en rotation autour dudit axe central (A) ou mobile en translation parallèlement audit plan de coupure (P).
15. Module de coupure électrique (3, 3’) selon l’une quelconque des revendications précédentes, comportant deux contacts fixes (CF) symétriques par rapport à un axe central (A) ou un plan médian (B) dudit boîtier (5), et un contact mobile (CM) commun aux deux contacts fixes (CF) définissant deux zones de coupure (Z) symétriques, ledit module de coupure comportant deux chambre de coupure (9) symétriques, caractérisé en ce qu’il comporte en outre au moins deux déflecteurs (20, 20’) amagnétiques et électriquement isolants, chacun disposé dans une des chambres de coupure (9).
16. Appareil (1) de coupure électrique comportant au moins un module de commande (2) et un module de coupure (3, 3’) selon l’une quelconque des revendications précédentes.
EP22728556.6A 2021-05-21 2022-05-10 Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module Pending EP4341971A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105345A FR3123143A1 (fr) 2021-05-21 2021-05-21 Module de coupure électrique équipé d’un dispositif de soufflage magnétique et appareil de coupure électrique comportant un tel module
PCT/EP2022/062695 WO2022243119A1 (fr) 2021-05-21 2022-05-10 Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module

Publications (1)

Publication Number Publication Date
EP4341971A1 true EP4341971A1 (fr) 2024-03-27

Family

ID=76523168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22728556.6A Pending EP4341971A1 (fr) 2021-05-21 2022-05-10 Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module

Country Status (4)

Country Link
EP (1) EP4341971A1 (fr)
CN (1) CN117321716A (fr)
FR (1) FR3123143A1 (fr)
WO (1) WO2022243119A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401870A (en) * 1981-11-10 1983-08-30 Hydro-Quebec Modular suction-gas-cooled magnetic blast circuit breaker
FR2583571B1 (fr) * 1985-06-12 1994-02-18 Merlin Et Gerin Disjoncteur basse tension a coupure amelioree.
JPH09251827A (ja) * 1996-03-14 1997-09-22 Nissin Electric Co Ltd 開閉器
EP1191567A1 (fr) * 2000-09-25 2002-03-27 Hager Electro S.A. Dispositif de soufflage magnétique d'arc électrique
DE102011000763A1 (de) * 2011-02-16 2012-08-16 Phoenix Contact Gmbh & Co. Kg Trennvorrichtung
CN202871728U (zh) * 2012-11-13 2013-04-10 安德利集团有限公司 一种导弧灭弧装置及使用该导弧灭弧装置的直流断路器
KR101775805B1 (ko) * 2013-03-27 2017-09-06 미쓰비시덴키 가부시키가이샤 개폐 장치
FR3006101B1 (fr) 2013-05-23 2017-03-10 Socomec Sa Dispositif de coupure electrique notamment pour courant continu equipe d'un module magnetique pour le soufflage de l'arc electrique
CN204857636U (zh) * 2015-05-06 2015-12-09 北京人民电器厂有限公司 一种快速灭弧的灭弧室及应用该灭弧室的小型化断路器
DE102018204104A1 (de) * 2018-03-16 2019-09-19 Ellenberger & Poensgen Gmbh Schalteinheit zur Trennung eines Stromkreises und Schutzschalter
CN211719469U (zh) * 2020-02-27 2020-10-20 浙江奔一电气有限公司 隔离开关的灭弧结构

Also Published As

Publication number Publication date
WO2022243119A1 (fr) 2022-11-24
FR3123143A1 (fr) 2022-11-25
CN117321716A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
EP2061051B1 (fr) Chambre de coupure et disjoncteur équipé d'une telle chambre de coupure
EP1995747B1 (fr) Chambre de coupure et disjoncteur équipé d'une telle chambre de coupure
FR3012662A1 (fr) Appareil de commutation electrique de courant continu bidirectionnel comportant de petits aimants permanents sur des elements lateraux ferromagnetiques et un ensemble de plaques de sectionnement d'arc
EP3232457B1 (fr) Disjoncteur electrique à courant continu
EP3210224B1 (fr) Chambre de coupure d'arc électrique
EP2541578B1 (fr) Appareil de protection électrique comportant au moins un module de coupure commande par un dispositif de commande à bobine électromagnétique.
EP1359596A1 (fr) Appareillage électrique de coupure comportant une chambre d'extinction d'arc munie d'ailettes de désionisation
CH699821B1 (fr) Coupe-circuit électromécanique et procédé pour couper le courant dans ce coupe-circuit électromécanique.
EP1667180B1 (fr) Dispositif électrique de coupure avec chambre d'extinction d'arc à ailettes de désionisation
WO2022243119A1 (fr) Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module
EP0148058A2 (fr) Disjoncteur miniature à tenue diélelectrique améliorée
EP0079293B1 (fr) Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz
KR100760660B1 (ko) 부하개폐기의 소호부
FR2632772A1 (fr) Disjoncteur basse tension a soufflage magnetique de l'arc par un aimant permanent
FR3134224A1 (fr) Contacteur bidirectionnel double pole à double coupure à champs magnétiques inversés
FR3006101A1 (fr) Dispositif de coupure electrique notamment pour courant continu equipe d'un module magnetique pour le soufflage de l'arc electrique
FR3107395A1 (fr) Chambre de coupure à soufflage magnétique pour un appareil de coupure électrique et appareil de coupure électrique équipé d’une telle chambre
FR2733352A1 (fr) Pole pour appareil limiteur de courant
WO2024100346A1 (fr) Contacteur électrique à recirculation des gaz ionisés
EP0462026A1 (fr) Disjoncteur électrique miniature à échappement des gaz de coupure
EP2771897B1 (fr) Chambre de coupure dotée d'un tube limitant l'impact de la génération de particules et appareillage électrique de coupure équipé d'une telle chambre de coupure
EP4064307A1 (fr) Appareil de commutation électrique
EP0028376B1 (fr) Dispositif de refroidissement d'arc électrique pour cheminées d'appareils de coupure
FR3030867A1 (fr) Chambre de coupure d'arc pour un disjoncteur electrique, et disjoncteur comportant une telle chambre.
WO2024121486A1 (fr) Contacteur electrique a dispositif de coupure integre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR