EP4320061A1 - Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels - Google Patents

Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels

Info

Publication number
EP4320061A1
EP4320061A1 EP22718068.4A EP22718068A EP4320061A1 EP 4320061 A1 EP4320061 A1 EP 4320061A1 EP 22718068 A EP22718068 A EP 22718068A EP 4320061 A1 EP4320061 A1 EP 4320061A1
Authority
EP
European Patent Office
Prior art keywords
electrode
stacking
wheel
clamping
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22718068.4A
Other languages
English (en)
French (fr)
Inventor
Xaver Thum
Frank Neudel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP4320061A1 publication Critical patent/EP4320061A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/38Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
    • B65H29/40Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/4474Pair of cooperating moving elements as rollers, belts forming nip into which material is transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/111Details of cross-section or profile shape
    • B65H2404/1113C-shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/65Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
    • B65H2404/655Means for holding material on element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/65Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
    • B65H2404/656Means for disengaging material from element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/72Fuel cell manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrode stack wheel which is designed to receive and transport flat electrode elements.
  • the electrode stack wheel has an axis of rotation, which is designed to rotate the electrode stack wheel.
  • the electrode stack wheel has a plurality of stack fingers formed radially to the axis of rotation, which are arranged circumferentially around the axis of rotation.
  • the electrode stack wheel has a plurality of spaces which are each formed between the stack fingers, with a respective space being formed to receive an electrode element.
  • the invention also relates to a corresponding electrode stack device and method for producing an electrode stack.
  • Electrode elements for the production of electrochemical energy stores such as lithium-ion batteries, or energy converters, such as fuel cells, are usually stacked. Electrode elements are stacked in particular in the production of pouch cells, a widespread type of lithium-ion battery.
  • the electrode elements are usually designed as a cathode, based, for example, on aluminum foil, and/or an anode, based, for example, on copper foil.
  • the smallest unit of every lithium-ion cell consists of two electrodes and at least one separator that separates the electrodes from one another. Later, after filling, the ion-conductive electrolyte is located in between.
  • the electrode elements are stacked in a repeating cycle of anode, separator, cathode, separator, and so on.
  • the stacking step in production often represents the bottleneck for production throughput. Accelerating stacking is therefore of great interest.
  • WO 2020/212316 A1 describes a method for producing an electrode stack of anodes and cathodes for a lithium-ion battery of an electrically powered motor vehicle, in which the anodes and cathodes are conveyed into receptacles of a rotationally driven or rotationally drivable stacking wheel , and the anodes and cathodes received in the receptacles are conveyed to a stacking compartment by means of a rotation of the stacking wheel.
  • An important step in stacking the electrode elements using a stacking wheel is the accuracy of the transport of the electrode elements through the stacking wheel.
  • the accuracy of the transport has a direct effect on the stacking accuracy. Put simply, the more precise the transport with the stacking wheel, the more precisely the electrode stack can be produced.
  • the object of the invention is to create an electrode stacking wheel, an electrode stacking device and a method for producing an electrode stack with which or with which or with which an electrode element can be stacked more precisely.
  • This object is achieved according to the invention by an electrode stacking wheel, an electrode stacking device and a method having the features according to the respective independent claims.
  • Advantageous embodiments of the invention are the subject matter of the dependent claims.
  • An electrode stacking wheel according to the invention is designed to accommodate and transport flat electrode elements.
  • the electrode stack wheel includes the following:
  • each gap being designed to receive at least one of the electrode elements or to be able to receive.
  • the electrode stack wheel comprises an electrode clamping element which is formed in each of the intermediate spaces.
  • the electrode clamping element is designed to apply a clamping force to a main surface of one of the electrode elements in the clamping state and to press the respective electrode element against the respective stacking finger by the application of force.
  • the invention is based on the finding that the accuracy of the transport can be increased by the electrode elements being transported by the electrode stacking wheel in a clamped state. This can prevent the electrode elements from moving within the electrode stack wheel and, as a result, from being placed imprecisely on the electrode stack.
  • the respective electrode clamping element can have two different states.
  • a clamping condition which exists when an electrode element is placed in the space and the electrode clamping element exerts the clamping force on the electrode element.
  • a clamp-free state which is present when the Gap is free, so no electrode element is arranged in it.
  • the electrode clamping element can be formed without tension or relaxed.
  • the electrode stack wheel has a plurality of stack fingers.
  • a gap is preferably formed in each case between the stacking fingers.
  • At least one of the electrode clamping elements is preferably formed in the respective intermediate space.
  • the stacking fingers are preferably each elongate. Furthermore, the stacking fingers each preferably taper with increasing distance from the axis of rotation.
  • the electrode clamping element is preferably elongate and/or finger-shaped.
  • the electrode clamping element is designed to taper flat at the free end, ie the end remote from the contact point with the stacking finger.
  • the electrode clamping element is preferably designed to be bendable under the action of force, at least in the area of the contact point; in particular, the electrode clamping element moves back into the starting position when the force is removed. As a result, the electrode clamping element can be pushed out of the electrode element, but then exerts the clamping force on the electrode element since it wants to return to its original position.
  • the electrode stacking wheel, the stacking fingers and in particular the electrode clamping elements are preferably formed in one piece.
  • the main surface of the electrode element is designed in particular as a surface with a larger surface area than the side surfaces.
  • the main surface is the one Surface which is formed in the clamped state in the direction of the stacking fingers, ie in particular no end surface or side surface which is formed many times narrower than the main surface.
  • the intermediate spaces are each preferably designed to be open in the axial direction.
  • the stacking fingers have a curvature.
  • the curvature is formed counter to the running direction of the electrode stack wheel.
  • the stacking fingers and/or the intermediate spaces can also be designed without curvature, in particular for accommodating less flexible or rigid electrode elements.
  • the position in the electrode stack wheel can then be radial or secantial.
  • a plurality of electrode elements are conveyed with the electrode stack wheel in order to produce the electrode stack.
  • the electrode elements can be constructed as cathodes and/or anodes.
  • the cathode and anode are conveyed alternately.
  • a separator or a separating layer is arranged between the electrode elements, in particular between the cathode and the anode.
  • the electrode elements can also be in the form of a prefabricated cell which includes a cathode, an anode and preferably also at least one separating layer.
  • the electrode element can already be designed as a cell and finished cells can be stacked on top of one another by the electrode stacking wheel.
  • the electrode clamping element in particular elastically, is designed to be resilient, and the electrode element can be subjected to a spring force by the electrode clamping element.
  • the spring-reducing property is made possible by the material and the material thickness of the electrode clamping element. Due to the resilient configuration, the clamping force can be provided passively, that is to say without external energy. On an electric actuator can in be waived in this case.
  • the electrode clamping element can rest against the adjacent stacking finger in the clamping-free state and is only moved or pushed away from it by the electrode element inserted into the intermediate space.
  • the electrode clamping element can provide the clamping force actively, in particular by means of an actuator, which is preferably designed electrically.
  • the electrode clamping element is designed as part of the respective stacking finger.
  • the electrode clamping element can be designed as a branch or branch of the stacking finger.
  • the electrode clamping element is preferably designed to be narrower or thinner than the respective stacking finger.
  • the electrode clamping element can be produced by making a half slot in the stacking finger. The half-slit partially separates the electric clamping element from the stacking finger. As a result of the partial separation, the electrode clamping element preferably remains connected to the stacking finger at a contact point and can be designed to be resilient thereon.
  • the electrode clamping element is connected to the respective stacking finger by a contact point.
  • the area of the contact point is preferably only so large that the electrode clamping element can be flexibly designed on the stacking finger.
  • the contact point creates a possibility for the electric clamping element to be able to reliably provide the clamping force.
  • the electrode clamping element is made of the same material as the stacking finger.
  • the material is designed as plastic, for example.
  • the electrode clamping element can be designed inexpensively and reliably.
  • the invention also relates to an electrode stack device, in particular for producing an electrode stack for an accumulator or a fuel cell.
  • the electrode stacking device has at least one electrode stacking wheel according to the invention.
  • the electrode stack device has a plurality of electrode stack wheels according to the invention.
  • the electrode stack device to have at least one clamping element-free stacking wheel, which is axially offset relative to the electrode stacking wheel and has the same axis of rotation.
  • the combination of electrode stacking wheels with electrode clamping elements and stacking wheels without electrode clamping elements can further increase the accuracy of the transport of the electrode elements. It may be that a few electrode stacking wheels with electrode clamping elements, for example one or two, are sufficient to clamp the respective electrode element during transport. An excessive number of electrode clamping elements can have the disadvantage that the introduction of the electrode element into the gap is unnecessarily difficult, since the resistance of all the electrode clamping elements has to be overcome during the introduction.
  • the invention relates to a further aspect of an electrode stacking device with a plurality of stacking wheels or electrode stacking wheels, which are arranged on a common axis of rotation.
  • the stacking wheels or electrode stacking wheels can be arranged rotated with respect to the axis of rotation in addition to or as an alternative to being equipped with the electrode clamping element, i.e. rotated by the rotation in the direction of rotation in such a way that the intermediate spaces are no longer exactly aligned in the axial direction, but only aligned obliquely to the axial direction. This is advantageous because the electrode elements are clamped in by the stacking wheels which are twisted in relation to one another.
  • the twisted stacking wheels can be formed in addition to the electrode clamping elements or else without the electrode clamping elements.
  • the invention also relates to a method.
  • an electrode stack in particular for an accumulator or a fuel cell, is produced with flat electrode elements.
  • the following steps are carried out: a) providing an electrode element; b) rotating an electrode stack wheel about an axis of rotation; c) introducing the provided electrode element into an intermediate space formed by stacking fingers of the electrode stacking wheel; d) moving the introduced electrode element by the electrode stack wheel rotating about the axis of rotation; e) removing the moving electrode element from the gap; and f) creating the electrode stack with the electrode element removed from the gap.
  • the electrode element is subjected to a clamping force by means of an electrode clamping element during the movement through the electrode stack wheel in a clamping position.
  • the electrode element is in the clamping position when it is fixed by the electrode clamping element.
  • the passive stripping element can be formed, for example, from a stripping arm against which the electrode elements are interlocked after the transport route has been completed by the electrode stack wheel and are automatically stripped out by the continuing rotation of the electrode stack wheel.
  • the electrode element in step e) with an active stripping element, which overcomes the clamping force, from the intermediate space is removed.
  • the active stripping element can be designed as a curve wheel, for example.
  • the cam wheel can, for example, run along the electrode elements and actively scrape them out after the transport route has been completed.
  • the active stripping element can be driven by the drive of the electrode stack wheel or by a separate, in particular dedicated, drive.
  • the electrode element is decelerated by the electrode clamping element in step c). Due to the decelerating effect of the electrode clamping element, the electrode element can be arranged and transported more precisely in the intermediate space. Due to the more precise arrangement in the electrode stack wheel, in turn, the electrode element can also be placed more precisely on the electrode stack.
  • the electrode element is conveyed into the clamping position in a controlled manner by a feeding device in step a).
  • controlled means that the movement of the electrode element is not left to chance, as is the case, for example, with an unguided or free flight through the air.
  • the position of the electrode element can essentially be influenced at any time.
  • a controlled transport occurs, for example, when the electrode element is clamped by means of belts.
  • the electrode element is preferably transported in a controlled manner by belts directly into the electrode stack wheel or the respective intermediate space and is clamped there by the electrode clamping elements.
  • the guiding of the belt by the feed device is preferably terminated at the earliest when the electrode clamping elements are clamped.
  • control over the electrode element is transferred from the feed device to the electrode stacking wheel from the time at which the electrode element is in the clamping position. So will the electrode element is preferably pushed into the intermediate space by the feed device until the electrode element is in the clamped state, then the feed device ends the movement and the control of the electrode element. The movement and control of the electrode element is then taken over or continued by the electrode stack wheel essentially seamlessly.
  • the electrode stack can be produced more precisely as a result.
  • the contact attachment is designed in particular as a raised segment that is only partially circumferential. Through the contact attachment, the respective electric element can be brought more precisely into the clamping position, since the start and end of the control can be determined more precisely by the feed wheel or the feed device.
  • the electrode element can have a cell conductor.
  • the cell conductor is used for electrically conductive contacting of the respective electrode element.
  • Fig. 1 is a side view of a schematic representation of an exemplary embodiment of an electrode stacking wheel according to the invention with electrode clamping elements;
  • FIG. 3 shows a schematic representation of an exemplary embodiment of an electrode stack device according to the invention with the electrode stack wheel and a feed device;
  • Fig. 5 is a schematic representation of a further embodiment of the
  • Electrode stacking device with several electrode stacking wheels and stacking wheels without clamping elements.
  • Fig. 1 shows a schematic of an embodiment of an electrode stack wheel 1 with an axis of rotation 2.
  • Stacking fingers 3 are arranged around the axis of rotation 2 .
  • the stacking fingers 3 are arranged, in particular, radially to the axis of rotation 2 , i.e. the stacking fingers 3 are arranged such that they protrude from the axis of rotation 2 .
  • the stacking fingers 3 have a curvature 4 according to the exemplary embodiment.
  • the curvature 4 runs counter to a running direction or direction of rotation 5 of the electrode stack wheel 1.
  • the stacking fingers 3 are therefore curved, in particular counterclockwise.
  • the thickness of the respective stacking finger 3 decreases essentially with increasing distance from the axis of rotation 2.
  • a pocket-shaped space 6 is formed between the stacking fingers 3 in each case.
  • the intermediate space 6 is designed to accommodate a flat electrode element 7 (shown in FIGS. 3 to 5).
  • the intermediate space 6 is preferably designed to be open in both axial directions.
  • the electrode stack wheel 1 rotates about the axis of rotation 2.
  • the electrode stack wheel 1 rotates clockwise as viewed in the image plane of FIG.
  • the rotation speed is preferably at least 20 rpm.
  • the rotational speed can be, for example, up to a maximum of 60 revolutions per minute.
  • the rotational speed depends on the number of gaps in relation to the transport speed of the electrode elements.
  • An electrode clamping element 8 is formed in each of the gaps 6 .
  • the electrode clamping element 8 applies a clamping force to a main surface 9 (shown in FIG. 5) of the electrode element 7 .
  • the clamping force has a direction of action 10 which, in the clamping state, acts in the direction of an adjacent stacking finger or an inserted electrode element 7 .
  • the electrode clamping element 8 is preferably made of the same material, in particular plastic, as the stacking finger 3 .
  • FIG. 1 A detail 11 of the electrode stack wheel 1 is marked in FIG. 1, which is described in more detail in FIG. 2 shows the detail 11 of the electrode stacking wheel 1.
  • the electrode clamping element 8 is designed as part of the stacking finger 3.
  • FIG. The electric denklemmelement 8 is only partially separated from the stacking finger 3 by a half slot 12 .
  • the electrode clamping element 8 is connected to the stacking finger 3 at a contact point 23 .
  • the electrode clamping element 8 is flexible enough that it can spring or can provide a spring force. The spring force is exerted on the electrode element 7 in the clamped state.
  • Fig. 3 schematically shows an electrode stacking device 13 with the electrode stacking wheel 1 and a feed device 14.
  • the electrode stacking device 13 is designed with a plurality of electrode stacking wheels 1 .
  • the electrode stack wheels 1 are arranged on the common axis of rotation 2 .
  • the electrode stacking device 13 has a stripping element 15 and a stacking base 16 .
  • an electric stack 17 is formed on the stack bottom 16 .
  • Electrode elements 7 are fed to the electrode stacking wheel 1 or the electrode stacking wheels 1 by means of the feed device 14 . Received in the respective intermediate space 6 and clamped by the associated electrode clamping element 8 . Then the electrode element 7 is transported by means of the electrode stacking wheels 1 by the electrode stacking wheels 1 rotating.
  • Aussteifelement 15 the Elektiodenelement 7 is then removed from the gap 6, wherein it is on the stack base 16 or elec-rod elements 8, which are already on the stack base 16, is placed.
  • the stripping element 15 is passive according to the embodiment. However, it can also be designed as an active stripping element, for example as a cam wheel, which is driven by an electric drive unit.
  • the respective electrode element 7 is checked without interruption either by the feed device 14 or the electrode stacking wheels 1 .
  • the feed device 14 has an upper belt 18 and a lower belt 19 .
  • the belts 18, 19 are moved so that the respective electrode elements 7 are transported to the electrode stacking wheel 1.
  • the lower strap is shorter than the upper strap.
  • the respective electrode element 7 can be guided or pushed into the electrode stack wheel 1 in a controlled manner.
  • Fig. 4 shows a schematic detailed representation of the feed device 14.
  • the feed device 14 has a feed wheel 20 .
  • the feed wheel 20 pushes the respective electrode element 7 into the intermediate space 6 until it is subjected to a clamping force by the electrode terminal element 8 and is thereby fixed.
  • the feed wheel 20 has a contact attachment 21 .
  • the contact attachment 21 is raised and only partially, in particular less than 180°, is designed to run around the feed wheel 20 .
  • only the contact attachment 21 contacts the respective electrode element 7, in particular the main surface 9. If the feed wheel 20 is aligned in such a way that the contact attachment 21 does not point in the direction of the upper belt 18, the electrode element 7 is no longer pushed by the feed wheel 20.
  • the contact attachment 21 is therefore advantageous in order to interrupt the effect of the feed force from the feed wheel 20 on the respective electrode element 7 .
  • the clamping of the electrode element 7 between the contact attachment 21 and the upper belt 18 or a counter-wheel of the upper belt 18 only begins when the electrode element 7 is already partially in the intermediate space 6 .
  • the clamping between the Kon clock attachment 21 and the upper belt 18 is preferably terminated before the electrode element 7 is completely in the gap 6.
  • the feed wheel 20 continues to rotate clockwise in the image plane of FIG. 4 until the contact cap 21 is aligned opposite the upper belt 18 again. Then one of the electrode elements 7 can be contacted and moved again.
  • the feed wheel 20 can be coupled to the drive of the lower belt 19 or driven by a separate drive.
  • Fig. 5 schematically shows an embodiment of the electrode stack device 13.
  • Two electrode stack wheels 1 each with electrode clamping elements 8 are arranged on the axis of rotation 2 .
  • a clamping element-free stacking wheel 22 is arranged on the axis of rotation 2 between the two electrode stacking wheels 1 .
  • the clamping element-free stacking wheel 22 does not have any electrode clamping elements 8, but is otherwise designed in particular analogously to the electrode stacking wheel 1.
  • the combination of the electrode stacking wheels 1 with the clamping element-free stacking wheel 22 can ensure that the electrode elements 7 are clamped, but can nevertheless be easily inserted into the gaps 6 .
  • the electrode stack wheels 1 and/or the stack wheel 22 can be arranged slightly twisted on the axis of rotation 2, so that the intermediate spaces 6 of the respective wheels 1, 22 are not exactly aligned in the axial direction.
  • the electrode elements 7 can also be fixed.
  • the twisted stacking wheels can be an alternative or a supplement to the electrode clamping elements 8 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

Die Erfindung betrifft ein Elektrodenstapelrad (1), welches ausgebildet ist, flächige Elektrodenelemente (7) aufzunehmen und zu befördern, aufweisend: eine Rotationsachse (2), ausgebildet zur Drehung des Elektrodenstapelrads (1); mehrere radial zur Rotationsachse (2) ausgebildete Stapelfinger (3), welche um die Rotationsachse (2) umlaufend angeordnet sind; mehrere Zwischenräume (6), welche jeweils zwischen den Stapelfingern (3) ausgebildet sind, wobei ein jeweiliger Zwischenraum (6) dazu ausgebildet ist, zumindest eines der Elektrodenelemente (7) aufzunehmen; und ein Elektrodenklemmelement (8), welches jeweils in den Zwischenräumen (6) ausgebildet ist, wobei das Elektrodenklemmelement (8) ausgebildet ist, im klemmenden Zustand eine Hauptfläche (9) eines der Elektrodenelemente (7) mit Klemmkraft zu beaufschlagen und das jeweilige Elektrodenelement (7) durch die Kraftbeaufschlagung gegen den jeweiligen Stapelfinger (3) zu drücken.

Description

ELEKTRODENSTAPELRAD MIT ELEKTRODENKLEMMELEMENT, ENTSPRECHENDE ELEKTRODENSTAPELVORRICHTUNG, UND VERFAHREN ZUM ERZEUGEN EINES ELEKTRODENSTAPELS
Die Erfindung betrifft ein Elektrodenstapelrad, welches ausgebildet ist, flächige Elektro denelemente aufzunehmen und zu befördern. Das Elektrodenstapelrad weist eine Rota tionsachse, welche zur Drehung des Elektrodenstapelrads ausgebildet ist, auf. Weiter hin weist das Elektrodenstapelrad mehrere radial zur Rotationsachse ausgebildet Sta pelfinger, welche um die Rotationsachse umlaufend angeordnet sind, auf. Ferner weist das Elektrodenstapelrad mehrere Zwischenräume auf, welche jeweils zwischen den Sta pelfingern ausgebildet sind, wobei ein jeweiliger Zwischenraum dazu ausgebildet ist, ein Elektrodenelement aufzunehmen. Die Erfindung betrifft auch eine entsprechende Elektrodenstapelvorrichtung und Verfahren zum Erzeugen eines Elektrodenstapels.
Das Stapeln von flächigen Elektrodenelementen ist bekannt. So werden Elektrodenele mente zur Herstellung von elektrochemischen Energiespeichern, wie Lithium-Ionen- Batterien, oder Energiewandlern, wie Brennstoffzellen, üblicherweise gestapelt. Insbe sondere bei der Herstellung von Pouch-Zellen, einer weit verbreiteten Bauform eines Lithium-Ionen- Akkumulators, werden Elektrodenelemente gestapelt.
Die Elektrodenelemente sind dabei üblicherweise als Kathode, basierend beispielsweise auf Aluminiumfolie, und/ oder Anode, basierend beispielsweise auf Kupferfolie, ausge bildet. Die kleinste Einheit jeder Lithium-Ionen-Zelle besteht aus zwei Elektroden und zumindest einem Separator, der die Elektroden voneinander trennt. Dazwischen befin det sich später nach der Befüllung der ionenleitfähige Elektrolyt.
Beim Stapelvorgang werden die Elektrodenelemente in einem wiederholenden Zyklus aus Anode, Separator, Kathode, Separator und so weiter gestapelt. Neben den übrigen Schriten der Herstellung von elektrochemischen Energiespeichern oder Brennstoffzellen, wie beispielsweise der Konfektionierung oder der Kontaktie rung, stellt der Schrit des Stapelns bei der Herstellung oftmals den Flaschenhals für den Fertigungsdurchsatz dar. Eine Beschleunigung des Stapelns ist deshalb von großem Interesse.
Bekannte Verfahren zum Stapeln der Elektrodenelemente setzen auf einen Greif arm ei nes Roboters, welcher das Elektrodenelement greift und platziert. Nach bisherigem Wissen ist hier jedoch keine deutliche Geschwindigkeitserhöhung mehr zu erwarten.
Weitere bekannte Verfahren setzen für die Stapelbildung auf ein rotierendes Stapelrad, mit welchem die Elektrodenelemente auf einem Elektrodenstapel abgelegt werden.
Die WO 2020/212316 Al beschreibt hierzu ein Verfahren zur Herstellung eines Elektro denstapels aus Anoden und Kathoden für eine Lithium-Ionen-Batterie eines elektrisch angetriebenen Kraftfahrzeugs, bei dem die Anoden und die Kathoden in Aufnahmen eines rotatorisch angetriebenen oder rotatorisch antreibbaren Stapelrads gefördert wer den, und die in den Aufnahmen aufgenommenen Anoden und Kathoden anhand einer Rotation des Stapelrads zu einem Stapelfach gefördert werden.
Ein wichtiger Schrit beim Stapeln der Elektrodenelemente mithilfe eines Stapelrads ist die Genauigkeit des Transsport der Elektrodenelemente durch das Stapelrad. Die Ge nauigkeit des Transports wirkt sich unmittelbar auf die Stapelgenauigkeit aus. Verein facht lässt sich sagen, je genauer der Transport mit dem Stapelrad ist, desto genauer kann der Elektrodenstapel erzeugt werden.
Aufgabe der Erfindung ist es ein Elektrodenstapelrad, eine Elektrodenstapelvorrich tung und ein Verfahren zum Erzeugen eines Elektrodenstapels zu schaffen, mit wel chem bzw. mit welcher bzw. bei welchem ein Elektrodenelement genauer gestapelt werden kann. Diese Aufgabe wird erfindungsgemäß durch ein Elektrodenstapelrad, eine Elektroden stapelvorrichtung und ein Verfahren mit den Merkmalen gemäß den jeweiligen unab hängigen Ansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegen stand der abhängigen Ansprüche.
Ein erfindungsgemäßes Elektrodenstapelrad ist ausgebildet, um flächige Elektrodenele mente aufzunehmen und zu befördern. Das Elektrodenstapelrad umfasst folgendes:
- eine Rotationsachse, ausgebildet zur Drehung des Elektrodenstapelrads;
- mehrere radial zur Rotationsachse ausgebildete Stapelfinger, welche um die Rotations achse umlaufend angeordnet sind; und
- mehrere Zwischenräume, welche jeweils zwischen den Stapelfingern ausgebildet sind, wobei ein jeweiliger Zwischenraum dazu ausgebildet ist, zumindest eines der Elektro denelemente aufzunehmen bzw. aufnehmen zu können.
Ein wichtiger Gedanke der Erfindung ist darin zu sehen, dass das Elektrodenstapelrad ein Elektrodenklemmelement umfasst, welches jeweils in den Zwischenräumen ausge bildet ist. Das Elektrodenklemmelement ist dazu ausgebildet, im klemmenden Zustand eine Hauptfläche eines der Elektrodenelemente mit Klemmkraft zu beaufschlagen und das jeweilige Elektrodenelement durch die Kraftbeaufschlagung gegen den jeweiligen Stapelfinger zu drücken.
Der Erfindung liegt die Erkenntnis zu Grunde, dass die Genauigkeit des Transports ge steigert werden kann, indem die Elektrodenelemente von dem Elektrodenstapelrad in eingeklemmtem Zustand transportiert werden. Dadurch kann verhindert werden, dass sich die Elektrodenelemente innerhalb des Elektrodenstapelrads bewegen und als Folge ungenau auf den Elektrodenstapel abgelegt werden.
Das jeweilige Elektrodenklemmelement kann zwei unterschiedliche Zustände aufwei sen. Ein klemmender Zustand, welcher vorliegt, wenn ein Elektrodenelemente im Zwi schenraum angeordnet ist und das Elektrodenklemmelement die Klemmkraft auf das Elektrodenelemente ausübt. Und ein klemmfreier Zustand, welcher vorliegt, wenn der Zwischenraum frei ist, also kein Elektrodenelement darin angeordnet ist. Im klemm freien Zustand kann das Elektrodenklemmelement spannungsfrei bzw. entspannt aus gebildet sein.
Insbesondere weist das Elektrodenstapelrad mehrere Stapelfinger auf. Zwischen den Stapelfingern ist vorzugsweise jeweils ein Zwischenraum ausgebildet. In dem jeweili gen Zwischenraum ist vorzugsweise zumindest eines der Elektrodenklemmelemente ausgebildet. Der einfacheren Beschreibung zuliebe wird die Beschreibung der Elektro denklemmelemente, der Stapelfinger oder der Zwischenräume im Folgenden gelegent lich anhand nur eines jeweiligen Exemplars ausgeführt.
Die Stapelfinger sind vorzugsweise jeweils länglich ausgebildet. Weiterhin verjüngen sich die Stapelfinger jeweils vorzugsweise mit zunehmendem Abstand von der Rotati onsachse.
Das Elektrodenklemmelement ist vorzugsweise länglich und/ oder fingerförmig ausge bildet. Insbesondere ist das Elektrodenklemmelement am freien Ende, also dem von ei ner Kontaktstelle mit dem Stapelfinger abgewandten Ende, flach zulaufend ausgebildet.
Weiterhin ist das Elektrodenklemmelement vorzugsweise zumindest im Bereich der Kontaktstelle unter Krafteinwirkung biegbar ausgebildet, insbesondere bewegt sich das Elektrodenklemmelement bei Wegfall der Krafteinwirkung wieder in die Ausgangspo sition zurück. Dadurch kann das Elektrodenklemmelement von dem Elektrodenele ment verdrängt werden, übt dann aber die Klemmkraft auf das Elektrodenelement aus, da es wieder in die ursprüngliche Position möchte.
Weiterhin vorzugsweise sind das Elektrodenstapelrad, die Stapelfinger und insbeson dere die Elektrodenklemmelemente aus einem Stück ausgebildet.
Die Hauptfläche des Elektrodenelements ist insbesondere als eine Fläche mit größerer Oberfläche als die Seitenflächen ausgebildet. Insbesondere ist die Hauptfläche diejenige Fläche, welche im klemmenden Zustand in Richtung der Stapelfinger ausgebildet ist, also insbesondere keine Stirnfläche oder Seitenfläche, welche im Vergleich zur Haupt fläche um ein Vielfaches schmäler ausgebildet ist.
Die Zwischenräume sind jeweils vorzugsweise in axialer Richtung offen ausgebildet.
Insbesondere weisen die Stapelfinger eine Krümmung auf. Die Krümmung ist insbe sondere entgegen der Laufrichtung des Elektrodenstapelrads ausgebildet.
Die Stapelfinger und/ oder die Zwischenräume können aber auch ohne Krümmung, insbesondere zur Aufnahme gering flexibler oder starrer Elektrodenelemente, ausge führt sein. Die Lage im Elektrodenstapelrad kann dann radial oder sekantial sein.
Insbesondere werden mehrere Elektrodenelemente mit dem Elektrodenstapelrad beför dert, um den Elektrodenstapel zu erzeugen. Die Elektrodenelemente können als Ka thode und/ oder Anode ausgebildet sein. Insbesondere werden Kathode und Anode ab wechselnd befördert. Zwischen die Elektrodenelemente, insbesondere zwischen Ka thode und Anode, wird insbesondere ein Separator bzw. eine Trennschicht angeordnet.
Alternativ können die Elektrodenelemente auch schon als vorgefertigte Zelle, welche eine Kathode, eine Anode und vorzugsweise auch zumindest eine Trennschicht um fasst, ausgebildet sein. Das Elektrodenelement kann bereits als Zelle ausgebildet sein und es können fertige Zellen durch das Elektrodenstapelrad aufeinander abgestapelt werden.
Vorzugsweise ist es vorgesehen, dass das Elektrodenklemmelement, insbesondere elas tisch, federnd ausgebildet ist, und das Elektrodenelement durch das Elektrodenklemm element mit einer Federkraft beaufschlagt werden kann. Insbesondere wird die fe dernde Eigenschaft durch das Material und die Materialstärke des Elektrodenklemm element ermöglicht. Durch die federnde Ausgestaltung kann die Klemmkraft passiv, also fremdenergiefrei bereitgestellt werden. Auf einen elektrischen Aktuator kann in diesem Fall verzichtet werden. Das Elektrodenklemmelement kann im klemmfreien Zu stand an dem benachbarten Stapelfinger anliegen und wird von diesem erst durch das in den Zwischenraum eingeführte Elektrodenelement wegbewegt bzw. weggedrückt.
Ergänzend oder alternativ kann das Elektrodenklemmelement die Klemmkraft aktiv, insbesondere durch einen, vorzugsweise elektrisch ausgebildeten, Aktuator, bereitstel len.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenklemmelement als Teil des jeweiligen Stapelfingers ausgebildet ist. So kann das Elektrodenklemmelement bei spielsweise als Ast oder Abzweigung des Stapelfingers ausgebildet sein. Vorzugsweise ist das Elektro denklemmelement schmäler oder dünner als der jeweilige Stapelfinger ausgebildet. So kann das Elektro denklemmelement beispielsweise erzeugt werden, in dem in den Stapelfinger ein Halbschlitz eingebracht wird. Durch den Halbschlitz wird das Elektro denklemmelement teilweise vom Stapelfinger abgetrennt. Durch die teil weise Abtrennung bleibt das Elektro denklemmelement aber vorzugsweise noch an ei ner Kontaktstelle mit dem Stapelfinger verbunden und kann daran federnd ausgebildet sein.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenklemmelement durch eine Kontaktstelle mit dem jeweiligen Stapelfinger verbunden ist. Die Fläche der Kon taktstelle ist vorzugsweise nur so groß ausgebildet, dass das Elektrodenklemmelement flexibel an dem Stapelfinger ausgebildet sein kann. Durch die Kontaktstelle wird eine Möglichkeit geschaffen, damit das Elektro denklemmelement die Klemmkraft zuverläs sig bereitstellen kann.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenklemmelement aus dem selben Material wie der Stapelfinger ausgebildet ist. Das Material ist beispielsweise als Kunststoff ausgebildet. Dadurch kann das Elektrodenklemmelement kostengünstig und zuverlässig ausgebildet werden. Die Erfindung betrifft auch eine Elektrodenstapelvorrichtung, insbesondere zum Erzeu gen eines Elektrodenstapels für einen Akkumulator oder eine Brennstoffzelle. Die Elekt rodenstapelvorrichtung weist zumindest ein erfindungsgemäßes Elektrodenstapelrad auf.
Insbesondere weist die Elektrodenstapel Vorrichtung mehrere erfindungsgemäße Elekt rodenstapelräder auf.
Vorzugsweise ist es vorgesehen, dass die Elektrodenstapel Vorrichtung axial versetzt zum Elektrodenstapelrad zumindest ein dieselbe Rotationsachse aufweisendes klemm elementfreies Stapelrad aufweist. Durch die Kombination von Elektrodenstapelrädern mit Elektrodenklemmelementen und Stapelrädern ohne Elektrodenklemmelemente kann die Genauigkeit des Transportes der Elektrodenelemente weiter gesteigert wer den. Es kann sein, dass wenige Elektrodenstapelräder mit Elektrodenklemmelementen, beispielsweise eines oder zwei ausreichend sind, um des jeweilige Elektrodenelement während des Transportes festzuklemmen. Eine zu hohe Anzahl an Elektrodenklemm elementen kann den Nachteil haben, dass das Einfuhren des Elektrodenelements in den Zwischenraum unnötigerweise erschwert wird, da der Widerstand sämtlicher Elektro denklemmelemente beim Einfuhren zu überwinden ist.
Die Erfindung betrifft einen weiteren Aspekt bei einer Elektrodenstapelvorrichtung mit mehreren Stapelrädern bzw. Elektrodenstapelräder, welche auf einer gemeinsamen Ro tationsachse angeordnet sind. Gemäß dem weiteren Aspekt können die Stapelräder bzw. Elektrodenstapelräder ergänzend oder alternativ zur Ausstattung mit dem Elekt rodenklemmelement bezüglich der Rotationsachse verdreht angeordnet sein, d.h. durch die Verdrehung in Rotationsrichtung so verdreht sein, dass die Zwischenräume nicht mehr exakt in axiale Richtung fluchten, sondern nur noch schräg zur axialen Richtung fluchten. Vorteilhaft ist das, da die Elektrodenelemente durch die zueinander verdreh ten Stapelräder eingeklemmt werden. Die verdrehten Stapelräder können zusätzlich zu den Elektrodenklemmelementen oder aber auch ohne die Elektrodenklemmelementen ausgebildet sein. Die Erfindung betrifft auch ein Verfahren. Bei dem erfindungsgemäßen Verfahren wird ein Elektrodenstapel, insbesondere für einen Akkumulator oder eine Brennstoffzelle, mit flächigen Elektrodenelementen erzeugt. Es werden folgende Schritte durchgeführt: a) Bereitstellen eines Elektrodenelements; b) Rotieren eines Elektrodenstapelrads um eine Rotationsachse; c) Einbringen des bereitgestellten Elektrodenelements in einen durch Stapelfinger des Elektrodenstapelrads gebildeten Zwischenraum; d) Bewegen des eingebrachten Elektrodenelements durch das um die Rotationsachse rotierende Elektrodenstapelrad; e) Entfernen des bewegten Elektrodenelements aus dem Zwischenraum; und f) Erzeugen des Elektrodenstapels mit dem aus dem Zwischenraum entfernten Elektro denelement.
Als wichtiger Gedanke ist es vorgesehen, dass das Elektrodenelement mittels einem Elektrodenklemmelement während der Bewegung durch das Elektrodenstapelrad in ei ner Klemmposition mit einer Klemmkraft beaufschlagt wird.
Insbesondere ist das Elektrodenelement in der Klemmposition, wenn es durch das Elektrodenklemmelement fixiert ist.
Vorzugsweise ist es vorgesehen, dass das Elektrodenelement im Schritt e) mit einem passiven Ausstreifelement, welches die Klemmkraft überwindet, aus dem Zwischen raum entfernt wird. Das passive Ausstreifelement kann beispielsweise aus Ausstreif arm ausgebildet sein, gegen welchen die Elektrodenelemente nach absolvierter Trans portstrecke durch das Elektrodenstapelrad verschränkt werden und durch die weiter laufende Drehung des Elektrodenstapelrads automatisch ausgestreift werden.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenelement im Schritt e) mit einem aktiven Ausstreifelement, welches die Klemmkraft überwindet, aus dem Zwi- schenraum entfernt wird. Das aktive Ausstreifelement kann beispielsweise als Kurven rad ausgebildet sein. Das Kurvenrad kann beispielsweise an den Elektrodenelementen entlanglaufen und diese nach absolvierter Transsportstrecke aktiv Ausstreifen. Das ak tiven Ausstreifelement kann dabei von dem Antrieb des Elektrodenstapelrads oder ei nem separaten, insbesondere eigenen Antrieb, angetrieben werden.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenelement im Schritt c) durch das Elektrodenklemmelement abgebremst wird. Durch die abbremsende Wir kung des Elektrodenklemmelements kann das Elektrodenelement genauer im Zwi schenraum angeordnet und transportiert werden. Durch die genauere Anordnung im Elektrodenstapelrad wiederum kann das Elektrodenelement auch genauer auf dem Elektrodenstapel abgelegt werden.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenelement im Schritt a) durch eine Zuführungseinrichtung kontrolliert in die Klemmposition befördert wird. Kontrolliert bedeutet in diesem Zusammenhang, dass die Bewegung des Elektrodenele ments nicht dem Zufall überlassen wird, wie es beispielsweise bei einem ungeführten bzw. freien Flug durch die Luft der Fall ist. Bei einer kontrollierten Beförderung kann auf die Position des Elektrodenelement im Wesentlichen zu jedem Zeitpunkt Einfluss genommen werden. Eine kontrollierte Beförderung liegt beispielsweise vor, wenn das Elektrodenelement mittels Riemen eingespannt ist. Vorzugsweise wird des Elektroden element vorliegend kontrolliert durch Riemen direkt in das Elektrodenstapelrad bzw. den jeweiligen Zwischenraum hineintransportiert und dort durch die Elektrodenklem melemente eingeklemmt. Vorzugsweise frühestens mit der Einklemmung durch die Elektrodenklemmelemente wird die Riemenführung durch die Zuführungseinrichtung beendet.
Weiterhin ist es vorzugsweise vorgesehen, dass die Kontrolle über das Elektrodenele ment ab dem Zeitpunkt, an welchem sich das Elektrodenelement in der Klemmposition befindet von der Zuführungseinrichtung an das Elektrodenstapelrad übergeht. So wird das Elektrodenelement vorzugsweise von der Zuführungseinrichtung in den Zwischen raum hineingeschoben, bis das Elektrodenelement im eingeklemmten Zustand vorliegt, dann beendet die Zuführungseinrichtung die Bewegung und die Kontrolle des Elektro denelements. Im Wesentlichen nahtlos wird die Bewegung und die Kontrolle des Elekt rodenelements anschließend vom Elektrodenstapelrad übernommen bzw. weiterge führt. Der Elektrodenstapel kann dadurch genauer erzeugt werden.
Weiterhin ist es vorzugsweise vorgesehen, dass das Elektrodenelement durch ein Vor schubrad, insbesondere der Zuführungseinrichtung, mit einem nur teilweise um das Vorschubrad umlaufenden, erhabenen Kontaktaufsatz in den Zwischenraum einge bracht wird. Der Kontaktaufsatz ist dabei insbesondere als nur teilweise umlaufendes, erhabenes Segment ausgebildet. Durch den Kontaktaufsatz kann das jeweilige Elektro denelement genauer in die Klemmposition gebracht werden, da Anfang und Ende der Kontrolle durch das Vorschubrad bzw. die Zuführungseinrichtung genauer bestimmt werden können.
Das Elektrodenelement kann einen Zellableiter aufweisen. Der Zellableiter wird zur elektrisch leitenden Kontaktierung des jeweiligen Elektrodenelements genutzt.
Die mit Bezug auf das erfindungsgemäße Elektrodenstapelrad vorgestellten bevorzug ten Ausführungsformen und deren Vorteile gelten entsprechend für die erfindungsge mäße Stapelvorrichtung und das erfindungsgemäße Verfahren und umgekehrt.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figurenbeschreibung.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer schematischen Zeichnung näher erläutert.
Dabei zeigen: Fig. 1 in seitlicher Ansicht eine schemaüsche Darstellung eines Ausführungsbei spiels eines erfindungsgemäßen Elektrodenstapelrads mit Elektro denklemmelementen;
Fig. 2 eine schematische Detaildarstellung der Elektrodenklemmelemente;
Fig. 3 eine schematische Darstellung eines Ausführungsbeispiels einer erfin dungsgemäßen Elektrodenstapelvorrichtung mit dem Elektrodenstapelrad und einer Zuführungseinrichtung;
Fig. 4 eine schematische Detaildarstellung der Zuführungseinrichtung; und
Fig. 5 eine schematische Darstellung eines weiteren Ausführungsbeispiels der
Elektrodenstapelvorrichtung mit mehreren Elektrodenstapelrädern und klemmelementfreien Stapelrädern.
In den Figuren werden gleiche oder funküonsgleiche Elemente mit den gleichen Be zugszeichen versehen.
Fig. 1 zeigt schemaüsch ein Ausführungsbeispiel eines Elektrodenstapelrads 1 mit einer RotaÜonsachse 2.
Um die Rotationsachse 2 umlaufend sind Stapelfinger 3 angeordnet. Die Stapelfinger 3 sind insbesondere radial zur RotaÜonsachse 2 angeordnet, d.h. die Stapelfinger 3 sind von der Rotationsachse 2 abstehend angeordnet.
Weiterhin weisen die Stapelfinger 3 gemäß dem Ausführungseispiel eine Krümmung 4 auf. Die Krümmung 4 verläuft entgegen einer Laufrichtung bzw. Rotationsrichtung 5 des Elektrodenstapelrads 1. Die Stapelfinger 3 sind also, insbesondere gegen den Uhr zeigersinn, gekrümmt ausgebildet. Ferner verjüngt sich die Dicke des jeweiligen Stapelfingers 3 im Wesentlichen mit zu nehmender Entfernung von der Rotationsachse 2.
Zwischen den Stapelfingern 3 ist jeweils ein taschenförmiger Zwischenraum 6 ausgebil det. Der Zwischenraum 6 ist ausgebildet zur Aufnahme eines flächigen Elektrodenele ments 7 (in den Fig. 3 bis 5 dargestellt). Der Zwischenraum 6 ist vorzugsweise in beide axiale Richtungen geöffnet ausgebildet.
Das Elektrodenstapelrad 1 dreht sich um die Rotationsachse 2. Insbesondere dreht sich das Elektrodenstapelrad 1 in der Bildebene von Fig. 1 betrachtet im Uhrzeigersinn. Die Rotationsgeschwindigkeit ist vorzugsweise mindestens 20 Umdrehungen pro Minute. Weiterhin kann die Rotationsgeschwindigkeit beispielsweise maximal bis 60 Umdre hungen pro Minute betragen sein. Insbesondere ist die Rotationsgeschwindigkeit von der Anzahl der Zwischenräume im Verhältnis zur Transportgeschwindigkeit der Elekt rodenelemente abhängig.
In den Zwischenräumen 6 ist jeweils ein Elektrodenklemmelement 8 ausgebildet.
Durch das Elektrodenklemmelement 8 wird im klemmenden Zustand eine Hauptfläche 9 (in Fig. 5 dargestellt) des Elektrodenelements 7 mit einer Klemmkraft beaufschlagt.
Die Klemmkraft weist eine Wirkungsrichtung 10 auf, welche im klemmenden Zustand in Richtung eines benachbarten Stapelfingers bzw. eines eingelegten Elektrodenele ments 7 wirkt.
Vorzugsweise ist das Elektrodenklemmelement 8 aus demselben Material, insbesondere Kunststoff, wie der Stapelfinger 3 ausgebildet.
In Fig. 1 ist ein Detail 11 des Elektrodenstapelrads 1 gekennzeichnet, welches in Fig. 2 näher beschrieben ist. Fig. 2 zeigt das Detail 11 des Elektrodenstapelrads 1. Gemäß dem Ausführungsbeispiel ist das Elektrodenklemmelement 8 als Teil des Stapelfingers 3 ausgebildet. Das Elektro denklemmelement 8 ist lediglich durch einen Halbschlitz 12 von dem Stapelfinger 3 teilweise abgetrennt.
An einer Kontaktstelle 23 ist das Elektrodenklemmelement 8 mit dem Stapelfinger 3 verbunden.
Insbesondere ist das Elektrodenklemmelement 8 soweit flexibel ausgebildet, dass es fe dern kann bzw. eine Federkraft bereitstellen kann. Die Federkraft wird im klemmenden Zustand auf das Elektrodenelement 7 ausgeübt.
Fig. 3 zeigt schematisch eine Elektrodenstapelvorrichtung 13 mit dem Elektro denstapel- rad 1 und einer Zuführungseinrichtung 14.
Gemäß dem Ausführungsbeispiel ist die Elektrodenstapelvorrichtung 13 mit mehreren Elektrodenstapelrädern 1 ausgebildet. Die Elektrodenstapelrädern 1 sind an der ge meinsamen Rotationsachse 2 angeordnet.
Ferner weist die Elektrodenstapelvorrichtung 13 ein Ausstreifelement 15 und einen Sta pelboden 16 auf. Auf dem Stapelboden 16 wird ein Elektro denstapel 17 gebildet.
Ein Stapelvorgang läuft beispielsweise wie folgt ab. Es werden Elektrodenelemente 7 mittels der Zuführungseinrichtung 14 zum Elektrodenstapelrad 1 bzw. den Elektroden stapelrädern 1 zugeführt. In den jeweiligen Zwischenraum 6 aufgenommen und durch das zugehörige Elektrodenklemmelement 8 festgeklemmt. Dann wird das Elektroden- element 7 mittels den Elektrodenstapelrädern 1 transportiert, indem sich die Elektio- denstapelrädern 1 drehen. Durch das Ausstieifelement 15 wird das Elektiodenelement 7 dann aus dem Zwischenraum 6 entfernt, wobei es auf den Stapelboden 16 oder Elekt rodenelemente 8, welche bereits auf dem Stapelboden 16 liegen, abgelegt wird. Das Ausstreifelement 15 ist gemäß dem Ausführungsbeispiel passiv ausgebildet. Es kann aber auch als aktives Ausstreifelement, beispielsweise als Kurvenrad ausgebildet sein, welches von einer elektrischen Antriebeinheit angetrieben wird.
Insbesondere wird das jeweilige Elektrodenelement 7 dabei unterbrechungsfrei entwe der von der Zuführungseinrichtung 14 oder den Elektrodenstapelrädern 1 kontrolliert.
Die Zuführungseinrichtung 14 weist gemäß dem Ausführungsbeispiel einen oberen Riemen 18 und einen unteren Riemen 19 auf. Die Riemen 18, 19 werden so bewegt, dass die jeweiligen Elektrodenelemente 7 zum Elektrodenstapelrad 1 transportiert werden.
Vorzugsweise ist der untere Riemen kürzer als der obere Riemen ausgebildet. Dadurch kann das jeweilige Elektrodenelement 7 kontrolliert in das Elektrodenstapelrad 1 einge führt bzw. eingeschoben werden.
Fig. 4 zeigt eine schematische Detaildarstellung der Zuführungseinrichtung 14.
Die Zuführeinrichtung 14 weist ein Vorschubrad 20 auf. Das Vorschubrad 20 schiebt das jeweilige Elektrodenelement 7 in den Zwischenraum 6 bis es vom Elektrodenklem menelement 8 mit Klemmkraft beaufschlagt wird und dadurch fixiert wird.
Gemäß dem Ausführungsbeispiel weist das Vorschubrad 20 einen Kontaktaufsatz 21 auf. Der Kontaktaufsatz 21 ist erhaben und nur teilweise, insbesondere weniger als 180°, um das Vorschubrad 20 umlaufend ausgebildet. Insbesondere kontaktiert nur der Kontaktaufsatz 21 das jeweilige Elektrodenelement 7, insbesondere die Hauptfläche 9. Ist das Vorschubrad 20 so ausgerichtet, dass der Kontaktaufsatz 21 nicht in Richtung des oberen Riemens 18 zeigt, so wird das Elektrodenelement 7 vom Vorschubrad 20 nicht mehr geschoben. Vorteilhaft ist der Kontaktaufsatz 21 also, um die Einwirkung der Vorschubkraft vom Vorschubrad 20 auf das jeweilige Elektrodenelement 7 zu un terbrechen. Insbesondere ist es vorzugsweise vorgesehen, die Klemmung des Elektrodenelements 7 zwischen dem Kontaktaufsatz 21 und dem oberen Riemen 18 bzw. einem Gegenrad des oberen Riemens 18 erst dann beginnen zu lassen, wenn das Elektrodenelement 7 bereits teilweise im Zwischenraum 6 ist. Weiterhin wird die Klemmung zwischen dem Kon taktaufsatz 21 und dem oberen Riemen 18 vorzugsweise beendet, bevor das Elektroden element 7 vollständig im Zwischenraum 6 ist.
Das Vorschubrad 20 dreht sich weiter im Uhrzeigersinn in der Bildebene von Fig. 4 bis der Kontaktaufsatz 21 wieder gegenüber vom oberen Riemen 18 ausgerichtet ist. Dann kann wieder eines der Elektrodenelemente 7 kontaktiert und bewegt werden.
Das Vorschubrad 20 kann mit dem Antrieb des unteren Riemens 19 gekoppelt sein oder aber mit einem separaten Antrieb angetrieben werden.
Fig. 5 zeigt schematisch ein Ausführungsbeispiel der Elektrodenstapelvorrichtung 13.
Es sind zwei Elektrodenstapelräder 1 jeweils mit Elektrodenklemmelementen 8 an der Rotationsachse 2 angeordnet. Zwischen den zwei Elektrodenstapelrädern 1 ist ein klem melementfreies Stapelrad 22 an der Rotationsachse 2 angeordnet. Das klemmelement freie Stapelrad 22 weist keine Elektrodenklemmelemente 8 auf, ist jedoch sonst insbe sondere analog zum Elektrodenstapelrad 1 ausgebildet. Durch die Kombination von den Elektrodenstapelrädern 1 mit dem klemmelementfreien Stapelrad 22 kann erreicht werden, dass die Elektrodenelemente 7 festgeklemmt werden, aber trotzdem leicht in die die Zwischenräume 6 eingeführt werden können.
Ergänzend oder alternativ können die Elektrodenstapelräder 1 und/ oder das Stapelrad 22 auf der Rotationsachse 2 leicht verdreht angeordnet werden, so dass die Zwischen räume 6 der jeweiligen Räder 1, 22 nicht exakt in axialer Richtung fluchten. Dadurch können die Elektrodenelemente 7 auch fixiert werden. Die verdrehten Stapelräder kön nen eine Alternative oder eine Ergänzung zu den Elektrodenklemmelementen 8 sein.

Claims

Patentansprüche
1. Elektrodenstapelrad (1), welches ausgebildet ist, flächige Elektrodenelemente (7) auf zunehmen und zu befördern, aufweisend:
- eine Rotationsachse (2), ausgebildet zur Drehung des Elektrodenstapelrads (1);
- mehrere radial zur Rotationsachse (2) ausgebildete Stapelfinger (3), welche um die Ro tationsachse (2) umlaufend angeordnet sind; und
- mehrere Zwischenräume (6), welche jeweils zwischen den Stapelfingern (3) ausgebil det sind, wobei ein jeweiliger Zwischenraum (6) dazu ausgebildet ist, zumindest eines der Elektrodenelemente (7) aufzunehmen; gekennzeichnet durch ein Elektrodenklemmelement (8), welches jeweils in den Zwischenräumen (6) ausgebil det ist, wobei das Elektrodenklemmelement (8) ausgebildet ist, im klemmenden Zu stand eine Hauptfläche (9) eines der Elektrodenelemente (7) mit Klemmkraft zu beauf schlagen und das jeweilige Elektrodenelement (7) durch die Kraftbeaufschlagung gegen den jeweiligen Stapelfinger (3) zu drücken.
2. Elektrodenstapelrad (1) nach Anspruch 1, wobei das Elektrodenklemmelement (8) federnd ausgebildet ist, und das Elektrodenelement (7) durch das Elektrodenklemmelement (8) mit einer Federkraft beaufschlagt werden kann.
3. Elektrodenstapelrad (1) nach Anspruch 1 oder 2, wobei das Elektrodenklemmelement (8) als Teil des jeweiligen Stapelfingers (3) ausgebildet ist.
4. Elektrodenstapelrad (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrodenklemmelement (8) durch eine Kontaktstelle (23) mit dem jeweiligen Sta pelfinger (3) verbunden ist.
5. Elektrodenstapelrad (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrodenklemmelement (8) aus demselben Material wie der Stapelfinger (3) aus gebildet ist.
6. Elektrodenstapelvorrichtung (13) mit zumindest einem Elektrodenstapelrad (1) nach einem der vorhergehenden Ansprüche.
7. Elektrodenstapelvorrichtung (13) nach Anspruch 6, wobei die Elektrodenstapelvor richtung (13) axial versetzt zum Elektrodenstapelrad (1) zumindest ein dieselbe Rotati onsachse (2) aufweisendes klemmelementfreies Stapelrad (22) aufweist.
8. Verfahren zum Erzeugen eines Elektrodenstapels (17) mit flächigen Elektrodenele menten (7), bei welchem folgende Schritte durchgeführt werden: a) Bereitstellen eines Elektrodenelements (7); b) Rotieren eines Elektrodenstapelrads (1) um eine Rotationsachse (2); c) Einbringen des bereitgestellten Elektrodenelements (7) in einen durch Stapelfinger (3) des Elektrodenstapelrads (1) gebildeten Zwischenraum (6); d) Bewegen des eingebrachten Elektrodenelements (7) durch das um die Rotationsachse (2) rotierende Elektrodenstapelrad (1); e) Entfernen des bewegten Elektrodenelements (7) aus dem Zwischenraum (6); und f) Erzeugen des Elektrodenstapels (17) mit dem aus dem Zwischenraum (6) entfernten Elektrodenelement (7), dadurch gekennzeichnet, dass das Elektrodenelement (7) mittels einem Elektrodenklemmelement (8) während der Be wegung durch das Elektrodenstapelrad (1) in einer Klemmposition mit einer Klemm kraft beaufschlagt wird.
9. Verfahren nach Anspruch 8, wobei das Elektrodenelement (7) im Schritt e) mit einem passiven Ausstreifelement (15), wel ches die Klemmkraft überwindet, aus dem Zwischenraum (6) entfernt wird.
10. Verfahren nach Anspruch 8 oder 9, wobei das Elektrodenelement (7) im Schritt e) mit einem aktiven Ausstreifelement, welches die Klemmkraft überwindet, aus dem Zwischenraum entfernt wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, wobei das Elektrodenelement (7) im Schritt c) durch das Elektrodenklemmelement (8) abge bremst wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, wobei das Elektrodenelement (7) im Schritt a) durch eine Zuführungseinrichtung (14) kontrol liert in die Klemmposition befördert wird.
13. Verfahren nach Anspruch 12, wobei die Kontrolle über das Elektrodenelement (7) ab dem Zeitpunkt, an welchem sich das Elektrodenelement (7) in der Klemmposition befindet von der Zuführungseinrichtung (14) an das Elektrodenstapelrad (1) übergeht.
14. Verfahren nach Anspruch 12 oder 13, wobei das Elektrodenelement (7) durch ein Vorschubrad (20) mit einem nur teilweise um das Vorschubrad (20) umlaufenden, erhabenen Kontaktaufsatz (21) in den Zwischenraum eingebracht wird.
EP22718068.4A 2021-04-08 2022-04-01 Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels Pending EP4320061A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021001819.2A DE102021001819A1 (de) 2021-04-08 2021-04-08 Elektrodenstapelrad mit Elektrodenklemmelement, Elektrodenstapelvorrichtung und Verfahren zum Erzeugen eines Elektrodenstapels
PCT/EP2022/025128 WO2022214217A1 (de) 2021-04-08 2022-04-01 Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels

Publications (1)

Publication Number Publication Date
EP4320061A1 true EP4320061A1 (de) 2024-02-14

Family

ID=81384837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22718068.4A Pending EP4320061A1 (de) 2021-04-08 2022-04-01 Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels

Country Status (5)

Country Link
EP (1) EP4320061A1 (de)
KR (1) KR20230167069A (de)
CN (1) CN117120355A (de)
DE (1) DE102021001819A1 (de)
WO (1) WO2022214217A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211988A1 (de) 2022-10-25 2024-04-25 Giesecke+Devrient Currency Technology Gmbh Vorrichtung und Verfahren zur Herstellung eines Elektrodenstapels
WO2024088905A1 (de) * 2022-10-25 2024-05-02 Volkswagen Ag Vorrichtung und entsprechendes verfahren zur herstellung eines elektrodenstapels aus elektrodenstapelelementen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB949871A (en) * 1961-10-04 1964-02-19 David Carlaw Engineers Ltd Delivery mechanism for envelope machines
DE3232348A1 (de) * 1982-08-31 1984-03-01 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Vorrichtung zum stapeln von blattfoermigen gegenstaenden
DE50006017D1 (de) * 1999-11-29 2004-05-13 Cgk Comp Ges Konstanz Mbh Handhabungsvorrichtung
DE102004003289B4 (de) * 2003-01-27 2006-05-04 Wincor Nixdorf International Gmbh Einzelblatteingabevorrichtung
DE102004001231A1 (de) * 2004-01-07 2005-08-04 Giesecke & Devrient Gmbh Spiralfachstapler
DE102004002904A1 (de) * 2004-01-20 2005-08-18 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Bearbeiten von Blattgut
DE102008000026B3 (de) * 2008-01-10 2009-02-26 Koenig & Bauer Aktiengesellschaft Vorrichtung zum Auslegen von Druckerzeugnissen auf einem Transportband mit einem Schaufelrad
CN102219129B (zh) * 2010-04-19 2014-09-17 中国人民银行印制科学技术研究所 用于小张印刷产品质量检分机的收纸轮及收纸装置
CN103562105B (zh) * 2011-03-30 2015-12-16 光荣株式会社 叶轮、纸张积累装置以及叶轮的制造方法
DE102019205428A1 (de) 2019-04-15 2020-10-15 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Elektrodenstapels

Also Published As

Publication number Publication date
KR20230167069A (ko) 2023-12-07
WO2022214217A1 (de) 2022-10-13
DE102021001819A1 (de) 2022-10-13
CN117120355A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2022214217A1 (de) Elektrodenstapelrad mit elektrodenklemmelement, entsprechende elektrodenstapelvorrichtung, und verfahren zum erzeugen eines elektrodenstapels
DE102017216138A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE60025645T2 (de) Verfahren zum wickeln von spiralelektrodengruppe und diese verwendende vorrichtung und batterie
WO2020212317A1 (de) Verfahren und vorrichtung zur herstellung eines elektrodenstapels
DE102016007706B4 (de) Verfahren und Vorrichtung zum Herstellen wenigstens eines Brennstoffzellenstapels
DE102021207342A1 (de) Zellstapelanlage und Zellstapelvorrichtung für Segmente von Energiezellen und Teilvorrichtung/Teilverfahren einer oder in einer Zellstapelanlage
AT520203B1 (de) Verfahren und Vorrichtung zum positionierten Halten eines Blechpakets mitsamt darin aufgenommenen Leiterelementen
WO2022214224A1 (de) Verfahren und vorrichtung zur stapelung von flächigen gegenständen
WO2023285277A2 (de) Vereinzelungsvorrichtung zum schneiden und vereinzeln von segmenten für energiezellen von einer zugeführten endlosbahn
WO2022199885A1 (de) Verfahren und vorrichtung zum herstellen eines elektrodenstapels
WO2022199890A1 (de) Stapelrad und entsprechende vorrichtung zur stapelung von flächigen gegenständen
WO2022214221A1 (de) Verfahren und vorrichtung zum bilden eines stapels von flächigen elementen für einen energiespeicher oder eine brennstoffzelle
WO2022214222A1 (de) Verfahren und vorrichtung zum bilden eines stapels von flächigen elementen für einen energiespeicher oder eine brennstoffzelle
WO2022199887A1 (de) Verfahren zum erzeugen eines elektrodenstapels und stapelvorrichtung mit ausschubelement
WO2022199888A1 (de) Verfahren zum erzeugen eines elektrodenstapels und stapelvorrichtung
WO2023161062A1 (de) Prüfvorrichtung und verfahren zum prüfen von segmenten für die energiezellen produzierende industrie
EP4320062A1 (de) Vorrichtung zur stapelung von flächigen gegenständen
DE102022131946B3 (de) Vorrichtung und Verfahren für die Verarbeitung von Elektrodenbahnen zur Herstellung von Energiezellen
DE102017216188A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
EP4371172A1 (de) Bearbeitungsvorrichtung zur bearbeitung von segmenten von energiezellen
WO2022214213A1 (de) Verfahren und vorrichtung zum herstellen eines elektrodenstapels
WO2024133440A1 (de) Verfahren zur herstellung von akkumulatoren und entsprechende stapel-vorrichtung zur herstellung von akkumulatoren
DE102022205442A1 (de) Wuchtscheibe für einen Rotor einer Elektromaschine, eine Mittelbohrung mit Innengewinde umfassend
WO2024088905A1 (de) Vorrichtung und entsprechendes verfahren zur herstellung eines elektrodenstapels aus elektrodenstapelelementen
DE102022134864A1 (de) Schraube für eine batterie oder ein batteriemodul

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR