EP4279696A1 - Antrieb für eine tür oder ein fenster - Google Patents

Antrieb für eine tür oder ein fenster Download PDF

Info

Publication number
EP4279696A1
EP4279696A1 EP23172518.5A EP23172518A EP4279696A1 EP 4279696 A1 EP4279696 A1 EP 4279696A1 EP 23172518 A EP23172518 A EP 23172518A EP 4279696 A1 EP4279696 A1 EP 4279696A1
Authority
EP
European Patent Office
Prior art keywords
pump
drive
piston
housing
swash plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23172518.5A
Other languages
English (en)
French (fr)
Inventor
Benjamin Wörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geze GmbH
Original Assignee
Geze GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geze GmbH filed Critical Geze GmbH
Publication of EP4279696A1 publication Critical patent/EP4279696A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/22Additional arrangements for closers, e.g. for holding the wing in opened or other position
    • E05F3/224Additional arrangements for closers, e.g. for holding the wing in opened or other position for assisting in opening the wing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/50Power-operated mechanisms for wings using fluid-pressure actuators
    • E05F15/53Power-operated mechanisms for wings using fluid-pressure actuators for swinging wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/04Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices with liquid piston brakes
    • E05F3/10Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices with liquid piston brakes with a spring, other than a torsion spring, and a piston, the axes of which are the same or lie in the same direction
    • E05F3/102Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices with liquid piston brakes with a spring, other than a torsion spring, and a piston, the axes of which are the same or lie in the same direction with rack-and-pinion transmission between driving shaft and piston within the closer housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/141Details or component parts
    • F04B1/146Swash plates; Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/143Sealing provided on the piston
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefore
    • E05Y2201/43Motors
    • E05Y2201/448Fluid motors; Details thereof
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/13Application of doors, windows, wings or fittings thereof for buildings or parts thereof characterised by the type of wing
    • E05Y2900/132Doors

Definitions

  • the invention relates to a drive for a door or a window. Specifically, the invention relates to a drive for a door or a window with a hydraulic pump which serves to provide drive power for the drive.
  • the drive is used to open and / or close a door or a window.
  • the drive comprises a housing with a longitudinal axis, an output shaft rotatably mounted in the housing, an adjusting piston which is linearly adjustable in the housing along the longitudinal axis between a first position and a second position and which divides the interior of the housing into a first space and a second space and which is coupled to the output shaft in order to convert a movement of the actuating piston into a rotational movement of the output shaft.
  • the drive also includes a spring accumulator arranged in the second space, which can be designed as a spiral compression spring and which is prestressed, in particular compressed, when the adjusting piston is adjusted into the second position.
  • an axial piston pump in particular a swash plate pump, is provided to move the actuating piston.
  • the axial piston pump in particular the swash plate pump, has the advantage that the door drive can be manufactured inexpensively and compactly and yet a high pump pressure can be generated without having to accept significant losses due to leakage.
  • the axial piston pump, especially the swash plate pump only produces low noise during operation.
  • the spring accumulator can always remain preloaded in normal operation and can only be used to close the door or window in exceptional cases, e.g. in the event of a fire.
  • the spring mechanism can be used to always close the door after a person has passed through the door.
  • the axial piston pump is advantageously designed to move the actuating piston from the first position to the second position against a restoring force of the spring accumulator, preferably in order to open the door or window.
  • the restoring force can be compensated for by hydraulic pressure applied to the actuating piston by the axial piston pump, counteracting the restoring force.
  • the axial piston pump has one or more pump pistons aligned parallel to one another in the axial direction.
  • the multiple pump pistons move During operation, they are phase-shifted from one another in the axial direction between a first end position and a second end position and thereby pump hydraulic fluid from one room, for example the second room, into another room, for example the first room.
  • the actuating piston forms a movable wall of the first space and a movable wall of the second space, so that the actuating piston is moved by pumping the hydraulic fluid, for example from the second space into the first space.
  • the axial piston pump can preferably be designed as a swash plate pump.
  • the axial piston pump can be designed as a swash plate pump or inclined axis pump.
  • the drive can be designed to be as compact as possible, it is advantageous if the actuating piston and the pump piston or pistons move along parallel axes during operation.
  • the pump piston(s) of the axial piston pump are preferably all movably mounted in the same direction as the actuating piston.
  • the axial piston pump in particular a swash plate pump, is arranged on the side of the spring accumulator opposite the actuating piston.
  • the swash plate pump can have a pump housing that is partially or completely accommodated or arranged in the housing.
  • the pump housing can be arranged fixed in the housing in at least one direction.
  • the pump housing is arranged in the housing in a rotationally fixed manner and/or fixed in at least one axial direction.
  • A can be used for axial fixation Serve as a locking ring.
  • the pump housing can also be screwed into the drive housing.
  • the swash plate pump has at least one [WB1] , in particular at least two, in particular exactly three, pump pistons.
  • the respective pump piston is mounted in the pump housing for linear movement along the longitudinal axis between a retracted position and an extended position. If the swash plate pump has multiple pump pistons, this enables continuous pumping performance and thus continuous movement of the door or window.
  • the swash plate pump has a so-called swash plate that can be driven rotatably about an axis of rotation for actuating the respective pump piston.
  • the swashplate does not necessarily have to be disc-shaped. However, it is advantageous if the swash plate has a flat, in particular disk-shaped, pump piston adjustment surface.
  • the pump piston adjustment surface is preferably aligned obliquely to the axis of rotation of the swash plate.
  • the swash plate pump also has a drive motor for driving the swash plate.
  • This drive motor is preferably connected indirectly to the housing of the drive.
  • the drive motor can be attached directly or indirectly to the housing of the drive.
  • the drive motor can be connected indirectly to the housing of the drive, for example via an adapter plate or a bearing housing.
  • the drive motor can be used as a geared motor be trained.
  • the drive motor is preferably designed as a stepper motor. Stepper motors have the advantage that they can generate relatively high torques in a small space. Installation space can be saved in particular if a gearbox, which is otherwise usually necessary, is dispensed with. Since the gearbox can be omitted when using a stepper motor, the use of a stepper motor as a drive motor enables not only the particularly compact design but also a compact and cost-effective design.
  • the axis of rotation of the swash plate is arranged parallel to the longitudinal axis of the housing.
  • the axis of rotation of the swashplate corresponds to a central longitudinal axis of the housing.
  • the pump piston adjustment surface has a constant angle to the axis of rotation of the swash plate.
  • the angle between the pump piston adjustment surface and the axis of rotation is preferably in the range between 80° and 85°, for example 83°.
  • the swash plate pump has a drive shaft.
  • the swashplate is at least non-rotatably connected to the drive shaft.
  • “At least non-rotatably connected” means that the swash plate and the drive shaft can be firmly connected to one another, for example formed in one piece with one another, or can be connected to one another in a non-rotatable manner but axially displaceable relative to one another.
  • the swashplate is preferably connected directly to the drive shaft. According to an easy-to-assemble variant, the swashplate can be formed in one piece with the drive shaft.
  • the drive shaft can advantageously be driven by the drive motor.
  • a motor shaft of the drive motor engages in a form-fitting manner in the drive shaft.
  • the motor shaft of the drive motor can be coupled to the drive shaft in a rotationally fixed manner by means of a positive connection.
  • the drive shaft can be mounted in a radial bearing, in particular a radial ball bearing.
  • the radial bearing is preferably accommodated in a cover of the drive that closes the front of the housing or in a bearing housing that adjoins, in particular is coupled, to the front of the housing.
  • the drive motor can be attached to the bearing housing.
  • a portion of the pump housing can be arranged in the bearing housing.
  • the cover has an axial extension against which the pump housing is supported.
  • the cover can have an axial extension that fixes the pump housing in an axial direction.
  • an axial bearing in particular an axial ball bearing, an axial needle bearing or a deep groove ball bearing, can be provided between the swash plate and the pump piston(s).
  • the thrust bearing can be equipped with at least one running disk, preferably two running disks.
  • the thrust bearing is preferably coupled to the swashplate to simplify assembly of the drive.
  • the axial bearing can be secured to the swashplate by means of a screw, for example.
  • the respective pump piston can be rounded at its end facing the swash plate, i.e. have a convex end face.
  • the swash plate pump When exposed to sunlight, the hydraulic fluid in the drive can expand, which puts particular strain on external seals. To create seals between the In order to be able to design the drive shaft or motor shaft and the cover or the bearing housing cost-effectively and compactly, it is advantageous if the swash plate pump is free of hydraulic fluid in the area of the swash plate. Hydraulic fluid-free means that the space in which the swash plate and/or the radial bearing are located is sealed against the hydraulic fluid located in the first and second spaces, so that - if at all - only very small amounts of the hydraulic fluid enter the space in which the swashplate and/or the radial bearing are located, can flow. For this purpose, it is advantageous if the respective pump piston is hydraulically sealed relative to the pump housing.
  • seals can be provided on the pump piston(s) and/or on the pump housing.
  • at least one seal ie a piston seal
  • at least one seal ie a rod seal
  • the at least one seal can thus be designed as a piston seal [WB2] , ie as a seal assigned to the pump piston and moving with the pump piston, or as a rod seal, ie as a seal assigned to the pump housing and not moving with the pump piston.
  • the seal can be designed, for example, as a lip seal or as a sliding ring with an O-ring.
  • the at least one seal can comprise a plurality of circumferential grooves which act as a labyrinth seal.
  • the outer circumference of the respective pump piston and the corresponding inner circumference of the pump housing can be adapted to one another in such a way that the respective pump piston is movably guided in the pump housing, but only a minimal space between the respective ones Pump piston and the pump housing is formed, so that a tight clearance fit is created, which acts as a gap seal [WB3] .
  • Such a gap seal has the advantage that an existing rod seal or piston seal experiences less hydraulic pressure during operation, thereby reducing friction between the rod seal and the pump piston or the piston seal and the pump housing. This allows the efficiency of the pump to be further improved. It should be noted that such an upstream gap seal can in principle be used regardless of whether the pump piston is sealed by means of a piston seal or a rod seal.
  • the pump piston(s) do not have an axial through hole.
  • the area of the swashplate is “hydraulic fluid-free” does not mean that there may not be any fluid, e.g. lubricant, in this area. It is usually necessary for there to be lubricant in the area of the swash plate, for example to lubricate existing bearings.
  • the respective pump piston is biased in the direction of the extended position and against the swash plate, in particular by means of a respective return spring. “Biased against the swash plate” means that the swash plate limits the movement of the pump piston(s) as a result of the restoring force of the respective return spring.
  • the pump piston(s) do not have to rest directly on the swashplate.
  • the above-mentioned axial bearing can be arranged between the swash plate and the pump piston(s).
  • the respective return spring for the respective pump piston can be designed as a spiral compression spring. In order to achieve a particularly compact design, the respective return spring for the respective pump piston can alternatively be designed as a wave spring.
  • the respective pump piston can have a respective axial extension which extends into the respective return spring. In this way, a dead space in the respective pump chamber can be kept small, so that even if there are air inclusions in the hydraulic fluid of the drive, a sufficiently high negative pressure can be generated to suck in the hydraulic fluid into the pump chamber or chambers.
  • the pump pistons can be arranged evenly distributed in the circumferential direction with respect to the axis of rotation of the swash plate. If, for example, three pump pistons are provided, these are preferably arranged offset by 120° from one another around the axis of rotation of the swash plate in the pump housing.
  • the pump pistons are preferably arranged at the same distance from the axis of rotation of the swash plate in the radial direction.
  • the spring accumulator is supported on the pump housing.
  • a closing force adjustment arranged between the spring accumulator and the pump housing can be provided with a spring plate that is axially adjustable on a spindle, in particular by means of a worm shaft, and the spring accumulator can be supported on the spring plate.
  • the closing force adjustment preferably serves to adjust the level of the restoring force applied by the spring.
  • the pump housing for the or each of the pump pistons has an inlet running along the longitudinal axis and an outlet running obliquely, in particular perpendicularly, to the longitudinal axis.
  • Each inlet and each outlet can be provided with a respective, in particular preloaded, check valve.
  • the inlets can each be provided with a filter to prevent contaminants from entering the pump housing.
  • the outlets can be connected to one another via a circumferential groove formed on the circumference of the pump housing.
  • the pump housing is preferably designed to be rotationally symmetrical.
  • the inlets are connected to the second space and the outlets are connected to the first space via an outflow channel, in particular having a check valve.
  • hydraulic fluid can be pumped from the second space into the first space in order to move the actuating piston into the second position.
  • the spring accumulator is advantageously arranged in the second space.
  • the second room can also be referred to as the spring room.
  • the first space and the second space can be connected to one another via a return flow channel, in particular having a throttle valve, in order to return hydraulic fluid from the first space to the second space when the actuating piston is adjusted to the first position due to the preloaded spring accumulator.
  • a return flow channel in particular having a throttle valve
  • a check valve can be arranged in the return flow channel.
  • the swash plate pump defines at least one pump chamber, in particular several pump chambers, with a respective pump piston being mounted in a linearly movable manner in the respective pump chamber.
  • a dead space of the respective pump room can be smaller than a delivery volume of the respective pump room.
  • the drive motor is preferably designed as a stepper motor and/or the respective pump piston is designed as a cylinder pin.
  • the actuating piston can be coupled to the output shaft via a gear [WB4] , for example a rack gear or a cam disk gear.
  • the transmission can advantageously be designed as a rack and pinion transmission.
  • the rack and pinion gear preferably has a rack with uneven teeth and a corresponding gear with corresponding uneven teeth.
  • the drive can be designed as a constantly active door closer or as a freewheel door closer.
  • a “constantly active door closer” refers to a door closer that always returns the door to its closed position and against whose restoring force the door can be opened manually and/or mechanically.
  • the spring drive is preloaded in regular operation and the door can be opened and closed without additional resistance.
  • the door closer is triggered, causing the door to be closed by the door closer.
  • the drive can also be designed for windows.
  • the invention also relates to using the drive as a constantly active door closer or as a freewheel door closer.
  • the drive can be designed in such a way that the door connected to the drive or the window connected to the drive can be opened manually and closed again using a spring drive, regardless of operation of the axial piston pump.
  • the hydraulic drive i.e. the axial piston pump, can only open the door in situations when this is explicitly requested, for example by pressing a switch.
  • the Figures 1 and 2 show a side sectional view of a drive 10 according to the invention.
  • the drive 10 has a housing 12 which extends along a longitudinal axis L of the drive 10.
  • the housing 12 defines an inner peripheral surface 14 that defines an interior of the housing 12.
  • An adjusting piston 16 is mounted movably along the inner peripheral surface 14 in the direction of the longitudinal axis L.
  • a linear movement of the actuating piston 16 is converted into a rotational movement of an output shaft 20 via a rack and pinion gear 18.
  • a rack 18a of the rack and pinion gear 18 is formed on an inside of the adjusting piston 16.
  • the rack 18a is in meshing engagement with a gear 18b of the rack and pinion gear 18 which is non-rotatably connected to the output shaft 20.
  • the rack 18a and the gear 18b each have asymmetrical teeth in order to achieve an advantageous speed curve of the door or window sash when the door or window is closed.
  • the actuating piston 16 is acted upon by a spring accumulator 22 with a restoring force, which places the actuating piston 16 in a first position (see Fig. 1 ) holds. Contrary to the restoring force, the actuating piston 16 can be moved along the longitudinal axis L from the first position to a second position.
  • an axial piston pump 24 in the form of a swash plate pump is provided in order to move the actuating piston 16 along the longitudinal axis L.
  • the swash plate pump 24 serves to supply hydraulic fluid, which is located in a second space 28 extending between the actuating piston 16 and a pump housing 26 of the swash plate pump 24, via an outflow channel 30 (see Fig. 2 ) into a first room 32 to pump.
  • the hydraulic fluid pumped into the first space 32 displaces the actuating piston 16 delimiting the first space 32, so that it moves in the direction of the swash plate pump 24 against the restoring force of the spring accumulator 22, here a spiral compression spring.
  • a return channel 34 (please refer Fig. 2 ) intended.
  • a throttle valve 36 is arranged in the return flow channel 34 in order to limit a return flow speed of the hydraulic fluid and thus ensure that, for example, a door connected to the drive 10 closes slowly and in a controlled manner. So that such a door connected to the drive 10 can be kept in an open position without having to continuously apply pumping power, an electrically switchable check valve 38 is provided in the return flow channel 34.
  • a check valve 40 is provided in the outflow channel 30 in order to prevent hydraulic fluid from flowing back from the first space 32 into the second space 28 along the outflow channel 30.
  • the check valve 38 When the check valve 38 is closed, the hydraulic fluid located in the first space 32 cannot escape and, due to its incompressibility, prevents the actuating piston 16 from moving into the in Fig. 1 and 2 return to the first position shown.
  • the pump housing 26 defines several, for example two, pump chambers 42a, 42b, which are delimited on one side by pump pistons 44a, 44b which are movably mounted along the longitudinal axis L.
  • Each pump chamber 42a, 42b has an inlet 46a, 46b, which connects the second chamber 28 with the respective pump chamber 42a, 42b.
  • the inlets 46a, 46b are each formed on the end faces of the pump chambers 42a, 42b.
  • each pump chamber 42a, 42b has an outlet 48a, 48b, which connects the respective pump chamber 42a, 42b with the outflow channel 30 (see Fig.
  • the outlets 48a, 48b are each arranged on the circumference of the respective pump chamber 42a, 42b.
  • the inlets 46a, 46b are each equipped with an inlet check valve 50a, 50b so that the hydraulic fluid cannot flow directly from the pump chamber 42a, 42b back into the second chamber 28.
  • the outlets 48a, 48b are each equipped with an outlet check valve 52a, 52b so that the hydraulic fluid cannot flow from the outflow channel 30 directly back into the pump chamber 42a, 42b.
  • the swash plate pump 24 has a swash plate 54.
  • the swash plate 54 forms a pump piston adjustment surface 56, which is arranged obliquely to an axis of rotation D of a drive shaft 58 which is formed in one piece with the swash plate 54.
  • the pump pistons 44a, 44b are biased in the direction of the swash plate 54 by means of return springs 60a, 60b.
  • an axial bearing 62 in the form of an axial needle bearing is arranged between the end surfaces of the pump piston 44 facing the swash plate 54 and in the present case convex and the pump piston adjustment surface 56.
  • the swash plate 54 is set in rotation by a drive motor 63 during operation of the swash plate pump 24. Due to the rotational movement of the swash plate 54, the pump pistons 44a, 44b are out of phase with one another against the restoring force of the return spring 60a, 60b into the retracted position (pump piston 44a in Fig. 3A ) pressed and then again by the respective return spring 60a, 60b into the extended position (pump piston 44b in Fig. 3A ) pushed back. The pump pistons 44 thus complete each complete revolution the swash plate 54 performs a complete pumping movement about the axis of rotation D, for example from the retracted position to the extended position and back to the retracted position.
  • Fig. 4 an alternative embodiment of the drive 10' is shown.
  • a locking ring 64 which is inserted into a retaining groove 66 formed on the circumference in the housing 12 (see Fig. 3B ) is used, is at the in Fig. 4
  • an axial extension 64' is provided on a cover 68 supporting the drive shaft 58, the extension 64' serving to axially fix the pump housing 26 and thus to support the restoring force of the spring accumulator 22.
  • FIG. 4 Another, separate difference in Fig. 4 The embodiment shown is that the inlet check valves 50a', 50b' and the outlet check valves 52a', 52b' are spring biased to shorten the response time of the valves 50a', 50b', 52a', 52b'.
  • FIG. 4 Another, also separate difference in Fig. 4
  • the embodiment shown is that the axial bearing 62' is fixed in the axial direction on the swashplate 54' by means of a screw 70'.
  • seals 45 are attached to the pump piston 44, the seals 45 can alternatively also be attached to the pump housing 26.
  • the seals 45 prevent the hydraulic fluid from penetrating into a space 47 surrounding the swash plate 54.
  • seals 94, 96 used to seal the space 47 can be designed more simply and therefore more cost-effectively.
  • the cover 68 serves to support the drive shaft 58 and to close the housing 12 on the end face adjacent to the axial piston pump 24 Fig. 5
  • the pump housing 26" is used to close the housing 12" at the front.
  • a bearing housing 72" is provided to support the drive shaft 58".
  • the drive motor 63" is attached to the front side of the bearing housing 72".
  • the bearing housing 72" is connected to the front side of the housing 12" by means of a flange 74" and screws 76".
  • the drive motor 63" is in turn attached to the bearing housing 72" by means of screws 78".
  • the embodiment of the Fig. 5 also has a closing force adjustment 80" for adjusting the level of the restoring force of the spring accumulator 22".
  • the closing force adjustment 80" comprises a spring plate 82" which is mounted in a rotationally fixed but axially displaceable manner in the housing 12" and which supports the spring accumulator 22" on the front side.
  • the spring plate 82" can be adjusted in the longitudinal direction L by means of a spindle 84" in order to either pre-tension or relax the spring accumulator 22" more depending on the direction of rotation of the spindle 84".
  • the 84" spindle is in turn via a worm gear, from which in Fig. 5 a part of the worm wheel 86" can be seen, can be set in rotation.
  • the worm wheel 86" can be rotated via a worm shaft 88", which, as in Fig. 10A shown is accessible from the outside.
  • Fig. 6 shows a further, particularly robust embodiment of a swash plate pump 24′′′ for a 10′′′ drive.
  • the return springs 60a′′′ and 60b′′′ are designed as wave springs.
  • the wave springs 60a′′′ and 60b′′′ are adapted in terms of their outer diameter to the cross-sectional area of the respective pump chambers 42a′′′ and 42b′′′.
  • the pump pistons 44a′′′ and 44b'" are designed in such a way that they are in the position displaced to the maximum by the swash plate (see pump piston 44a′′′ in Fig.
  • the pump room 42a′′′ Apart from a design-necessary free space for the wave springs 60a′′′ and 60b′′′, it essentially completely occupies.
  • the pump pistons 44a′′′ and 44b′′′ have an axial extension 104a′′′ and 104b′′′, which extends into the respective wave spring 60a′′′ and 60′′′ and occupies a large part of the interior of the respective wave spring 60a′′′ and 60b′′′.
  • This embodiment has the advantage that a dead space 106′′′ of the respective pump chamber 42a′′′ and 42b′′′, ie a spatial section of the respective pump chamber 42a′′′ and 42b′′′ in which the pump piston 44a or 44b is not located at any time, can be kept small and Nevertheless, a long guide surface of the pump pistons 44a′′′ and 44b′′′ in the pump housing 26 is made possible with a small overall length. As a result, even if there are air pockets in the hydraulic fluid of the drive 10, a sufficiently high negative pressure can be generated to suck the hydraulic fluid into the pump chambers 42a′′′ and 42b′′′.
  • Fig. 7 shows a further embodiment of a swash plate pump 24 IV for a drive 10 IV .
  • the seal 45 IV between the pump pistons 44a IV and 44b IV and the pump housing 26 IV is designed as a lip seal or U-ring.
  • the lip seals or the U-rings 45 IV are arranged on their respective pump pistons 44a IV and 44b IV .
  • Such a lip seal or such a U-ring 45 IV generates particularly low frictional forces due to its design.
  • the swash plate pump 24 IV can achieve high levels of efficiency and the drive motor 63 IV can be made smaller and more cost-effective.
  • the return springs 60a IV and 60b IV are designed as helical compression springs.
  • the helical compression springs 60a IV and 60b IV extend along a recess in the respective pump piston 44a IV and 44b IV through the pump chamber 42a IV and 42b IV into the respective inlet 46a IV and 46b IV .
  • the helical compression springs 60a IV and 60b IV are mounted at both ends in the radial direction.
  • Fig. 8 shows a particularly cost-effective embodiment of a 24 V swash plate pump for a 10 V drive.
  • the seal 45 V between the pump pistons 44a V and 44b V and the pump housing 26 V is realized by a seal, specifically a rod seal, in the pump housing 26 V.
  • a seal specifically a rod seal
  • Such cylinder pins 44a V and 44b V are particularly inexpensive to purchase and still maintain high quality standards.
  • the return springs 60a V and 60b V - as shown - can be designed as wave springs [WB5] .
  • the return springs can be designed, for example, as helical compression springs.
  • a wave spring 60a V , 60b V is arranged in each of the pump chambers 42a V and 42b V between the pump housing 26 V and the respective pump piston 44a V and 44b V.
  • the 45 V rod seal can be designed, for example, as a lip seal or as a sliding ring with an O-ring. This results in a compact and particularly cost-effective embodiment.
  • the pressure in the pump chamber drops sharply until the seal 45 V is reached due to an advantageous fit, ie due to the narrow gap, between the respective cylinder pins 44a V and 44b V and the pump housing 26 V and the gap seal [WB6] created in this way. This means that less pressure acts on the seal, which causes significantly less friction during dynamic operation.
  • the gap seal described above can in principle be provided in all variants described, regardless of whether a piston seal or a rod seal is used.
  • Fig. 9 shows a particularly low-friction embodiment of a swash plate pump 24 VI for a drive 10 VI .
  • this embodiment there are radially circumferential recesses in the outer peripheral surface of the pump piston 44a VI and 44b VI , ie grooves 108 VI , which produce a sealing effect in the manner of a labyrinth seal between the outer peripheral surface of the pump pistons 44a VI and 44b VI and the pump housing 26 VI .
  • FIG. 11A The Figures 11A, 11B and 11C show different views of a pump housing 26.
  • Fig. 11A The front inlets 46a, 46b, 46c and one of the circumferentially arranged outlets 48b can be seen.
  • the outlets 48 are connected to one another via a groove 90 running in the circumferential direction.
  • the groove 90 is sealed by two seals 91a, 91b running parallel to the groove 90.
  • three pump chambers 42a, 42b, 42c for three pump pistons 44a, 44b, 44c are formed in the pump housing 26.
  • the pump pistons are each arranged 120° offset from one another around a central axis of the pump housing 26. If the swash plate pump 24 is equipped with exactly three pump pistons 44a, 44b, 44c, there is a good compromise between compact design and homogeneous pump performance.
  • Fig. 12 a detailed view of the cover 68 and the drive shaft 58 mounted in the cover 68 is shown.
  • the drive shaft 58 is formed in one piece with the swash plate 54.
  • the drive shaft 58 is rotatably mounted in the cover 68 by means of the radial bearing 92, here a radial ball bearing.
  • the drive shaft 58 has a rotationally asymmetrical front opening in order to be able to insert an asymmetrical motor shaft 98 of the drive motor 63 into the drive shaft 58 at the front.
  • the thrust bearing 62 is shown in detail.
  • the axial bearing is an axial needle bearing 62 with running disks 100.
  • a first running disk 100a facing the pump piston adjustment surface 56 rotates with the pump piston adjustment surface 56.
  • a second running disk 100b facing the pump pistons 44 like the pump pistons 44, does not rotate with the swash plate 54.
  • the cover 68 like the pump housing, is 26". Fig. 5 - Can be screwed into the housing 12.
  • the cover 68 has an external thread 102 which can be screwed into a corresponding internal thread which is formed on the inner peripheral surface 14 of the housing 12.
  • the drive 10 is suitable for various applications.
  • the actuating piston 16 can be adjusted by manually opening and closing a door coupled to the drive 10 or a window coupled to the drive 10.
  • the drive 10 is designed to close a manually opened door or a manually opened window solely by the restoring force of the spring accumulator 22.
  • the drive 10 can be used to open a door coupled to the drive 10 or a window coupled to the drive 10 with the driving power of the drive motor 63, to keep it open by means of the closed check valve 38, and then by opening the check valve 38 to close again.
  • the drive 10 can also serve as a freewheel door closer drive.
  • the spring accumulator 22 is preloaded by adjusting the adjusting piston 16 using the swash plate pump 24.
  • the door coupled to the drive 10 or the window coupled to the drive 10 can then be opened and closed without moving the actuating piston 16.
  • a signal is sent to the check valve 38 to close it open.
  • the actuating piston 16 is moved back into the first position by the restoring force of the spring accumulator 22, which ensures that the door or window is closed.

Abstract

Die Erfindung betrifft einen Antrieb für eine Tür oder ein Fenster, umfassend ein Gehäuse mit einer Längsachse, eine rotierbar in dem Gehäuse gelagerte Abtriebswelle, einen in dem Gehäuse entlang der Längsachse zwischen einer ersten Stellung und einer zweiten Stellung linear verstellbaren Stellkolben, der den Innenraum des Gehäuses in einen ersten Raum und einen zweiten Raum unterteilt und der mit der Abtriebswelle gekoppelt ist, um eine Bewegung des Stellkolbens in eine Rotationsbewegung der Abtriebswelle umzuwandeln, und einen in dem zweiten Raum angeordneten Federspeicher, insbesondere eine Spiraldruckfeder, der bei einer Verstellung des Stellkolbens in die zweite Stellung vorgespannt, insbesondere komprimiert, wird. Zur Bewegung des Stellkolbens ist eine Axialkolbenpumpe, insbesondere Taumelscheibenpumpe, vorgesehen.

Description

  • Die Erfindung betrifft einen Antrieb für eine Tür oder ein Fenster. Speziell betrifft die Erfindung einen Antrieb für eine Tür oder ein Fenster mit einer Hydraulikpumpe, die dazu dient, eine Antriebsleistung des Antriebs bereitzustellen.
  • Türantriebe mit hydraulischem Antrieb sind bekannt. Bekannte hydraulische Türantriebe nutzen eine Zahnradpumpe zur Bereitstellung der Antriebsleistung. Übliche Zahnradpumpen haben den Nachteil, dass sie nicht für die hohen Drücke, geringen Volumina und kleinen Bauräume eines Türantriebs konzipiert sind. Zudem weisen die Zahnradpumpen hohe Leckageraten auf, benötigen viel Bauraum und sind durch hohe Dichtheits- und Toleranzanforderungen teuer in der Herstellung. Um die hohen Leckageraten der Zahnradpumpe auszugleichen, müssen die Pumpe und deren Antriebsmotor größer dimensioniert und deren Förderleistung durch höhere Drehzahlen des Motors erhöht werden, was zu lauten Betriebsgeräuschen führt.
  • Es ist eine Aufgabe der Erfindung, einen Antrieb für eine Tür oder ein Fenster bereitzustellen, welcher effizient, kompakt und kostengünstig herstellbar ist und zudem allenfalls geringe Betriebsgeräusche verursacht.
  • Die Aufgabe wird gelöst durch einen Antrieb mit den Merkmalen des Anspruchs 1. Der Antrieb dient zum Öffnen und/oder Schließen einer Tür oder eines Fensters. Der Antrieb umfasst ein Gehäuse mit einer Längsachse, eine rotierbar in dem Gehäuse gelagerte Abtriebswelle, einen in dem Gehäuse entlang der Längsachse zwischen einer ersten Stellung und einer zweiten Stellung linear verstellbaren Stellkolben, der den Innenraum des Gehäuses in einen ersten Raum und einen zweiten Raum unterteilt und der mit der Abtriebswelle gekoppelt ist, um eine Bewegung des Stellkolbens in eine Rotationsbewegung der Abtriebswelle umzuwandeln. Der Antrieb umfasst zudem einen in dem zweiten Raum angeordneten Federspeicher, der als Spiraldruckfeder ausgebildet sein kann und der bei einer Verstellung des Stellkolbens in die zweite Stellung vorgespannt, insbesondere komprimiert, wird. Um die in Bezug auf die üblicherweise eingesetzte Zahnradpumpe erläuterten Nachteile zu überwinden ist zur Bewegung des Stellkolbens eine Axialkolbenpumpe, insbesondere Taumelscheibenpumpe, vorgesehen.
  • Die Axialkolbenpumpe, insbesondere die Taumelscheibenpumpe, hat den Vorteil, dass der Türantrieb kostengünstig und kompakt hergestellt werden kann und dennoch ein hoher Pumpendruck erzeugt werden kann, ohne maßgebliche Verluste durch Leckage hinnehmen zu müssen. Zudem erzeugt die Axialkolbenpumpe, insbesondere die Taumelscheibenpumpe, im Betrieb nur geringe Geräusche.
  • Der Federspeicher kann in einem Regelbetrieb stets vorgespannt bleiben und nur zum Schließen der Tür oder des Fensters in einem Ausnahmefall, z.B. bei einem Brand, dienen. Alternativ kann der Federspeicher dazu dienen, die Türe stets zu schließen, nachdem eine Person die Tür passiert hat.
  • Die Axialkolbenpumpe ist vorteilhafterweise dazu ausgebildet, den Stellkolben entgegen einer Rückstellkraft des Federspeichers von der ersten Stellung in die zweite Stellung zu bewegen, vorzugsweise um die Türe oder das Fenster zu öffnen. Um die Türe oder das Fenster in einer Offenstellung zu halten, kann die Rückstellkraft durch einen, von der Axialkolbenpumpe aufgebrachten, hydraulischen Druck auf den Stellkolben entgegen der Rückstellkraft ausgeglichen werden.
  • Die Axialkolbenpumpe weist einen oder mehrere in axialer Richtung parallel zueinander ausgerichtete Pumpkolben auf. Die mehreren Pumpkolben bewegen sich im Betrieb phasenversetzt zueinander in axialer Richtung zwischen einer ersten Endlage und einer zweiten Endlage und pumpen dabei Hydraulik-Flüssigkeit von einem Raum, z.B. dem zweiten Raum, in einen anderen Raum, z.B. den ersten Raum.
  • Der Stellkolben bildet eine bewegliche Wand des ersten Raums und eine bewegliche Wand des zweiten Raums, sodass der Stellkolben durch ein Pumpen der Hydraulik-Flüssigkeit, beispielsweise von dem zweiten Raum in den ersten Raum, bewegt wird. Die Axialkolbenpumpe kann vorzugsweise als Taumelscheibenpumpe ausgebildet sein. Alternativ kann die Axialkolbenpumpe als Schrägscheibenpumpe oder Schrägachsenpumpe ausgebildet sein.
  • Damit der Antrieb möglichst kompakt ausgebildet werden kann, ist es vorteilhaft, wenn sich der Stellkolben und der oder die Pumpkolben im Betrieb entlang paralleler Achsen bewegen. In anderen Worten sind der oder die Pumpkolben der Axialkolbenpumpe vorzugsweise alle in der gleichen Richtung wie der Stellkolben beweglich gelagert.
  • Vorteilhafte Ausbildungen der Erfindung sind den Unteransprüchen, der Beschreibung und der Zeichnung zu entnehmen.
  • Gemäß einer Ausführungsform ist die Axialkolbenpumpe, insbesondere Taumelscheibenpumpe, auf der dem Stellkolben gegenüberliegenden Seite des Federspeichers angeordnet.
  • Die Taumelscheibenpumpe kann ein teilweise oder vollständig in dem Gehäuse aufgenommenes bzw. angeordnetes Pumpengehäuse aufweisen. Das Pumpengehäuse kann in mindestens einer Richtung fixiert in dem Gehäuse angeordnet sein. Vorzugsweise ist das Pumpengehäuse drehfest und/oder in zumindest einer axialen Richtung fixiert in dem Gehäuse angeordnet. Zur axialen Fixierung kann ein Sicherungsring dienen. Das Pumpengehäuse kann auch in das Gehäuse des Antriebs eingeschraubt sein.
  • Die Taumelscheibenpumpe weist zumindest einen [WB1], insbesondere zumindest zwei, insbesondere genau drei, Pumpkolben auf. Der jeweilige Pumpkolben ist in dem Pumpengehäuse entlang der Längsachse zwischen einer eingefahrenen Position und einer ausgefahrenen Position linear beweglich gelagert. Wenn die Taumelscheibenpumpe mehrere Pumpkolben aufweist, ermöglicht dies eine kontinuierliche Pumpleistung und somit eine kontinuierliche Bewegung der Tür oder des Fensters.
  • Die Taumelscheibenpumpe weist eine um eine Drehachse drehbar antreibbare, sogenannte Taumelscheibe zur Betätigung des jeweiligen Pumpkolbens auf. Die Taumelscheibe muss nicht zwangsläufig scheibenförmig ausgebildet sein. Es ist jedoch vorteilhaft, wenn die Taumelscheibe eine ebene, insbesondere scheibenförmige, Pumpkolbenverstellfläche aufweist. Die Pumpkolbenverstellfläche ist vorzugsweise schräg zu der Drehachse der Taumelscheibe ausgerichtet. Wenn die Taumelscheibe um ihre Drehachse rotiert, ergibt sich durch die schräge Ausrichtung der Pumpkolbenverstellfläche zur Drehachse der Taumelscheibe, dass der oder die exzentrisch zur Drehachse der Taumelscheibe angeordneten Pumpkolben in axialer Richtung zyklisch verdrängt werden und ihnen dann wieder Raum gegeben wird, um sich in Richtung der Taumelscheibe zurückzubewegen.
  • Die Taumelscheibenpumpe weist zudem einen Antriebsmotor zum Antreiben der Taumelscheibe auf. Dieser Antriebsmotor ist vorzugsweise mittelbar mit dem Gehäuse des Antriebs verbunden. Der Antriebsmotor kann unmittelbar oder mittelbar an dem Gehäuse des Antriebs befestigt sein. Der Antriebsmotor kann mittelbar beispielsweise über eine Adapterplatte oder ein Lagergehäuse mit dem Gehäuse des Antriebs verbunden sein. Beispielsweise kann der Antriebsmotor als Getriebemotor ausgebildet sein. Der Antriebsmotor ist vorzugsweise als Schrittmotor ausgebildet. Schrittmotoren haben den Vorteil, dass sie verhältnismäßig hohe Drehmomente auf kleinem Bauraum erzeugen können. Bauraum kann insbesondere dadurch eingespart werden, wenn auf ein ansonsten üblicherweise notwendiges Getriebe verzichtet wird. Da bei der Verwendung eines Schrittmotors das Getriebe entfallen kann, ermöglicht die Verwendung eines Schrittmotors als Antriebsmotor neben der besonders kompakten Bauform auch eine kompakte und kostengünstige Bauweise.
  • Vorzugsweise ist die Drehachse der Taumelscheibe parallel zur Längsachse des Gehäuses angeordnet. Gemäß einer Ausführungsform entspricht die Drehachse der Taumelscheibe einer Mittellängsachse des Gehäuses.
  • Gemäß einer besonders kostengünstig herzustellenden Ausführungsform weist die Pumpkolbenverstellfläche einen konstanten Winkel zur Drehachse der Taumelscheibe auf. Der Winkel zwischen der Pumpkolbenverstellfläche und der Drehachse liegt vorzugsweise im Bereich zwischen 80° und 85°, z.B. bei 83°.
  • Gemäß einer Ausführungsform weist die Taumelscheibenpumpe eine Antriebswelle auf. Vorzugsweise ist die Taumelscheibe zumindest drehfest mit der Antriebswelle verbunden. "Zumindest drehfest verbunden" bedeutet, dass die Taumelscheibe und die Antriebswelle fest miteinander verbunden, z.B. einstückig miteinander ausgebildet, sein können, oder drehfest, aber axial zueinander verschieblich, miteinander verbunden sein können. Die Taumelscheibe ist vorzugsweise direkt mit der Antriebswelle verbunden. Gemäß einer einfach zu montierenden Variante kann die Taumelscheibe einstückig mit der Antriebswelle ausgebildet sein. Die Antriebswelle ist vorteilhafterweise von dem Antriebsmotor antreibbar.
  • Gemäß einer Ausführungsform greift eine Motorwelle des Antriebsmotors formschlüssig in die Antriebswelle ein. In anderen Worten kann die Motorwelle des Antriebsmotors mittels eines Formschlusses drehfest mit der Antriebswelle gekoppelt sein.
  • Die Antriebswelle kann in einem Radiallager, insbesondere Radialkugellager, gelagert sein. Das Radiallager ist vorzugsweise in einem das Gehäuse stirnseitig verschließenden Deckel des Antriebs oder in einem an das Gehäuse stirnseitig anschließenden, insbesondere angekoppelten, Lagergehäuse aufgenommen. Der Antriebsmotor kann an dem Lagergehäuse befestigt sein. Ein Abschnitt des Pumpengehäuses kann in dem Lagergehäuse angeordnet sein.
  • Gemäß einer Ausführungsform weist der Deckel einen axialen Fortsatz auf, gegen den sich das Pumpengehäuse abstützt. In anderen Worten kann der Deckel einen axialen Fortsatz aufweisen, der das Pumpengehäuse in einer axialen Richtung fixiert.
  • Zur Reibungsminimierung kann ein Axiallager, insbesondere ein Axialkugellager, ein Axialnadellager oder ein Rillenkugellager, zwischen der Taumelscheibe und dem oder den Pumpkolben vorgesehen sein. Das Axiallager kann mit zumindest einer Laufscheibe, vorzugsweise zwei Laufscheiben, ausgestattet sein. Das Axiallager ist vorzugsweise mit der Taumelscheibe gekoppelt, um den Zusammenbau des Antriebs zu vereinfachen. Das Axiallager kann beispielsweise mittels einer Schraube an der Taumelscheibe gesichert sein.
  • Der jeweilige Pumpkolben kann an seinem der Taumelscheibe zugewandten Ende abgerundet sein, d.h. eine konvexe Stirnfläche aufweisen.
  • Bei Sonneneinstrahlung kann sich das Hydraulikfluid im Antrieb ausdehnen, was vor allem nach außen liegende Dichtungen belastet. Um Dichtungen zwischen der Antriebswelle oder Motorwelle und dem Deckel oder dem Lagergehäuse kostengünstig und kompakt ausbilden zu können, ist es vorteilhaft, wenn die Taumelscheibenpumpe im Bereich der Taumelscheibe hydraulikfluidfrei ist. Hydraulikfluidfrei bedeutet, dass der Raum, in dem sich die Taumelscheibe und/oder das Radiallager befinden, gegen das in dem ersten und zweiten Raum befindliche Hydraulikfluid abgedichtet ist, sodass - wenn überhaupt - nur sehr kleine Mengen des Hydraulikfluids in den Raum, in dem sich die Taumelscheibe und/oder das Radiallager befinden, fließen können. Hierzu ist es vorteilhaft, wenn der jeweilige Pumpkolben gegenüber dem Pumpengehäuse hydraulisch abgedichtet ist. Hierzu können Dichtungen an dem oder den Pumpkolben und/oder an dem Pumpengehäuse vorgesehen sein. Vorzugsweise ist an der jeweiligen Außenumfangsfläche des jeweiligen Pumpkolbens jeweils zumindest eine Dichtung, d.h. eine Kolbendichtung, angebracht. Alternativ oder zusätzlich kann an der Innenumfangsseite eines jeweiligen Pumpraums, in dem der jeweilige Pumpkolben linear beweglich gelagert ist, zumindest eine Dichtung, d.h. eine Stangendichtung, vorgesehen sein. Die zumindest eine Dichtung kann somit als Kolbendichtung[WB2], d.h. als eine dem Pumpkolben zugeordnete und sich mit dem Pumpkolben mitbewegende Dichtung, oder als Stangendichtung, d.h. als eine dem Pumpengehäuse zugeordnete und sich nicht mit dem Pumpkolben mitbewegende Dichtung, ausgebildet sein. Die Dichtung kann beispielsweise als Lippendichtung oder als Gleitring mit O-Ring ausgebildet sein. Alternativ oder zusätzlich kann die zumindest eine Dichtung mehrere umlaufende Nuten umfassen, die als Labyrinthdichtung wirken. Um die Dichtheit zwischen den Pumpkolben und dem Pumpengehäuse weiter zu verbessern, können der Außenumfang des jeweiligen Pumpkolbens und der entsprechende Innenumfang des Pumpengehäuses so zueinander angepasst sein, dass der jeweilige Pumpkolben zwar beweglich in dem Pumpengehäuse geführt ist, jedoch nur ein minimaler Raum zwischen dem jeweiligen Pumpkolben und dem Pumpengehäuse ausgebildet ist, sodass eine enge Spielpassung entsteht, welche als Spaltdichtung [WB3]wirkt. Eine solche Spaltdichtung hat den Vorteil, dass im Betrieb eine vorhandene Stangendichtung oder Kolbendichtung weniger hydraulischen Druck erfährt, wodurch eine Reibung zwischen der Stangendichtung und dem Pumpkolben oder der Kolbendichtung und dem Pumpengehäuse reduziert wird. Hierdurch kann der Wirkungsgrad der Pumpe weiter verbessert werden. Dabei ist anzumerken, dass eine solche vorgelagerte Spaltdichtung grundsätzlich unabhängig davon eingesetzt werden kann, ob der Pumpkolben mittels einer Kolbendichtung oder eine Stangendichtung abgedichtet ist.
  • Zudem ist es vorteilhaft, wenn der oder die Pumpkolben keine axiale Durchgangsbohrung aufweisen. Dass der Bereich der Taumelscheibe "hydraulikfluidfrei" ist bedeutet jedoch nicht, dass sich in diesem Bereich kein Fluid, z.B. Schmiermittel, befinden darf. Üblicherweise ist es nämlich notwendig, dass sich Schmiermittel in dem Bereich der Taumelscheibe befindet, um beispielsweise vorhandene Lager zu schmieren.
  • Gemäß einer Ausführungsform ist der jeweilige Pumpkolben, insbesondere mittels einer jeweiligen Rückstellfeder, in Richtung der ausgefahrenen Position und gegen die Taumelscheibe vorgespannt. "Gegen die Taumelscheibe vorgespannt" bedeutet, dass die Taumelscheibe die Bewegung des oder der Pumpkolben in Folge der Rückstellkraft der jeweiligen Rückstellfeder limitiert. Jedoch müssen der oder die Pumpkolben nicht direkt an der Taumelscheibe anliegen. Beispielsweise kann das oben genannte Axiallager zwischen der Taumelscheibe und dem oder den Pumpkolben angeordnet sein. Die jeweilige Rückstellfeder für den jeweiligen Pumpkolben kann als Spiraldruckfeder ausgebildet sein. Um eine besonders kompakte Bauweise zu erzielen, kann die jeweilige Rückstellfeder für den jeweiligen Pumpkolben alternativ als Wellenfeder ausgebildet sein. Der jeweilige Pumpkolben kann einen jeweiligen axialen Fortsatz aufweisen, der sich in die jeweilige Rückstellfeder hinein erstreckt. Hierdurch kann ein Totraum des jeweiligen Pumpraums gering gehalten werden, so dass auch bei Lufteinschlüssen im Hydraulikfluid des Antriebs ein ausreichend hoher Unterdruck zum Einsaugen des Hydraulikfluids in den oder die Pumpräume erzeugt werden kann.
  • Um einen möglichst gleichmäßige Pumpleistung zu erhalten, können die Pumpkolben in Umfangsrichtung bezüglich der Drehachse der Taumelscheibe gleichverteilt angeordnet sein. Wenn beispielsweise drei Pumpkolben vorgesehen sind, sind diese vorzugsweise um 120° versetzt zueinander um die Drehachse der Taumelscheibe im Pumpengehäuse angeordnet. Vorzugsweise sind die Pumpkolben in radialer Richtung gleich weit von der Drehachse der Taumelscheibe beabstandet angeordnet.
  • Gemäß einer Ausführungsform stützt sich der Federspeicher an dem Pumpengehäuse ab. Alternativ dazu kann eine zwischen dem Federspeicher und dem Pumpengehäuse angeordnete Schließkraftverstellung mit einem auf einer Spindel, insbesondere mittels einer Schneckenwelle, axial verstellbaren Federteller vorgesehen sein und sich der Federspeicher an dem Federteller abstützen. Die Schließkraftverstellung dient vorzugsweise dazu, eine Höhe der von der Feder aufgebrachten Rückstellkraft einzustellen.
  • Vorzugsweise weist das Pumpengehäuse für den oder jeden der Pumpkolben einen entlang der Längsachse verlaufenden Einlass und einen schräg, insbesondere senkrecht, zur Längsachse verlaufenden Auslass auf. Jeder Einlass und jeder Auslass kann mit einem jeweiligen, insbesondere vorgespannten, Rückschlagventil versehen sein. Die Einlässe können jeweils mit einem Filter versehen sein, um Verschmutzungen davon abzuhalten, in das Pumpengehäuse einzudringen.
  • Um die Auslässe auf einfache Weise zusammenzuführen, können die Auslässe über eine umlaufende, umfangsseitig an dem Pumpengehäuse ausgebildete Nut miteinander verbunden sein. Um den Einbau des Pumpengehäuses zu vereinfachen, ist das Pumpengehäuse vorzugsweise rotationssymmetrisch ausgebildet.
  • Gemäß einer Ausführungsform sind die Einlässe mit dem zweiten Raum und die Auslässe über einen, insbesondere ein Rückschlagventil aufweisenden, Abströmkanal mit dem ersten Raum verbunden. Im Betrieb der Taumelscheibenpumpe kann Hydraulikfluid von dem zweiten Raum in den ersten Raum gepumpt werden, um den Stellkolben in die zweite Stellung zu verstellen. Vorteilhafterweise ist der Federspeicher in dem zweiten Raum angeordnet. Der zweite Raum kann bei einer solchen Konfiguration auch als Federraum bezeichnet werden.
  • Der erste Raum und der zweite Raum können über einen, insbesondere ein Drosselventil aufweisenden, Rückflusskanal miteinander verbunden sein, um bei einer Verstellung des Stellkolbens in die erste Stellung aufgrund des vorgespannten Federspeichers Hydraulikfluid aus dem ersten Raum in den zweiten Raum rückzuführen.
  • Um den Stellkolben in der zweiten Stellung zu halten und so beispielsweise die Tür oder das Fenster in einer Offenstellung zu halten, kann in dem Rückflusskanal ein Sperrventil angeordnet sein.
  • Insbesondere definiert die Taumelscheibenpumpe wenigstens einen Pumpraum, insbesondere mehrere Pumpräume, wobei in dem jeweiligen Pumpraum ein jeweiliger Pumpkolben linear beweglich gelagert ist. Ein Totraum des jeweiligen Pumpraums kann kleiner sein, als ein Fördervolumen des jeweiligen Pumpraums. Wie vorstehend bereits erläutert ist, kann hierdurch auch bei Lufteinschlüssen im Hydraulikfluid des Antriebs ein ausreichend hoher Unterdruck zum Einsaugen des Hydraulikfluids in den jeweiligen Pumpraum erzeugt werden kann.
  • Bevorzugt ist der Antriebsmotor als Schrittmotor ausgebildet und/oder ist der jeweilige Pumpkolben als Zylinderstift ausgebildet.
  • Um eine vorteilhafte Schließbewegung der Tür oder des Fensters zu erhalten, kann der Stellkolben über ein Getriebe[WB4], beispielsweise ein Zahnstangengetriebe oder ein Nockenscheibengetriebe, mit der Abtriebswelle gekoppelt sein. Vorteilhaft kann das Getriebe als Zahnstangengetriebe ausgeführt sein. Das Zahnstangengetriebe weist vorzugsweise eine Zahnstange mit einer ungleichmäßigen Verzahnung und ein entsprechendes Zahnrad mit einer korrespondierenden ungleichmäßigen Verzahnung auf.
  • Der Antrieb kann als ständig aktiver Türschließer oder als Freilauf-Türschließer ausgebildet sein. Mit einem "ständig aktiven Türschließer" ist ein Türschließer gemeint, der stets die Türe in ihre Geschlossenstellung zurückführt und gegen dessen Rückstellkraft die Tür händisch und/oder maschinell geöffnet werden kann. Dagegen ist bei einem Freilauf-Türschließer im Regelbetrieb der Federantrieb vorgespannt und die Tür kann ohne zusätzlichen Widerstand geöffnet und geschlossen werden. In einem Sonderfall, wie einem Brand, wird der Türschließer ausgelöst, wodurch die Türe von dem Türschließer geschlossen wird. Der Antrieb kann analog auch für Fenster ausgebildet sein.
  • Die Erfindung betrifft zudem eine Verwendung des Antriebs als ständig aktiver Türschließer oder als Freilauf-Türschließer. Vorzugsweise kann der Antrieb derart ausgestaltet sein, dass die mit dem Antrieb verbundenen Tür oder das mit dem Antrieb verbundene Fenster unabhängig von einem Betrieb der Axialkolbenpumpe händisch geöffnet und per Federantrieb wieder geschlossen werden kann. Der hydraulische Antrieb, d.h. die Axialkolbenpumpe, kann nur in den Situationen das Öffnen der Türe übernehmen, wenn dies, beispielsweise durch Betätigen eines Schalters, explizit angefordert wird.
  • Nachfolgend wird die Erfindung anhand rein beispielhafter Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
  • Fig. 1
    eine seitliche Schnittdarstellung eines erfindungsgemäßen Antriebs;
    Fig. 2
    den Antrieb von Fig. 1 mit einer schematischen Darstellung von zum Betrieb des Antriebs verwendeten Kanälen und deren Ventile;
    Fig. 3A
    einen eine Taumelscheibenpumpe zeigenden Ausschnitt des Antriebs von Fig. 1 in einer ersten Pumpstellung;
    Fig. 3B
    den die Taumelscheibenpumpe zeigenden Ausschnitt des Antriebs von Fig. 1 in einer zweiten Pumpstellung;
    Fig. 4
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer zweiten Variante;
    Fig. 5
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer dritten Variante;
    Fig. 6
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer vierten Variante;
    Fig. 7
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer fünften Variante;
    Fig. 8
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer sechsten Variante;
    Fig. 9
    eine Detailansicht einer Taumelscheibenpumpe eines Antriebs gemäß einer siebten Variante;
    Fig. 10A
    eine erste perspektivische Ansicht auf die Taumelscheibenpumpe gemäß der dritten Variante;
    Fig. 10B
    eine zweite perspektivische Ansicht auf die Taumelscheibenpumpe gemäß der dritten Variante;
    Fig. 11A
    eine erste perspektivische Ansicht eines Pumpengehäuses;
    Fig. 11B
    eine zweite perspektivische Ansicht des Pumpengehäuses;
    Fig. 11C
    eine Schnittdarstellung des Pumpengehäuses; und
    Fig. 12
    eine perspektivische Schnittdarstellung einer in einem Deckel gelagerten Taumelscheibe.
  • Die Figuren 1 und 2 zeigen eine seitliche Schnittdarstellung eines erfindungsgemäßen Antriebs 10. Der Antrieb 10 weist ein Gehäuse 12 auf, welches sich entlang einer Längsachse L des Antriebs 10 erstreckt. Das Gehäuse 12 definiert eine, einen Innenraum des Gehäuses 12 definierende, Innenumfangsfläche 14. Entlang der Innenumfangsfläche 14 ist ein Stellkolben 16 in Richtung der Längsachse L bewegbar gelagert. Über ein Zahnstangengetriebe 18 wird eine Linearbewegung des Stellkolbens 16 in eine Rotationsbewegung einer Abtriebswelle 20 umgewandelt. Hierzu ist an einer Innenseite des Stellkolbens 16 eine Zahnstange 18a des Zahnstangengetriebes 18 ausgeformt. Die Zahnstange 18a steht kämmend mit einem, drehfest mit der Abtriebswelle 20 verbundenen, Zahnrad 18b des Zahnstangengetriebes 18 in Eingriff. Die Zahnstange 18a und das Zahnrad 18b weisen jeweils unsymmetrische Zähne auf, um einen vorteilhaften Geschwindigkeitsverlauf des Tür- oder Fensterflügels beim Schließen der Türe oder des Fensters zu bewirken.
  • Der Stellkolben 16 wird von einem Federspeicher 22 mit einer Rückstellkraft beaufschlagt, welche den Stellkolben 16 in einer ersten Stellung (siehe Fig. 1) hält. Entgegen der Rückstellkraft lässt sich der Stellkolben 16 entlang der Längsachse L von der ersten Stellung in eine zweite Stellung bewegen. Um den Stellkolben 16 entlang der Längsachse L zu bewegen, ist eine Axialkolbenpumpe 24 in Form einer Taumelscheibenpumpe vorgesehen. Die Taumelscheibenpumpe 24 dient dazu, Hydraulikfluid, welches sich in einem, zwischen dem Stellkolben 16 und einem Pumpengehäuse 26 der Taumelscheibenpumpe 24 erstreckenden, zweiten Raum 28 befindet, über einen Abströmkanal 30 (siehe Fig. 2) in einen ersten Raum 32 zu pumpen. Das in den ersten Raum 32 gepumpte Hydraulikfluid verdrängt den, den ersten Raum 32 begrenzenden Stellkolben 16, sodass sich dieser entgegen der Rückstellkraft des Federspeichers 22, hier einer Spiraldruckfeder, in Richtung der Taumelscheibenpumpe 24 bewegt. Um das Hydraulikfluid von dem ersten Raum 32 in den zweiten Raum 28 abzulassen, ist ein Rückflusskanal 34 (siehe Fig. 2) vorgesehen. In dem Rückflusskanal 34 ist ein Drosselventil 36 angeordnet, um eine Rückflussgeschwindigkeit des Hydraulikfluids zu begrenzen und so dafür zu sorgen, dass beispielsweise eine mit dem Antrieb 10 verbundene Tür langsam und kontrolliert schließt. Damit eine solche mit dem Antrieb 10 verbundene Tür in einer Offenstellung gehalten werden kann, ohne hierzu kontinuierlich Pumpleistung aufbringen zu müssen, ist im Rückflusskanal 34 ein elektrisch schaltbares Sperrventil 38 vorgesehen. Zudem ist im Abströmkanal 30 ein Rückschlagventil 40 vorgesehen, um ein Zurückfließen von Hydraulikfluid von dem ersten Raum 32 in den zweiten Raum 28 entlang des Abströmkanals 30 zu verhindern. Wenn das Sperrventil 38 geschlossen ist, kann somit das in dem ersten Raum 32 befindliche Hydraulikfluid nicht entweichen und hindert aufgrund seiner Inkompressibilität den Stellkolben 16 daran, in die in Fig. 1 und 2 gezeigte erste Stellung zurückzukehren.
  • Im Folgenden wird in Bezug auf die Figuren 3A und 3B näher auf die Gestaltung und Funktionsweise der Taumelscheibenpumpe 24 eingegangen. Das Pumpengehäuse 26 definiert mehrere, wie gezeigt beispielsweise zwei, Pumpräume 42a, 42b, welche an einer Seite durch entlang der Längsachse L beweglich gelagerte Pumpkolben 44a, 44b begrenzt werden. Jeder Pumpraum 42a, 42b weist einen Einlass 46a, 46b auf, der den zweiten Raum 28 mit dem jeweiligen Pumpraum 42a, 42b verbindet. Die Einlässe 46a, 46b sind jeweils an Stirnseiten der Pumpräume 42a, 42b ausgebildet. Zudem weist jeder Pumpraum 42a, 42b einen Auslass 48a, 48b auf, der den jeweiligen Pumpraum 42a, 42b mit dem Abströmkanal 30 (siehe Fig. 2) verbindet. Die Auslässe 48a, 48b sind jeweils umfangsseitig von dem jeweiligen Pumpraum 42a, 42b angeordnet. Die Einlässe 46a, 46b sind jeweils mit einem Einlassrückschlagventil 50a, 50b ausgestattet, damit das Hydraulikfluid nicht von dem Pumpraum 42a, 42b direkt zurück in den zweiten Raum 28 fließen kann. Analog dazu sind die Auslässe 48a, 48b jeweils mit einem Auslassrückschlagventil 52a, 52b ausgestattet, damit das Hydraulikfluid nicht von dem Abströmkanal 30 direkt zurück in den Pumpraum 42a, 42b fließen kann.
  • Wenn einer der Pumpkolben 44a, 44b entlang seiner axialen Richtung, d.h. entlang der Längsachse L, bewegt wird, wird bei einer Bewegung von einer eingefahrenen Position in eine ausgefahrene Position, d.h. in den Figuren bei einer Bewegung von links nach rechts, Hydraulikflüssigkeit von dem zweiten Raum 28 in den jeweiligen Pumpraum 42a, 42b gesaugt. Wenn der Pumpkolben 44a, 44b dann wieder von der ausgefahrenen Position in die eingefahrene Position zurückbewegt wird, d.h. in den Figuren von rechts nach links bewegt wird, wird die Hydraulikflüssigkeit von dem Pumpkolben 44a, 44b aus dem Pumpraum 42a, 42b heraus in den Abströmkanal 30 gedrückt.
  • Um die Pumpleistung möglichst konstant zu halten, bewegen sich die Pumpkolben 44a, 44b phasenversetzt zueinander. Um dies zu bewirken, weist die Taumelscheibenpumpe 24 eine Taumelscheibe 54 auf. Die Taumelscheibe 54 bildet eine Pumpkolbenverstellfläche 56 aus, welche schräg zu einer Drehachse D einer mit der Taumelscheibe 54 einstückig ausgebildeten Antriebswelle 58 angeordnet ist. Die Pumpkolben 44a, 44b sind mittels Rückstellfedern 60a, 60b in Richtung der Taumelscheibe 54 vorgespannt. Zur Reibungsminimierung ist zwischen den, der Taumelscheibe 54 zugewandten und im vorliegenden Fall konvexen, Endflächen der Pumpkolben 44 und der Pumpkolbenverstellfläche 56 ein Axiallager 62 in Form eines Axialnadellagers angeordnet.
  • Die Taumelscheibe 54 wird im Betrieb der Taumelscheibenpumpe 24 durch einen Antriebsmotor 63 in Rotation versetzt. Durch die Rotationsbewegung der Taumelscheibe 54 werden die Pumpkolben 44a, 44b phasenversetzt zueinander entgegen der Rückstellkraft der Rückstellfeder 60a, 60b in die eingefahrene Position (Pumpkolben 44a in Fig. 3A) gedrückt und dann wieder von der jeweiligen Rückstellfeder 60a, 60b in die ausgefahrene Position (Pumpkolben 44b in Fig. 3A) zurückgedrückt. Somit vollziehen die Pumpkolben 44 bei jeder vollständigen Umdrehung der Taumelscheibe 54 um die Drehachse D eine vollständige Pumpbewegung, beispielsweise von der eingefahrenen Position in die ausgefahrene Position und wieder zurück in die eingefahrene Position.
  • In Fig. 4 ist eine alternative Ausführungsform des Antriebs 10' gezeigt. Im Vergleich zu Antrieb 10, bei dem eine axiale Fixierung des Pumpengehäuses 26 und damit ein Abstützen der Rückstellkraft des Federspeichers 22 durch einen Sicherungsring 64 gelöst ist, der in eine umfangsseitig im Gehäuse 12 ausgeformte Haltenut 66 (siehe Fig. 3B) eingesetzt ist, ist bei der in Fig. 4 gezeigten Ausführungsform ein axialer Fortsatz 64' an einem die Antriebswelle 58 lagernden Deckel 68 vorgesehen, wobei der Fortsatz 64' zur axialen Fixierung des Pumpengehäuses 26 und somit zum Abstützen der Rückstellkraft des Federspeichers 22 dient.
  • Ein weiterer, separater Unterschied der in Fig. 4 gezeigten Ausführungsform besteht darin, dass die Einlassrückschlagventile 50a', 50b' und die Auslassrückschlagventile 52a', 52b' federvorgespannt sind, um die Reaktionszeit der Ventile 50a', 50b', 52a', 52b' zu verkürzen.
  • Ein weiterer, ebenfalls separater Unterschied der in Fig. 4 gezeigten Ausführungsform besteht darin, dass das Axiallager 62' mittels einer Schraube 70' in axialer Richtung an der Taumelscheibe 54' fixiert ist.
  • Einen Aspekt, welchen die verschiedenen Varianten gemeinsam haben, ist, dass die Pumpkolben 44 mittels Dichtungen 45 gegen das Pumpengehäuse 26 abgedichtet sind. Während in den gezeigten Varianten die Dichtungen 45 an den Pumpkolben 44 angebracht sind, können alternativ die Dichtungen 45 auch im Pumpengehäuse 26 angebracht sein. Die Dichtungen 45 hindern die Hydraulikflüssigkeit daran, in einen die Taumelscheibe 54 umgebenden Raum 47 einzudringen. Hierdurch können zur Abdichtung des Raums 47 dienende Dichtungen 94, 96 einfacher und damit kostengünstiger ausgebildet werden.
  • Während in den Ausführungsformen der Fig. 1 bis 4 der Deckel 68 dazu dient, die Antriebswelle 58 zu lagern und das Gehäuse 12 auf der der Axialkolbenpumpe 24 benachbarten Stirnseite zu verschließen, dient in der in Fig. 5 gezeigten Ausführungsform das Pumpengehäuse 26" dazu, das Gehäuse 12" stirnseitig zu verschließen. Zudem ist bei der in Fig. 5 gezeigten Ausführungsform ein Lagergehäuse 72" vorgesehen, um die Antriebswelle 58" zu lagern. An dem Lagergehäuse 72" ist stirnseitig der Antriebsmotor 63" befestigt. Wie in den Figuren 6A und 6B zu sehen ist, ist das Lagergehäuse 72" mittels eines Flanschs 74" und Schrauben 76" stirnseitig mit dem Gehäuse 12" verbunden. Der Antriebsmotor 63" ist wiederum mittels Schrauben 78" an dem Lagergehäuse 72" befestigt.
  • Die Ausführungsform der Fig. 5 weist zudem eine Schließkraftverstellung 80" zur Einstellung einer Höhe der Rückstellkraft des Federspeichers 22" auf. Die Schließkraftverstellung 80" umfasst einen drehfest, aber axial verschieblich in dem Gehäuse 12" gelagerten Federteller 82", der den Federspeicher 22" stirnseitig abstützt. Der Federteller 82" ist mittels einer Spindel 84" in Längsrichtung L verstellbar, um den Federspeicher 22" je nach Drehrichtung der Spindel 84" entweder stärker vorzuspannen oder zu entspannen. Die Spindel 84" ist wiederum über ein Schneckengetriebe, von dem in Fig. 5 ein Teil des Schneckenrads 86" zu sehen ist, in Rotation versetzbar. Das Schneckenrad 86" ist über eine Schneckenwelle 88" verdrehbar, welche, wie in Fig. 10A gezeigt, von außen zugänglich ist.
  • Fig. 6 zeigt eine weitere, besonders robuste Ausführungsform einer Taumelscheibenpumpe 24‴ für einen Antrieb 10‴. Bei dieser Ausführungsform sind die Rückstellfedern 60a‴ und 60b‴ als Wellenfedern ausgebildet. Die Wellenfedern 60a‴ und 60b‴ sind hinsichtlich ihrer Außendurchmesser an die Querschnittsfläche der jeweiligen Pumpräume 42a‴ und 42b‴ angepasst. Zudem sind die Pumpkolben 44a‴ und 44b'" derart ausgebildet, dass sie in der von der Taumelscheibe maximal verdrängten Position (siehe Pumpkolben 44a‴ in Fig. 6) den Pumpraum 42a‴ bis auf einen konstruktiv notwendigen Freiraum für die Wellenfeder 60a‴ und 60b‴ im Wesentlichen vollständig einnehmen. Hierzu weisen die Pumpkolben 44a‴ und 44b‴ eine axialen Fortsatz 104a‴ und 104b‴ auf, der sich in die jeweilige Wellenfeder 60a‴ und 60‴ hinein erstreckt und einen Großteil eines Innenraums der jeweiligen Wellenfeder 60a‴ und 60b‴ einnimmt. Diese Ausführungsform hat den Vorteil, dass ein Totraum 106‴ des jeweiligen Pumpraums 42a‴ und 42b‴, d.h. ein Raumabschnitt des jeweiligen Pumpraums 42a‴ und 42b‴, in dem sich zu keinem Zeitpunkt der Pumpkolben 44a oder 44b befindet, gering gehalten werden kann und dennoch eine lange Führungsfläche der Pumpkolben 44a‴ und 44b‴ im Pumpengehäuse 26 bei kleiner Baulänge ermöglicht wird. Dadurch kann auch bei Lufteinschlüssen im Hydraulikfluid des Antriebs 10 ein ausreichend hoher Unterdruck zum Einsaugen des Hydraulikfluids in die Pumpräume 42a‴ und 42b‴ erzeugt werden.
  • Fig. 7 zeigt eine weitere Ausführungsform einer Taumelscheibenpumpe 24IV für einen Antrieb 10IV. In dieser Ausführungsform ist die Dichtung 45IV zwischen den Pumpkolben 44aIV und 44bIV und dem Pumpengehäuse 26IV als Lippendichtung oder Nutring ausgeführt. Die Lippendichtungen bzw. die Nutringe 45IV sind an ihrem jeweiligen Pumpkolben 44aIV und 44bIV angeordnet. Eine solche Lippendichtung oder ein solcher Nutring 45IV erzeugt bauartbedingt besonders geringe Reibkräfte. Dadurch kann die Taumelscheibenpumpe 24IV hohe Wirkungsgrade erreichen und der Antriebsmotor 63IV kleiner und kostengünstig dimensioniert werden. Die Rückstellfedern 60aIV und 60bIV sind als Schraubendruckfedern ausgebildet. Die Schraubendruckfedern 60aIV und 60bIV erstrecken sich entlang einer Ausnehmung in dem jeweiligen Pumpkolben 44aIV und 44bIV durch den Pumpraum 42aIV und 42bIV bis in den jeweiligen Einlass 46aIV und 46bIV. Hierdurch sind die Schraubendruckfedern 60aIV und 60bIV an ihren beiden Enden in radialer Richtung gelagert.
  • Fig. 8 zeigt eine besonders kostengünstig herstellbare Ausführungsform einer Taumelscheibenpumpe 24V für einen Antrieb 10V. In dieser Ausführungsform ist die Dichtung 45V zwischen den Pumpkolben 44aV und 44bV und dem Pumpengehäuse 26V durch eine Dichtung, speziell Stangendichtung, im Pumpengehäuse 26V realisiert. Hierdurch ist es möglich, als Pumpkolben 44aV und 44bV jeweils einen genormten Zylinderstift einzusetzen. Solche Zylinderstifte 44aV und 44bV sind besonders kostengünstig zu beziehen und halten dennoch hohe Qualitätsstandards ein. Auch bei dieser Ausführungsform können die Rückstellfedern 60aV und 60bV - wie gezeigt - als Wellenfedern [WB5]ausgebildet sein. Alternativ dazu können die Rückstellfedern beispielsweise als Schraubendruckfedern ausgebildet sein. Dabei ist jeweils eine Wellenfeder 60aV, 60bV in jedem der Pumpräume 42aV und 42bV zwischen dem Pumpengehäuse 26V und dem jeweiligen Pumpkolben 44aV und 44bV angeordnet. Die Stangendichtung 45V kann z.B. als Lippendichtung oder als Gleitring mit O-Ring ausgeführt sein. So ergibt sich eine kompakte und besonders kostengünstige Ausführungsform. Der in der Pumpkammer anstehende Druck fällt durch eine vorteilhafte Passung, d.h. durch den engen Spalt, zwischen dem jeweiligen Zylinderstift 44aV und 44bV und dem Pumpengehäuse 26V und die so erzeugte Spaltdichtung [WB6]bis zum Erreichen der Dichtung 45V stark ab. Hierdurch wirkt weniger Druck auf die Dichtung, wodurch im dynamischen Betrieb deutlich weniger Reibung verursacht wird. Dies führt wiederum dazu, dass die Taumelscheibenpumpe 24V besonders hohe Wirkungsgrade erreichen und der Antriebsmotor 63V kleiner und kostengünstig dimensioniert werden kann. Die zuvor beschriebene Spaltdichtung kann grundsätzlich bei allen beschriebenen Varianten vorgesehen werden, unabhängig davon ob eine Kolbendichtung oder eine Stangendichtung verwendet wird.
  • Fig. 9 zeigt eine besonders reibungsarme Ausführungsform einer Taumelscheibenpumpe 24VI für einen Antrieb 10VI. Bei dieser Ausführungsform sind in der Außenumfangsfläche des Pumpkolbens 44aVI und 44bVI radial umlaufende Einstiche, d.h. Nuten 108VI, vorgesehen, welche nach Art einer Labyrinthdichtung eine Dichtwirkung zwischen der Außenumfangsfläche der Pumpkolben 44aVI und 44bVI und dem Pumpengehäuse 26VI erzeugen. Der hydraulische Druck in dem jeweiligen Pumpraum 42aVI und 42bVI fällt durch die, durch die Nuten 108 erzeugte, Labyrinthdichtung zwischen den Pumpkolben 44aVI und 44bVI und dem Pumpengehäuse 26VI bis zur Dichtung 45VI stark ab, wodurch [WB7]Reibkräfte an der Dichtung 45VI reduziert werden. Hierdurch kann die Taumelscheibenpumpe 24VI besonders hohe Wirkungsgrade erreichen und der Antriebsmotor 63VI kleiner und kostengünstig dimensioniert werden.
  • Die Figuren 11A, 11B und 11C zeigen verschiedene Ansichten eines Pumpengehäuses 26. In Fig. 11A sind die stirnseitigen Einlässe 46a, 46b, 46c und einer der umfangsseitig angeordneten Auslässe 48b zu sehen. Die Auslässe 48 sind über eine in Umfangsrichtung verlaufende Nut 90 miteinander verbunden. Die Nut 90 wird durch zwei parallel zur Nut 90 umlaufende Dichtungen 91a, 91b abgedichtet. Wie aus den Fig. 11B und 11C hervorgeht, sind in dem Pumpengehäuse 26 drei Pumpräume 42a, 42b, 42c für drei Pumpkolben 44a, 44b, 44c ausgeformt. Die Pumpkolben sind jeweils 120° versetzt zueinander um eine Mittelachse des Pumpengehäuses 26 angeordnet. Wenn die Taumelscheibenpumpe 24 mit genau drei Pumpkolben 44a, 44b, 44c ausgestattet ist, ergibt sich ein guter Kompromiss zwischen kompakter Bauweise und homogener Pumpleistung.
  • In Fig. 12 ist eine Detailansicht des Deckels 68 und der in dem Deckel 68 gelagerten Antriebswelle 58 gezeigt. Hierbei ist zum einen zu sehen, dass die Antriebswelle 58 einstückig mit der Taumelscheibe 54 ausgebildet ist. Die Antriebswelle 58 ist mittels des Radiallagers 92, hier eines Radialkugellagers, in dem Deckel 68 drehbar gelagert. Die Antriebswelle 58 weist eine rotationsunsymmetrische stirnseitige Öffnung auf, um eine unsymmetrische Motorwelle 98 des Antriebsmotors 63 in die Antriebswelle 58 stirnseitig einstecken zu können.
  • Zudem ist in Fig. 12 das Axiallager 62 im Detail dargestellt. Bei dem Axiallager handelt es sich um ein Axialnadellager 62 mit Laufscheiben 100. Eine erste, der Pumpkolbenverstellfläche 56 zugewandte Laufscheibe 100a dreht mit der Pumpkolbenverstellfläche 56 mit. Eine zweite, den Pumpkolben 44 zugewandte Laufscheibe 100b rotiert, wie auch die Pumpkolben 44, nicht mit der Taumelscheibe 54 mit.
  • Der Deckel 68 ist - wie auch das Pumpengehäuse 26" aus Fig. 5 - in das Gehäuse 12 einschraubbar. Hierzu weist der Deckel 68 ein Außengewinde 102 auf, das in ein korrespondierendes Innengewinde, welches an der Innenumfangsfläche 14 des Gehäuses 12 ausgeformt ist, einschraubbar ist.
  • Der Antrieb 10 ist für verschiedene Anwendungsfälle geeignet. Wenn das Sperrventil 38 geöffnet ist, ist der Stellkolben 16 durch ein händisches Öffnen und Schließen einer mit dem Antrieb 10 gekoppelten Tür oder eines mit dem Antrieb 10 gekoppelten Fensters verstellbar. Dadurch ist der Antrieb 10 dazu ausgebildet, eine von Hand geöffnete Tür oder ein von Hand geöffnetes Fenster allein durch die Rückstellkraft des Federspeichers 22 wieder zu schließen. Zusätzlich dazu kann der Antrieb 10 dazu verwendet werden, eine mit dem Antrieb 10 gekoppelte Tür oder ein mit dem Antrieb 10 gekoppeltes Fenster mit der Antriebsleistung des Antriebsmotors 63 zu öffnen, mittels des geschlossenen Sperrventils 38 offen zu halten, und anschließend durch ein Öffnen des Sperrventils 38 wieder zu schlie-ßen. Der Antrieb 10 kann zudem als Freilauftürschließerantrieb dienen. Dabei wird der Federspeicher 22 durch eine Verstellung des Stellkolbens 16 mittels der Taumelscheibenpumpe 24 vorgespannt. Danach lässt sich die mit dem Antrieb 10 gekoppelte Tür oder das mit dem Antrieb 10 gekoppelte Fenster ohne Bewegung des Stellkolbens 16 öffnen und schließen. In einem Sonderfall, beispielsweise bei einem Feueralarm, wird ein Signal an das Sperrventil 38 gesendet, um dieses zu öffnen. Dadurch wird der Stellkolben 16 durch die Rückstellkraft des Federspeichers 22 in die erste Stellung zurück verstellt, was dafür sorgt, dass die Türe oder das Fenster geschlossen werden.
  • Bezugszeichenliste
  • 10
    Antrieb
    12
    Gehäuse
    14
    Innenumfangsfläche
    16
    Stellkolben
    18
    Zahnstangengetriebe
    18a
    Zahnstange
    18b
    Zahnrad
    20
    Abtriebswelle
    22
    Federspeicher
    24
    Axialkolbenpumpe/Taumelscheibenpumpe
    26
    Pumpengehäuse
    28
    zweiter Raum
    30
    Abströmkanal
    32
    erster Raum
    34
    Rückflusskanal
    36
    Drosselventil
    38
    Sperrventil
    40
    Rückschlagventil
    42
    Pumpraum
    44
    Pumpkolben
    45
    Dichtung
    46
    Einlass
    47
    Raum
    48
    Auslass
    50
    Einlassrückschlagventil
    52
    Auslassrückschlagventil
    54
    Taumelscheibe
    56
    Pumpkolbenverstellfläche
    58
    Antriebswelle
    60
    Rückstellfeder
    62
    Axiallager
    63
    Antriebsmotor
    64
    Sicherungsring
    64'
    axialer Fortsatz
    66
    Haltenut
    68
    Deckel
    70
    Schraube
    72
    Lagergehäuse
    74
    Flansch
    76
    Schraube
    78
    Schraube
    80
    Schließkraftverstellung
    82
    Federteller
    84
    Spindel
    86
    Schneckenrad
    88
    Schneckenwelle
    90
    Nut
    92
    Radiallager
    91
    Dichtung
    94
    Dichtung
    96
    Dichtung
    98
    Motorwelle
    100
    Laufscheibe
    102
    Außengewinde
    104
    Fortsatz
    106
    Totraum
    108
    Nut
    D
    Drehachse
    L
    Längsachse

Claims (25)

  1. Antrieb (10) für eine Tür oder ein Fenster, umfassend
    ein Gehäuse (12) mit einer Längsachse (L),
    eine rotierbar in dem Gehäuse (12) gelagerte Abtriebswelle (20), einen in dem Gehäuse (12) entlang der Längsachse (L) zwischen einer ersten Stellung und einer zweiten Stellung linear verstellbaren Stellkolben (16), der den Innenraum des Gehäuses (12) in einen ersten Raum (32) und einen zweiten Raum (28) unterteilt und der mit der Abtriebswelle (20) gekoppelt ist, um eine Bewegung des Stellkolbens (16) in eine Rotationsbewegung der Abtriebswelle (20) umzuwandeln, und
    einen in dem zweiten Raum (28) angeordneten Federspeicher (22), insbesondere eine Spiraldruckfeder, der bei einer Verstellung des Stellkolbens (16) in die zweite Stellung vorgespannt, insbesondere komprimiert, wird, dadurch gekennzeichnet,
    dass zur Bewegung des Stellkolbens (16) eine Axialkolbenpumpe, insbesondere Taumelscheibenpumpe (24), vorgesehen ist.
  2. Antrieb (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Axialkolbenpumpe, insbesondere Taumelscheibenpumpe (24), auf der dem Stellkolben (16) gegenüberliegenden Seite des Federspeichers (22) angeordnet ist.
  3. Antrieb (10) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Taumelscheibenpumpe (24) aufweist:
    ein teilweise oder vollständig in dem Gehäuse (12) aufgenommenes Pumpengehäuse (26), das, insbesondere drehfest und/oder in zumindest einer axialen Richtung, insbesondere mittels eines Sicherungsrings (64), fixiert in dem Gehäuse (12) angeordnet ist,
    zumindest einen, insbesondere zumindest zwei, Pumpkolben (44a, 44b, 44c), wobei der jeweilige Pumpkolben (44a, 44b, 44c) in dem Pumpengehäuse (26) entlang der Längsachse (L) zwischen einer eingefahrenen Position und einer ausgefahrenen Position linear beweglich gelagert ist,
    eine um eine Drehachse (D) drehbar antreibbare Taumelscheibe (54) zur Betätigung des jeweiligen Pumpkolbens (44), wobei die Taumelscheibe (54) eine Pumpkolbenverstellfläche (56) aufweist, die schräg zu der Drehachse (D) der Taumelscheibe (54) ausgerichtet ist, und
    einen, insbesondere mittelbar mit dem Gehäuse (12) verbundenen, Antriebsmotor (63) zum Antreiben der Taumelscheibe (54).
  4. Antrieb (10) nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Drehachse (D) der Taumelscheibe (54) der Längsachse (L) des Gehäuses (12) entspricht und/oder dass die Pumpkolbenverstellfläche (56) einen konstanten Winkel zur Drehachse (D) der Taumelscheibe (54) aufweist.
  5. Antrieb (10) nach Anspruch 3 oder 4,
    dadurch gekennzeichnet,
    dass die Taumelscheibenpumpe (24) eine Antriebswelle (58) aufweist, mit der die Taumelscheibe (54) zumindest drehfest verbunden ist und die von dem Antriebsmotor (63) antreibbar ist.
  6. Antrieb (10) nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Taumelscheibe (54) mit der Antriebswelle (58) einstückig ausgebildet ist und/oder dass eine Motorwelle (98) des Antriebsmotors (63) formschlüssig in die Antriebswelle (58) eingreift.
  7. Antrieb (10) nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass die Antriebswelle (58) in einem Radiallager (92) gelagert ist, welches in einem das Gehäuse (12) stirnseitig verschließenden Deckel (68) des Antriebs (10) oder in einem an das Gehäuse (12") stirnseitig anschließenden, insbesondere angekoppelten, Lagergehäuse (72") aufgenommen ist.
  8. Antrieb (10) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass der Deckel (68') einen axialen Fortsatz (64') aufweist, gegen den sich das Pumpengehäuse (26) abstützt und/oder dass der Antriebsmotor (63") an dem Lagergehäuse (72") befestigt ist.
  9. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 8,
    dadurch gekennzeichnet,
    dass ein Axiallager (62), insbesondere ein Axialkugellager, ein Axialnadellager oder ein Rillenkugellager, bevorzugt mit Laufscheiben (100), zwischen der Taumelscheibe (54) und dem oder den Pumpkolben (44) vorgesehen ist, wobei bevorzugt das Axiallager (62) mittels einer Schraube (70) an der Taumelscheibe (54) gesichert ist.
  10. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 9,
    dadurch gekennzeichnet,
    dass der jeweilige Pumpkolben (44) an seinem der Taumelscheibe (54) zugewandten Ende abgerundet ist.
  11. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 10,
    dadurch gekennzeichnet,
    dass der jeweilige Pumpkolben (44) gegenüber dem Pumpengehäuse (26) hydraulisch abgedichtet ist, so dass die Taumelscheibenpumpe (24) im Bereich der Taumelscheibe (54) hydraulikfluidfrei ist.
  12. Antrieb (10) nach Anspruch 11,
    dadurch gekennzeichnet,
    dass der jeweilige Pumpkolben (44) gegenüber dem Pumpengehäuse (26) mittels einer Spaltdichtung und/oder einer Kolbendichtung[WB8] (45; 45'; 45"; 45‴; 45IV) oder Stangendichtung (45V, 45VI), insbesondere einer Lippendichtung oder einem Gleitring mit O-Ring, hydraulisch abgedichtet ist.
  13. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 12,
    dadurch gekennzeichnet,
    dass der jeweilige Pumpkolben (44), insbesondere mittels einer jeweiligen Rückstellfeder (60), in Richtung der ausgefahrenen Position und gegen die Taumelscheibe (54) vorgespannt ist.
  14. Antrieb (10) nach Anspruch 13,
    dadurch gekennzeichnet,
    dass die jeweilige Rückstellfeder (60) als eine Spiraldruckfeder oder eine Wellenfeder ausgebildet ist, und/oder
    dass der jeweilige Pumpkolben (44) einen axialen Fortsatz (104) aufweist, der sich in die jeweilige Rückstellfeder (60) hinein erstreckt.
  15. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 14,
    dadurch gekennzeichnet,
    dass die Pumpkolben (44) in Umfangsrichtung bezüglich der Drehachse (D) der Taumelscheibe (54) gleichverteilt angeordnet sind.
  16. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 15,
    dadurch gekennzeichnet,
    dass sich der Federspeicher (22) an dem Pumpengehäuse (26) abstützt, oder
    dass eine zwischen dem Federspeicher (22") und dem Pumpengehäuse (26") angeordnete Schließkraftverstellung (80") mit einem auf einer Spindel (84"), insbesondere mittels einer Schneckenwelle (88"), axial verstellbaren Federteller (82") vorgesehen ist und sich der Federspeicher (22") an dem Federteller (82") abstützt.
  17. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 16,
    dadurch gekennzeichnet,
    dass das Pumpengehäuse (26) für den oder jeden der Pumpkolben (44) einen entlang der Längsachse (L) verlaufenden Einlass (46) und einen schräg, insbesondere senkrecht, zur Längsachse (L) verlaufenden Auslass (48) aufweist.
  18. Antrieb (10) nach Anspruch 17,
    dadurch gekennzeichnet,
    dass jeder Einlass (46) und jeder Auslass (48) mit einem jeweiligen, insbesondere vorgespannten, Rückschlagventil (50, 52) versehen ist und/oder dass die Einlässe (46) jeweils mit einem Filter versehen sind.
  19. Antrieb (10) nach Anspruch 17 oder 18,
    dadurch gekennzeichnet,
    dass die Auslässe (48) über eine umlaufende, umfangsseitig an dem Pumpengehäuse (26) ausgebildete Nut (90) miteinander verbunden sind.
  20. Antrieb (10) nach zumindest einem der Ansprüche 17 bis 19,
    dadurch gekennzeichnet,
    dass die Einlässe (46) mit dem zweiten Raum (28) und die Auslässe (48) über einen, insbesondere ein Rückschlagventil (40) aufweisenden, Abströmkanal (30) mit dem ersten Raum (32) verbunden sind, wobei im Betrieb der Taumelscheibenpumpe (24) Hydraulikfluid von dem zweiten Raum (28) in den ersten Raum (32) gepumpt wird, um den Stellkolben (16) in die zweite Stellung zu verstellen.
  21. Antrieb (10) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der erste Raum (32) und der zweite Raum (28) über einen, insbesondere ein Drosselventil (36) aufweisenden, Rückflusskanal (34) miteinander verbunden sind, um bei einer Verstellung des Stellkolbens (16) in die erste Stellung aufgrund des vorgespannten Federspeichers (22) Hydraulikfluid aus dem ersten Raum (32) in den zweiten Raum (28) rückzuführen.
  22. Antrieb (10) nach Anspruch 21,
    dadurch gekennzeichnet,
    dass in dem Rückflusskanal (34) ein Sperrventil (38) angeordnet ist, um den Stellkolben (16) in der zweiten Stellung zu halten.
  23. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 22,
    dadurch gekennzeichnet,
    dass die Taumelscheibenpumpe (24) wenigstens einen Pumpraum (42), insbesondere mehrere Pumpräume (42), definiert, wobei in dem jeweiligen Pumpraum (42) ein jeweiliger Pumpkolben (44) linear beweglich gelagert ist, insbesondere wobei ein Totraum (106) des jeweiligen Pumpraums (42) kleiner ist, als ein Fördervolumen des jeweiligen Pumpraums (42).
  24. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 23,
    dadurch gekennzeichnet,
    dass der Antriebsmotor (63) als Schrittmotor ausgebildet[WB9] ist.
  25. Antrieb (10) nach zumindest einem der Ansprüche 3 bis 24,
    dadurch gekennzeichnet,
    dass der jeweilige Pumpkolben (44) als Zylinderstift ausgebildet[WB10] ist.
EP23172518.5A 2022-05-20 2023-05-10 Antrieb für eine tür oder ein fenster Pending EP4279696A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022205040.1A DE102022205040A1 (de) 2022-05-20 2022-05-20 Antrieb für eine Tür oder ein Fenster

Publications (1)

Publication Number Publication Date
EP4279696A1 true EP4279696A1 (de) 2023-11-22

Family

ID=86331195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23172518.5A Pending EP4279696A1 (de) 2022-05-20 2023-05-10 Antrieb für eine tür oder ein fenster

Country Status (2)

Country Link
EP (1) EP4279696A1 (de)
DE (1) DE102022205040A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230272661A1 (en) * 2022-02-25 2023-08-31 Overhead Door Corporation Swing door operator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066666A1 (de) * 2004-12-17 2006-06-29 Dorma Gmbh & Co. Kg Türantrieb, insbesondere drehtürantrieb
KR20070006391A (ko) * 2005-07-08 2007-01-11 전병수 도어 경첩

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486152A (en) 1979-11-26 1984-12-04 Hydro Rene Leduc Pump with spring loaded valve
DE102018210278B4 (de) 2018-06-25 2021-03-18 Geze Gmbh Hydräülisch,gedämpfter Antrieb für einen Tür- oder Fensterflügel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066666A1 (de) * 2004-12-17 2006-06-29 Dorma Gmbh & Co. Kg Türantrieb, insbesondere drehtürantrieb
KR20070006391A (ko) * 2005-07-08 2007-01-11 전병수 도어 경첩

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230272661A1 (en) * 2022-02-25 2023-08-31 Overhead Door Corporation Swing door operator

Also Published As

Publication number Publication date
DE102022205040A1 (de) 2023-11-23

Similar Documents

Publication Publication Date Title
DE102008016212B4 (de) Ausgeglichene Flügelzellenpumpe variabler Förderleistung/Verdrängung mit schwimmenden Stirnflächendichtungen und vorgespannten Flügeldichtungen
DE10229123A1 (de) Spiralkompressor
WO2006040090A1 (de) Linearantrieb
DE19650108A1 (de) Taumelscheiben-Kompressor
DE19744466C2 (de) Schraubenverdichter
EP4279696A1 (de) Antrieb für eine tür oder ein fenster
DE19530210C2 (de) Taumelscheibenverdichter
WO2012034619A1 (de) Axialkolbenmaschine
EP1760315A2 (de) Innenzahnradpumpe mit Füllstück
DE4213798A1 (de) Radialkolbenpumpe, insbesondere Kraftstoffpumpe für Verbrennungsmotoren
DE2853838C2 (de) Einstellvorrichtung für den Hubring einer Hydropumpe oder eines Hydromotors radialer Bauart
EP0599870B1 (de) Hydrostatischer axialkolbenmotor für den einbau in die nabe eines anzutreibenden rades
EP1785622B1 (de) Hydraulische Pumpe
WO2005024237A1 (de) Drehkolbenmaschine
EP2546442A1 (de) Türband mit Dämpfung
DE4425406C2 (de) Abstützkonstruktion für eine Drehwelle eines Kompressors
DE102008063500B4 (de) Hydraulische Maschine
EP1488941A2 (de) Luftdichte, koaxiale Radnabe zum Regulieren des internen Reifendrucks während der Fahrt
DE4221705A1 (de) Hydrostatische Maschine mit axialem Schubausgleich
EP0929743B1 (de) Radialkolbenpumpe
DE102012222593A1 (de) Hydrostatische Axialkolbenmaschine in Schrägscheibenbauweise
DE102005033104A1 (de) Verstellbares hydrostatisches Axialkolbentriebwerk mit zueinander phasenverschiebbaren Verdrängungsbewegungen der Verdrängerkörper
DE3219513A1 (de) Radialkolbenmaschine, insbesondere radialkolbenpumpe
DE3112930A1 (de) Axialkolbenpumpe
DE2555172A1 (de) Rationskolbenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR