EP0079293B1 - Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz - Google Patents

Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz Download PDF

Info

Publication number
EP0079293B1
EP0079293B1 EP82420103A EP82420103A EP0079293B1 EP 0079293 B1 EP0079293 B1 EP 0079293B1 EP 82420103 A EP82420103 A EP 82420103A EP 82420103 A EP82420103 A EP 82420103A EP 0079293 B1 EP0079293 B1 EP 0079293B1
Authority
EP
European Patent Office
Prior art keywords
contact
module
current
contacts
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82420103A
Other languages
German (de)
English (en)
Other versions
EP0079293A2 (fr
EP0079293A3 (en
Inventor
Guy St-Jean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Priority to AT82420103T priority Critical patent/ATE32396T1/de
Publication of EP0079293A2 publication Critical patent/EP0079293A2/fr
Publication of EP0079293A3 publication Critical patent/EP0079293A3/fr
Application granted granted Critical
Publication of EP0079293B1 publication Critical patent/EP0079293B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate

Definitions

  • the present invention relates generally to the interruption of a high direct or alternating current flowing in a high voltage power line by means of a switch or a circuit breaker.
  • the subject of the present invention is a switch or circuit breaker of the type known under the name of "magnetic field blow switch", in which the current to be interrupted flows through a coil which generates a strong magnetic field capable of draw and cut the electric arc that occurs as soon as the switch or circuit breaker contacts are separated.
  • the stretching of the arc causes a rapid increase in the voltage across the arc and thus forces the current to tend towards 0 and therefore to break.
  • Conventional type magnetic field blown current interrupters usually consist of a simple switch comprising a fixed contact and a movable contact between which an electric arc is formed when the circuit is opened and the current still circulates.
  • the arc thus formed is drawn between the contacts by a magnetic field which is produced perpendicular to its latter by a coil electrically connected in series with the contacts through which the current flows which must be interrupted.
  • the arc voltage which always has a polarity opposite to the voltage of the current source is proportional to the length of the arc and therefore increases when the arc stretches under the effect of the field to finally reduce the intensity electric current at 0 and thus ensure the desired interruption.
  • the coil can be mounted either in series on the electrical circuit formed by the various contacts of the switch electrically connected together, or in parallel with respect to this same circuit.
  • the modular blow-off switch by magnetic field and cooled by air or gas can comprise a plurality of modules stacked one above the other and fixed together in this position.
  • Each module can be fitted with non-magnetic metal plates mounted on each of its opposite faces and electrically connected to the fixed contacts to dissipate heat.
  • the pivoting axis used to operate the double contacts must have a length sufficient to connect the double contacts of all the modules together so that these contacts can all be actuated simultaneously.
  • a stack of modules as previously described can be used as a current limiter by electrically connecting the ends of a large coil to the metal plates fixed to the surface of the end modules of the threading to limit the current.
  • FIG. 1 is intended to illustrate the structure of a device for interrupting current by blowing by magnetic field of conventional type mounted on an electric line (1) and equipped with a single switch constituted by a contact fixed electrical (3) and a movable electrical contact (5) mounted on a pivot (7) so as to be able to detach from or return to the fixed contact (3).
  • the electric line (1) is connected to a magnetic field blowing coil (not shown) using conductors (9) defining between them a space in which the arc moves when it is "blown" by the magnetic field created by the coil in a prependicular direction. To increase the arc voltage.
  • the arc is directed towards a multiplicity of chambers (11) formed inside the casing (13) of the interrupting device by means of a plurality of fins or insulating walls (15).
  • the arc (17) immediately forms and moves in the space defined between the conductors (9) under the action of the magnetic force generated by the coil.
  • the center of the arc (17) which thus moves away from the contacts, enters the chambers (11) where it is sectioned into a series of small elementary arcs which are in turn stretched and curved until their total length is large enough so that the arc voltage has a value sufficient to bring the current flowing in the line (1) to the value 0.
  • Such a current interrupting device works well but is limited by the insulation capacity of these contacts (3) and (5).
  • the length of the arc (17) must increase in the same way to be able to interrupt the flow of current in the line.
  • the current interruption time in a device of this type is of the order of a few tens of milliseconds, which is relatively long and leads to rapid erosion of the contacts of the switch.
  • This switch includes at least one module comprising two arcing chambers, each of which is provided with current interruption means mounted in series on the electric line whose current is to be interrupted. If the value of the voltage of the power line makes it necessary, two or more modules of the previous type can be stacked and their contacts connected in series. In this way, an arc chamber of standard dimensions can be provided to obtain an interruption time much shorter than that presently obtained with the interruption device of the type previously described.
  • the interruption time can be reduced to a millisecond or less by using modules supporting 5 kV, each module having the shape of a flat disc with an approximate diameter of 15 or 20 cm or a rectangular plate 10 or 15 cm wide, the disc or plate having a thickness not exceeding 5 cm.
  • FIG. 2 of the accompanying drawings shows two modules (19) and (19 ') which are identical. For this reason, only the top module (19) will be described below.
  • the module (19) comprises a body illustrated here by plates (21) and (23) inside each of which a circular arc chamber (25) and (27) is formed.
  • Current interruption means are arranged substantially in the center of each chamber (25) and (27).
  • the means of the upper chamber include a fixed contact (29) and a movable and pivoting contact (31).
  • the current interrupting means of the lower chamber (27) comprise a fixed contact (33) and a movable and pivoting contact (35).
  • the movable contacts (31) and (35) are respectively equipped with contact bars (30) and (32) which are intended to work in cooperation with the fixed contacts (29) and (33) in a way that is already well known. As can be seen, this description also applies to the lower module (19 ').
  • the contacts (29), (31), (33) and (35) are of course made of non-magnetic and electrically conductive materials, such as copper.
  • the movable contacts (31) and (35) of the means for interrupting the two arcing chambers are electrically connected and in fact consist of a single element as will be explained below in the description of the preferred embodiments of the invention.
  • a particularly important feature of the present invention resides in the fact that the movable contacts (31) and (35) are not only electrically interconnected since they in fact form a single element provided at each end of the bars (30) and ( 32) previously mentioned, but also actuated by the same pivoting axis made of a non-conductive material. This axis also serves to actuate the contact elements (31 ') and (35') of the lower module (19 ').
  • a coil (37) intended to provide a sufficient magnetic force (39), is connected, by its two ends, to the fixed contact (33) of the chamber (27) and to the fixed contact (29 ') of the chamber (25' ) of the lower module (19 ').
  • the chambers are each provided with internal walls (41), (43), (41 ') and (43'), defining passages (G) from the outside of the body of each module to the fixed and mobile contacts of this same module for guiding a gas or the ambient area aspirated inside the chambers when the arcs are blown, as will be explained below.
  • the current flowing in the electric line enters the switch at (44) via the fixed contact (29) of the chamber (25). This current leaves the switch at (44 ') via the fixed contact (33') of the chamber (27 ') of the lower module (19'). It can therefore be seen that the current flowing in the means for interrupting the successive arcing chambers moves from one direction to the other as one passes from one chamber to the next. In other words, the current flows from contact (29) to contact (31) in the chamber (25) and from contact (35) to contact (33) in the chamber (27), then flows in the coil (37 ) before traveling again from contact (29 ') to contact (3T) in the chamber (25') and from contact (35 ') to contact (33') in the chamber (27 ').
  • an essential characteristic of the invention lies in the fact that all the sets of two mobile contacts contained in each module (31) and (35) as well as (31 ') and (35') and their respective contact bars (30) and (32) as well as (30 ') and (32') are not only electrically interconnected but also mechanically connected together so as to be operated simultaneously.
  • each module (19) and (19 ') is made of a non-conductive material permeable to air, such as compressed glass beads.
  • FIG 3 shows a vertical sectional view of the switch shown schematically in Figure 2.
  • each module such as the module (19) is composed of an intermediate flat disc (47) and two external discs (49) and (51) mounted on the two external faces of the intermediate disc (47) and fixed to this by means, for example, of an adhesive resistant to high temperatures applied along their outer periphery.
  • the faces of the outer discs (49) and (51) which are adjacent to the intermediate disc (47) are each provided with a shallow recess and a flat bottom (53) and (55).
  • the intermediate disc is also provided, on each of its two outer faces, with a shallow recess and a flat bottom (57).
  • These recesses (57) are similar to each other have a shape and a dimension identical to those of the recesses (53) and (55) so as to be able to cooperate geometrically with them to define the arc chambers (25) and (27) .
  • FIG 3 also shows the passages (G) formed by the walls (41) and (4T) procedure mentioned. For reasons of simplicity, the means of interrupting each room have not been illustrated.
  • the height of various chambers (25), (27), (25 ') and (27') is the same and is chosen so as to be equal to or smaller than the diameter d of the arches formed in each room.
  • the arcs formed touch the opposite walls of the chambers when they are accelerated radially from the contact elements when the latter are open.
  • This centrifugal movement of the arc in each chamber and the fact that it touches the walls creates a suction of air or gas from outside the chamber to the space defined between the contacts.
  • the movement of the cooling gas thus drawn in is illustrated by means of arrows in the passages (G) illustrated in FIG. 2.
  • the gas which is compressed in front of the arc when the latter is drawn escapes from through the walls of the chamber thanks to the porosity of the material from which the body of each module is made.
  • blowing coil is near the associated modules (19) and (19 ′) and therefore their respective chambers so as to be able to create a strong magnetic field allowing an adequate acceleration of the arches.
  • such an arrangement makes it possible to accelerate the stretching of the electric arcs much more quickly than any interruption device of known type.
  • each fixed contact (29) consists of a bar (63) fixed to the intermediate disc (47) in any known manner, and extended upwards by a plut (65) passing through the outer discs (49) and (51) until reaching the outer surface thereof.
  • the bar (63) has an inclined surface (67) (see Figure 6).
  • the movable contact (31) has a central axis (69) ending at each end by a bar (71) extending laterally and provided with an inclined surface (67 ') (see Figure 6) intended to come into electrical contact with the inclined surfaces (67) of the corresponding fixed contacts (29).
  • the movable contact (31) of the module is mounted on a pivot (73) made of an electrically non-conductive material.
  • This pivot extends through the module and is actuated in rotation by means of an operating mechanism which can be of standard construction known to any person skilled in the art.
  • the fixed contacts (29) are arranged on each side of the double movable contact (31) which, with its contact bars (71) which extend in opposite directions. This leads to a plane symmetry of the opposite faces of the intermediate disc (47) and to a similarity in shape of the outer discs (49) and (51).
  • the illustrated modules are constructed as shown schematically in Figure 2.
  • the fixed contacts (29) are arranged one above the other while the movable contact (31) has its bars contact (71) oriented in the same direction from the central axis (69). This leads to a linear symmetry of each module.
  • each module plate (75) of non-magnetic metal When several modules are to be stacked one on top of the other, it is preferable to fix on the opposite faces of each module plates (75) of non-magnetic metal to dissipate the heat. These plates which are therefore fixed on the external surfaces of the external disks (49) and (51) are electrically connected to the studs (65) and to the fixed contacts (29).
  • the modules thus stacked can be fixed to each other by any known means such as for example with electrically non-conductive bolts and nuts or by gluing.
  • the modular switch is mounted with play in a housing (77) intended to drive the pivot (73).
  • the pivot (73) is fixed to the housing (77) by means of drive bars (79) extending across open passages provided for this purpose through the intermediate discs (47) of the modules which must be equipped with such drive bars (79).
  • the number of bars will of course depend on the number of modules forming the hand switch, it will be appreciated that, in this way, the torsional force which the axis (73) undergoes is reduced to an acceptable limit.
  • the housing (77) can itself be rotated relative to the switch by any conventional drive means.
  • the housing (77); as well as the drive bars (79) must be made of an electrically non-conductive material.
  • the great advantages of the modular switch of the type described above are that it reduces the time taken for the arc voltage to reach its peak and therefore that it provides a faster current interruption.
  • the current interruption time can in fact be much less than a millisecond, which makes the modular switch according to the invention usable for a multitude of applications.
  • a variant of the invention consists in connecting the modular switch in parallel with its blowing coil so that the latter is mounted in shunt when the contacts of the switch are closed.
  • FIG. 7 Such an embodiment is illustrated in FIG. 7 where five identical modules are used and operated by the same drive device, and where the coil is mounted in shunt on the center module.
  • the coil has its two ends electrically connected to the external metal plates (75).
  • the interrupt modules When the contacts are open, the arcing voltage in the parallel chambers of the central module "forces" the current through the blow coil to produce the required magnetic field.
  • the interrupt modules have only the impedance of their contacts when these contacts are closed.
  • the blowing coil (37) carries the current only for a very short period of the order of a millisecond between the moment when the contacts separate until the moment when the current is interrupted.
  • the blow coil (37) can be made of a very thin wire and can be very compact since the current does not flow there permanently and no loss of energy occurs.
  • FIG. 8 Another alternative embodiment of the invention is illustrated in FIG. 8.
  • the switch is used in combination with a large blowing coil designed so as to be able to withstand a passage of permanent current or for a period of time long and thus make the switch usable as a current limiter on an alternating current circuit.
  • a current limiter comprises a large number of modules mounted in series and the outer plates (75) of the end modules of which are electrically connected to the ends of a limiting coil (37) acting also as a supply coil for the switch.
  • the interrupt circuit contacts are closed, the device impedance is zero and the device can therefore be connected in series on any alternating current circuit.
  • the contact circuits can quickly open and the current is interrupted for about a millisecond to circulate only in the limiting coil (37).
  • the latter can be chosen so that its impedance limits the intensity of the short-circuit current to any desired value.
  • Such a fast acting current limiter is extremely advantageous in a power supply system since it limits the increase in current to values much smaller than the short-circuit values provided with conventional type switches with, like the result is a reduction in the stresses which the equipment of the supply system must bear.
  • the alternating current switch constructed according to the invention has the advantage of bringing the current to O in an extremely short time range of the order of a millisecond or less, unlike conventional circuit switches where the interruption time is of the order of tens of milliseconds as previously indicated. As previously indicated also, this shorter interruption time very substantially reduces contact erosion by electric arcs.
  • a fast-acting switch such as that proposed in the case of the present invention can be used to limit the evolution and the peak value of the current by acting as a current limiter.
  • this switch which makes it possible to quickly bring the current to 0, can be used as a direct current switch under high voltage.
  • the switch can also be used under ambient pressure above or below atmospheric pressure, using any suitable insulating gas such as sulfur hexafluoride.
  • the modular switch according to the invention finds another interesting application in the field of work to be carried out on energy transmission lines.
  • the usual procedure consists in isolating a portion of the transmission line from the power source and then grounding the ends of this isolated portion of the transmission line on which the work is to be carried out.
  • Grounding is usually accomplished by means of insulated bars provided at one end with a connection mechanism to which a grounding conductor wire is attached. This thread, as its name suggests, leads to earth any current induced in the portion of the transmission line by the parallel transmission lines which are still in operation.
  • a switch according to the invention which, being extremely light, can be easily attached to the end of the bar and be used to effectively interrupt currents which can rise up to 400 amps at voltages equal to or greater than 49 kV.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)

Description

  • La présente invention se rapporte de façon générale à l'interruption d'un courant continu ou alternatif élevé circulant dans une ligne électrique à haute tension au moyen d'un interrupteur ou d'un disjoncteur.
  • Plus spécifiquement, la présente invention a pour objet un interrupteur ou disjoncteur du type connu sous le nom "d'interrupteur à soufflage par champ magnétique", dans lequel le courant à interrompre circule à travers une bobine qui génère un fort champ magnétique capable d'étirer et couper l'arc électrique qui se produit dès que les contacts de l'interrupteur ou du disjoncteur sont séparés. L'étirement de l'arc provoque une augmentation rapide de la tension aux bornes de l'arc et force ainsi le courant à tendre vers 0 et donc à se rompre.
  • Les dispositifs d'interruption de courant à soufflage par champ magnétique de type conventionnel sont habituellement constitués d'un simple interrupteur comprenant un contact fixe et un contact mobile entre lesquels un arc électrique se forme lorsqu'il y a ouverture du circuit et que le courant électrique circule encore. L'arc ainsi formé est étiré entre les contacts par un champ magnétique qui est produit perpendiculairement à ses derniers par une bobine électriquement connectée en série avec les contacts à travers lesquels circule le courant qui doit être interrompu. La tension d'arc qui a toujours une polarité opposée à la tension de la source de courant est proportionnelle à la longueur de l'arc et augmente donc lorsque l'arc s'étire sous l'effet du champ pour finalement réduire l'intensité courant électrique à 0 et ainsi assurer l'interruption désirée. Afin de pouvoir augmenter la tension d'arc par augmentation de la longueur de ce dernier, on utilise dans les interrupteurs de type connu une multiplicité de chambres placées en aval de la direction dans laquelle l'arc est étiré. De cette façon, l'arc qui se forme au moment de la séparation des contacts est sectionné en une série de petits arcs élémentaires qui sont étirés respectivement dans chacune des chambres jusqu'à ce que finalement la tension augmente au point où le courant devienne nul. Ces petits arcs élémentaires sont alors individuellement refroidis dans chaque chambre. Les principaux problèmes que l'on rencontre dans les interrupteurs du type précédemment décrit sont d'une part le fait que la longueur totale des arcs élémentaires ainsi formés doit être très grande ce qui la rend instable et d'autre part le fait que ces fortes tensions sont difficilement supportées par un seul interrupteur. Un autre problème est le fait que la vitesse de l'arc produit est lente, donc les temps d'interruption sont longs et l'érosion des contacts par l'arc est élevée. Enfin, les interrupteurs conventionnels de ce type sont aussi limités dans leur utilisation par la faible isolation électrique produite par le contact ouvert de l'interrupteur.
  • A titre d'état de la technique peut être mentionné le document FR-A-1.109.180 qui concerne un disjoncteur modulaire à soufflage magnétique, chaque pôle de ce disjoncteur étant constitué par plusieurs éléments juxtaposés, connectés en série et protégés par des cloisons isolantes.
  • La présente invention a pour objet un interrupteur modulaire à soufflage magnétique, construit à partir d'un concept entièrement différent et permettant d'éviter les divers inconvénients ci-dessus mentionnés. Selon ce nouveau concept, un module standardisable est utilisé. Ce module comprend:
    • - un corps généralement plat fait en un matériau électriquement non-conducteur et perméable à l'air, ledit corps étant divisé en une chambre d'arc supérieure et une chambre d'arc inférieure séparées l'une de l'autre par une paroi centrale,
    • - un contact électrique fixe monté dans chacune des deux chambres, lesdits contacts fixes s'étendant à travers le corps du module jusqu'à deux des faces opposées de celui-ci,
    • - un contact électrique double,
    • - un axe pivotant fait en un matériau non-conducteur déplaçant deux barres de contact simultanément de facon à venir établir un contact électrique pour laisser passer ou interrompre le courant circulant dans la ligne électrique,
    • - au moins une bobine excitable par le courant circulant dans la ligne électrique et montée de façon à créer un champ magnétique suffisant pour souffler les arcs électriques se formant dans les chambres lorsque les barres de contract sont décollées des contacts fixes, et
    • - des moyens définissant un passage depuis l'extérieur du corps de chaque module vers les contacts de ce même module pour qu'un gaz ambiant puisse être aspiré à l'intérieure des chambres lorsque les arcs sont soufflés et puisse ainsi venir refroidir lesdits contacts.
  • Conformément à l'invention, cet interrupteur se caractérise:
    • - en ce que le contact électrique double est un contact mobile monté sur un axe passant à travers la paroi centrale du corps, ledit contact double étant pourvu d'une barre de contact à chaque extrémité, chacune de ces barres de contact se trouvant dans l'une des deux chambres du module de façon à coopérer avec le contact fixe de cette même chambre,
    • - et en ce que l'axe pivotant fait en un matériau non-conducteur passe à travers le corps du module et est relié à l'axe de contact double pour pivoter suz ce dernier et ainsi déplacer les deux barres de contact simultanément de façon à venir établir un contact électrique entre les contacts fixes du module ou l'inverse pour laisser passer ou interrompre le courant circulant dans la ligne électrique.
  • En fonction de l'usage auquel est destiné l'interrupteur, la bobine peut être montée soit en série sur le circuite électrique constituée par les divers contacts de l'interrupteur reliés électriquement ensemble, ou en parallèle par rapport à ce même circuit.
  • Tel que précédemment indiqué et lorsque l'usage le justifie, l'interrupteur modulaire à soufflage par champ magnétique et à refroidissement par air ou gaz selon l'invention, peut comprendre une pluralité de modules empilés les uns au dessus des autres et fixés ensemble dans cette position. Chaque module peut être équipé de plaques de métal non magnétiques montées sur chacune de ses faces opposées et électriquement reliées aux contacts fixes pour dissiper la chaleur. Dans ce cas, l'axe pivotant servant à opérer les contacts doubles doit avoir une longueur suffisante pour relier les contacts doubles de tous les modules ensemble de façon à ce que ces contact puissent tous être actionnés simultanément.
  • Un empilage de modules tel que précédemment décrit peut être utilisé comme limiteur de courant en reliant électriquement les extrémités d'une large bobine aux plaques de métal fixées à la surface des modules d'extrémité de l'enfilement pour limiter le courant.
  • Le principe général de l'invention ainsi que plusieures modes de réalisation particuliers de celle-ci vont maintenant être décrits en se référant aux dessins schématiques annexés dans lesquels:
    • Figure 1 est une vue en coupe d'un interrupteur électrique à soufflage par champ magnétique de type conventionnel;
    • Figure 2 est une vue en perspective éclatée d'un interrupteur modulaire selon l'invention, destiné à illustrer le principe de fonctionnement de celui-ci;
    • Figure 3 est une vue en coupe d'un interrupteur modulaire selon l'invention, comprenant deux modules à double chambre;
    • Figures 4 et 5 sont des vues en coupe de modules à double chambre selon deux modes de réalisation différents;
    • Figure 6 est une vue en plan d'un module selon l'invention dont le disque de dessus a été enlevé pour montrer une chambre à arc et les contacts à l'intérieure de celleci;
    • Figures 7 et 8 sont des vues en élévation de deux interrupteurs modulaires selon l'invention comprenant une pluralité de modules de base.
  • Tel que précédemment indiqué, la figure 1 est destinée à illustrer la stucture d'un dispositif d'interruption de courant à soufflage par champ magnétique de type conventionnel monté sur une ligne électrique (1) et équipé d'un seul interrupteur constitué par un contact électrique fixe (3) et un contact électrique mobile (5) monté sur un pivot (7) de façon à pouvoir se décoller du contact fixe (3) ou y revenir. La ligne électrique (1) est reliée à une bobine de soufflage par champ magnétique (non illustrée) à l'aide de conducteurs (9) définissant entre eux un espace dans lequel l'arc se déplace lorsqu'il est "soufflé" par le champ magnétique créé par la bobine dans une direction prependi- culaire. Pour augmenter la tension d'arc. l'arc est dirigé vers une multiplicité de chambres (11) formées à l'intérieur du boîtier (13) du dispositif d'interruption au moyen d'une pluralité d'ailettes ou parois isolantes (15). Lorsque les contacts (3) et (5) sont séparés, l'arc (17) se forme immédiatement et se déplace dans l'espace défini entre les conducteurs (9) sous l'action de la force magnétique engrendrée par la bobine. Le centre de l'arc (17) qui s'éloigne ainsi des contacts, entre dans les chambres (11) où il se trouve sectionné en une série de petits arcs élémentaires qui sont à leur tour étirés et courbés jusqu'à ce que leur longueur totale soit suffisamment grande pour que la tension d'arc ait une valeur suffisante pour amener le courant circulant dans la ligne (1) à la valeur 0.
  • Un tel dispositif d'interruption de courant fonctionne bien mais est limité par la capacité d'isolation de ces contacts (3) et (5). De plus, si la tension dans la ligne électrique augmente, la longueur de l'arc (17) devra augmenter de la même façon pour pouvoir interrompre la circulation du courant dans la ligne. Pour ces diverses raisons, le temps d'interruption du courant dans un dispositif de ce type est de l'ordre de quelques dizaines de millisecondes, ce qui est relativement long et conduit à une érosion rapide des contacts de l'interrupteur.
  • L'interrupteur de courant selon l'invention permet de remédier à ces divers inconvénients. Cet interrupteure inclut au moins un module comprenant deux chambres d'arc dont chacune est pourvue de moyens d'interruption de courant montés en série sur la ligne électrique dont le courant est à interrompre. Si la valeur de la tension de la ligne électrique le rend nécessaire, deux ou plusieurs modules du type précédent peuvent être empilés et leurs contacts reliés en séries. De cette façon, une chambre d'arc de dimensions standard peut être prévue pour obtenir un temps d'interruption beaucoup plus court que celui présentement obtenu avec le dispositif d'interruption du type précédemment décrit. En fait, il a été découvert selon l'invention que le temps d'interruption peut être réduit à une milliseconde ou moins en utilisant des modules supportant 5 kV, chaque module ayant la forme d'un disque plat de diamètre approximatif de 15 ou 20 cm ou d'une plaquette rectangulaire de 10 ou 15 cm de largeur, le disque ou la plaquette ayant une épaisseur n'exédant pas 5 cm. Ces dimensions sont bien sûr données uniquement à titre d'exemple et ne doivent en aucun caa être utilisées pour limiter la portée de la présente invention.
  • La figure 2 des dessins annexés montre deux modules (19) et (19') qui sont identiques. Pour cette raison, seul le module de dessus (19) sera décrit ci-dessous.
  • Le module (19) comprend un corps illustré ici par des plaques (21) et (23) à l'intérieure de chacune desquelles une chambre d'arc circulaire (25) et (27) est formée. Des moyens d'interruption du courant sont disposés sensiblement au centre de chaque chambre (25) et (27). Les moyens de la chambre supérieure comprennent un contact fixe (29) et un contact mobile et pivotant (31 ). De façon similaire, les moyens d'interruption du courant de la chambre inférieure (27) comprennent un contact fixe (33) et un contact mobile et pivotant (35).
  • Les contacts mobiles (31 ) et (35) sont respectivement équipés de barres de contact (30) et (32) qui sont destinées à travailler en coopération avec les contacts fixes (29) et (33) d'une façon que est déjà bien connue. Comme on peut le constater, cette description s'applique également au module inférieure (19').
  • Les contacts (29), (31), (33) et (35) sont bien entendu faits en matériaux non-magnétiques et électriquement conducteurs, tel que du cuivre.
  • Les contacts mobiles (31) et (35) des moyens d'interruption des deux chambres d'arc sont électriquement reliés et sont en fait constitués d'un seul élément comme il sera expliqué ci-dessous dans la description des modes de réalisation préférés de l'invention. Une caractéristique particulièrement importante de la présente invention réside dans le fait que les contacts mobiles (31) et (35) sont non seulement électriquement interconnectés puisqu'ils forment en fait qu'un seul élément pourvu à chaque extrémité des barres (30) et (32) précédemment mentionnées, mais également actionnés par le même axe pivotant fait en un matériau non-conducteur. Cet axe sert aussi à actionner les éléments de contact (31') et (35') du module inférieur (19').
  • Un bobine (37) destinée à fournir une force magnétique suffisante (39), est reliée, par ses deux extrémités, au contact fixe (33) de la chambre (27) et au contact fixe (29') de la chambre (25') du module inférieure (19').
  • Enfin, les chambres sont chacune pourvues de parois (41), (43), (41') et (43') intérieures, définissant des passages (G) depuis l'extérieure du corps de chaque module vers les contacts fixes et mobiles de ce même module pour guider un gaz ou l'aire ambiant aspiré à l'intérieure des chambres lorsque les arcs sont soufflés, comme il sera expliqué cir-dessous.
  • Le courant circulant dans la ligne électrique entre dans l'interrupteur en (44) via le contact fixe (29) de la chambre (25). Ce courant sort de l'interrupteur en (44') via le contact fixe (33') de la chambre (27') du module inférieure (19'). On peut donc constater que le courant circulant dans-les moyens d'interruption des chambres d'arc successives se déplace d'une direction à l'autre au fur à mesure que l'on passe d'une chambre à la suivante. En d'autres mots, le courant circule du contact (29) au contact (31) dans la chambre (25) et du contact (35) au contact (33) dans le chambre (27), puis circule dans la bobine (37) avant de circuler à nouveau du contact (29') au contact (3T) dans la chambre (25') et du contact (35') au contact (33') dans la chambre (27'). Il en résulte que, lorsque les barres pivotantes (30), (32), (30') et (32') sont ouvertes simultanément par l'axe de pivotement qui leur est commun, et sont déplacées le long de la ligne pointillé (45), le champ magnétique (39) va étirer les arcs en direction opposée dans les chambres successives (25), (27), (25') et (27'), sous l'action du champ magnétique (39). Les arcs individuels ainsi étirés rapidement vers le mur périphérique des chambres vont créer une tension d'arc proportionnelle à leur longueur respective, qui va à son tour conduire à une réduction du courant jusqu'à O, c'est-à-dire à l'interruption du courant désirée. Il convient à nouveau de rappeler qu'une caractéristique essentielle de l'invention réside dans le fait que tous les ensembles de deux contacts mobiles contenus dans chaque module (31) et (35) ainsi que (31') et (35') et leurs barres de contact respectives (30) et (32) ainsi que (30') et (32') sont non seulement interconnectés électriquement mais également reliés mécaniquement ensemble de façon à être opérés simultanément. Ceci conduit à l'obtention d'un appareil très compact dans lequel la tension de travail de chaque chambre peut être relativement petite avec, comme résultat, une réduction du temps d'interruption et par conséquent une diminution substantielle de l'érosion des contacts des moyens d'interruption au sein de chaque chambre.
  • On peut finalement ajouter que le corps de chaque module (19) et (19') est fait en un matériau non-conducteur perméable à l'air, tel que de billes de verre compressées.
  • La figure 3 montre une vue en coupe verticale de l'interrupteur montré de façon schématique sur la figure 2. On peut constater à nouveau sur cette figure que les modules (19) et (19') sont de structure identique. De préférence, chaque module tel que le module (19) est composé d'un disque plat intermédiaire (47) et de deux disques extérieurs (49) et (51) montés sur les deux faces externes du disque intermédiaire (47) et fixés à celui-ce au moyen, par exemple, d'une colle résistant à de hautes températures appliquée le long de leur périphérie extérieure. Les faces des disques extérieurs (49) et (51) qui sont adjacentes au disque intermédiaire (47), sont chacune pourvues d'un renfoncement peu profond et à fond plat (53) et (55). Le disque intermédiaire est également pourvu, sur chacune de ses deux faces extérieures, d'un renfoncement peu profond et à fond plat (57). Ces renfoncements (57) sont similaires entre eux ont une forme et une dimension identiques à celles des renfoncements (53) et (55) de façon à pouvoir coopérer géométriquement avecv ces derniers pour définir les chambres d'arc (25) et (27).
  • La figure 3 montre également les passages (G) formés par les parois (41) et (4T) procédémment mentionnées. Pour des raisons de simplicité, les moyens d'interruption de chaque chambre n'ont pas été illustrés.
  • On peut également noter sur cette figure que la hauteur de diverses chambres (25), (27), (25') et (27') est la même et est choisie de façon à être égale à ou plus petite que le diamètre d des arcs formés dans chaque chambre. De cette façon, les arcs formés touchent les parois opposées des chambres lorsqu'ils sont accélérés radialement depuis les éléments de contacts lorsque ceux-ci sont ouverts. Ce mouvement centrifuge de l'arc dans chaque chambre et le fait que celui-ci touche aux parois, crée une succion de l'air ou d'un gaz depuis l'extérieur de la chambre vers l'espace défini entre les contacts. Ceci résulte en une amélioration de l'isolation des contacts qui ont à supporter la tension d'arc ainsi que de l'ensemble de la chambre, par élimination des gas ionisés qui se trouvent entre les contacts, et en un refroidissement ces derniers. Le mouvement du gaz de refroidissement ainsi aspiré est illustré à l'aide de flèches dans les passages (G) illustrés sur la figure 2. Le gaz qui se trouve compressé en avant de l'arc lorsque celui-ci est étiré s'échappe à travers les parois de la chambre grâce à la porosité du matériau avec lequel est constitué le corps de chaque module.
  • On peut également noter, sur la figure 3, que la bobine de soufflage est à proximité des modules associés (19) et (19') et par conséquent de leurs chambres respectives de façon à pouvoir créer un champ magnétique puissant permettant une accélération adéquate des arcs. En fait, il a été découvert, selon l'invention, qu'un tel arrangement permet d'accélérer l'étirement des arcs électriques de façon beaucoup plus rapide que n'importe quel dispositif d'interruption de type connu.
  • Les vues en coupe illustrées sur les figures 4 et 5 ainsi que la vue en plan illustrée sur la figure 6 sont destinées à montrer les variantes possibles de réalisation des moyens d'interruption au sein des chambres d'arc. On peut ainsi voir que chaque contact fixe (29) est constitué d'une barre (63) fixée au disque intermédiaire (47) de n'importe quelle manière connue, et prolongée vers le haut par un plut (65) passant à travers les disques extérieurs (49) et (51) jusqu'à atteindre la surface externe de ceux-ci. La barre (63) a une surface inclinée (67) (voir figure 6). D'autre part, le contact mobile (31) a un axe central (69) se terminant à chaque extrémité par une barre (71) s'étendant latéralement et pourvu d'une surface inclinée (67') (voir figure 6) destinée à venir en contact électrique avec les surfaces inclinées (67) des contacts fixes (29) correspondants.
  • Le contact mobile (31) du module est monté sur un pivot (73) fait en un matériau électriquement non-conducteur. Ce pivot s'étend à travers le module et est actionné en rotation au moyen d'un mécanisme d'opération qui peut être de construction standard connue du tout homme du l'art.
  • On comprendra à la lecture de la description ci-dessus que si plusieurs modules sont utilisés en série, un seul pivot (73) sera utilisé pour amener en rotation tous les contacts mobiles (31) simultanément de façon à ouvrir les divers moyens d'interruption ou les fermer tous ensemble.
  • Sur la figure 4, on peut noter que les contacts fixes (29) sont disposés de chaque côté du contact mobile double (31) qui, a ses barres de contact (71) qui s'étendent dans des directions opposées. Ceci conduit à une symétrie plane des faces opposées du disque intermédiaire (47) et a une similutude de forme des disques extérieurs (49) et (51).
  • Sur la figure 5, les modules illustrés sont construits tel que montré de façon schématique sur la figure 2. Les contacts fixes (29) sont disposés l'un au-dessus de l'autre alors que le contact mobile (31) a ses barres de contact (71) orientées dans la même direction depuis l'axe central (69). Ceci conduit à une symétrie linéaire de chaque module.
  • Lorsque plusieurs modules doivent être empilés les uns au-dessus des autres, il est préférable de fixer sur les faces opposées de chaque module des plaques (75) de métal non-magnétique pour dissiper la chaleur. Ces plaques qui sont donc fixées sur les surfaces extérieures des disques extérieurs (49) et (51) sont électriquement connectés aux plots (65) et aux contacts fixes (29). Les modules ainsi empilés peuvent être fixés les uns aux autres par n'importe quel moyen connu tel que par exemple avec des boulons et des écrous électriquement non-conducteur ou par collage.
  • En se référant maintenant à la figure 5, lorsqu'un nombre important de modules doivent être utilisés et que la résistance à la torsion du pivot (73) semble être insuffisante si la force de rotation est appliquée seulement à l'une de ses extrémités, on peut utiliser un mécanisme différent de rotation. Selon ce mécanisme, l'interrupteur modulaire est monté avec du jeu dans un boîtier (77) destiné à entrainer le pivot (73). A cette fin le pivot (73) est fixé au boîtier (77) au moyen de barres d'entraînement (79) s'étendant en travers de pasages ouverts prévues à cet effet à travers les disques intermédiaires (47) des modules qui doivent être équipés avec de tels barres d'entraînement (79). Le nombre de barres dépendra bien entendu du nombre de modules formant l'interrupteur mains on pourra apprécier que, de cette façon, l'effort de torsion que subit l'axe (73) est réduit jusqu'à une limite acceptable. Le boîtier (77) pout être lui-même amené en rotation par rapport à l'interrupteur par n'importe quel moyen d'entraînement conventionnel.
  • De toute évidence, le boîtier (77); de même que les barres d'entraînement (79) doivent être faits en un matériau électriquement non-conducteur.
  • Comme on peut facilement le déduire à la lecture de la description ci-dessus des modes de réalisation illustrés sur les figures 4, 5 et 6, il est évident que l'inertie mécanique des contacts mobiles est très faible, ce qui conduit à une très grande accélération de ces contacts lorsqu'ils sont déplacés avec comme résultat un temps d'ouverture extrêmement court. Cette faible inertie est très importante à cause de la proximité de la bobine de soufflage de l'arc qui engendre un champ magnétique fort qui à son tour produit un déplacement etrêmement rapide des arcs et engendre des tensions d'arc élevées. Les contacts électriques des moyens d'interruption de chaque chambre peuvent ainsi beaucoup mieux supporter les fortes tensions d'arc produites dans la chambre en question grâce à l'aide fournie par l'lair ou le gaz aspiré depuis l'extérieur lors du déplacement de l'arc.
  • Les grands avantages de l'interrupteur modulaire du type précédemment décrit sont qu'il réduit le temps mis par la tension d'arc pour atteindre son sommet et par conséquent qu'il fournit une interruption de courant plus rapide. Le temps d'interruption du courant peut être en fait de beaucoup inférieure à une milliseconde, ce qui rend l'interrupteur modulaire selon l'invention utilisable pour une multitude d'applications. On peut ainsi, exemple, l'utiliser comme interrupteur de courant alternatif, limiteur de courant alternatif ou interrupteur de courant continu.
  • En se référant à nouveau à l'illustration schématique donnée sur la figure 2, on peut constater que lorsque les contacts sont fermés, l'impédance de l'ensemble de l'interrupteur est égale à celle de la bobine de soufflage. Cette impédance pourrait devenir importante si plusieurs modules étaient montés en série, et ceci pourrait amener un inconvénient dans certaines applications où du courant circule de façon presque continu dans l'interrupteur. Dans un tel cas, une variante de l'invention consiste à connecter l'interrupteur modulaire en parallèle avec sa bobine de soufflage de facon à ce que cette dernière soit montée en shunt lorsque les contacts de l'interrupteur sont fermés. Un tel mode de réalisation est illustré sur la figure 7 où cinq modules indentiques sont itilisés et opérés par le même dispositif d'entraînement, et où la bobine est montée en shunt sur le module du centre. Sur cette figure la bobine a ses deux extrémités connectées électriquement aux plaques de métal extérieures (75). Lorsque les contacts sont ouverts, la tension d'arc dans les chambres parallèles du module central "force" le courant dans la bobine de soufflage de façon à produire le champ magnétique requis. Dans cette variante de réalisation illustrée sur la figure 7, les modules d'interruption n'ont que l'impédance de leurs contacts lorsque ces contacts sont fermés. En fait, la bobine de soufflage (37) ne transporte le courant que pour une très courte période de l'ordre d'une milliseconde entre le moment où le les contacts se séparent jusqu'au moment où le courant est interrompu. Il en résulte que la bobine de soufflage (37) peut être faite en un fil très mince et peut être très compacte puisque le courant n'y circule pas de façon permanente et qu'aucune perte d'énergie ne se produit.
  • Une autre variante de réalisation de l'invention est illustrée sur la figure 8. Selon cette variante, l'interrupteur est utilisé en combinaison avec une grosse bobine de soufflage conçue de façon à pouvoir supporter un passage de courant permanent ou pour une période de temps longue et pour ainsi rendre l'interrupteur utilisable comme limiteur de courant sur un circuit de courant alternatif. Tel qu'illustré sur la figure 8, un tel limiteur de courant comprend un grande nombre de modules montés en série et dont les plaques extérieures (75) des modules d'extrémité sont reliées électriquement aux extrémités d'un bobine limitative (37) agissant également comme bobine de soufflage pour l'interrupteur. Lorsque les contacts du circuit d'interruption sont fermés, l'impédance de l'appareil est nulle et ce dernier peut donc être monté en série sur n'importe quel circuit de courant alternatif. Si un court-circuit se produit, les circuits de contact peuvent rapidement s'ouvrir et le courant s'interrompt pendant environ une milliseconde pour ne plus circuler que dans la bobine limitative (37). Cette dernière peut être choisie de façon à ce que son impédance limite l'intensité du courant de court-circuit à n'importe quelle valeur désirée. Un tel limiteur de courant à action rapide est extrêmement intéressant dans un système d'allimentation électrique puisqu'il limite l'augmentation de courant à des valeurs beaucoup plus petites que les valeurs de court-circuit prévues avec les interrupteurs de type conventionnel avec, comme résultat une diminution des contraintes que doivent supporter les équipements du système d'alimentation.
  • Pour résumer, l'interrupteur de courant alternatif construit selon l'invention a l'avantage d'amener le courant à O dans une fourchette de temps emtrêmement courte de l'ordere d'une milliseconde ou moins contrairement aux interrupteurs de circuit de type conventionnel où le temps d'interruption est de l'ordre de dizaines de milliseconde tel que précédemment indiqué. Tel que précédemment indiqué également, ce temps d'interruption plus court réduit de façon très substantielle l'érosion des contacts par les arcs électriques. De plus, puisque les courants de court-circuit dans les systèmes d'alimentation ou de transport demandent jusqu'à un demi cycle soit 8 millisecondes pour atteindre leur valeur maximale dans le cas d'un défaut, un interrupteur à action rapide tel que celui proposé dans le cas de la présente invention peut être utilisé pour limiter l'évolution et la valeur crête du courant en agissant comme un limiteur de courant.
  • De plus, cet interrupteur qui permet d'amener rapidement le courant à 0, peut être utilisé comme interrupteur de courant continu sous forte tension.
  • D'autres modifications peuvent être apportées à la présente invention, tel le fait d'utiliser des tuyères à gaz sous pression à l'intérieur des passages (G) de façon à souffler les arcs loin des contacts si ces derniers ont une tendance à coller pour des valeurs de courant élevées. Comme tout spécialiste dans ce domaine pourra facilement le comprendre, ce problème du collage des contacts peut être réduit en utilisant des matériaux spéciaux pour fabriquer les contacts.
  • De façon à améliorer la rigidité diélectrique et la conductivité thermique, l'interrupteur peut également être utilisé sous une pression ambiante supérieure ou inférieure à la pression atmosphérique, en utilisant n'importe quel gas isolant approprié tel que l'hexafluorure de soufre.
  • L'interrupteur modulaire selon l'invention trouve une autre application intéressante dans le domaine des travaux à effectuer sur les lignes de transport d'energie. Lorsque de tels travaux sont effectués, la procédure habituelle consiste à isoler une portion de la ligne de transport de la source d'énergie puis à mettre à la terre les extrémités de cette portion isolée de la ligne de transport sur laquelle les travaux doivent être effectuée. La mise à la terre est habituellement effectuée au moyen de barres isolées pourvues, à une extrémité, d'un mécanisme de connexion auquel est fixé un fil conducteur de mise à la terre. Ce fil conducteur, comme son non l'indique, amène à la terre tout courant induit dans la portion de la ligne de transport par les lignes de transport parallèles qui sont toujours en opération.
  • Lorsque le fil conducteur de mise à la terre est enlevé, un arc électrique habituellement éclate entre la portion de ligne réparée et le mécanisme fixé à l'extrémité de la barre. Cet arc que est engendré par le courant induit peut atteindre plusieurs mètres de long avant de s'interrompre. Cet arc, en plus du fait d'être extrêmement dangereux s'il tombe par inadvertance en un point proche du ou des réparateurs, produit souvent une détonation désagréable et constitue un réel danger pour les personnes et l'environnement.
  • Pour remédier à ce problème, ou peut utiliser un interrupteur selon l'invention qui, en étant extrêmement léger, peut être facilement fixé à l'extrémité de la barre et être utilisé pour interrompre de façon efficace des courants pouvant s'élever jusqu'à 400 ampères à des tensions égales ou supérieures à 49 kV.

Claims (12)

1. Interrupteur modulaire à soufflage par champ magnétique et refroidissement par gaz, destiné à être monté sur une ligne électrique, cet interrupteur incluant au moins un module (19) qui comprend:
- un corps généralement plat (21,23) fait en un matériau électriquement non-conducteur et perméable à l'air, ledit corps étant divisé en une chambre d'arc supérieure (25) et une chambre d'arc inférieure (27) séparées l'une de l'autre par une paroi centrale (47),
- un contact électrique fixe (29,33) monté dans chacune des deux chambres (25, 27), lesdits contacts fixes s'étendant à travers le corps du module jusqu'à deux des faces opposées de celui-ci,
- un contact électrique double (31, 35),
- un axe pivotant (73) fait en un matériau non-conducteur déplaçant deux barres de contact (30, 32) simultanément de facon à venir établir un contact électrique pour laisser passer ou interrompre le courant circulant dans la ligne électrique,
- au moins une bobine (37) excitable par le courant circulant dans la ligne électrique et montée de façon à créer un champ magnétique suffisant pour souffler les arcs électriques se formant dans les chambres (25, 27) lorsque les barres de contract (30, 32) sont décollées des contacts fixes (29, 33), et
- des moyens définissant un passage (G) depuis l'extérieur du corps de chaque module (19) vers les contacts (29, 33, 31, 35) de ce même module pour qu'un gaz ambiant puisse être aspiré à l'intérieur des chambres (25, 27) lorsque les arcs sont soufflés et puisse ainsi venir refroidir lesdits contacts (29, 33, 31, 35),

caractérisé en ce que le contact électrique double (31, 35) est un contact mobile monté sur un axe (73) passant à travers la paroi centrale (47) du corps, ledit contact double étant pourvu d'une barre de contact (30, 32) à chaque extrémité, chacune de ces barres de contact se trouvant dans l'une des deux chambres (25,27) du module (19) de façon à coopérer avec le contact fixe (29, 33) de cette même chambre,
et en ce que l'axe pivotant (73) fait en un matériau non-conducteur passe à travers le corps du module (19) et est relié à l'axe de contact double (31, 35) pour pivoter suz ce dernier et ainsi déplacer les deux barres de contact (30, 32) simultanément de façon a venir établir un contact électrique entre les contacts fixes (29, 33) de module (19) ou l'inverse pour laisser passer ou interrompre le courant circulant dans la ligne électrqique.
2. Interrupteur selon la revendication 1, caractérisé en ce que les contacts fixes (29, 33) et mobile (31, 35) forment ensemble, lorsqu'ils sont fermés, une ligne de courant et en ce que la bobine (37) est montée en série sur cette ligne de courant.
3. Interrupteur selon la revendication 1, caractérisé en ce que les contacts fixes (29, 33) et mobile (31, 35) forment ensemble lorsqu'ils sont fermés, une ligne de courant et en ce que la bobine (37) est montée parallèle sur cette ligne de courant.
4. Interrupteur selon l'une quelconque des revendications 1, 2 ou 3, caractérisé en ce que les contacts fixes (29, 33) sont disposés l'un au-dessus de l'autre à l'intérieur du corps du module (19) pour ainsi créer une symétrie linéaire.
5. Interrupteur selon l'une quelconque des revendications 1, 2 ou 3, caractérisé en ce que les contacts fixes (29, 33) sont disposés de chaque côté du contact mobile (31, 35) de façon à créer une symétrie plane des deux surfaces opposées de la paroi centrale du corps.
6. Interrupteur selon la revendication 1, caractérisé en ce qu'il comprend une pluralité de modules (19, 19'), ces modules étant empilés les uns au-dessus des autres et comprenant chacun des plaques de métal non-magnétique (75) montées sur chacune de leur face opposée et électriquement reliées au contacts fixes (29, 33) de façon à dissiper la chaleur, lesdits contacts dudit module formant, lorsqu'ils sont fermés, une ligne de courant, la bobine (37) étant montée en parallèle sur cette ligne de courant de façon à ce que l'interrupteur puisse agir comme un limiteur de courant, et l'axe pivotant (73) reliant tous les contacts doubles (31, 35) de tous les modules (19, 19', ...) ensemble de façon à pouvoir tous les actionner simultanément.
7. Interrupteur selon la revendication 1, caractérisé en ce qu'il comprend un nombre impaire de modules (19), empilés les uns au-dessus des autres et chacun comprenant des plaques de métal non-magnétique (75) montées sur chacune de leur face opposée et électriquement reliées aux contacts fixes (29, 33) pour dissiper la chaleur, les contacts fixes (29, 33) et mobile (31, 35) des modules (19) formant ensemble, lorsqu'ils sont fermés, une ligne de courant, la bobine (37) étant montée en parallèle sur le module central de l'empilage et ayant ses extrémités reliées aux plaques métalliques (75) de dissipation de chaleur du module central.
8. Interrupteur selon la revendication 1, caractérisé en ce qu'il comprend deux modules (19, 19'), la bobine (37) étant disposée entre les deux modules et électriquement raccordée en série par ses extrémités aux contacts fixes (29, 33) adjacents de ces modules, l'axe pivotant (73) reliant les contacts mobiles (31, 35) des deux modules de façon à les faire pivoter ensemble.
9. Interrupteur selon l'une quelconque des revendications 1, 6 ou 7, caractérisé en ce que le module (19) est composé d'un disque intermédiaire (47) généralement plat et de deux disques extérieurs (49, 51) montés sur le disque intermédiaire (47) et fixés aux faces extérieures de celui-ci, les disques extérieurs (49, 51) comprenant, sur leurs faces adjacentes au disque intermédiaire (47), un renfoncement de faible épaisseur et à fond plat, le disque intermédiaire (47) comprenant, également sur ses deux faces extérieures, un renfoncement de faible épaisseur à fond plat de forme et de dimension identiques à celles des renfoncements des disques extérieures de façon à définir avec ces derniers les chambres d'arc (25, 27), chaque renfoncement comprenant en outre des parois définissant les moyens de passage (G).
10. Interrupteur selon la revendication 8, caractérisé en ce que le module (19) est composé d'un disque intermédiaire (47) généralement plat et de deux disques extérieurs (49, 51) montés sur le disque intermédiaires (47) et fixés sur les faces extérieures de celui-ci, les disques extérieurs (49, 51) comprenant, sur leurs faces adjacentes au disque intermédiaire (47) un renfoncement de faible épaisseur et à fond plat, le disque intermédiaire (17) comprenant également, sur ses deux faces extérieures, un renfoncement de faible épaisseur et à fond plat de forme et de dimension identiques à celles des renfoncements des disques extérieurs de façon à définir avec ces derniers lesdites chambres d'arcs, chaque renfoncement comprenant en outre des parois définissant les moyens de passage (G).
11. Interrupteur selon la revendication 1 et 7, caractérisé en ce que les chambres à arc (25, 27) comprennent chacune une paroi de dessus et une paroi de dessus espacées l'une de l'autre d'une distance égale ou inférieure à l'épaisseur des arcs qui se forment à l'intérieur.
12. Interrupteur selon la revendication 8, caractérisé en ce que les chambres à arc (25, 27) comprennent chaqcune une paroi de dessus et une paroi de dessous espacées l'une de l'autre d'une distance égale ou inférieur à l'épaisseur (d) des arcs qui se forment à l'intérieur.
EP82420103A 1981-11-10 1982-07-19 Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz Expired EP0079293B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82420103T ATE32396T1 (de) 1981-11-10 1982-07-19 Modulschalter mit magnetischem blasfluss und mit gaskuehlung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/320,140 US4401870A (en) 1981-11-10 1981-11-10 Modular suction-gas-cooled magnetic blast circuit breaker
US320140 1981-11-10

Publications (3)

Publication Number Publication Date
EP0079293A2 EP0079293A2 (fr) 1983-05-18
EP0079293A3 EP0079293A3 (en) 1985-06-19
EP0079293B1 true EP0079293B1 (fr) 1988-02-03

Family

ID=23245051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82420103A Expired EP0079293B1 (fr) 1981-11-10 1982-07-19 Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz

Country Status (6)

Country Link
US (1) US4401870A (fr)
EP (1) EP0079293B1 (fr)
JP (1) JPS5885232A (fr)
AT (1) ATE32396T1 (fr)
CA (1) CA1140625A (fr)
DE (1) DE3278093D1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018332A1 (en) * 2000-07-04 2002-02-14 Matthias Kroeker Arrangement having a contact element which can be brought into contact with another contact element
JP5050265B2 (ja) * 2007-11-09 2012-10-17 国立大学法人九州工業大学 自己回復性限流ヒューズ
GB2461024B (en) * 2008-06-16 2012-06-13 Converteam Technology Ltd Fuses
JP5859361B2 (ja) * 2012-03-27 2016-02-10 住友重機械工業株式会社 リニアモータ冷却構造
JP5859360B2 (ja) * 2012-03-27 2016-02-10 住友重機械工業株式会社 リニアモータ冷却構造
CN111584321B (zh) * 2019-05-21 2022-06-10 杭州德睿达电气有限公司 一种直流快速断路器的磁吹灭弧系统
FR3123143A1 (fr) * 2021-05-21 2022-11-25 Socomec Module de coupure électrique équipé d’un dispositif de soufflage magnétique et appareil de coupure électrique comportant un tel module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB187821A (en) * 1921-10-05 1922-11-02 George Ellison Improvements relating to magnetic blow-out devices for use with electric circuit controlling apparatus
DE533477C (de) * 1928-06-24 1931-09-15 Voigt & Haeffner Akt Ges Hoernerschalter mit mehreren nebeneinander angeordneten Hoernerpaaren
US2443650A (en) * 1944-09-27 1948-06-22 Westinghouse Electric Corp Circuit interrupter
BE539076A (fr) * 1954-07-16
GB957359A (en) * 1962-04-04 1964-05-06 Ass Elect Ind Improvements relating to surge diverters
CH470093A (de) * 1968-02-09 1969-03-15 Gen Electric Uberspannungsableiter
US3566201A (en) * 1969-03-03 1971-02-23 Gen Electric Discharge arc control means for a lightning arrester
US3611045A (en) * 1970-02-24 1971-10-05 Gen Electric Lightning arrester sparkgap assembly having opposed electromagnetic field-generating means for controlling arc movement

Also Published As

Publication number Publication date
DE3278093D1 (en) 1988-03-10
CA1140625A (fr) 1983-02-01
EP0079293A2 (fr) 1983-05-18
JPS5885232A (ja) 1983-05-21
EP0079293A3 (en) 1985-06-19
ATE32396T1 (de) 1988-02-15
JPH0147848B2 (fr) 1989-10-17
US4401870A (en) 1983-08-30

Similar Documents

Publication Publication Date Title
FR2665571A1 (fr) Disjoncteur electrique a arc tournant et a autoexpansion.
EP0118333B1 (fr) Dispositif interrupteur muni d'un écran isolant s'interposant entre les contacts lors de la coupure et de moyens de cisaillement de l'arc entre cet écran et une paroi isolante
EP0385886B1 (fr) Disjoncteur à arc tournant et à effet centrifuge du gaz d'extinction
EP2061051B1 (fr) Chambre de coupure et disjoncteur équipé d'une telle chambre de coupure
EP0957500B1 (fr) Disjoncteur dont une phase au moins est consituée par plusieurs compartiments polaires connectés en parallèle
EP1115132B1 (fr) Pôle pour disjoncteur électrique, muni d'une chambre d'extinction d'arc à écrans diélectriques
FR3012662A1 (fr) Appareil de commutation electrique de courant continu bidirectionnel comportant de petits aimants permanents sur des elements lateraux ferromagnetiques et un ensemble de plaques de sectionnement d'arc
FR2616957A1 (fr) Chambre d'extinction d'arc a pression elevee
EP0079293B1 (fr) Interrupteur modulaire à soufflage par champ magnétique et à refroidissement par gaz
CH699821B1 (fr) Coupe-circuit électromécanique et procédé pour couper le courant dans ce coupe-circuit électromécanique.
FR2891082A1 (fr) Dispositif de coupure comportant une chambre d'extinction d'arc de taille reduite
EP1376634A1 (fr) Ampoule à vide pour un appareil de protection éléctrique tel un interrupteur ou un disjoncteur
CA2147576C (fr) Disjoncteur a moyenne ou haute tension
EP3035363B1 (fr) Chambre de coupure d'arc pour un disjoncteur electrique, et disjoncteur comportant une telle chambre
FR2575589A1 (fr) Interrupteur electrique a ecran
FR2784244A1 (fr) Commutateur a eclateur a etages multiples
EP0644567B1 (fr) Interrupteur haute tension à arc tournant et à gaz isolant
FR2879019A1 (fr) Dispositif electrique de coupure avec chambre d'extinction d'arc a ailettes de desionisation
FR2734397A1 (fr) Dispositif d'extinction d'arc electrique pour un interrupteur electrique
EP0657907B1 (fr) Dispositif de rupture de courant d'appareil interrupteur notamment pour contacteur ou contacteur-disjoncteur
EP1267374B1 (fr) Appareillage électrique de coupure à pont de contact mobile
EP4107768B1 (fr) Chambre de coupure à soufflage magnétique pour un appareil de coupure électrique et appareil de coupure électrique équipé d'une telle chambre
EP0028376B1 (fr) Dispositif de refroidissement d'arc électrique pour cheminées d'appareils de coupure
WO2022243119A1 (fr) Module de coupure electrique equipe d'un dispositif de soufflage magnetique et appareil de coupure electrique comportant un tel module
EP0045229B1 (fr) Interrupteur à arc tournant double

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850930

17Q First examination report despatched

Effective date: 19861029

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 32396

Country of ref document: AT

Date of ref document: 19880215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3278093

Country of ref document: DE

Date of ref document: 19880310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890628

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 8

Ref country code: FR

Payment date: 19890630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890705

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890719

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890731

Year of fee payment: 8

Ref country code: AT

Payment date: 19890731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890916

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900719

Ref country code: AT

Effective date: 19900719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900731

Ref country code: CH

Effective date: 19900731

Ref country code: BE

Effective date: 19900731

BERE Be: lapsed

Owner name: HYDRO-QUEBEC

Effective date: 19900731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82420103.2

Effective date: 19910402