EP4323586A1 - Procede de fabrication de papier et de carton - Google Patents

Procede de fabrication de papier et de carton

Info

Publication number
EP4323586A1
EP4323586A1 EP22723053.9A EP22723053A EP4323586A1 EP 4323586 A1 EP4323586 A1 EP 4323586A1 EP 22723053 A EP22723053 A EP 22723053A EP 4323586 A1 EP4323586 A1 EP 4323586A1
Authority
EP
European Patent Office
Prior art keywords
polymer
water
reaction
weight
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22723053.9A
Other languages
German (de)
English (en)
Inventor
Cyril BARRIERE
Gatien Faucher
Bastien MARTEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNF Group
Original Assignee
SNF Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNF Group filed Critical SNF Group
Publication of EP4323586A1 publication Critical patent/EP4323586A1/fr
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer

Definitions

  • the present invention relates to a process for the manufacture of paper or board having improved drainage and runnability properties. More specifically, the subject of the invention is a process involving the reaction of a water-soluble polymer in the form of an inverse emulsion in a mixture of alkaline hydroxide and/or alkaline-earth hydroxide and hypo- alkali halide and/or alkaline-earth hypo-halide and then injecting it directly into the fibrous suspension used to manufacture the paper or cardboard.
  • the present invention also relates to the papers and cardboards with improved physical properties obtained by this process.
  • the drainage properties relate to the ability of the fibrous mat to evacuate or drain the maximum amount of water before drying. Improved drainage properties mean energy savings and increased production capacity.
  • Runnability refers to the optimization of the operation of the paper machine by increasing productivity through better drainage on the table, better dryness in the press section, a reduction in breakages through greater cleanliness of the circuits and a reduction deposits.
  • JP 2002-212898 describes the use of a polymer resulting from the Hofmann degradation reaction in a papermaking process. This document does not describe, during a chemical reaction, the addition of a polymer in the form of an inverse emulsion.
  • WO 2020/094960 describes inverse emulsion compositions.
  • EP 2 840 100 the functionalization of a polymer.
  • Polyvinylamines are known to improve drainage during paper formation.
  • Polyvinylamines can be obtained by reacting a solution of polyacrylamide in a mixture of alkali hydroxide and/or alkaline earth hydroxide and alkali hypohalide and/or hypohalide of alkaline earth metal followed by treatment in an acid medium.
  • this reaction on polyacrylamide requires heating the reaction medium and also a need for an exchanger to regulate its temperature at the end of the reaction.
  • This method also makes it possible to avoid all the logistics (transport or installation of a dissolution unit) inherent in the handling of solutions of water-soluble polymers.
  • the process is all the more simple as from the addition of the polymer in the form of an inverse emulsion in the mixture of hydroxide and hypo-halide of alkaline and / or alkaline-earth metal the reaction medium is homogeneous and it is not necessary to heat the reaction medium or to use heat exchangers.
  • alkaline denotes an alkali metal, advantageously lithium, sodium or potassium.
  • alkali hydroxide designates a hydroxide (OH ) of at least one alkali metal, for example NaOH, KOH or NaOH+KOH. The same is true for alkaline earth hydroxide.
  • alkaline-earth is meant an alkaline-earth metal, advantageously calcium or magnesium.
  • a hypo-halide is an oxyanion, for example hypochlorite CIO.
  • alkaline hypo-halide means a hypo-halide of at least one alkali metal and at least one hypo-halide, for example NaOCl, KOBr or NaOCl+KOBr. The same is true for the alkaline-earth hypo-halide.
  • the process of the invention makes it possible to increase the range of drainage agents and current dry strength compared to a similar process using polyacrylamides in the form of an aqueous solution.
  • the invention relates to a process for manufacturing a sheet of paper or cardboard from a fibrous suspension, comprising the following steps: a) injection of a polymer P2 into a fibrous suspension (advantageously a suspension of cellulosic fibers), b) forming a sheet of paper or cardboard, c) drying the sheet of paper or cardboard, the polymer P2 being prepared, prior to step a), from a water-soluble polymer PI in the form of an inverse emulsion, PI being a water-soluble polymer of at least one nonionic monomer chosen from acrylamide, methacrylamide, N,N-dimethylacrylamide, and acrylonitrile, the polymer P2 being obtained by a reaction Re consisting in adding the water-soluble polymer PI in the form of an inverse emulsion in an aqueous solution M1 of: (i) a an alkali metal hydroxide, or an alkaline earth metal hydroxide, or mixtures thereof (ii) an al
  • step a) is carried out within a period not exceeding 24 hours from the start of the Re reaction, that is to say from the addition of the water-soluble polymer PI in the form of inverse emulsion in aqueous solution M1.
  • the dry matter corresponds to the dry extract obtained after evaporation of the water from the fibrous suspension used in a process for manufacturing a sheet of paper or cardboard.
  • the dry matter is generally based on cellulosic fibers and fillers, advantageously consisting of cellulosic fibers and fillers.
  • the term "cellulosic fibers" encompasses any cellulosic entity, including fibers, fines, microfibrils or nanofibrils.
  • fibrous suspension we mean the thick paste or the thin paste which is based on water and cellulosic fibers.
  • the thick stock (Thick Stock), having a mass concentration of dry matter generally greater than 1%, or even greater than 3%, is upstream of the mixing pump (fan-pump).
  • the dilute paste (Thin Stock), having a mass concentration of dry matter generally less than 1%, is located downstream of the mixing pump.
  • polymer designates both homopolymers and copolymers of at least two distinct monomers.
  • An amphoteric polymer is a polymer comprising cationic charges and anionic charges, preferably as many anionic charges as cationic charges.
  • water-soluble polymer means a polymer which yields an aqueous solution without insoluble particles when dissolved with stirring for 4 hours at 25°C and with a concentration of 20 gL 1 in deionized water .
  • the water-soluble polymer PI is a polymer of at least one nonionic monomer chosen from acrylamide, methacrylamide, N,N-dimethylacrylamide, and acrylonitrile.
  • the polymer PI contains at least 50 mol% of at least one of these nonionic monomers.
  • the polymer PI can also contain anionic and/or cationic and/or zwitterionic monomers.
  • Polymer PI is advantageously devoid of nonionic monomer which is not chosen from acrylamide, methacrylamide, N,N-dimethylacrylamide, and acrylonitrile.
  • the anionic monomers are preferably chosen from the group comprising monomers having a carboxylic acid function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid, monomers having a sulphonic acid function and their salts; including acrylamido tert-butyl sulfonic acid (ATBS), allyl sulfonic acid and methallyl sulfonic acid, and their salts, and monomers having a phosphonic acid function and their salts.
  • monomers having a carboxylic acid function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid, monomers having a sulphonic acid function and their salts; including acrylamido tert-butyl sulfonic acid (ATBS), allyl sulfonic acid and methallyl sulfonic acid, and their salts, and monomers having a phosphonic acid function and their salts.
  • ATBS acrylamid
  • the anionic monomers of the polymer PI have as counterion an alkali metal, an alkaline-earth metal or an ammonium (preferably a quaternary ammonium).
  • the cationic monomers are preferably chosen from the group comprising quaternized or salified dimethylaminoethyl acrylate (AD AME), quaternized or salified dimethylaminoethyl methacrylate (MADAME), diallyldimethylammonium chloride (DADMAC), acrylamidopropyltrimethylammonium chloride (APTAC) , and methacrylamidopropyltrimethylammonium chloride (MAPTAC).
  • AD AME quaternized or salified dimethylaminoethyl acrylate
  • MADAME quaternized or salified dimethylaminoethyl methacrylate
  • DDADMAC diallyldimethylammonium chloride
  • ATAC acrylamidopropyltrimethylammonium chloride
  • MATAC methacrylamidopropyltrimethylammonium chloride
  • the cationic monomers of the polymer PI have as counterion a halide, preferably a chloride ion.
  • the zwitterionic monomers are preferably chosen from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propyl methacrylamide, or sulfopropyl 2-vinylpyridinium; phosphobetaine monomers, such as phosphato ethyltrimethylammonium ethyl methacrylate; and carboxybetaine monomers.
  • the water-soluble polymer PI is a homopolymer or a copolymer of acrylamide or of methacrylamide.
  • the PI polymer can be linear, structured or cross-linked.
  • the crosslinking agents allowing the structuring can in particular be chosen from sodium allyl sulfonate, sodium methallyl sulfonate, sodium methallyl disulfonate, methylenebisacrylamide, triallylamine, triallylammonium chloride.
  • the structuring of the polymer PI can also be obtained with at least one polyfunctional compound containing at least 3 heteroatoms chosen from N, S, O, P and each having at least one mobile hydrogen.
  • This polyfunctional compound can in particular be a polyethyleneimine or a polyamine.
  • the reaction Re is carried out by adding an inverse emulsion of water-soluble polymer PI to the aqueous solution Ml.
  • the inverse emulsion (water-in-oil emulsion) comprises:
  • An aqueous phase comprising at least the polymer PI
  • At least one emulsifying agent and at least one reversing agent At least one emulsifying agent and at least one reversing agent.
  • the oily phase can be a mineral oil, a vegetable oil, a synthetic oil or a mixture of several of these oils.
  • mineral oil examples include mineral oils containing saturated hydrocarbons of the aliphatic, naphthenic, paraffinic, isoparaffinic, cycloparaffinic or naphthyl type.
  • Examples of synthetic oil are hydrogenated polydecene or hydrogenated polyisobutene, an ester such as octyl stearate or butyl oleate.
  • Exxon's Exxsol® product line is a perfect fit.
  • the weight ratio of water phase to oil phase in the invert emulsion is preferably 50/50 to 90/10. This ratio includes the weight of the various constituents of the emulsion, in particular the water-soluble polymer PI.
  • the water-in-oil emulsion preferably comprises from 15 to 40% by weight of oil, from 20 to 55% by weight of water, from 15 and 50% by weight of polymer PI, the percentages being expressed relative to the total weight of the inverse emulsion of the polymer PI.
  • emulsifying agent designates an agent capable of emulsifying water in an oil
  • an “inverting agent” is an agent capable of emulsifying an oil in water. More specifically, it is considered that a reversing agent is a surfactant having an HLB greater than or equal to 10, and that an emulsifying agent is a surfactant having an HLB strictly less than 10.
  • the hydrophilic-lipophilic balance (HLB) of a chemical compound is a measure of its degree of hydrophilicity or lipophilicity, determined by calculating the values of different regions of the molecule, as described by Griffin in 1949 (Griffin WC, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, 1949, 1, pages 311-326).
  • Griffin's method based on calculating a value based on the chemical groups of the molecule.
  • Griffin assigned a dimensionless number between 0 and 20 to give information about water and oil solubility.
  • Substances with an HLB value of 10 are distributed between the two phases, so that the hydrophilic group (molecular mass Mh) projects completely into the water while the hydrophobic hydrocarbon group (molecular mass Mp) is adsorbed in the non-phase. watery.
  • HLB 20 (Mh/M).
  • the inverse emulsion containing the polymer PI advantageously contains from 0.1% to 10% by weight of at least one emulsifying agent, the percentages being expressed by weight relative to the weight of the emulsion.
  • This emulsifying agent is advantageously chosen from sorbitan esters, polyethoxylated sorbitan esters, polyethoxylated fatty acids, polyethoxylated fatty alcohols, polyesters having an average molecular weight of between 1000 and 3000 daltons resulting from the condensation between a poly( isobutenyl) succinic or its anhydride and a polyethylene glycol, block copolymers with an average molecular weight of between 2500 and 3500 daltons resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di-alkanol amides , copolymers of stearyl methacrylate, and mixtures of these emulsifying agents.
  • the inverse emulsion containing the polymer PI advantageously contains between 0.1 and 10% by weight of at least one inverting agent, the percentages being expressed by weight relative to the weight of the emulsion.
  • This reversing agent is advantageously chosen from ethoxylated nonylphenols, preferably having 4 to 10 ethoxylations; ethoxylated/propoxylated alcohols preferably having an ethoxylation/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; polyethoxylated fatty acids; poly(ethoxylated/propoxylated) fatty alcohols; ethoxylated sorbitan esters; polyethoxylated sorbitan laurate; polyethoxylated castor oil; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate; polyethoxylated alkyl phenol cetyl ether; poly ethylene
  • the water-in-oil emulsion according to the invention can be prepared according to any method known to those skilled in the art. Generally, an aqueous solution comprising the monomer(s) and the emulsifying agent(s) is emulsified in an oily phase. Then, the polymerization is carried out by adding a free radical initiator.
  • a free radical initiator We can refer to redox couples, with cumene hydroperoxide, tertiary butylhydroxyperoxide or persulfates among the oxidizing agents, sodium sulfite, sodium metabisulfite and Mohr's salt among the reducing agents.
  • Azo compounds such as 2,2'-azobis (isobutyronitrile) and 2,2'-azobis (2-amidinopropane) hydrochloride can also be used.
  • the polymerization is generally carried out in an isothermal, adiabatic or temperature-controlled manner.
  • the temperature is advantageously kept constant, generally between 10 and 60°C (isothermal), or else the temperature is allowed to increase naturally (adiabatic) and in this case, the reaction is generally started at a temperature below 10°C and the final temperature is usually greater than 50°C or, finally, the increase in temperature is controlled so as to have a temperature curve between the isothermal curve and the adiabatic curve.
  • the reversing agent(s) are added at the end of the polymerization reaction, preferably at a temperature below 50°C.
  • Reaction Re consists of adding the inverse polymer emulsion PI to an aqueous solution M1 of: (i) an alkaline hydroxide and/or an alkaline-earth hydroxide, (ii) an alkaline hypo-halide and/or an alkaline earth hypo-halide, with a reaction time Re of 10 seconds to 5 hours to form the polymer P2.
  • the aqueous solution M1 is an aqueous solution of soda (sodium hydroxide) and sodium hypochlorite.
  • reaction time of the polymer PI in the aqueous solution M1 of hypohalide and hydroxide is from 10 seconds to 180 minutes.
  • the Re reaction is advantageously carried out at a temperature comprised between 10 and 30°C, more advantageously between 15 and 25°C.
  • reaction Re preferably between 0.1 and 20% by weight of polymer PI, relative to the weight of the aqueous solution Ml, more preferably between 0.3 and 10% and even more preferably between 0.5 and 3.0 % by weight, are added to the aqueous solution M1.
  • the polymer P2 can be functionalized with a compound comprising at least one aldehyde function to give a polymer P3, for example by adding a compound comprising at least an aldehyde function.
  • the compound comprising at least one aldehyde function is glyoxal.
  • the pH of the reaction mixture resulting from the reaction Re and containing the polymer P2 can be adjusted by adding acid between 0.5 and 7.5, more preferably between 1.0 and 3, 0. A person skilled in the art knows how to adjust the pH of this type of reaction medium. The adjustment of the pH is advantageously carried out in the absence of formation of the polymer P3.
  • the polymer P2 (or P3) is introduced into the white waters and/or the thick paste and/or the mixture formed by the white waters and the thick paste after homogenization of the fibrous suspension in the pump of dilution (fan-pump).
  • the polymer P2 (or P3) can also be introduced into the papermaking process at the level of the forming table, for example by spraying or application in the form of a foam, or even at the level of the size press (coater)
  • the fibrous suspension encompasses the possible use of different cellulosic fibers: virgin fibers, recycled fibers, chemical pulp, mechanical pulp, micro-fibrillated cellulose or nano-fibrillated cellulose.
  • the fibrous suspension also encompasses the use of these different cellulosic fibers with all types of fillers such as TiCh, C aCC ⁇ (ground or precipitated), kaolin, organic fillers and mixtures thereof.
  • Polymer P2 or P3 can be used within the papermaking process in combination with other products such as inorganic or organic coagulants, dry strength agents, wet strength agents, natural polymers such as starches or carboxymethylcellulose (CMC), inorganic microparticles such as bentonite microparticles and colloidal silica microparticles, organic polymers of any ionic nature (nonionic, cationic, anionic, or amphoteric) and which may be (without being limiting) linear, branched, cross-linked, hydrophobic, or associative.
  • CMC carboxymethylcellulose
  • organic polymers of any ionic nature nonionic, cationic, anionic, or amphoteric
  • Recycled fiber pulp Wet pulp is obtained by disintegrating dry pulp to obtain a final aqueous concentration of 1% by weight. It is a pH-neutral pulp made from 100% recycled cardboard fibres. bl Evaluation of drainage performance (PDA!
  • the DDA (“Dynamic Drainage Analyzer”) makes it possible to automatically determine the time (in seconds) required to drain under vacuum a fibrous suspension deposited on a cloth.
  • the polymers are added to the wet paste (0.6 liters of paste at 1.0% by weight) in the cylinder of the DDA with stirring at 1000 revolutions per minute:
  • the necessary quantity of paste is removed so as to obtain a sheet having a basis weight of 90 gm 2 .
  • the wet paste is introduced into the vat of the dynamic molder and is kept under agitation.
  • the different components of the system are injected into this paste according to the predefined sequence.
  • a contact time of 30 to 45 seconds is generally respected between each addition of polymer.
  • Formettes of paper are produced with an automatic dynamic former: a blotter and the forming fabric are placed in the bowl of the dynamic former before starting the rotation of the bowl at 1000 rpm and building the water wall.
  • the treated pulp is spread over the water wall to form the fibrous mat on the forming fabric.
  • the fibrous mat is recovered, pressed under a press delivering 4 bar, then dried at 117°C.
  • the sheet obtained is conditioned overnight in a room with controlled humidity and temperature (50% relative humidity and 23°C). The dry strength properties of all the sheets obtained by this procedure are then measured.
  • the burst (Burst Index) is measured with a Messmer Buchel M 405 burst tester according to the TAPPI T403 om-02 standard. The result is expressed in kPa or in percentage compared to a reference.
  • the bursting index expressed in kPa.m 2 /g, is determined by dividing this value by the basis weight of the sheet tested.
  • the dry breaking length is measured in the machine direction (DBL SM) and in the transverse direction (DBL ST) with a Testometric AX tensile device according to TAPPI T494 om-01. The result is expressed in km or in percentage compared to a reference.
  • 310 g of water are introduced into a 1 liter reactor equipped with a mechanical stirrer, a thermometer, a condenser and a gaseous nitrogen plunger.
  • the pH of the reaction medium is adjusted to 3.3 using a pH buffer (NaOH 30% by weight in water and H 3 PO 4 75% by weight in water).
  • the medium is heated and maintained at a temperature of between 79 and 81° C. using a water bath.
  • 400 g of 50% acrylamide, 237.8 g of water and 2.40 g of 100% sodium hypophosphite are incorporated (cast 1) for 180 minutes. Pour 2, 0.48 g of 100% sodium persulfate and 48 g of water for 180 minutes.
  • the polymer solution is maintained at 80° C. for 120 minutes after the end of the casting.
  • the solution of polymer P1-A obtained has a pH of 5.7, a concentration by weight of polymer P1-A of 20% and a viscosity of 6000 cps.
  • Pl-B polymer Acrylamide homopolymer in the form of an inverse emulsion marketed by SNF under the name: FlopamTMEM 230.
  • Polymers Pl-A (in aqueous solution) and Pl-B (invert emulsion) are acrylamide homopolymers which are distinguished only by their physical form.
  • An aqueous solution of sodium hypochlorite 14.29 g (NaOCl) at 14.6% (by weight in water) and 7.5 g of sodium hydroxide at 30% (by weight in water) is prepared by function of the alpha (0.5) and beta (2.0) coefficients for the Re reaction.
  • Pl-A polymer solution is at 50°C
  • the aqueous solution of sodium hypochlorite and sodium hydroxide is added to Pl -HAS.
  • 138.20 g of water is added.
  • a solution of polymer P2-A is obtained at a concentration of 2% by weight.
  • An aqueous solution M1 of 3.66 g of sodium hypochlorite (NaOCl) at 14.6% (by weight in water) and 1.92 g of sodium hydroxide at 30% (by weight in water) is prepared according to the coefficients alpha (0.5) and beta (2.0) for the Re reaction. 93.60 g of water are then added.
  • PDA Drip performance
  • Table 1 Drainage according to the polymer. An improvement in drainage is observed with the use of polymer P2-B compared to polymer P2-A.
  • Table 2 Dry strength depending on the polymer. Burst performance is improved by using the P2-B polymer. The same trend is observed for the breaking length measurement in the forward direction (DBL SM) and in the cross direction (DBL ST).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une feuille de papier ou de carton à partir d'une suspension fibreuse, comprenant les étapes suivantes : a) injection d'un polymère P2 dans une suspension de fibres cellulosiques, b) formation d'une feuille de papier ou de carton, c) séchage de la feuille de papier ou de carton, le polymère P2 étant préparé, préalablement à l'étape a), à partir d'un polymère hydrosoluble P1 sous forme d'émulsion inverse, P1 étant composé d'au moins un monomère non ionique choisi parmi l'acrylamide, le méthacrylamide, le N,N-diméthylacrylamide, et l' acrylonitrile, le polymère P1 étant soumis à une réaction Re pour donner un polymère P2, la réaction Re consistant à ajouter le polymère P1 sous forme d'émulsion inverse dans une solution aqueuse M1 de : (i) un hydroxyde d'alcalin et/ou un hydroxyde d'alcalino-terreux, (ii) un hypo-halogénure d'alcalin et/ou un hypo-halogénure d'alcalino-terreux préalablement à un temps de réaction de 10 secondes à 5 heures.

Description

PROCEDE DE FABRICATION DE PAPIER ET DE CARTON
Domaine de l’invention
La présente invention concerne un procédé pour la fabrication de papier ou de carton présentant des propriétés d’égouttage et de machinabilité améliorées. Plus précisément, l’invention a pour objet un procédé impliquant la réaction d’un polymère hydrosoluble sous forme d’émulsion inverse dans un mélange d’hydroxyde d’alcalin et/ou d’hydroxyde d’alcalino-terreux et d’hypo-halogénure d’alcalin et/ou d’hypo-halogénure d’alcalino-terreux pour ensuite l’injecter directement dans la suspension fibreuse servant à fabriquer le papier ou le carton.
La présente invention a également pour objet les papiers et cartons aux propriétés physiques améliorées obtenus par ce procédé.
Etat antérieur de la technique
L’industrie papetière est en recherche constante d’optimisation de ses procédés de fabrication, de papier ou de carton, plus particulièrement en termes de rendement, de productivité, de réduction des coûts et de qualité des produits finis.
L’utilisation de polymères comme agents de résistance à sec, d’égouttage et de machinabilité est très largement décrite.
Les propriétés d’égouttage (ou drainage) concernent la capacité du matelas fibreux à évacuer ou drainer le maximum d’eau avant la sécherie. Des propriétés d’égouttage améliorées impliquent un gain d’énergie et une augmentation de la capacité de production.
Par machinabilité, on désigne l’optimisation du fonctionnement de la machine à papier en augmentant la productivité par un meilleur égouttage sur la table, une meilleure siccité à la section de presse, une diminution des casses par une plus grande propreté des circuits et une diminution des dépôts.
JP 2002-212898 décrit l’utilisation d’un polymère issu de la réaction de dégradation d’Hofmann dans un procédé de fabrication du papier. Ce document ne décrit pas, lors d’une réaction chimique, l’addition d’un polymère sous la forme d’une émulsion inverse. WO 2020/094960 décrit des compositions d’émulsion inverse. EP 2 840 100 la fonctionnarisation d’un polymère.
Les polyvinylamines sont connues pour améliorer le drainage lors de la formation du papier.
Les polyvinylamines peuvent être obtenues par réaction d’une solution de polyacrylamide dans un mélange d’hydroxyde d’alcalin et/ou d’hydroxyde d’alcalino-terreux et d’hypo- halogénure d’alcalin et/ou d’hypo-halogénure d’alcalino-terreux suivie d’un traitement en milieu acide.
Lorsque la réaction est effectuée directement avant injection du produit dans la suspension fibreuse pour l’obtention du papier ou du carton, seule la réaction du polyacrylamide en solution avec les hydroxydes et hypo-halogénures d’alcalin ou d’alcalino terreux est effectuée.
Toutefois, cette nécessité d’avoir des solutions de polyacrylamide implique leur acheminement jusqu’à la papeterie ou la nécessité d’avoir un équipement de dissolution du polymère dans la papeterie. Dans les deux cas, l’empreinte au sol des stocks de solutions de polymère ou des équipements de dissolution reste importante.
De plus cette réaction sur le polyacrylamide nécessite de chauffer le milieu réactionnel et aussi un besoin d’échangeur pour réguler sa température en fin de réaction.
Exposé de l’invention
De manière inattendue, la Demanderesse a découvert qu’un procédé impliquant la réaction d’un polymère hydrosoluble sous forme d’émulsion inverse (eau dans huile) dans un mélange d’hydroxyde (hydroxyde de métal alcalin et/ou hydroxyde de métal alcalino-terreux) et d’hypo-halogénure (hypo-halogénure de métal alcalin et/ou hypo-halogénure de métal alcalino-terreux) pour ensuite l’injecter directement dans la suspension fibreuse servant à fabriquer le papier ou le carton permet d’améliorer les propriétés d’égouttage et de résistance à sec.
Ce procédé permet également d’éviter toute une logistique (transport ou installation d’une unité de dissolution) inhérente à la manipulation de solutions de polymères hydrosolubles. De plus le procédé est d’autant plus simple que dès l’addition du polymère sous forme d’émulsion inverse dans le mélange d’hydroxyde et d’hypo-halogénure d’alcalin et/ou d’alcalino-terreux le milieu réactionnel est homogène et il n’est pas nécessaire de chauffer le milieu réactionnel ni d’utiliser des échangeurs thermiques.
Par « alcalin », on désigne un métal alcalin, avantageusement le lithium, le sodium ou le potassium. Un « hydroxyde d’alcalin » désigne un hydroxyde (OH ) d’au moins un métal alcalin, par exemple NaOH, KOH ou NaOH+KOH. Il en est de même pour l’hydroxyde d’ alcalino-terreux.
Par « alcalino-terreux », on désigne un métal alcalino-terreux, avantageusement le calcium ou le magnésium.
Un hypo-halogénure est un oxyanion, par exemple l’hypochlorite CIO .
Un « hypo-halogénure d’alcalin » désigne un hypo-halogénure d’au moins un métal alcalin et d’au moins un hypo-halogénure, par exemple NaOCl, KOBr ou NaOCl+KOBr. Il en est de même pour l’hypo-halogénure d’ alcalino-terreux.
Enfin, la gamme de poids moléculaire des polymères hydrosolubles sous forme d’émulsion inverse étant large, le procédé de l’invention permet d’augmenter la gamme d’agents d’égouttage et de résistance à sec actuelle par rapport à un procédé similaire utilisant des polyacrylamides sous forme de solution aqueuse.
Plus précisément, l’invention concerne un procédé de fabrication d’une feuille de papier ou de carton à partir d’une suspension fibreuse, comprenant les étapes suivantes : a) injection d’un polymère P2 dans une suspension fibreuse (avantageusement une suspension de fibres cellulosiques), b) formation d’une feuille de papier ou de carton, c) séchage de la feuille de papier ou de carton, le polymère P2 étant préparé, préalablement à l’étape a), à partir d’un polymère hydrosoluble PI sous forme d’émulsion inverse, PI étant un polymère hydrosoluble d’au moins un monomère non ionique choisi parmi l’acrylamide, le méthacrylamide, le N,N- diméthylacrylamide, et l’acrylonitrile, le polymère P2 étant obtenu par une réaction Re consistant à ajouter le polymère hydrosoluble PI sous forme d’émulsion inverse dans une solution aqueuse Ml de : (i) un hydroxyde de métal alcalin, ou un hydroxyde de métal alcalino-terreux, ou leurs mélanges (ii) un hypo-halogénure de métal alcalin, ou un hypo-halogénure de métal alcalino-terreux, ou leurs mélanges la réaction Re ayant un temps de réaction de 10 secondes à 5 heures après l’ajout du polymère hydrosoluble PI sous forme d’émulsion inverse.
De manière avantageuse, l’étape a) est réalisée dans un délai n’excédant pas 24 heures à compter du début de la réaction Re, c’est-à-dire à compter de l’ajout du polymère hydrosoluble PI sous forme d’émulsion inverse dans la solution aqueuse Ml.
Dans la suite de la description et dans les revendications, tous les dosages de polymère exprimés en g.t 1 ou kg.t 1 sont donnés en poids de polymère par tonne de matière sèche. La matière sèche correspond à l’extrait sec obtenu après évaporation de l’eau de la suspension fibreuse utilisée dans un procédé de fabrication d’une feuille de papier ou de carton. La matière sèche est généralement à base de fibres cellulosiques et de charges, avantageusement constituée de fibres cellulosiques et de charges. Le terme « fibres cellulosiques » englobe toute entité cellulosique, incluant les fibres, les fines, les microfibrilles ou les nanofibrilles.
Par suspension fibreuse, on entend la pâte épaisse ou la pâte diluée qui sont à base d’eau et de fibres cellulosiques. La pâte épaisse (Thick Stock), ayant une concentration massique en matière sèche généralement supérieure à 1 %, voire supérieure à 3 %, est en amont de la pompe de mélange (fan-pump). La pâte diluée ( Thin Stock), ayant une concentration massique en matière sèche généralement inférieure à 1 %, est située en aval de la pompe de mélange.
Le terme « polymère », désigne aussi bien les homopolymères que les copolymères d’au moins deux monomères distincts.
Un polymère amphotère est un polymère comprenant des charges cationiques et des charges anioniques, préférentiellement autant de charges anioniques que de charges cationiques.
Tel qu’utilisé ici, le terme "polymère hydrosoluble" désigne un polymère qui donne une solution aqueuse sans particule insoluble lorsqu’il est dissous sous agitation pendant 4 heures à 25 °C et avec une concentration de 20 g.L 1 dans l’eau déionisée.
Les plages de valeurs incluent les bornes inférieure et supérieure. Ainsi, les plages de valeurs « entre 0,1 et 1,0 » et « de 0,1 à 1 » incluent les valeurs 0,1 et 1,0. Le polymère hydrosoluble PI est un polymère d’au moins un monomère non ionique choisi parmi l’acrylamide, le méthacrylamide, le N,N-diméthylacrylamide, et l’acrylonitrile. Préférentiellement, le polymère PI contient au moins 50 mol% d’au moins un de ces monomères non ioniques.
Le polymère PI peut aussi contenir des monomères anioniques et/ou cationiques et/ou zwitterioniques. Le polymère PI est avantageusement dépourvu de monomère non ionique qui ne soit pas choisi parmi l’acrylamide, le méthacrylamide, le N,N-diméthylacrylamide, et l’acrylonitrile.
Les monomères anioniques sont préférentiellement choisis dans le groupe comprenant les monomères possédant une fonction acide carboxylique et leurs sels dont l’acide acrylique, l’acide méthacrylique, l’acide itaconique, l’acide maléique, les monomères possédant une fonction acide sulfonique et leurs sels ; dont l’acide acrylamido tertio butyl sulfonique (ATBS), l’acide allyl sulfonique et l’acide méthallyl sulfonique, et leurs sels, et les monomères ayant une fonction acide phosphonique et leurs sels.
De manière générale, les monomères anioniques du polymère PI ont comme contre-ion un métal alcalin, un métal alcalino-terreux ou un ammonium (préférentiellement un ammonium quaternaire).
Les monomères cationiques sont préférentiellement choisis dans le groupe comprenant l’acrylate de diméthylaminoéthyle (AD AME) quatemisé ou salifié, le méthacrylate de diméthylaminoéthyle (MADAME) quatemisé ou salifié, le chlorure de diallyldiméthylammonium (DADMAC), le chlorure d’acrylamidopropyltriméthylammonium (APTAC), et le chlorure de méthacrylamidopropyltriméthylammonium (MAPTAC).
De manière avantageuse, les monomères cationiques du polymère PI ont comme contre-ion un halogénure, de préférence un ion chlorure.
Les monomères zwitterioniques sont préférentiellement choisis dans le groupe comprenant les monomères sulfobétaïnes comme le sulfopropyl diméthylammonium éthylméthacrylate, le sulfopropyl diméthylammonium propylméthacrylamide, ou le sulfopropyl 2-vinylpyridinium ; les monomères phosphobétaïnes, comme le phosphato éthyltriméthylammonium éthylméthacrylate ; et les monomères carboxybétaïnes. De préférence, le polymère hydrosoluble PI est un homopolymère ou un copolymère d’acrylamide ou de méthacrylamide.
Le polymère PI peut être linéaire, structuré ou réticulé. Les agents réticulant permettant la structuration peuvent notamment être choisis parmi l’allyl sulfonate de sodium, le méthallyl sulfonate de sodium, le méthallyl disulfonate de sodium, le méthylènebisacrylamide, la triallylamine, le chlorure de triallylammonium.
La structuration du polymère PI peut aussi être obtenue avec au moins un composé polyfonctionnel contenant au moins 3 hétéroatomes choisis parmi N, S, O, P et présentant chacun au moins un hydrogène mobile. Ce composé polyfonctionnel peut notamment être une polyéthylèneimine ou une polyamine.
La réaction Re est effectuée par ajout d’une émulsion inverse de polymère hydrosoluble PI dans la solution aqueuse Ml. Préférentiellement, l’émulsion inverse (émulsion eau dans huile) comprend :
Une phase aqueuse comprenant au moins le polymère PI,
Une phase huileuse,
Au moins un agent émulsifiant et au moins un agent d’inversion.
La phase huileuse peut être une huile minérale, une huile végétale, une huile synthétique ou un mélange de plusieurs de ces huiles.
Des exemples d’huile minérale sont les huiles minérales contenant des hydrocarbures saturés de type aliphatique, naphténique, paraffinique, isoparaffinique, cycloparaffinique ou naphtyle.
Des exemples d’huile synthétique sont le polydécène hydrogéné ou le polyisobutène hydrogéné, un ester tel que le stéarate d’octyle ou l’oléate de butyle. La gamme de produits Exxsol® d’Exxon convient parfaitement.
En général, le rapport pondéral de la phase aqueuse à la phase huileuse dans l’émulsion inverse est de préférence de 50/50 à 90/10. Ce rapport inclut le poids des différents constituants de l’émulsion, notamment le polymère hydrosoluble PI.
L'émulsion eau dans huile comprend préférentiellement de 15 à 40% en poids d’huile, de 20 à 55% en poids d’eau, de 15 et 50 % en poids de polymère PI, les pourcentages étant exprimés par rapport au poids total de l’émulsion inverse du polymère PI. Dans la présente invention, le terme "agent émulsifiant" désigne un agent capable d’émulsifier de l’eau dans une huile alors qu’un "agent inverseur" est un agent capable d’émulsionner une huile dans de l’eau. Plus précisément, on considère qu’un agent inverseur est un tensioactif ayant un HLB supérieur ou égal à 10, et qu’un agent émulsifiant est un tensioactif ayant un HLB strictement inférieur à 10.
L’équilibre hydrophile-lipophile (HLB) d’un composé chimique est une mesure de son degré d’hydrophilie ou lipophilie, déterminé en calculant les valeurs des différentes régions de la molécule, comme décrit par Griffin en 1949 (Griffin WC, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, 1949, 1, pages 311-326).
Dans la présente invention, nous avons adopté le procédé de Griffin basé sur le calcul d’une valeur basée sur les groupes chimiques de la molécule. Griffin a attribué un nombre sans dimension compris entre 0 et 20 pour donner des informations sur la solubilité dans l’eau et dans l’huile. Les substances ayant une valeur HLB de 10 sont réparties entre les deux phases, de sorte que le groupe hydrophile (masse moléculaire Mh) se projette complètement dans l’eau tandis que le groupe hydrocarboné hydrophobe (masse moléculaire Mp) est adsorbé dans la phase non aqueuse.
La valeur HLB d’une substance de masse moléculaire totale M dont la partie hydrophile a une masse moléculaire Mh, est HLB = 20 (Mh / M).
L’émulsion inverse contenant le polymère PI contient avantageusement de 0,1 % à 10 % en poids d’au moins un agent émulsifiant, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion. Cet agent émulsifiant est avantageusement choisi parmi les esters de sorbitan, les esters de sorbitan polyéthoxylés, les acides gras polyéthoxylés, les alcools gras polyéthoxylés, les polyesters ayant un poids moléculaire moyen compris entre 1000 et 3000 daltons résultant de la condensation entre un acide poly(isobutényl) succinique ou son anhydride et un polyéthylène glycol, les copolymères blocs de poids moléculaire moyen compris entre 2500 et 3500 daltons résultant de la condensation entre l’acide hydroxystéarique et un polyéthylène glycol, les amines grasses éthoxylées, les dérivés des di- alcanol amides, les copolymères du méthacrylate de stéaryle, et les mélanges de ces agents émulsifiants. L’émulsion inverse contenant le polymère PI contient avantageusement entre 0.1 et 10% en poids d’au moins un agent inverseur, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion. Cet agent inverseur est avantageusement choisi parmi les nonylphénol éthoxylés, ayant de préférence 4 à 10 éthoxylations ; les alcools éthoxylés / propoxylés ayant de préférence une éthoxylation / propoxylation comprenant entre 12 et 25 atomes de carbone ; les alcools tridécyliques éthoxylés ; les acides gras polyéthoxylés ; les alcool gras poly (éthoxylés / propoxylés) ; les esters de sorbitan éthoxylés ; le laurate de sorbitan polyéthoxylé ; l’huile de castor polyéthoxylée ; l’alcool laurique heptaoxyéthylé ; le monostéarate de sorbitan polyéthoxylé ; les alkyls phénol polyéthoxylés cétyl éther ; les poly oxyde d’éthylène alkyl aryl éther ; le N-cétyl-N-éthyl morpholinium éthosulfate ; le lauryl sulfate de sodium ; les produits de condensation d’alcools gras avec l’oxyde d’éthylène ; les produits de condensation des alkylphenols et de l’oxyde d’éthylène ; les produits de condensation d’amines grasses avec 5 équivalents molaire ou plus d’oxyde d’éthylène ; les tristyryl phénol éthoxylés ; les condensais de l’oxyde d’éthylène avec les alcools polyhydriques partiellement estérifiés avec des chaînes grasses ainsi que leur formes anhydres ; les oxydes d’amine ; les alkyl polyglucosides ; le glucamide ; les esters de phosphate ; les acides alkylbenzène sulfonique et leurs sels ; les polymères hydrosolubles tensioactifs ; et les mélanges de plusieurs de ces agents inverseurs.
L’émulsion eau dans huile selon l’invention peut être préparée selon tout procédé connu de l’homme du métier. Généralement, une solution aqueuse comprenant le ou les monomères et le ou les agents émulsifiants est émulsionnée dans une phase huileuse. Ensuite, la polymérisation est réalisée en ajoutant un initiateur de radicaux libres. On peut faire référence aux couples rédox, avec l’hydropéroxyde de cumène, le butylhydroxypéroxyde tertiaire ou les persulfates parmi les agents oxydants, le sulfite de sodium, le métabisulfite de sodium et le sel de Mohr parmi les agents réducteurs. Des composés azoïques tels que le chlorhydrate de 2,2’- azobis (isobutyronitrile) et de 2,2’-azobis (2-amidinopropane) peuvent également être utilisés.
Classiquement, la polymérisation est généralement effectuée de manière isotherme, adiabatique ou à température contrôlée. Ainsi, la température est avantageusement maintenue constante, généralement entre 10 et 60 °C (isotherme), ou bien on laisse la température augmenter naturellement (adiabatique) et dans ce cas, la réaction est généralement commencée à une température inférieure à 10 °C et la température finale est généralement supérieure à 50 °C ou, enfin, l'augmentation de la température est contrôlée de manière à avoir une courbe de température entre la courbe isotherme et la courbe adiabatique.
Généralement, le ou les agents inverseurs sont ajoutés à la fin de la réaction de polymérisation, de préférence à une température inférieure à 50 °C.
La réaction Re consiste consistant à ajouter l’émulsion inverse de polymère PI dans une solution aqueuse Ml de : (i) un hydroxyde d’alcalin et/ou un hydroxyde d’alcalino-terreux, (ii) un hypo-halogénure d’alcalin et/ou un hypo-halogénure d’alcalino-terreux, avec un temps de réaction Re de 10 secondes à 5 heures pour former le polymère P2.
Avantageusement, la solution aqueuse Ml est une solution aqueuse de soude (hydroxyde de sodium) et d’hypochlorite de sodium.
Avantageusement, le temps de réaction du polymère PI dans la solution aqueuse Ml d’hypo- halogénure et d’hydroxyde est de 10 secondes à 180 minutes.
La réaction Re est avantageusement réalisée à une température comprise entre 10 et 30 °C, plus avantageusement entre 15 et 25°C.
Préférentiellement, pour la réaction Re, le coefficient Alpha = moles d’hypo-halogénure (alcalin et/ou alcalino-terreux) / moles de monomère(s) non ionique(s) (acrylamide, méthacrylamide, N,N-diméthylacrylamide, acrylonitrile ou leurs mélanges) du polymère PI est compris entre 0,1 et 1,0 et le coefficient Béta = moles d’hydroxyde (alcalin et/ou alcalino- terreux) / moles d’hypo-halogénure (alcalin et/ou alcalino-terreux) est compris entre 0,5 et 4,0.
Pour la réaction Re, préférentiellement entre 0,1 et 20% en poids de polymère PI, par rapport au poids de la solution aqueuse Ml, plus préférentiellement entre 0,3 et 10% et encore plus préférentiellement entre 0,5 et 3,0% en poids, sont ajoutés à la solution aqueuse Ml.
Avantageusement, au terme de la réaction Re, et avant son injection dans la suspension fibreuse, le polymère P2 peut être fonctionnalisé avec un composé comprenant au moins une fonction aldéhyde pour donner un polymère P3, par exemple par addition d’un composé comprenant au moins une fonction aldéhyde. Préférentiellement, le composé comprenant au moins une fonction aldéhyde est le glyoxal. Préférentiellement, avant injection dans la suspension fibreuse, le pH du mélange réactionnel issu de la réaction Re et contenant le polymère P2 peut être ajusté par ajout d’acide entre 0,5 et 7,5, plus préférentiellement entre 1,0 et 3,0. L’homme du métier sait ajuster le pH de ce type de milieu réactionnel. L’ajustement du pH est avantageusement réalisé en l’absence de formation du polymère P3.
Selon un mode de réalisation préféré, le polymère P2 (ou P3) est introduit dans les eaux blanches et/ou la pâte épaisse et/ou le mélange formé par les eaux blanches et la pâte épaisse après homogénéisation de la suspension fibreuse dans la pompe de dilution (fan pump).
Avantageusement, le polymère P2 (ou P3) peut aussi être introduit au sein du procédé papetier au niveau de la table de formation par exemple par pulvérisation ou application sous forme de mousse, ou encore au niveau de la size press (coucheuse)
De manière avantageuse, entre 0,1 et 10 kg.t 1, et préférentiellement entre 0,2 et 5,0 kg.t 1 de polymère P2 (ou P3) sont ajoutés à la suspension fibreuse.
La suspension fibreuse englobe rutilisation possible de différentes fibres cellulosiques : fibres vierges, fibres recyclées, pâte chimique, pâte mécanique, cellulose micro fibrillée ou cellulose nano fibrillée. La suspension fibreuse englobe également rutilisation de ces différentes fibres cellulosiques avec tous types de charges tel que le TiCh, le C'aCCÇ (broyée ou précipitée), le kaolin, les charges organiques et leurs mélanges.
Le polymère P2 ou P3 peut être utilisé au sein du procédé papetier en combinaison avec d’autres produits tels que les coagulants minéraux ou organiques, les agents de résistance à sec, les agents de résistance humide, les polymères naturels tels que les amidons ou la carboxyméthylcellulose (CMC), les microparticules inorganiques telles que les microparticules de bentonite et les microparticules de silice colloïdale, les polymères organiques de toute nature ionique (non ionique, cationique, anionique, ou amphotère) et qui peuvent être (sans être limitatil) linéaires, branchés, réticulés, hydrophobes, ou associatifs.
Les exemples suivants illustrent l’invention sans toutefois en limiter la portée. Exemples de réalisation de l’invention
Procédures utilisées dans les essais applicatifs : al Types de pâtes utilisées
Pâte de fibres recyclées : La pâte humide est obtenue par désintégration de pâte sèche afin d’obtenir une concentration aqueuse finale de 1 % en poids. Il s’agit d’une pâte à pH neutre composée à 100 % de fibres de cartons recyclées. bl Evaluation des performances d’égouttage (PDA!
Le DDA (« Dynamic Drainage Analyzer ») permet de déterminer, de manière automatique, le temps (en secondes) nécessaire pour égoutter sous vide une suspension fibreuse déposée sur une toile. Les polymères sont ajoutés à la pâte humide (0,6 litre de pâte à 1,0 % en poids) dans le cylindre du DDA sous agitation à 1000 tours par minute :
T=0 s : mise en agitation de la pâte T=20 s : Ajout du polymère
T=30 s : arrêt de l’agitation et égouttage sous vide à 200 mbar (1 bar = 105 Pa) pendant 70 secondes.
La pression sous la toile est enregistrée en fonction du temps. Lorsque toute l’eau est évacuée du matelas fibreux, l’air passe à travers celui-ci faisant apparaître une rupture de pente sur la courbe représentant la pression sous toile en fonction du temps. Le temps, exprimé en secondes, relevé à cette rupture de pente correspond au temps d’égouttage. Plus le temps est faible, meilleur est donc l’égouttage sous vide. c) Performances en application DSR (résistance à sec) grammage à 90 g m~2
La quantité nécessaire de pâte est prélevée de manière à obtenir une feuille présentant un grammage de 90 g.m2.
La pâte humide est introduite dans le cuvier de la formette dynamique et est maintenue sous agitation. On injecte à cette pâte les différents composants du système selon la séquence prédéfinie. On respecte généralement un temps de contact de 30 à 45 secondes entre chaque ajout de polymère. Des formettes de papier sont réalisées avec une formette dynamique automatique : un buvard et la toile de formation sont placés dans le bol de la formette dynamique avant de démarrer la rotation du bol à 1000 tr.min 1 et de construire le mur d’eau. La pâte traitée est répartie sur le mur d’eau pour former le matelas fibreux sur la toile de formation.
Une fois que l’eau est drainée, le matelas fibreux est récupéré, pressé sous une presse délivrant 4 bar, puis séché à 117°C. La feuille obtenue est conditionnée pendant une nuit dans une pièce à humidité et température contrôlées (50 % d’humidité relative et 23°C). Les propriétés de résistance à sec de toutes les feuilles obtenues par cette procédure sont alors mesurées.
L’éclatement (Burst Index) est mesuré avec un éclatomètre Messmer Buchel M 405 selon la norme TAPPI T403 om-02. Le résultat est exprimé en kPa ou en pourcentage par rapport à une référence. On détermine l’indice d’éclatement, exprimé en kPa.m2/g, en divisant cette valeur par le grammage de la feuille testée.
La longueur de rupture à l’état sec est mesurée dans le sens machine (DBL SM) et dans le sens travers (DBL ST) avec un appareil de traction Testometric AX selon la norme TAPPI T494 om-01. Le résultat est exprimé en km ou en pourcentage par rapport à une référence.
Produits testés dans les essais applicatifs :
Polymères PI Synthèse Polymère Pl-A
Dans un réacteur de 1 litre équipé d’un agitateur mécanique, d’un thermomètre, d’un réfrigérant et d’une canne plongeante d’azote gazeux, on introduit 310 g d’eau. Le pH du milieu réactionnel est ajusté à 3,3 à l’aide d’un tampon pH (NaOH 30 % en poids dans l’eau et H3PO475 % en poids dans l’eau). Le milieu est chauffé et maintenu à température comprise entre 79 et 81°C grâce à un bain-marie. Grâce à deux coulées continues, on incorpore (coulée 1) 400 g d’acrylamide à 50%, 237,8 g d’eau et 2,40 g d’hypophosphite de sodium à 100 % pendant 180 minutes. Coulée 2, 0,48 g de sodium persulfate à 100 % et 48 g d’eau pendant 180 minutes. La solution de polymère est maintenue à 80°C pendant 120 minutes après la fin de la coulée. La solution de polymère Pl-A obtenue présente un pH de 5,7, une concentration en poids de polymère Pl-A de 20 % et une viscosité de 6000 cps.
Polymère Pl-B : Homopolymère d’acrylamide sous forme d’émulsion inverse commercialisé par SNF sous l’appellation : Flopam™EM 230.
Les polymères Pl-A (en solution aqueuse) et Pl-B (émulsion inverse) sont des homopolymères d’acrylamide qui se distinguent uniquement par leur forme physique.
Polymères P2
Synthèse polymère P2-A
Préparation d’une solution de Pl-A à 10 % en poids dans l’eau, en diluant 20 g d’une solution de Pl-A à 20 % en poids dans l’eau avec 20 g d’eau. La solution de polymère est chauffée à 50°C.
Une solution aqueuse d’hypochlorite de sodium 14,29 g (NaOCl) à 14,6 % (en poids dans l’eau) et de 7,5 g de soude à 30 % (en poids dans l’eau) est préparée en fonction des coefficients alpha (0,5) et beta (2,0) pour la réaction Re. Lorsque la solution de polymère Pl- A est à 50°C, la solution aqueuse d’hypochlorite de sodium et de soude est ajoutée sur Pl-A. Après 30 secondes de réaction, 138,20 g d’eau est additionné. On obtient une solution de polymère P2-A à une concentration de 2 % en poids.
Synthèse Polymère P2-B
Une solution aqueuse Ml de 3,66 g d’hypochlorite de sodium (NaOCl) à 14,6 % (en poids dans l’eau) et de 1,92 g de soude à 30 % (en poids dans l’eau) est préparée en fonction des coefficients alpha (0,5) et beta (2,0) pour la réaction Re. 93,60 g d’eau sont ensuite ajoutés.
3,20 g de polymère Pl-B (en émulsion inverse) est ajouté dans la solution aqueuse Ml à température ambiante et sous agitation. Le polymère est agité pendant 60 minutes dans la solution Ml. On obtient une solution de polymère P2-B, de concentration finale en poids de polymère égale à 1 %. Essais applicatifs
Performances d’égouttage (PDA)
Tableau 1 : Egouttage en fonction du polymère. On observe une amélioration de l’égouttage avec Tutilisation du polymère P2-B par rapport au polymère P2-A.
Performances en application DSR (résistance à sec)
Tableau 2 : Résistance à sec en fonction du polymère. Les performances en Burst (éclatement) sont améliorées par Tutilisation du polymère P2-B. La même tendance est observée pour la mesure de longueur de rupture dans le sens marche (DBL SM) et dans le sens travers (DBL ST).

Claims

REVENDICATIONS
1. Procédé de fabrication d’une feuille de papier ou de carton à partir d’une suspension fibreuse, comprenant les étapes suivantes : a) injection d’un polymère P2 dans une suspension fibreuse, b) formation d’une feuille de papier ou de carton, c) séchage de la feuille de papier ou de carton, le polymère P2 étant préparé, préalablement à l’étape a), à partir d’un polymère hydrosoluble PI sous forme d’émulsion inverse, PI étant un polymère hydrosoluble d’au moins un monomère non ionique choisi parmi l’acrylamide, le méthacrylamide, le N,N- diméthylacrylamide, et l’acrylonitrile, le polymère P2 étant obtenu par une réaction Re consistant à ajouter le polymère hydrosoluble PI sous forme d’émulsion inverse dans une solution aqueuse Ml de : (i) un hydroxyde de métal alcalin, ou un hydroxyde de métal alcalino-terreux, ou leurs mélanges (ii) un hypo-halogénure de métal alcalin, ou un hypo-halogénure de métal alcalino-terreux, ou leurs mélanges, la réaction Re ayant un temps de réactions de 10 secondes à 5 heures après l’ajout du polymère hydrosoluble PI sous forme d’émulsion inverse.
2. Procédé selon la revendication 1, caractérisé en ce que le polymère PI contient au moins 50 mol% d’au moins un monomère non ionique choisi parmi l’acrylamide, le méthacrylamide, le N,N-diméthylacrylamide, et l’acrylonitrile.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le polymère PI est un homopolymère ou un copolymère d’acrylamide ou de méthacrylamide.
4. Procédé selon les revendications 1 à 3, caractérisé en ce que l’émulsion inverse comprend :
Une phase aqueuse comprenant au moins le polymère PI,
Une phase huileuse,
Au moins un agent émulsifiant et au moins un agent d’inversion.
5. Procédé selon la revendication précédente, caractérisé en ce que l’émulsion inverse du polymère PI comprend de 15 à 40% en poids d’huile, de 20 à 55% en poids d’eau, de 15 et 50% en poids de polymère, les pourcentages étant exprimés par rapport au poids total de l’émulsion inverse du polymère PI.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que, pour la réaction Re, le coefficient Alpha = moles d’hypo-halogénure / moles de monomère non ionique du polymère hydrosoluble PI est compris entre 0,1 et 1,0 et le coefficient Béta = moles d’hydroxyde / moles d’hypo-halogénure est compris entre 0,5 et 4,0.
7. Procédé selon l’une des revendication 1 à 6, caractérisé en ce qu’entre 0,1 et 20 % en poids de polymère PI, par rapport au poids de la solution aqueuse Ml, sont ajoutés à la solution aqueuse Ml.
8. Procédé selon l’une des revendication 1 à 7, caractérisé en ce qu’au terme de la réaction Re, et avant injection dans la suspension fibreuse, le polymère P2 est fonctionnalisé avec un composé comprenant au moins une fonction aldéhyde pour donner un polymère P3.
9. Procédé selon la revendication 8, caractérisé en ce que le composé comprenant au moins une fonction aldéhyde est le glyoxal.
10. Procédé selon l’une des revendication 1 à 7, caractérisé en ce qu’avant injection dans la suspension fibreuse, le pH du mélange réactionnel issu de la réaction Re et contenant le polymère P2 est ajusté par ajout d’acide entre 0,5 et 7,5.
11. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que le polymère P2 ou P3 est introduit dans les eaux blanches et/ou dans la pâte épaisse et/ou dans le mélange formé par les eaux blanches et la pâte épaisse après homogénéisation de la suspension fibreuse dans la pompe de dilution.
12. Procédé selon l’une des revendications 1 à 11, caractérisé en ce que l’étape a) est réalisée dans un délai n’excédant pas 24 heures à compter de l’ajout du polymère hydrosoluble PI sous forme d’émulsion inverse dans la solution aqueuse Ml.
13. Procédé selon l’une des revendications 1 à 12, caractérisé en ce que la solution aqueuse Ml est une solution aqueuse d’hydroxyde de sodium et d’hypochlorite de sodium.
14. Procédé selon l’une des revendications 1 à 13, caractérisé en ce que la réaction Re est réalisée à une température comprise entre 10 et 30 °C, avantageusement entre 15 et 25°C.
15. Procédé selon l’une des revendications 1 à 14, caractérisé en ce qu’entre 0,3 et 10 % en poids de polymère PI, par rapport au poids de la solution aqueuse Ml, sont ajoutés à la solution aqueuse Ml.
EP22723053.9A 2021-04-15 2022-04-13 Procede de fabrication de papier et de carton Pending EP4323586A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103912A FR3121942A1 (fr) 2021-04-15 2021-04-15 Procede de fabrication de papier et de carton
PCT/EP2022/059954 WO2022219086A1 (fr) 2021-04-15 2022-04-13 Procede de fabrication de papier et de carton

Publications (1)

Publication Number Publication Date
EP4323586A1 true EP4323586A1 (fr) 2024-02-21

Family

ID=76034834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22723053.9A Pending EP4323586A1 (fr) 2021-04-15 2022-04-13 Procede de fabrication de papier et de carton

Country Status (7)

Country Link
US (1) US20240200270A1 (fr)
EP (1) EP4323586A1 (fr)
CN (1) CN117203392A (fr)
AU (1) AU2022256771A1 (fr)
BR (1) BR112023021202A2 (fr)
FR (1) FR3121942A1 (fr)
WO (1) WO2022219086A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127507B1 (fr) * 2021-09-27 2023-10-27 Snf Sa Procede de fabrication de papier et de carton

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212898A (ja) * 2000-11-13 2002-07-31 Hymo Corp 濾水性向上方法
FR2880901B1 (fr) * 2005-01-17 2008-06-20 Snf Sas Soc Par Actions Simpli Procede de fabrication de papier et carton de grande resistance a sec et papiers et cartons ainsi obtenus
JP2009150009A (ja) * 2007-12-20 2009-07-09 Hymo Corp 製紙用内添剤およびその使用方法
FR3009830B1 (fr) * 2013-08-22 2015-08-14 Snf Sas Nouveaux complexes de polymeres hydrosolubles et leurs utilisations
FR3088068B1 (fr) * 2018-11-06 2020-11-06 S N F Sa Emulsion inverse polymerique auto inversible
FR3096985B1 (fr) * 2019-06-05 2021-05-14 S N F Sa Procede de preparation de polymeres structures sous forme de poudre par voie gel

Also Published As

Publication number Publication date
US20240200270A1 (en) 2024-06-20
BR112023021202A2 (pt) 2023-12-19
FR3121942A1 (fr) 2022-10-21
AU2022256771A1 (en) 2023-10-26
CN117203392A (zh) 2023-12-08
WO2022219086A1 (fr) 2022-10-20

Similar Documents

Publication Publication Date Title
RU2361977C2 (ru) Способ применения полимеров, функционализированных альдегидом, для улучшения обезвоживания в бумагоделательных машинах
WO2022219086A1 (fr) Procede de fabrication de papier et de carton
JP2007023146A (ja) イオン性微粒子およびその用途
JP4942415B2 (ja) 抄紙方法
EP3790914B1 (fr) Complexe de polymères, préparation et utilisation
FR3127507A1 (fr) Procede de fabrication de papier et de carton
JP6179982B2 (ja) アニオン性水溶性重合体によるピッチ低減方法
WO2022136794A9 (fr) Procede de fabrication de papier ou de carton
WO2022219085A1 (fr) Procede de fabrication de papier et de carton
JP3509003B2 (ja) 製紙方法
EP4189162B1 (fr) Procede de fabrication de papier et de carton
JP3614609B2 (ja) 製紙用薬剤、抄紙方法および製紙用薬剤の製造方法
EP3990700B1 (fr) Procede de fabrication de papier ou de carton
EP3722330B1 (fr) Nouvel additif à base de polymères hydrosolubles et ses utilisations
JP3260288B2 (ja) 抄紙方法
JP2022061062A (ja) 製紙用添加剤
FR3137093A1 (fr) Polymère hydrosoluble et son procédé de préparation
JP2023161607A (ja) 歩留及び濾水性向上を図る抄紙方法
EP4201967A1 (fr) Equipement et methode pour preparer un polymere fonctionnalise par un aldehyde
FR3135995A1 (fr) Nouveau polymère et son procédé de préparation
FR3137094A1 (fr) Polymère hydrosoluble cationique et son procédé de préparation
JP2004232145A (ja) 紙を製造する方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)