EP4326251A1 - Zusammensetzungen mit cannabidiol und optional bisabolol - Google Patents

Zusammensetzungen mit cannabidiol und optional bisabolol

Info

Publication number
EP4326251A1
EP4326251A1 EP21724198.3A EP21724198A EP4326251A1 EP 4326251 A1 EP4326251 A1 EP 4326251A1 EP 21724198 A EP21724198 A EP 21724198A EP 4326251 A1 EP4326251 A1 EP 4326251A1
Authority
EP
European Patent Office
Prior art keywords
peg
sodium
dimethicone
acid
cannabidiol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21724198.3A
Other languages
English (en)
French (fr)
Inventor
Maria REICHENBACH
Nadine Hillebrand
Nicole Titze
Francesca BENATO
Michele Massironi
Marco Massironi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symrise AG
Original Assignee
Symrise AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symrise AG filed Critical Symrise AG
Publication of EP4326251A1 publication Critical patent/EP4326251A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention refers to the area of so-called cosmeceuticals and concerns compositions comprising or consisting of Cannabidiol and optionally Bisabolol for a broad spectrum of skin care applications.
  • CN 107811190 A (YUNNAN HANMUSEN BIOL TECH) refers to an anti-inflammatory cream, comprising a cannabis sativa leaf extract enriched in Bisabolol and Cannabidiol.
  • CA 2971197 A discloses a pharmaceutical topical composi tion comprising Cannabidiol (CBD) and tetrahydrocannabinol (THC) in a molar ratio of 1:1.
  • CBD Cannabidiol
  • THC tetrahydrocannabinol
  • the compositions may include Bisabolol and tocopheryl acetate
  • US 2018042890 A (ONE WORLD CANNABIS) refers to a similar composition for treat ing inflammatory skin diseases.
  • a first object of the present invention refers to a composition comprising or consist ing of
  • Another object of the present invention refers to a composition comprising or con sisting of (a) Cannabidiol and optionally
  • Another object of the present invention refers to a composition comprising or con- sisting of
  • Another object of the present invention refers to a composition comprising or con sisting of
  • Another object of the present invention refers to a composition comprising or con sisting of
  • Another object of the present invention refers to a composition comprising or con sisting of (a) Cannabidiol and optionally
  • Cannabidiol in general and mixtures of Canna bidiol and Bisabolol in particular are strong modulators of CB2 receptors, support expression of beta-serotonin, modulate expression of the stress-mediator cortisol, show excellent anti- oxidative protection of human cells, modulate and particular down-regulate expression of cytokines like IL8 and PGE2, stimulate hyaluronic acid related gene expression to repair dis turbed or damaged skin barrier and modulate und particular down-regulate sebum produc tion in the sebum glands. Therefore, the compositions according to the present invention represent an "all-in-one active" with regard to the treatment of dysfunctions of human skin triggered in particular by stress.
  • Cannabidiol belongs to the cannabinoids representing transformation products and synthetic analogues of some terpene phenols found mainly in the hemp plant (Cannabis sativa or Cannabis indi- ca). Research on cannabinoids led to the discovery of the endocannabinoid system. Phyto- cannabinoids are substances that have similar pharmacological properties to those found in the body. Recent research shows that other plants also produce phytocannabinoids that act on the endocannabinoid system in the same way as the cannabinoids of the hemp plant.
  • cannabinoids are used in a variety of applications, such as neuropathic pain and spasticity (preparations made from cannabis flowers), loss of appetite in HIV/AIDS and nau sea and vomiting under chemotherapy (nabilone, dronabinol), and certain forms of childhood epilepsy.
  • Cannabidiol (CBD) can be of natural or preferably synthetic origin.
  • Synthetic cannabinoids can be produced semi-synthetically, i.e. from natural cannabinoids, or preferably fully synthetically from simple basic substances such as for exam ple limonene.
  • Synthetic cannabinoids are used in medicine and in neuroscience to under stand the effects of cannabinoids in the brain.
  • a preferred example is a synthetic Cannabidiol with a purity of about 98 % which is sold under the trademark "SymDStressTM".
  • Bisabolol (component b) is a monocyclic sesquiterpen alcohol.
  • component (a) is an alpha-Bisabolol mixture.
  • component (a) is an alpha-Bisabolol isomer or an alpha-Bisabolol mix ture.
  • component (a) is a single alpha-Bisabolol isomer or a mixture of alpha- Bisabolol isomers. The following shows as an example the structure of (-)-alpha-Bisabolol.
  • the present invention also encompasses as component (a) natural sources containing said monocyclic sesquiterpenes in general and Bisabolol(s) in particular such as essential oils.
  • the preferred is chamonille oil and in particular the essential oil obtained for example by water steam distillation of Matricaria chamomitta, or the plant that is known as Manzana Chamonilla, which is particular rich in Bisabolol.
  • the essential oil of candeia tree Vanillosmopsis erythropappa
  • Alpha-Bisabolol is commercially available for example under the trademark Dragosantol® 100 (Symrise AG).
  • Bisabolol(s) produced biotechnologically. Also included in the inven tion are preparations consisting predominantly of Bisabolol and a small amount of at most 5 wt. -percent and typically about 1 wt.-percent of an additive. These additives may, for exam ple, be a ginger extract or tocopherol. Corresponding products are commercially available under the name SymRelief® (Symrise AG). Finally, said monocyclic sesquiterpen alcohol can be of natural or synthetic origin.
  • compositions according to the present invention comprising both components may contain Cannabidiol and Bisabolol in ratios by weight of from about 0,1:99,09 to about 20:80, more preferably from about 1:99 to about 10:90 and most preferably from about 2:98 to about 5:95.
  • These mixtures (including 1 wt.-percent amount of tocopherol) are sold for ex ample under the trademark SymDStressTM 100 (Symrise).
  • compositions according to the present invention can be administered either topically or by oral uptake.
  • compositions topical to human skin they are usually formulated as kinds of cosmetic preparations, particularly skin care products such as for ex ample creams, lotions, emulsions, mousses, sprays and the like.
  • skin care products such as for ex ample creams, lotions, emulsions, mousses, sprays and the like.
  • the preferred galenic form is a capsule.
  • the formulations may comprise the compositions according to the present invention - Cannabidiol or mixture of Cannabidiol and Bisabolol - in a working amount of from for example about 0.0001 to about 1 wt.-percent, preferably from about 0.01 to about 0.5 wt.-percent.
  • the preparations may also contain antidandruff agents, irritation-preventing agents, irritation-inhibiting agents, antioxidants, adstringents, perspiration-inhibiting agents, anti-itch agents, antiseptic agents, ant-statics, binders, buffers, carrier materials, chelating agents, cell stimulants, cleansing agents, care agents, deodorizing agents, antiperspirants, softeners, emulsifiers, enzymes, essential oils, fibres, film-forming agents, fixatives, foam-forming agents, foam stabilizers, substances for preventing foaming, foam boosters, gelling agents, gel-forming agents, hair care agents, hair-setting agents, hair-straightening agents, moisture- donating agents, moisturizing substances, moisture-retaining substances, bleaching agents, strengthening agents, stain-removing agents, optically brightening agents, impregnating agents, dirt-repellent agents, friction-reducing agents, lubricants, moisturizing creams, oint ments, opacifying agents, plasticizing
  • auxiliaries and additives are anionic and/or amphoteric or zwitterionic sur factants.
  • Non-ionic and cationic surfactants can be also present in the composition. Suitable examples are mentioned along with the paragraph dealing with emulsifiers.
  • Typical examples for anionic and zwitterionic surfactants encompass: Almondami- dopropylamine Oxide, Almondamidopropyl Betaine, Aminopropyl Laurylglutamine, Ammoni um 02-15 Alkyl Sulfate, Ammonium 02-16 Alkyl Sulfate, Ammonium Capryleth Sulfate, Ammonium Cocomonoglyceride Sulfate, Ammonium Coco-Sulfate, Ammonium Cocoyl Isethionate, Ammonium Cocoyl Sarcosinate, Ammonium 02-15 Pareth Sulfate, Ammonium C9-10 Perfluoroalkylsulfonate, Ammonium Dinonyl Sulfosuccinate, Ammonium Dodecylben- zenesulfonate, Ammonium Isostearate, Ammonium Laureth-6 Carboxylate, Ammonium Lau- reth-8 Carboxylate, Ammonium Laureth Sulfate
  • the percentage content of surfactants in the preparations may be from 0.1 to 10% by weight and is preferably from 0.5 to 5% by weight, based on the preparation.
  • Suitable oil bodies which form constituents of the O/W emulsions, are, for example, Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10, carbon atoms, esters of linear C6-C22-fatty acids with linear or branched C6-C22-fatty alcohols or esters of branched C6-C 13-carboxylic acids with linear or branched C6-C 22-fatty alcohols, such as, for example, myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl isostearate, cetyl oleate, cetyl behenate, cetyl erucate, stearyl myristate, steary
  • esters of linear C6-C22-fatty acids with branched alcohols in particular 2-ethylhexanol, esters of C18-C38- alkylhydroxy carboxylic acids with linear or branched C6-C 22-fatty alcohols, in particular Dioctyl Malate, esters of linear and/or branched fatty acids with polyhydric alcohols (such as, for example, propylene glycol, dimerdiol or trimertriol) and/or Guerbet alcohols, triglycerides based on C6 -Cio-fatty acids, liquid mono-/di-/triglyceride mixtures based on C6-Cis-fatty acids, esters of C6- C22-fatty al- cohols and/or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, es ters of C2- Ci2-dicarboxylic acids with linear or branched alcohols having 1 to 22 carbon at oms or polyo
  • Finsolv® TN linear or branched, sym metrical or asymmetrical dialkyl ethers having 6 to 22 carbon atoms per alkyl group, such as, for example, dicaprylyl ether (Cetiol® OE), ring-opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicone methicone grades, etc.) and/or aliphatic or naphthenic hydrocarbons, such as, for example, squalane, squalene or dialkylcy- clohexanes.
  • dicaprylyl ether such as, for example, dicaprylyl ether (Cetiol® OE), ring-opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicone methicone grades, etc.) and/or aliphatic or naphthenic hydrocarbons, such as, for example, s
  • non-ionic or cationic surfactants may also be added to the preparations as emulsifiers, including for example:
  • polyol esters and, in particular, polyglycerol esters such as, for example, polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate isos tearate. Mixtures of compounds from several of these classes are also suitable;
  • Partial glycerides are hydroxystearic acid monoglyceride, hydroxystearic acid diglyceride, isostearic acid monoglyceride, isostearic acid diglyceride, oleic acid monoglyceride, oleic acid diglyceride, ricinoleic acid monoglycer ide, ricinoleic acid diglyceride, linoleic acid monoglyceride, linoleic acid diglyceride, linolenic acid monoglyceride, linolenic acid diglyceride, erucic acid monoglyceride, erucic acid diglyc eride, tartaric acid monoglyceride, tartaric acid diglyceride, citric acid monoglyceride, citric acid diglyceride, malic acid monoglyceride, malic acid diglyceride and technical mixtures thereof which may still contain small quantities of
  • Sorbitan esters are sorbitan monoisostearate, sorbitan ses- quiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan dioleate, sorbitan trioleate, sorbitan monoerucate, sorbitan sesquieru- cate, sorbitan dierucate, sorbitan trierucate, sorbitan monoricinoleate, sorbitan sesquiricino- leate, sorbitan diricinoleate, sorbitan triricinoleate, sorbitan monohydroxystearate, sorbitan sesquihydroxystearate, sorbitan dihydroxystearate, sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesquitartrate, sorbitan ditartrate, sorbitan tritartrate, sorbitan monotartrate, sorb
  • Polyglycerol esters are Polyglyceryl- 2 Dipolyhydroxystearate (Dehymuls ® PGPH), Polyglycerin-3-Diisostearate (Lameform ® TGI), Polyglyceryl-4 Isostearate (Isolan ® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care ® 450), Poly- glyceryl-3 Beeswax (Cera Beilina ® ), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane ® NL),
  • polystyrene resin examples include the mono-, di- and triesters of trimethylol propane or pentaerythritol with lauric acid, cocofatty acid, tallow fatty acid, pal mitic acid, stearic acid, oleic acid, behenic acid and the like optionally reacted with 1 to 30 mol ethylene oxide.
  • Cationically active surfactants comprise the hydropho bic high molecular group required for the surface activity in the cation by dissociation in aqueous solution.
  • a group of important representatives of the cationic surfactants are the tetraalkyl ammonium salts of the general formula: (R 1 R 2 R 3 R 4 N + ) X .
  • R1 stands for Ci-Cs alk(en)yl, R 2 , R 3 and R 4 , independently of each other, for alk(en)yl radicals having 1 to 22 car bon atoms.
  • X is a counter ion, preferably selected from the group of the halides, alkyl sulfates and alkyl carbonates.
  • Cationic surfactants in which the nitrogen group is substituted with two long acyl groups and two short alk(en)yl groups, are particularly preferred.
  • Esterquats A further class of cationic surfactants particularly useful as co-surfactants for the present invention is represented by the so-called esterquats.
  • Esterquats are generally understood to be quaternised fatty acid triethanolamine ester salts. These are known com pounds which can be obtained by the relevant methods of preparative organic chemistry.
  • International patent application WO 91/01295 A1 according to which triethanolamine is partly esterified with fatty acids in the presence of hy- pophosphorous acid, air is passed through the reaction mixture and the whole is then quaternised with dimethyl sulphate or ethylene oxide.
  • German patent DE 4308794 C1 describes a process for the production of solid esterquats in which the quaterni- sation of triethanolamine esters is carried out in the presence of suitable dispersants, prefer ably fatty alcohols.
  • esterquats suitable for use in accordance with the invention are products of which the acyl component derives from monocarboxylic acids corresponding to formula RCOOH in which RCO is an acyl group containing 6 to 10 carbon atoms, and the amine component is triethanolamine (TEA).
  • monocarboxylic acids are ca- proic acid, caprylic acid, capric acid and technical mixtures thereof such as, for example, so- called head-fractionated fatty acid.
  • Esterquats of which the acyl component derives from monocarboxylic acids containing 8 to 10 carbon atoms are preferably used.
  • esterquats are those of which the acyl component derives from dicarboxylic acids like malonic acid, suc cinic acid, maleic acid, fumaric acid, glutaric acid, sorbic acid, pimelic acid, azelaic acid, sebac- ic acid and/or dodecanedioic acid, but preferably adipic acid.
  • esterquats of which the acyl component derives from mixtures of monocarboxylic acids containing 6 to 22 carbon atoms, and adipic acid are preferably used.
  • the molar ratio of mono and dicarboxylic acids in the final esterquat may be in the range from 1:99 to 99:1 and is preferably in the range from 50:50 to 90:10 and more particularly in the range from 70:30 to 80:20.
  • other suitable esterquats are quaternized ester salts of mono-/dicarboxylic acid mixtures with diethanolalkyamines or 1,2-dihydroxypropyl dialkylamines.
  • the esterquats may be obtained both from fatty acids and from the corre sponding triglycerides in admixture with the corresponding dicarboxylic acids.
  • Superfatting agents may be selected from such substances as, for example, lanolin and lecithin and also polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides, the fatty acid alkanolamides also serving as foam stabilizers.
  • the consistency factors mainly used are fatty alcohols or hydroxyfatty alcohols con taining 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids.
  • a combination of these substances with alkyl oligoglucosides and/or fatty acid N-methyl glucamides of the same chain length and/or polyglycerol poly-12- hydroxystea rates is preferably used.
  • Suitable thickeners are polymeric thickeners, such as Aerosil® types (hydrophilic sili cas), polysaccharides, more especially xanthan gum, guar-guar, agar-agar, alginates and tylo ses, carboxymethyl cellulose and hydroxyethyl cellulose, also relatively high molecular weight polyethylene glycol monoesters and diesters of fatty acids, polyacrylates (for example Carbo- pols® [Goodrich] or Synthalens® [Sigma]), polyacrylamides, polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols, for example pentaerythritol or trimethylol propane, narrow-range fatty alcohol ethoxylates and electrolytes, such as sodium chloride and ammonium chloride.
  • Aerosil® types hydrophilic sili cas
  • Suitable cationic polymers are, for example, cationic cellulose derivatives such as, for example, the quaternized hydroxyethyl cellulose obtainable from Amerchol under the name of Polymer JR 400®, cationic starch, copolymers of diallyl ammonium salts and acrylamides, quaternized vinyl pyrrolidone/vinyl imidazole polymers such as, for example, Luviquat® (BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides such as, for example, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat® L, Gr inau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers such as, for example, amodimethicone, copolymers of adipic acid and dimethylaminohy- droxypropyl diethylenetriamine (Carta retine ® , Sando
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate/crotonic acid copolymers, vinyl pyrrolidone/vinyl acrylate copolymers, vinyl ace tate/butyl maleate/isobornyl acrylate copolymers, methyl vinylether/maleic anhydride copol ymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamido- propyl trimethylammonium chloride/acrylate copolymers, octylacrylamide/methyl methacry- late/tert.-butylaminoethyl methacrylate/2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone/vinyl acetate copolymers, vinyl pyrroli- done/dimethylaminoethyl methacrylate/vinyl caprol
  • Suitable pearlising waxes are, for example, alkylene glycol esters, especially ethylene glycol distearate; fatty acid alkanolamides, especially cocofatty acid diethanolamide; partial glycerides, especially stearic acid monoglyceride; esters of polybasic, optionally hydroxy- substituted carboxylic acids with fatty alcohols containing 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; fatty compounds, such as for example fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates which contain in all at least 24 car bon atoms, especially laurone and distearylether; fatty acids, such as stearic acid, hydroxys- tearic acid or behenic acid, ring opening products of olefin epoxides containing 12 to 22 car- bon atoms with fatty alcohols containing 12 to 22 carbon atoms and/or polyols containing 2 to 15 carbon
  • Suitable silicones can be chosen from the group consisting of: Acefylline Methylsilanol Mannuronate, Acetylmethionyl Methylsilanol Elastinate Acrylates/Behenyl, Acry- late/Dimethicone Methacrylate Copolymer, Acrylates/Behenyl Methacrylate/Dimethicone Methacrylate Copolymer, Acrylates/Bis-Hydroxypropyl Dimethicone Crosspolymer, Acry- lates/Dimethicone Copolymer, Acrylates/Dimethicone Methacrylate/Ethylhexyl Acrylate Co polymer, Acrylates/Dimethiconol Acrylate Copolymer, Acrylates/Ethylhexyl Acry- late/Dimethicone Methacrylate Copolymer, Acrylates/Octylacrylamide/Diphenyl Amodimethi- cone
  • Butyloxyamodimethicone/PEG-60 Copolymer Bis(C13-15 Alkoxy) Hydroxybutamidoamodi- methicone, Bis(C13-15 Alkoxy) PG- Amodimethicone, Bis-(C1-8 Alkyl Lauroyl Lysine Decylcar- boxamide) Dimethicone, Bis-Cetyl Cetyl Dimethicone, Bis-Cetyl/PEG-8 Cetyl PEG-8 Dimethi cone, Bis-Diphenylethyl Disiloxane, Bis-Ethyl Ethyl Methicone, Bis- Gluconamidoethylaminopropyl Dimethicone, Bis-Hydrogen Dimethicone, Bis- Hydroxyethox- ypropyl Dimethicone Bis-Hydroxylauryl, Dimethicone/IPDI Copolymer, Bis- Hydroxy/M ethoxy Amodimethicon
  • silicones to be contained in the mixture according to the inven tions are Dimethicone, Cyclomethicone, Phenyl Trimethicone, Cyclohexasiloxane and Cyclo- pentasiloxane.
  • Dimethicone Cyclomethicone
  • Phenyl Trimethicone Phenyl Trimethicone
  • Cyclohexasiloxane Cyclo- pentasiloxane
  • waxes may also be present in the preparations, more espe cially natural waxes such as, for example, candelilla wax, carnauba wax, Japan wax, espar- tograss wax, cork wax, guaruma wax, rice oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, spermaceti, lanolin (wool wax), uropygial fat, ceresine, ozocerite (earth wax), petrolatum, paraffin waxes and microwaxes; chemically modified waxes (hard waxes) such as, for example, montan ester waxes, sasol waxes, hydrogenated jojoba waxes and syn thetic waxes such as, for example, polyalkylene waxes and polyethylene glycol waxes.
  • candelilla wax carnauba wax, Japan wax, espar- tograss wax, cork wax, guaruma wax, rice oil wax
  • Metal salts of fatty acids such as, for example, magnesium, aluminium and/or zinc stearate or ricinoleate may be used as stabilizers.
  • Primary sun protection filters in the context of the invention are, for example, organic substances (light filters) which are liquid or crystalline at room temperature and which are capable of absorbing ultraviolet radiation and of releasing the energy absorbed in the form of longer-wave radiation, for example heat.
  • the formulations according to the invention advantageously contain at least one UV- A filter and/or at least one UV-B filter and/or a broadband filter and/or at least one inorganic pigment.
  • Formulations according to the invention preferably contain at least one UV-B filter or a broadband filter, more particularly preferably at least one UV-A filter and at least one UV-B filter.
  • UV filters cited below which can be used within the context of the present inven tion are preferred but naturally are not limiting. UV filters which are preferably used are se lected from the group consisting of one, two, three, four, five or more of the following spe cies:
  • the sun protection filter forming component (ii) repre sents a blend of UV-A- and UV-B-filters selected from the group consisting of homosalate, octocrylene, bis-ethylhexyloxyphenol methoxyphenyl triazine, butyl methoxydibenzoylme- thane, ethylhexyl salicylate and mixtures thereof.
  • Particular preferred is a blend of all these filters which is commercially available in the market under the trademark NeoHeliopan® Flat (SYMRISE), which also subject to WO 2020 088778 A1.
  • Suitable pigments encompass oxides of titanium (T1O2), zinc (ZnO), iron (Fe 2 0s), zirco nium (Zr0 2 ), silicon (S1O2), manganese (e.g. MnO), aluminium (AI2O3), cerium (e.g. Ce 2 0s) and/or mixtures thereof.
  • a formulation according to the invention contains a total amount of sunscreen agents, i.e. in particular UV filters and/or inorganic pigments (UV filtering pigments) so that the formulation according to the invention has a light protection factor of greater than or equal to 5 and up to 50.
  • sunscreen agents i.e. in particular UV filters and/or inorganic pigments (UV filtering pigments) so that the formulation according to the invention has a light protection factor of greater than or equal to 5 and up to 50.
  • UV filters and/or inorganic pigments UV filtering pigments
  • Secondary sun protection factors of the antioxidant type interrupt the photochemical reaction chain which is initiated when UV rays penetrate into the skin.
  • Typical examples are amino acids (for example glycine, histidine, tyrosine, tryptophane) and derivatives thereof, imidazoles (for example urocanic acid) and derivatives thereof, peptides, such as D,L-carnosine, D-carnosine, L-carnosine and derivatives thereof (for example anserine), carotinoids, carotenes (for example alpha- carotene, beta-carotene, lycopene) and derivatives thereof, chlorogenic acid and derivatives thereof, liponic acid and derivatives thereof (for example dihydroliponic acid), aurothioglu- cose, propylthiouracil and other thiols (for example thioredoxine, glutathione, cysteine,
  • amino acids for example glycine, histidine, tyrosine, tryptophane
  • Advantageous inorganic secondary light protection pigments are finely dispersed metal oxides and metal salts which are also mentioned in WO 2005 123101 A1.
  • the total quantity of inorganic pigments, in particular hydrophobic inorganic micro-pigments in the finished cosmetic preparation according to the present invention is advantageously from 0.1 to 30% by weight, preferably 0.5 to 10.0% by weight, in each case based on the total weight of the preparation.
  • particulate UV filters or inorganic pigments which can optionally be hydrophobed, can be used, such as the oxides of titanium (T1O 2 ), zinc (ZnO), iron (Fe 2 0s), zirconium (Zr0 2 ), silicon (S1O 2 ), manganese (e.g. MnO), aluminium (AI 2 O 3 ), cerium (e.g. Ce 2 0s) and/or mixtures thereof.
  • Biogenic active substances include, for example, tocopherol, tocopherol acetate, to copherol palmitate, ascorbic acid, (deoxy)ribonucleic acid and its fragmentation products, b- glucans, retinol, Bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts, such as such as prunus extract, bambaranus extract and vitamin complexes.
  • Antioxidants interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyro sine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides like D,L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g. anserine), carotenoids, carotenes (e.g. -carotene, lycopene) and their derivates, chlorogenic acid and its derivatives, lipoic acid and its derivatives (e.g.
  • thiols e.g. thioredoxin, glutathione, cysteine, cystine, cystamin and their gly- cosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, linoleyl, choles- teryl and glyceryl esters
  • Dilaurylthiodipropionate, ditearylthiodipropionate, thiodipropionic acid and its derivatives (esters, ethers, peptides, lipids, nucleotides, nucleo sides and salts) as well as sulfoximine compounds e.g.
  • citric acid citric acid, lactic acid, malic acid
  • humic acid gallic acid
  • bile extracts bilirubin, biliverdin, EDTA, EGTA and their derivatives
  • unsaturated fatty acids and their derivatives e.g. linolenic acid, linoleic acid, oleic acid
  • folic acid and its derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and its derivatives e.g. ascorbyl palmitate, Mg-ascorbyl phosphate, ascorbylacetate
  • tocoph- erols and derivatives e.g.
  • vitamin E acetate
  • vitamin A and derivates vitamin A palmitate
  • conifer aryl benzoate of benzoic resin rutinic acid and its derivatives, glycosyl rutin, ferulic acid, furfurylidene glucitol, carnosine, butyl hydroxytoluene, butylhydroxyanisole, nor- dihydroguaiac resin acid, nordihydroguajaretic acid, trihydroxybutyrophenone, uric acid and its derivatives, mannose and its derivatives, superoxide dismutase, zinc and its derivatives (e.g. e.g. ZnO, ZnS04) selenium and its derivatives (e.g.
  • stilbenes and their derivatives e.g. styrene oxide, trans-stilbene oxide
  • derivatives suitable for the invention salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids
  • Preferred active ingredients for hair lightening are selected from the group consisting of: kojic acid (5-hydroxy-2-hydroxymethyl-4-pyranone), kojic acid derivatives, preferably kojic acid dipalmitate, arbutin, ascorbic acid, ascorbic acid derivatives, preferably magnesium ascorbyl phosphate, hydroquinone, hydroquinone derivatives, resorcinol, resorcinol deriva tives, preferably 4-alkylresorcinols and 4-(1-phenylethyl)1,3-dihydroxybenzene (phenylethyl resorcinol), cyclohexylcarbamates (preferably one or more cyclohexyl carbamates disclosed in WO 2010/122178 and WO 2010/097480), sulfur-containing molecules, preferably glutathione or cysteine, alpha-hydroxy acids (preferably citric acid, lactic acid, malic acid), salts and esters thereof, N-acetyl
  • Advantageous skin and hair tanning active ingredients in this respect are substrates or substrate analogues of tyrosinase such as L-tyrosine, N-acetyl tyrosine, L-DOPA or L- dihydroxyphenylalanine, xanthine alkaloids such as caffeine, theobromine and theophyl-line and derivatives thereof, proopiomelanocortin peptides such as ACTH, alpha-MSH, peptide analogues thereof and other substances which bind to the melanocortin receptor, peptides such as Val-Gly-Val-Ala-Pro-Gly, Lys-lle- Gly-Arg-Lys or Leu-lle-Gly-Lys, purines, pyrimidines, folic acid, copper salts such as copper gluconate, chloride or pyrrolidonate, 1,3,4-oxadiazole- 2-thiols such as 5-pyrazin-2-yl-1
  • Flavo- noids which bring about skin and hair tinting or brown-ing (e.g. quercetin, rhamnetin, kaempferol, fisetin, genistein, daidzein, chrysin and api-genin, epicatechin, diosmin and di- osmetin, morin, quercitrin, naringenin, hesperidin, phloridzin and phloretin) can also be used.
  • brown-ing e.g. quercetin, rhamnetin, kaempferol, fisetin, genistein, daidzein, chrysin and api-genin, epicatechin, diosmin and di- osmetin, morin, quercitrin, naringenin, hesperidin, phloridzin and phloretin
  • the amount of the aforementioned examples of additional active ingredients for the modulation of skin and hair pigmentation (one or more compounds) in the products accord ing to the invention is then preferably 0.00001 to 30 wt.%, preferably 0.0001 to 20 wt.%, par ticularly preferably 0.001 to 5 wt.%, based on the total weight of the preparation.
  • Formulations and products according to the present invention may also comprise one or more hair growth activators, i.e. agents to stimulate hair growth.
  • Hair growth activators are preferably selected from the group consisting of pyrimidine derivatives such as 2,4- diaminopyrimidine-3-oxide (Aminexil), 2,4-diamino-6-piperidinopyrimidine-3-oxide (Minox idil) and derivatives thereof, 6-amino-1,2-dihydro-1-hydroxy-2-imino-4-piperidinopyrimidine and its derivatives, xanthine alkaloids such as caffeine, theobromine and theophylline and derivatives thereof, quercetin and derivatives, dihydroquercetin (taxifolin) and derivatives, potassium channel openers, antiandrogenic agents, synthetic or natural 5-reductase inhibi tors, nicotinic acid esters such as tocopheryl nicotinate, benzyl nicotinate and C1-
  • formulations and products according to the present invention may comprise one or more hair growth inhibitors (as described above), i.e. agents to reduce or prevent hair growth.
  • Hair growth inhibitors are preferably selected from the group consisting of activin, activin derivatives or activin agonists, ornithine decarboxylase inhibitors such as alpha-difluoromethylornithine or pentacyclic triterpenes like for example ursolic acid, betulin, betulinic acid, oleanolic acid and derivatives thereof, 5alpha-reductase inhibitors, androgen receptor antagonists, S-adenosylmethionine decarboxylase inhibitors, gamma-glutamyl transpeptidase inhibitors, transglutaminase inhibitors, soybean-derived serine protease inhib itors, extracts from microorganisms, algae, different microalgae or plants and plant parts of for example the families Legumi
  • Physiological cooling agents are preferably selected from the following list: menthol and menthol derivatives (for example L-menthol, D-menthol, racemic menthol, isomenthol, neoisomenthol, neomenthol) menthylethers (for example (l-menthoxy)-1,2-propandiol, (I- menthoxy)-2-methyl-1,2-propandiol), menthone glyceryl acetal, menthone glyceryl ketal or mixtures of both, menthylesters (for example menthylformiate, menthyhydroxyisobutyrat, menthyllactates, L-menthyl-L-lactate, L-menthyl-D-lactate, menthyl-(2-methoxy)acetate, menthyl-(2-methoxyethoxy)acetate, menthylpyroglutamate), menthylcarbonates (for example menthylpropyleneg
  • Physiological warming agents can be selected from the group consisting of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin nonivamid, and chili extracts.
  • Suitable anti-inflammatory agents may be selected from the group formed by:
  • steroidal anti-inflammatory substances of the corticosteroid type in particular hydro cortisone, hydrocortisone derivatives such as hydrocortisone 17-butyrate, dexame- thasone, dexamethasone phosphate, methylprednisolone or cortisone,
  • non-steroidal anti-inflammatory substances in particular oxicams such as piroxicam or tenoxicam, salicylates such as aspirin, disalcid, solprin or fendosal, acetic acid deriv atives such as diclofenac, fenclofenac, indomethacin, sulindac, tolmetin or clindanac, fenamates such as mefenamic, meclofenamic, flufenamic or niflumic, propionic acid derivatives such as ibuprofen, naproxen or benoxaprofen, pyrazoles such as phenyl butazone, oxyphenylbutazone, febrazone or azapropazone,
  • oxicams such as piroxicam or tenoxicam
  • salicylates such as aspirin, disalcid, solprin or fendosal
  • acetic acid deriv atives such as diclofenac, fenclo
  • histamine receptor antagonists include serine protease inhibitors (e.g. of Soy extracts), TRPV1 antagonists (e.g. 4-t-Butylcyclohexanol), NK1 antagonists (e.g. Aprepitant, Hydroxy- phenyl Propamidobenzoic Acid), cannabinoid receptor agonists (e.g. Palmitoyl Etha- nolamine) and TRPV3 antagonists.
  • serine protease inhibitors e.g. of Soy extracts
  • TRPV1 antagonists e.g. 4-t-Butylcyclohexanol
  • NK1 antagonists e.g. Aprepitant, Hydroxy- phenyl Propamidobenzoic Acid
  • cannabinoid receptor agonists e.g. Palmitoyl Etha- nolamine
  • TRPV3 antagonists e.g. Palmitoyl Etha- nolamine
  • Suitable anti-microbial agents are, in principle, all substances effective against Gram positive bacteria, such as, for example, 4- hydroxybenzoic acid and its salts and esters, N-(4- chlorophenyl)-N'-(3,4- dichlorophenyl)urea, 2,4,4'-trichloro-2'-hydroxy-diphenyl ether (triclo- san), 4-chloro-3, 5-dimethyl-phenol, 2,2'-methylenebis(6-bromo-4- chlorophenol), 3-methyl- 4-(1-methylethyl)phenol, 2-benzyl-4-chloro-phenol, 3-(4-chlorophenoxy)-1, 2-propanediol, 3- iodo-2-propynyl butylcarbamate, chlorhexidine, 3,4,4'-trichlorocarbanilide (TTC), antibacterial fragrances, thymol, thyme oil, eugenol, oil of cloves, menthol
  • Suitable enzyme inhibitors are, for example, esterase inhibitors. These are preferably trialkyl citrates, such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and, in particular, triethyl citrate (Hydagen CAT). The substances inhibit enzyme activity, thereby reducing the formation of odour.
  • esterase inhibitors such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and, in particular, triethyl citrate (Hydagen CAT).
  • esterase inhib itors are sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campes- terol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and esters thereof, such as, for example, glutaric acid, monoethyl glutarate, diethyl glutarate, adipic acid, mo noethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and esters thereof, such as, for example, citric acid, malic acid, tartaric acid or diethyl tartrate, and zinc glycinate.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campes- terol, stigmasterol and sitosterol sulfate or phosphate
  • Suitable odour absorbers are substances which are able to absorb and largely retain odour-forming compounds. They lower the partial pressure of the individual components, thus also reducing their rate of diffusion. It is important that perfumes must remain unim paired in this process. Odour absorbers are not effective against bacteria. They comprise, for example, as main constituent, a complex zinc salt of ricinoleic acid or specific, largely odour- neutral fragrances which are known to the person skilled in the art as "fixatives", such as, for example, extracts of labdanum or styrax or certain abietic acid derivatives.
  • the odour masking agents are fragrances or perfume oils, which, in addition to their function as odour masking agents, give the deodorants their respective fragrance note.
  • Perfume oils which may be men tioned are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts from flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches, and resins and balsams. Also suitable are animal products, such as, for example, civet and castoreum.
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol, and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexylpropionate, styrallyl pro pionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citron- ellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the ionones and methyl cedryl ketone
  • the alcohols include anethole, citronellol, eugenol, isoeugenol, geraniol, linaool, phenylethyl alcohol and terpineol
  • the hydrocarbons include mainly the terpenes and balsams.
  • fragrance oils which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, oil of cloves, melissa oil, mint oil, cinna mon leaf oil, linden flower oil, juniperberry oil, vetiver oil, olibanum oil, galbanum oil, labda- num oil and lavandin oil.
  • perfume oils e.g. sage oil, camomile oil, oil of cloves, melissa oil, mint oil, cinna mon leaf oil, linden flower oil, juniperberry oil, vetiver oil, olibanum oil, galbanum oil, labda- num oil and lavandin oil.
  • Suitable astringent antiperspirant active ingredients are primarily salts of aluminium, zirconium or of zinc.
  • suitable antihydrotic active ingredients are, for example, aluminium chloride, aluminium chlorohydrate, aluminium dichlorohydrate, aluminium sesquichlorohy- drate and complex compounds thereof, e.g. with 1,2- propylene glycol, aluminium hydroxy- allantoinate, aluminium chloride tartrate, aluminium zirconium trichlorohydrate, aluminium zirconium tetrachlorohydrate, aluminium zirconium pentachlorohydrate and complex com pounds thereof, e.g. with amino acids, such as glycine.
  • Standard film formers are, for example, chitosan, microcrystalline chitosan, quater- nized chitosan, polyvinyl pyrrolidone, vinyl pyrrolidone/vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid and salts thereof and similar compounds.
  • Suitable antidandruff agents are Pirocton Olamin (1-hydroxy-4-methyl-6-(2,4,4- trimethylpentyl)-2-(1 H)-pyridinone monoethanolamine salt), Baypival ® (Climbazole), Keto- conazol® (4-acetyl-1- ⁇ 4-[2-(2,4-dichlorophenyl) r-2-(1 H-imidazol-1-ylmethyl)-1,3-dioxylan-c- 4-ylmethoxyphenyl ⁇ -piperazine, ketoconazole, elubiol, selenium disulfide, colloidal sulfur, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinol polyethoxylate, sulfur tar distil late, salicylic acid (or in combination with hexachlorophene), undecylenic acid, monoethano- lamide sulfosuccinate Na salt, Lamepon ® UD (protein/
  • Preferred cosmetics carrier materials are solid or liquid at 25°C and 1013 mbar (in cluding highly viscous substances) as for example glycerol, 1,2-propylene glycol, 1,2-butylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, ethanol, water and mixtures of two or more of said liquid carrier materials with water.
  • these preparations according to the invention may be produced using preservatives or solubilizers.
  • Other preferred liquid carrier substances which may be a component of a preparation according to the invention are se lected from the group consisting of oils such as vegetable oil, neutral oil and mineral oil.
  • Preferred solid carrier materials which may be a component of a preparation accord ing to the invention are hydrocolloids, such as starches, degraded starches, chemically or physically modified starches, dextrins, (powdery) maltodextrins (preferably with a dextrose equivalent value of 5 to 25, preferably of 10 - 20), lactose, silicon dioxide, glucose, modified celluloses, gum arabic, ghatti gum, traganth, karaya, carrageenan, pullulan, curdlan, xanthan gum, gellan gum, guar flour, carob bean flour, alginates, agar, pectin and inulin and mixtures of two or more of these solids, in particular maltodextrins (preferably with a dextrose equiva lent value of 15 - 20), lactose, silicon dioxide and/or glucose.
  • hydrocolloids such as starches, degraded starches, chemically or physically modified starches, de
  • hydrotropes for example ethanol, isopropyl alcohol or polyols
  • Suitable polyols preferably contain 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols may contain other functional groups, more especially amino groups, or may be modified with nitrogen. Typical examples are
  • alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene gly col, butylene glycol, hexylene glycol and polyethylene glycols with an average molecu lar weight of 100 to 1000 Dalton;
  • methylol compounds such as, in particular, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol and dipentaerythritol;
  • lower alkyl glucosides particularly those containing 1 to 8 carbon atoms in the alkyl group, for example methyl and butyl glucoside;
  • sugar alcohols containing 5 to 12 carbon atoms for example sorbitol or mannitol
  • sugars containing 5 to 12 carbon atoms for example glucose or sucrose
  • dialcoholamines such as diethanolamine or 2-aminopropane-1,3-diol.
  • Suitable preservatives are, for example, phenoxyethanol, sodium benzoate or sorbic acid, blends of the mentioned ingredients and the other classes of compounds listed in Ap pendix 6, Parts A and B of the Kosmetikverowski ("Cosmetics Directive").
  • Alternative prod ucts which could improve the product protection are for example 1,2-alkanediols such as for example 1,2-penatnediol, 1,2-hexanediol, 1,2-octanediol, 1,2-decanediol, 1,2-dodecanediol and mixtures thereof, 4-hydroxy acetophenone.
  • Suitable perfume oils are mixtures of natural and synthetic perfumes. Natural per fumes include the extracts of blossoms (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, orange), roots (nutmeg, angelica, celery, cardamom, costus, iris, calmus), woods (pinewood, sandalwood, guaiac wood, cedarwood, rosewood), herbs and grasses (tarragon, lemon grass, sage, thyme), needles and branches (spruce, fir, pine, dwarf pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax). Animal raw materials, for example civet and beaver, may also be used.
  • Suitable fragrances with woody odor are selected from the group consisting of:
  • Suitable fragrances with amber odor are selected from the group consisting of:
  • Suitable fragrances with fruity odor are selected from the group consisting of:
  • Suitable fragrances with musk odor are selected from the group consisting of:
  • Suitable dyes are any of the substances suitable and approved for cosmetic purposes as listed, for example, in the publication "Kosmetician mistakestoff" of the Farbstoff- kommission der Deutschen Deutschen Deutschen Anlagenstician, Verlag Chemie, Weinheim, 1984, pages 81 to 106. Examples include cochineal red A (C.l. 16255), patent blue V (C.l. 42051), indigotin (C.l. 73015), chlorophyllin (C.l. 75810), quinoline yellow (C.l. 47005), titanium dioxide (C.l. 77891), indanthrene blue RS (C.l. 69800) and madder lake (C.l. 58000). Luminol may also be present as a luminescent dye.
  • Advantageous coloured pigments are for example titanium dioxide, mica, iron oxides (e.g. Fe2C>3 FesC , FeO(OH)) and/or tin oxide.
  • Advantageous dyes are for example carmine, Berlin blue, chromium oxide green, ultramarine blue and/or manga nese violet.
  • compositions according to the present inventions are selected from the group of products for treatment, protecting, care and cleansing of the skin and/or hair or as a make-up product, preferably as a leave-on product (meaning that the one or more com pounds stay on the skin and/or hair for a longer period of time, compared to rinse-off prod ucts).
  • the formulations according to the invention are preferably in the form of an emulsion, e.g. W/O (water-in-oil), O/W (oil-in-water), W/O/W (water-in-oil-in-water), O/W/O (oil-in- water-in-oil) emulsion, PIT emulsion, Pickering emulsion, emulsion with a low oil content, micro- or nanoemulsion, a solution, e.g.
  • a gel including hydrogel, hydrodisper sion gel, oleogel
  • spray e.g. pump spray or spray with propellant
  • a foam or an impreg nating solution for cosmetic wipes e.g. soap, synthetic detergent, liquid wash ing, shower and bath preparation, bath product (capsule, oil, tablet, salt, bath salt, soap, etc.), effervescent preparation, a skin care product such as e.g.
  • an emulsion as described above, ointment, paste, gel (as described above), oil, balsam, serum, powder (e.g. face powder, body powder), eau de perfume, eau de toilette, after-shave, a mask, a pencil, stick, roll-on, pump, aerosol (foaming, non-foaming or post-foaming), a deodorant and/or antiperspirant, mouth wash and mouth rinse, a foot care product (including keratolytic, deodorant), an insect repel lent, a sunscreen, aftersun preparation, a shaving product, aftershave balm, pre- and after shave lotion, a depilatory agent, a hair care product such as e.g.
  • shampoo including 2-in- 1 shampoo, anti-dandruff shampoo, baby shampoo, shampoo for dry scalps, concentrated shampoo
  • conditioner hair tonic, hair water, hair rinse, styling creme, pomade, perm and setting lotion
  • hair spray e.g. gel or wax
  • hair smoothing agent detangling agent, relaxer
  • hair dye such as e.g. temporary direct-dyeing hair dye, semi-permanent hair dye, permanent hair dye, hair conditioner, hair mousse, eye care product, make-up, make-up re mover or baby product.
  • Auxiliary substances and additives can be included in quantities of 5 to 99 % b.w., preferably 10 to 80 % b.w., based on the total weight of the formulation.
  • the amounts of cosmetic or dermatological auxiliary agents and additives and perfume to be used in each case can easily be determined by the person skilled in the art by simple trial and error, de pending on the nature of the particular product.
  • the preparations can also contain water in a quantity of up to 99 wt. -percent., prefer ably from about 5 to about 80 wt. -percent and more preferably either from about 10 to about 50 or from about 60 to about 80 wt. -percent based on the total weight of the prepara tion.
  • compositions are typically encapsulated by means of a solid covering material, which is preferably selected from starches, degraded or chemically or physically modified starches (in particular dextrins and maltodextrins), gelatines, gum arabic, agar-agar, ghatti gum, gellan gum, modified and non-modified celluloses, pullulan, curdlan, carrageenans, alginic acid, alginates, pectin, inulin, xanthan gum and mixtures of two or more of said substances.
  • a solid covering material which is preferably selected from starches, degraded or chemically or physically modified starches (in particular dextrins and maltodextrins), gelatines, gum arabic, agar-agar, ghatti gum, gellan gum, modified and non-modified celluloses, pullulan, curdlan, carrageenans, alginic acid, alginates, pectin, inulin, xanthan
  • the solid covering material is preferably selected from gelatine (preferred are pork, beef, chicken and/or fish gelatines and mixtures thereof, preferably comprising at least one gelatine with a bloom value of greater than or equal to 200, preferably with a bloom value of greater than or equal to 240), maltodextrin (preferably obtained from maize (corn), wheat, tapioca or potato, preferred maltodextrins have a DE value of 10 - 20), modified cellulose (for example cellulose ether), alginates (for example Na-alginate), carrageenan (beta-, iota-, lambda- and/or kappa carrageenan), gum arabic, curdlan and/or agar-agar.
  • gelatine preferred are pork, beef, chicken and/or fish gelatines and mixtures thereof, preferably comprising at least one gelatine with a bloom value of greater than or equal to 200, preferably with a bloom value of greater than or equal to 240
  • Gelatine is pref erably used, in particular, because of its good availability in different bloom values.
  • Particular ly preferred, especially for oral use are seamless gelatine or alginate capsules, the covering of which dissolves very rapidly in the mouth or bursts when chewing. Production may take place, for example, as described in EP 0389700 A1, US 4,251,195, US 6,214,376, WO 2003 055587 or WO 2004 050069 A1.
  • the capsules may also represent micro-capsules.
  • Microcapsules are un derstood to be spherical aggregates with a diameter of about 0.1 to about 5 mm which con tain at least one solid or liquid core surrounded by at least one continuous membrane. More precisely, they are finely dispersed liquid or solid phases coated with film-forming polymers, in the production of which the polymers are deposited onto the material to be encapsulated after emulsification and coazervation or interfacial polymerization. In another process, liquid active principles are absorbed in a matrix (“micro-sponge") and, as micro-particles, may be additionally coated with film-forming polymers.
  • microscopically small capsules also known as nano-capsules
  • multiple-core aggregates also known as microspheres, which con tain two or more cores distributed in the continuous membrane material.
  • single core or multiple-core microcapsules may be surrounded by an additional second, third etc. membrane.
  • the membrane may consist of natural, semisynthetic or synthetic materials.
  • Natu ral membrane materials are, for example, gum arabic, agar agar, agarose, maltodextrins, al- ginic acid and salts thereof, for example sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatine, albumin, shellac, polysaccharides, such as starch or dextran, polypeptides, protein hydrolysates, sucrose and waxes.
  • Semisynthetic membrane materials are inter alia chemically modified celluloses, more particularly cellulose esters and ethers, for example cellulose acetate, ethyl cellulose, hydroxypropyl cellulose, hy- droxypropyl methyl cellulose and carboxymethyl cellulose, and starch derivatives, more par ticularly starch ethers and esters.
  • Synthetic membrane materials are, for example, polymers, such as polyacrylates, polyamides, polyvinyl alcohol or polyvinyl pyrrolidone.
  • microcapsules examples are the following commercial products (the mem brane material is shown in brackets) Hallcrest Microcapsules (gelatin, gum arabic), Coletica Thalaspheres (maritime collagen), Lipotec Millicapseln (alginic acid, agar agar), Induchem Unispheres (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Unicetin C30 (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Kobo Glycospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified agar agar) and Kuhs Probiol Nanospheres (phospholipids).
  • the active principles are released from the microcapsules by mechanical, thermal, chemical or enzymatic destruction of the membrane, normally during the use of the prepara tions containing the microcapsules.
  • a shell is obtained by coazervation, precipitation or polycondensation of anionic and cationic polymers has been quite suitable for the formation of stable capsules.
  • a preferred process for the encapsulation of active principles according to the present invention is characterised in that it comprises the steps of
  • preferred gel formers are substances which are capa ble of forming gels in aqueous solution at temperatures above 40° C.
  • Typical examples of such gel formers are heteropolysaccharides and proteins.
  • Preferred thermogelling heteropol ysaccharides are agaroses which may be present in the form of the agar agar obtainable from red algae, even together with up to 30% by weight of non-gel-forming agaropectins.
  • the principal constituent of agaroses are linear polysaccharides of Galactose and 3,6-anhydro-L- galactose with alternate 1,3- and 1,4-glycosidic bonds.
  • the heteropolysaccharides preferably have a molecular weight of 110,000 to 160,000 and are both odourless and tasteless. Suitable alternatives are pectins, xanthans (including xanthan gum) and mixtures thereof. Other pre ferred types are those which in 1% by weight aqueous solution still form gels that do not melt below 80° C. and solidify again above 40° C. Examples from the group of thermogelling proteins are the various gelatines.
  • alginic acid is a mixture of car boxyl-containing polysaccharides with the following idealized monomer unit:
  • the average molecular weight of the alginic acid or the alginates is in the range from 150,000 to 250,000.
  • Salts of alginic acid and complete and partial neutralization products thereof are understood
  • the alkali metal salts preferably sodium alginate ("algin") and the ammonium and alkaline earth metal salts.
  • Mixed alginates for example so dium/magnesium or sodium/calcium alginates, are particularly preferred.
  • carboxymethyl celluloses and anionic chitosan deriv atives for example the carboxylation and above all succinylation products are also suitable for this purpose.
  • Chitosans are biopolymers which belong to the group of hydrocolloids. Chemically, they are partly de-acetylated chitins differing in their molecular weights which contain the following - idealized - monomer unit:
  • chitosans are cationic biopolymers under these conditions.
  • the positively charged chi- tosans are capable of interacting with oppositely charged surfaces and are therefore used in cosmetic hair-care and body-care products and pharmaceutical preparations.
  • a 1 to 10 and preferably 2 to 5% by weight aqueous solution of the gel former, preferably agar agar, is normally prepared and heated under reflux.
  • a second aqueous solution containing the cationic polymer, preferably chitosan, in quantities of 0.1 to 2 and preferably 0.25 to 0.5% by weight and the active princi ple in quantities of 0.1 to 25 and preferably 0.25 to 10% by weight is added in the boiling heat, preferably at 80 to 100 ° C; this mixture is called the matrix.
  • the charging of the microcapsules with active principles may also comprise 0.1 to 25% by weight, based on the weight of the capsules.
  • water-insoluble constituents for example inorganic pigments
  • inorganic pigments may also be added at this stage to adjust viscosity, generally in the form of aque ous or aqueous/alcoholic dispersions.
  • emulsifiers and/or solubilisers to the matrix.
  • the matrix After its preparation from gel former, cationic polymer and active principle, the matrix optionally is very finely dis persed in an oil phase with intensive shearing in order to produce small particles in the sub sequent encapsulation process. It has proved to be particularly advantageous in this regard to heat the matrix to temperatures in the range from 40 to 60° C while the oil phase is cooled to 10 to 20° C.
  • the actual encapsulation i.e. formation of the membrane by contacting the cationic polymer in the matrix with the anionic polymers, takes place in the third step.
  • the resulting aqueous preparations gener ally have a microcapsule content of 1 to 10% by weight.
  • the solution of the polymers can contain other ingredients, for example emulsifiers or preservatives.
  • emulsifiers or preservatives for example emulsifiers or preservatives.
  • microcapsules with a mean diameter of preferably 1 to 3 mm are obtained. It is advisable to sieve the capsules to ensure a uniform size distribution.
  • the microcapsules thus obtained may have any shape within production-related limits, but are preferably substantially spherical.
  • Another object of the present invention refers to a non-therapeutic method for modulation of the endocannabinoid system of a human being, and/or enhancing the mood of a human being - protecting endogenous cells of a human being against oxidative stress and/or oxidative damages prophylaxis and treatment of a human being against skin redness prophylaxis and treatment of a disturbed skin barrier and/or dry skin of a human being prophylaxis and treatment of excessive sebum production of a human being comprising or consisting of the following steps:
  • composition comprising or consisting of Cannabidiol and optionally Bisabolol
  • composition according to the methods as described above can be effected either by topical application or oral uptake.
  • Another object of the present invention refers to the non-therapeutic use of composi tion comprising or consisting of
  • a final object of the present invention is directed to the use of a composition comprising or consisting of (a) Cannabidiol and optionally
  • compositions can be administered to the human body for example topically as a component of a cosmetic formulation such as for example a cream, lotion, emulsion, mousse and the like.
  • a cosmetic formulation such as for example a cream, lotion, emulsion, mousse and the like.
  • capsules comprising the compositions are the preferred embodiment.
  • the cannabinoid receptor types 1 and 2 are G protein- coupled receptor from the cannabinoid receptor family that in humans are encoded by the CNR2 gene. Both receptors inhibit the activity of adenylyl cyclase through their Gi/Go a subunits. CB2 can also couple to stimulatory Gcc s subunits leading to an increase of intracellular cAMP, as has been shown for human leukocytes. Through their Gp Y subunits, CB2 receptors are also known to be coupled to the MAPK-ERK pathway, a complex and highly conserved signal transduction pathway, which regulates a number of cellular processes in mature and developing tissue.
  • the CB2 receptors are mainly found on white blood cells, in the tonsils and in the spleen.
  • the immune cells also express CB1, although there are fewer of them than CB2.
  • CB2 activation is considered having positive effects on the course of Alzheimer's disease through various mechanisms, including the reduction of local, microglia-mediated inflammation and an increased rate of beta-amyloid removal.
  • 293T-CB2 cells were transient transfect with CRE-luc plasmid. After 24 h the cells were treated with Forskolin and WIN55, 212-2 (ImM) and the test compounds. After 6 h luciferase activity was measured in the cell lysates. CB2 antagonist is reflected by reversing WIN-induced inhibition of Forskolin-mediated CRE-Luc activation
  • Moisturisation is a key property of cosmetic skin care formulations and strengthens its barrier function to protect it from intruding pathogenic bacteria and other noxes.
  • Hyalu ronic acid contributes in moisturisation as it has high water capturing activity.
  • Gene expression is the process by which information from a gene is used in the syn thesis of a functional gene product. These products are often proteins. Stressors or Signals acting on cells are transferred and processed resulting in gene expression. Based on the spe cific gene expression alterations, conclusions about intracellular processes can be drawn.
  • Hyaluronic acid is a glycosaminoglycan (GAG) and is a major contributor in moisturisation in the skin synthesized by fibroblasts in the dermis and epidermis. It exhibits high water binding capacity and thus captures ambient water on the skin surface subse quently moisturizing it.
  • moisturisation was determined by Gene Expression Analysis using quantitative Real Time Polymerase Chain Reaction (qPCR)
  • Hyaluronic acid also known as hyaluronan or hyaluronate is a large linear non- sulfated glycosaminoglycan (GAG) with a molecular weight between 106 and 107 Da. It is a major component of connective tissues and thus distributed ubiquitously in the organism.
  • Hyaluronan is synthesized by fibroblasts and other specialized connective tissue cells.
  • Hyaluronan is especially important for the structure and organization of extracellular matrices.
  • the hyaluronan network acts as an osmotic buffer and is responsible for water ho meostasis as well as it regulates protein distribution via the formation of flow and diffusion barriers. Additionally, hyaluronan interacts with proteins and cell surfaces and thus has a strong influence on cell proliferation, differentiation and tissue repair.
  • Hyaluronic acid concentration produced in response to a specific compound was determined using the ELISA technique. Human dermal skin fibroblasts were seeded on cell culture plastic for 96 h. Subsequently cells were treated with test compound for 72h. Then, cells were lysed and subjected to the ELISA assay. Here, a specific antibody was immobilized on plastic dishes and captured the HA from the cell lysate. After removing the supernatant and several washing steps the bound HA was detected by an enzyme linked detection anti body specifically binding HA. By addition of the enzyme substrate the amount of immobilized HA was made visible by a color reaction. Table 3 shows HA stimulation in response to Can nabidiol and Bisabolol treatment.
  • Inflammation in the skin occurs after UV or chemical exposure, microbial infection or wounding to form a defence against pathogens.
  • inflammation in response to UV is associated with degenerative processes in the skin resulting in photoaging, wrinkle and age spot formation.
  • IL8 inflammatory mediator interleukin 8
  • PGE2 prostaglandin E2
  • Interleukin 8 or CXCL8 is a chemokine produced by macrophages and other cell types such as epithelial cells, airway smooth muscle cells and endothelial cells.
  • IL8 is initially produced as a precursor which undergoes cleavage to create several active IL8 isoforms.
  • In- terleukin-8 plays a key role as inflammation mediator to recruit and activate neutrophils, for example, in association with gingivitis, psoriasis and other diseases.
  • IL8 secretion is increased by various kinds of stress including UV & oxidant stress, which thereby cause the recruitment of inflammatory cells and induces a further increase in oxidant stress mediators, making it a key parameter in localized inflammation.
  • Prostaglandin E2 is a principal mediator of inflammation and is produced in response to NFkB signalling activated by IL1 alpha/beta and IL8 stimulation.
  • PGE2 Prostaglandin E2
  • COX cyclooxygenase
  • PGES terminal prosta glandin E synthases
  • Selective COX-2 and NFkB/IL8 inhibitors reduce PGE2 production to diminish inflammation. Therefore, inhibition of PGE2 is an important target for the screen ing of anti-inflammatory substances.
  • the ELISA assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a protein in a liquid sample using antibodies directed against the protein to be measured.
  • the protein of interest is immobilized on a solid surface, e.g. a microtiter plate.
  • This protein is then detected by a specific antibody, forming a complex with the pro tein.
  • This antibody is conjugated covalently to an enzyme or to a secondary antibody that is linked to an enzyme.
  • the excess proteins and antibodies that are non-specifically bound are removed by washing steps.
  • the amount of bound antibody is quantified by adding an enzy matic substrate to produce a visible signal, which indicates the quantity of the protein of in terest in the sample.
  • IL8 produced and secreted by cells was determined in an enzyme linked immunosorbance assay (ELISA) from cell supernatants utiliz ing antibodies detecting the IL8.
  • the assay was performed on HaCaT cells by addition of test substances and their incubation for 6h (37°C). Afterwards, inflammation was triggered with IL1 alpha for 24h or 2h, respectively, and IL8 was measured.
  • the quantitative sandwich enzyme immunoassay technique was employed. A monoclonal antibody specific for human IL8 was pre-coated onto a microplate. Standards and samples/supernatants were pi petted into the wells and any IL8 present was bound by the immobilized antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Biochemistry (AREA)
  • Anesthesiology (AREA)
  • Rheumatology (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Cosmetics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
EP21724198.3A 2021-04-19 2021-04-19 Zusammensetzungen mit cannabidiol und optional bisabolol Pending EP4326251A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/060135 WO2022223099A1 (en) 2021-04-19 2021-04-19 Compositions comprising cannabidiol and, optionally, bisabolol

Publications (1)

Publication Number Publication Date
EP4326251A1 true EP4326251A1 (de) 2024-02-28

Family

ID=75870576

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21724198.3A Pending EP4326251A1 (de) 2021-04-19 2021-04-19 Zusammensetzungen mit cannabidiol und optional bisabolol
EP22168732.0A Pending EP4079301A3 (de) 2021-04-19 2022-04-19 Zusammensetzungen mit cannabidiol

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP22168732.0A Pending EP4079301A3 (de) 2021-04-19 2022-04-19 Zusammensetzungen mit cannabidiol

Country Status (2)

Country Link
EP (2) EP4326251A1 (de)
WO (1) WO2022223099A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230285317A1 (en) * 2022-03-14 2023-09-14 Scientific Holdings, Llc Diluents, standardization agents and viscosity control for cannabinoids formulations and methods thereof
CN116983267B (zh) * 2023-09-28 2023-12-19 中国农业科学院农产品加工研究所 一种二氢大麻二酚二烟酸酯的包埋体系及其制备方法和应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150052A (en) 1971-02-04 1979-04-17 Wilkinson Sword Limited N-substituted paramenthane carboxamides
NL180807C (nl) 1975-12-26 1987-05-04 Morishita Jintan Co Inrichting voor het vervaardigen van naadloze, met materiaal gevulde capsules.
JPH01193216A (ja) 1988-01-29 1989-08-03 Fuji Kapuseru Kk ソフトカプセル及び球状物
ES2021900A6 (es) 1989-07-17 1991-11-16 Pulcra Sa Procedimiento de obtencion de tensioactivos cationicos derivados de amonio cuaternario con funcion amino-ester.
GB9110651D0 (en) 1991-05-15 1991-07-03 Stiefel Laboratories Composition and method of enhancing sun tanning
DE4308794C1 (de) 1993-03-18 1994-04-21 Henkel Kgaa Verfahren zur Herstellung von festen Esterquats mit verbesserter Wasserdispergierbarkeit
DE4409322C1 (de) 1994-03-18 1995-04-06 Henkel Kgaa Verfahren zur Herstellung von Esterquats
US6214376B1 (en) 1998-08-25 2001-04-10 Banner Pharmacaps, Inc. Non-gelatin substitutes for oral delivery capsules, their composition and process of manufacture
DE10164110A1 (de) 2001-12-24 2003-07-10 Dragoco Gerberding Co Ag Mononuklear gefüllte Mikrokapseln
GB0221697D0 (en) 2002-09-18 2002-10-30 Unilever Plc Novel compouds and their uses
ES2272632T3 (es) 2002-12-05 2007-05-01 SYMRISE GMBH & CO. KG Capsulas rellenas cin costura.
DE10341654A1 (de) 2003-09-08 2005-04-07 Beiersdorf Ag Mittel zur Anwendung auf der Haut und/oder dem Haar enthaltend 4-fach substituierte Cyclohexen-Verbindungen
ES2342466T7 (es) 2003-11-21 2012-11-19 Givaudan Sa P-mentanocarboxamidas n-substituidas.
DE102004020714A1 (de) 2004-04-26 2005-11-10 Beiersdorf Ag Haut- und/oder Haarmittel enthaltend Verbindungen mit isoprenoider Struktur
WO2005123101A1 (en) 2004-06-18 2005-12-29 Symrise Gmbh & Co. Kg Blackberry extract
DE102004036092A1 (de) 2004-07-24 2006-02-16 Beiersdorf Ag Haut- und/oder Haarmittel enthaltend Verbindungen zur Steigerung der Hautbräunung
ES2395682T3 (es) 2007-08-20 2013-02-14 Symrise Ag Derivados de ácido oxálico y su uso como principios activos refrescantes fisiológicos
KR101666372B1 (ko) 2010-05-25 2016-10-14 시므라이즈 아게 피부 및/또는 모발 라이트닝 활성제로서 멘틸 카바메이트 화합물
CN103025310B (zh) 2010-05-25 2016-01-27 西姆莱斯有限公司 作为皮肤和/或毛发美白活性物的氨基甲酸环己酯化合物
AU2015101908A4 (en) 2014-12-21 2019-05-02 One World Cannabis Ltd Cannabis-based extracts and topical formulations for use in skin disorders
US10716766B2 (en) * 2015-03-02 2020-07-21 Afgin Pharma, Llc Topical regional neuro-affective therapy with cannabinoids
CA2971197A1 (en) 2017-06-20 2018-12-20 One World Cannabis Ltd Cannabis-based extracts and topical formulations for use in skin disorders
WO2019003163A2 (en) * 2017-06-28 2019-01-03 Buzzelet Development And Technologies Ltd. CANNABINOID PRODUCT ENRICHED IN TERPENE GOOD FOR WOMEN'S HEALTH
CN107811904B (zh) * 2017-10-27 2020-07-14 云南汉木森生物科技有限责任公司 抗炎祛斑雪花膏及其制备方法
CN107811190A (zh) 2017-10-31 2018-03-20 四川明峰农业开发有限公司 一种牛肉卤制品制作方法
EP3773651A4 (de) * 2018-04-04 2022-02-16 Eye Co Pty Ltd. Thc-armes hanfextrakt und verfahren zur behandlung oder vorbeugung einer augenerkrankung
WO2020021543A1 (en) * 2018-07-25 2020-01-30 Bol Pharma Ltd. Cannabidiol and curcumin for treating inflammatory diseases
WO2020021544A1 (en) * 2018-07-25 2020-01-30 Bol Pharma Ltd. Cannabidiol and methylthio-butyl-isothiocyanate for treating inflammatory diseases
US20200197359A1 (en) * 2018-09-17 2020-06-25 Cody D. Freeze Cannabinoid and Terpene-Infused Topical Cream
CN113164792A (zh) 2018-11-02 2021-07-23 西姆莱斯股份公司 Uv滤光剂的液态透明混合物

Also Published As

Publication number Publication date
WO2022223099A1 (en) 2022-10-27
EP4079301A2 (de) 2022-10-26
EP4079301A3 (de) 2023-01-18

Similar Documents

Publication Publication Date Title
US20220117881A1 (en) A hair care composition
US20230293409A1 (en) Compositions Comprising Antimicrobials and (Bio)-Alkanediols for Skin Protection
US11911347B2 (en) Compositions comprising one or more (bio)-alkanediols with antioxidants
US20220354775A1 (en) Novel bacterial ferment of lactobacillus species
US20230338250A1 (en) Compositions Comprising One or More (Bio)-Alkanediols with Active Ingredients
EP4079301A2 (de) Zusammensetzungen mit cannabidiol und gegebenenfalls bisabolol enthalten
EP4245291A1 (de) Additiv für sonnenschutzmittel
EP4134426A1 (de) Neues bakterielles ferment von lactobacillus-spezies
WO2020192864A1 (en) Plant peptides and their applications (ii)
WO2022128390A1 (en) Cosmetic and/or pharmaceutical compositions containing cannabinoids
JP2023552598A (ja) (バイオ)-アルカンジオールを含む組成物
WO2022122134A1 (en) Compositions with (bio)-alkanediols and cooling agents
EP4245292A1 (de) Zusatzstoff für sonnenschutzmittel
WO2024110023A1 (en) An active composition comprising retinol
EP4322911A1 (de) Isocitronellol enthaltendes riechstoffgemisch
WO2023175129A1 (en) Additive for sunscreens
WO2024061476A1 (en) A method for preventing, mitigating and/or treating ptgs2-induced skin disorders and related dysfunctions
WO2024104546A1 (en) A blend of emollients
WO2022214187A1 (en) An o/w emulsion base and emulsions comprising the same
WO2023169695A1 (en) Hair care composition
WO2022122885A1 (en) Compositions comprising lipophilic compounds and one or more (bio)-alkanediols

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR