EP4262765A1 - Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l'agrégation des protéines, comme les maladies neurodégénératives - Google Patents

Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l'agrégation des protéines, comme les maladies neurodégénératives

Info

Publication number
EP4262765A1
EP4262765A1 EP21823624.8A EP21823624A EP4262765A1 EP 4262765 A1 EP4262765 A1 EP 4262765A1 EP 21823624 A EP21823624 A EP 21823624A EP 4262765 A1 EP4262765 A1 EP 4262765A1
Authority
EP
European Patent Office
Prior art keywords
bacterioruberins
glycosylated
disease
composition
bacterioruberine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21823624.8A
Other languages
German (de)
English (en)
Inventor
Jean-Noël THOREL
Miroslav Radman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naos Institute of Life Science SAS
Original Assignee
Naos Institute of Life Science SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naos Institute of Life Science SAS filed Critical Naos Institute of Life Science SAS
Publication of EP4262765A1 publication Critical patent/EP4262765A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • TITLE Use of bacterioruberins and their glycosylated derivatives to prevent and treat diseases involving deregulation of protein aggregation, such as neurodegenerative diseases
  • the present invention relates to a composition comprising at least one bacterioruberin and/or at least one glycosylated bacterioruberin for the treatment or prevention of a disease involving deregulation of protein aggregation, such as degenerative diseases, advantageously neurodegenerative diseases, in particular a disease chosen from Alzheimer's disease (ALS), Parkinson's disease (PD), Huntington's disease, posterior cortical atrophy or even amyotrophic lateral sclerosis (ALS) as well as ocular neurodegenerative diseases chosen from macular degeneration, retinitis pigmentosa and retinopathy.
  • a disease involving deregulation of protein aggregation such as degenerative diseases, advantageously neurodegenerative diseases, in particular a disease chosen from Alzheimer's disease (ALS), Parkinson's disease (PD), Huntington's disease, posterior cortical atrophy or even amyotrophic lateral sclerosis (ALS) as well as ocular neurodegenerative diseases chosen from macular degeneration, retinitis pigmentosa and
  • Degenerative diseases and in particular neurodegenerative diseases such as Alzheimer's disease (ALS), Parkinson's disease (PD), Huntington's disease, posterior cortical atrophy or even amyotrophic lateral sclerosis as well as neurodegenerative diseases ocular, are chronic disabling pathologies with slow evolution. They generally cause a deterioration in the functioning of nerve cells, in particular neurons, which can lead to cell death or neurodegeneration.
  • the disorders induced by neurodegenerative diseases are varied and can be cognitive-behavioural, sensory and motor (Dugger et al. 2017).
  • Carotenoids are highly conjugated linear isoprenoid compounds responsible for the majority of yellow, orange and red pigmentation seen in organisms on earth (Armstrong, 1997). The biosynthesis of carotenoids occurs in all living things, with the exception of animals in which carotenoids are introduced through food (Britton, 1995). Although about a thousand different carotenoids have been identified in nature and they have widely varying structural characteristics, all known carotenoids share a lipophilic linear conjugate backbone, obtained by passing through highly conserved biosynthetic pathways (Britton, 2004 ). Carotenoids are synthesized from the linear condensation of isoprene units, derived from primary metabolism (Armstrong, 1994).
  • carotenoid brings together molecules from the carotene and xanthophyll families.
  • bacterioruberins tetra-hydroxylated carotenes with 50 carbon atoms.
  • Bacterioruberins and their derivatives are found in extremophilic bacteria, in particular the halophilic archaea and certain psychrophilic actinobacteria; in these microorganisms, they play an important role in the protection of DNA and membranes against solar irradiation as well as the thermal and osmotic environmental stresses that these organisms constantly face (Mandelli et al. 2012).
  • these carotenes are found in the psychrophilic actinobacterium Arthrobacter (Micrococcus) agilis. This bacterium is also capable of synthesizing glycosylated forms of bacterioruberins, that is to say, whose terminal hydroxyl groups are substituted with sugars (Fong et al. 2001).
  • patent application WO2014/155189 discloses the use of several xanthophylls including lutein and zeaxanthin for the treatment and prevention of PD and ALS.
  • Application WO2008/038119 discloses the treatment of PD with a composition containing: (a) a complex of coenzyme Q10 and at least one cyclodextrin; and (b) at least one carotenoid, in particular a carotene chosen from ⁇ -carotene, p-carotene and lycopene.
  • glycosylated carotenoids can be useful in the treatment and prevention of neurodegenerative diseases: for example, a neuroprotective action has been associated with crocin, a glycosylated carotenoid responsible for the yellow color of saffron (Farkhondeh et al. 2018).
  • the aim of the invention is to solve the technical problem consisting in providing a compound or a composition having a chaperone activity, that is to say having the capacity to fight against the denaturation and the aggregation of proteins, thus protecting proteins cellular.
  • the invention also aims to solve the technical problem of providing a compound or a composition protecting at least one intracellular or extracellular protein from both oxidative stress and denaturation.
  • the aim of the invention is to solve the technical problem of providing a compound or a composition useful in the treatment and prevention of a disease presenting a deregulation in the aggregation of proteins, such as for example degenerative diseases.
  • a bacterioruberin preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, has a chaperone activity, thus making them useful in the treatment and prevention diseases involving a deregulation in the aggregation of proteins, such as for example a degenerative disease, advantageously a neurodegenerative disease, fibrosis, advantageously pulmonary fibrosis, or diabetes.
  • a degenerative disease advantageously a neurodegenerative disease, fibrosis, advantageously pulmonary fibrosis, or diabetes.
  • neurodegenerative diseases particular mention may be made of neurodegenerative diseases characterized by the accumulation of protein aggregates in neurons, such as ALS and PD.
  • the present invention also relates to a composition comprising a bacterioruberin, preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, for its use in the treatment or prevention of a disease involving a deregulation in the aggregation of proteins, such as for example a degenerative disease, advantageously a neurodegenerative disease, fibrosis, advantageously pulmonary fibrosis, or diabetes.
  • a degenerative disease advantageously a neurodegenerative disease, fibrosis, advantageously pulmonary fibrosis, or diabetes.
  • the invention relates in particular to a composition comprising a bacterioruberin, preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, for its use in the treatment or prevention of a disease involving a deregulation in protein aggregation by reducing the formation of toxic protein aggregates, particularly in neurons.
  • the invention relates in particular to a composition comprising a bacterioruberin, preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, for its use in the treatment or prevention of a disease involving a deregulation in protein aggregation by reducing protein denaturation.
  • the present invention relates to a bacterioruberin, preferably in glycosylated form, optionally in a mixture with different forms of glycosylated bacterioruberins, or an extract comprising it, for its use in the treatment or prevention of a degenerative disease, advantageously of a disease neurodegenerative.
  • the present invention also relates to a composition comprising a bacterioruberin, preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, for its use in the treatment or prevention of a degenerative disease, advantageously a neurodegenerative disease.
  • the present invention also relates to a method for treating or preventing a degenerative disease, advantageously a neurodegenerative disease, in which a composition comprising at least one bacterioruberine and/or at least one glycosylated bacterioruberine is administered to a subject in need thereof.
  • the neurodegenerative disease is chosen from Alzheimer's disease (ALS), Parkinson's disease (PD), Huntington's disease, posterior cortical atrophy or even amyotrophic lateral sclerosis (ALS) as well as ocular neurodegenerative diseases chosen from macular degeneration, retinitis pigmentosa and retinopathy, advantageously for the treatment of Alzheimer's disease (ALS), Parkinson's disease (PD).
  • ALS Alzheimer's disease
  • PD Parkinson's disease
  • Huntington's disease Huntington's disease
  • ALS amyotrophic lateral sclerosis
  • ocular neurodegenerative diseases chosen from macular degeneration, retinitis pigmentosa and retinopathy, advantageously for the treatment of Alzheimer's disease (ALS), Parkinson's disease (PD).
  • compositions according to the invention can also be useful for treating other pathologies exhibiting a deregulation in the aggregation of proteins, such as, for example, fibrosis, advantageously pulmonary fibrosis, or diabetes.
  • Bactériorubérine (CAS No 32719-43-0), also known as “a-Bacteriorubérine”.
  • ⁇ -Bacteriorubérine comprises 4 terminal hydroxyl groups, each of which is capable of being substituted by ether bond with a group of the sugar type, or even one or more covalently bonded sugars.
  • glycosylated form of bacterioruberine or “glycosylated bacterioruberin” is meant a bacterioruberin of which at least one hydroxyl group is substituted with one or more, for example two or three, sugar residues via an ether bond between the backbone bacterioruberine and sugar.
  • An “isolated glycosylated bacterioruberin” according to the invention is obtained by synthesis by biotechnology, by chemical synthesis, typically followed by purification, or, alternatively, by purification of a glycosylated bacterioruberin naturally contained in a natural bacterium.
  • a "glycosylated bacterioruberine” has the following structure:
  • R is independently selected from a hydrogen atom, one or more, for example two or even three, sugar residues and wherein R at least one occurrence represents one or more, for example two or even three sugar residues.
  • the sugar is a hexose or a deoxyhexose selected from the group consisting of allose, altrose, glucose, mannose, gulose, idose, galactose, fucose, fructose, the fucose.
  • a composition according to the invention comprises at least one glycosylated bacterioruberins chosen from monoglycosylated bacterioruberins, diglycosylated bacterioruberins, triglycosylated bacterioruberins, tetraglycosylated bacterioruberins, pentaglycosylated bacterioruberins, hexaglycosylated bacterioruberins, heptaglycosylated bacterioruberins, octaglycosylated bacterioruberins, nonaglycosylated bacterioruberins, decaglycosylated bacterioruberins, undecaglycosylated bacterioruberins, and dodecaglycosylated bacterioruberins.
  • glycosylated bacterioruberins chosen from monoglycosylated bacterioruberins, diglycosylated bacterioruberins, trigly
  • glycosylated bacterioruberine chosen from monoglycosylated bacterioruberins, diglycosylated bacterioruberins, triglycosylated bacterioruberins, and tetraglycosylated bacterioruberins.
  • said composition comprises a mixture of monoglycosylated bacterioruberins, diglycosylated bacterioruberins and tetraglycosylated bacterioruberins; and preferably a mixture of monoglycosylated bacterioruberins and diglycosylated bacterioruberins.
  • the composition according to the invention is essentially free of non-glycosylated forms of bacterioruberine.
  • the total extract of carotenoids containing the glycosylated bacterioruberins according to the invention is a bacterial extract, preferably of Actinobacteria, even more advantageously of the Microccoccaceae family.
  • these are the Micrococcus roseus and Arthobacter agilis species.
  • the glycosylated bacterioruberins can be obtained by extraction and purification, for example by chromatography, of the total extracts of carotenoids of actinobacteria of the genera Micrococcus or Arthrobacter, advantageously the species A. agilis and/or M. roseus.
  • the species A. agilis is also known as Micrococcus agilis.
  • the extracts and strains described in the publications Strand et al. 1997, Fong et al. 2001 and in patent application WO 2014/167247 can be used as a source of glycosylated bacterioruberins.
  • the strains of ⁇ agilis used as sources of glycosylated bacterioruberins within the meaning of the invention are strain MB813 (described in Fong et al. 2001) and/or SB5 (described in patent application WO 2014/167247) .
  • the methods for obtaining extracts of total carotenoids from these bacterial species are known to those skilled in the art and are for example described in Strand et al. 1997, Fong et al. 2001 as well as patent application WO 2014/167247. However, these methods do not allow the different glycosylated bacterioruberins to be isolated.
  • the Applicant has developed a method making it possible to effectively isolate the glycosylated forms of bacterioruberine from an extract of carotenoids of ⁇ agilis.
  • the present invention describes a method for purifying and isolating bacterioruberine and its glycosylated forms.
  • the present invention also relates to isolated bacterioruberin and/or an isolated glycosylated bacterioruberin, as well as their mixtures, in particular for the uses and applications described in the present invention.
  • the invention covers a glycosylated bacterioruberin separated and purified, in particular from an extract of extremophilic bacteria, and preferably of Arthrobacter agilis, for its use in a method of treatment or prevention of a disease degenerative, advantageously of a neurodegenerative disease.
  • a total extract of carotenoids containing the glycosylated bacterioruberins according to the invention corresponds to the carotenoids contained in the starting material MIRORUBERINE marketed by the company GREENTECH and corresponding to the INCI designation Micrococcus lysate.
  • the glycosylated bacterioruberins according to the invention can be obtained by biotechnology, or by chemical synthesis, for example by means of controlled glycosylation of the native forms of bacterioruberins, typically ⁇ -bacterioruberins, for example starting from a-bacterioruberine.
  • This glycosylation can be obtained chemically or by biotechnology, preferably by biotechnology using suitable glycosyltransferases.
  • the raw material HALORUBINE sold by the company HALOTEK GMBH can be used as a source of ⁇ -bacterioruberine in the synthesis of glycosylated bacterioruberins within the meaning of the invention.
  • a composition according to the invention comprises a-bacteriorubérine.
  • ⁇ -Bacterioruberin can be obtained by extraction from the aforementioned actinobacteria, which also synthesize glycosylated forms of bacterioruberin.
  • ⁇ -bacterioruberine can be extracted from the cultures of one or more halophile archaea, such as the species Halobacterium salinarum, Halorubrum sodomense, Haloarcula valismortis, Salinibacter ruber.
  • the raw material HALORUBINE marketed by the company HALOTEK and corresponding to the INCI designation Halobacterium salinarum carotenoids can be used in the compositions according to the invention.
  • a composition according to the invention comprises at least one bacterioruberine and one glycosylated bacterioruberine.
  • this composition comprises a mixture of glycosylated forms of bacterioruberine, and of non-glycosylated forms, and advantageously a mixture of ⁇ -bacterioruberine, monoglycosylated bacterioruberines, diglycosylated bacterioruberines.
  • the ratio between non-glycosylated forms and glycosylated forms is between 2/1 and 1/2.
  • a composition according to the invention comprises one or more glycosylated bacterioruberins and essentially does not comprise an unglycosylated form of bacterioruberin.
  • essentially does not include an unglycosylated form of bacterioruberin or “essentially free from unglycosylated forms of bacterioruberin” it is meant that one seeks to avoid and eliminate the non-glycosylated form.
  • glycosylated bacterioruberine but that it may be present in the form of traces. Preferably such traces are not detectable by analysis.
  • a composition according to the invention comprises a mixture of monoglycosylated bacterioruberins, diglycosylated bacterioruberins, tetraglycosylated bacterioruberins; and preferably a mixture of glycosylated bacterioruberins essentially consisting of monoglycosylated bacterioruberins and diglycosylated bacterioruberins, and said mixture preferably comprising 20 to 80% by mass of monoglycosylated bacterioruberins and 20 to 80% by mass of diglycosylated bacterioruberins relative to the total mass of the mixture glycosylated bacterioruberins.
  • compositions comprising at least one bacterioruberine and/or one glycosylated bacterioruberine according to the invention are generally presented in dosed form.
  • the composition comprising at least one bacterioruberine and/or one glycosylated bacterioruberine can be in the form of a tablet, dragee, capsule, suppository, injectable or drinkable solution, or even drop and it is suitable for administration orally, oromucosally, rectal, vaginal, intramuscular parenteral or ophthalmic.
  • compositions according to the invention mention will be made more particularly of those which are suitable for oral, oromucosal, parenteral (intravenous, intramuscular or subcutaneous), per or transcutaneous, intravaginal, rectal, nasal, perlingual, buccal, ocular or respiratory.
  • compositions according to the invention for parenteral injections include in particular sterile aqueous and non-aqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstituting solutions or dispersions for injection.
  • compositions according to the invention for solid oral administration, include in particular simple or coated tablets, sublingual tablets, sachets, capsules, granules, and for oral, nasal, buccal or ocular liquid administration, include in particular emulsions, solutions, suspensions, drops, syrups and aerosols.
  • compositions for rectal or vaginal administration are preferably suppositories or ovules, and those for per or transcutaneous products include powders, aerosols, creams, ointments, gels and patches.
  • compositions cited above illustrate the invention but do not limit it in any way.
  • inert, non-toxic excipients or vehicles acceptable for a human being or pharmaceutically acceptable, mention may be made, by way of indication and not of limitation, of diluents, solvents, preservatives, wetting agents, emulsifiers, dispersing agents, binders , blowing agents, disintegrating agents, retardants, lubricants, absorbents, suspending agents, colorants, flavorings, etc.
  • the useful dosage varies according to the age and weight of the patient, the route of administration, the pharmaceutical composition used, the nature and the severity of the condition.
  • the composition according to the invention can be administered once a month, week or day and it can contain from 1 mg to 1 g of glycosylated bacterioruberins and/or non-glycosylated bacterioruberins or any of their mixtures. .
  • glycosylated bacterioruberins according to the invention are suitable for their use in food and nutraceutical supplements. Methods for formulating dietary supplements are known to those skilled in the art.
  • the food supplements are in the form of a tablet or capsule.
  • Each dose may contain, by way of example, from 1 mg to 1 g of glycosylated bacterioruberins and/or non-glycosylated bacterioruberins and any of their mixtures.
  • microcrystalline cellulose is used as bulking agent. It is used from 10 to 30% by weight relative to the total weight of the food supplement, more advantageously around 20% by weight.
  • Dicalcium phosphate and tricalcium phosphate are used as compression agents to prepare tablets.
  • the dicalcium phosphate is used from 10 to 30% by weight relative to the total weight of the food supplement, more advantageously around 15% by weight.
  • the tricalcium phosphate is used in an amount varying from 2.5 to 7.5% by weight relative to the total weight of the food supplement, and more advantageously around 5% by weight.
  • Hydrated silica, magnesium stearate and colloidal silica can advantageously be used as thinners in the food supplement in the form of tablets or capsules. They are introduced in an amount located around 2% by weight, 1% by weight and 0.6% by weight relative to the total weight of the food supplement, respectively.
  • adjuvants such as flavorings (natural or chemical, fruit or other flavorings) or pigments are advantageously incorporated into the preparation of the food supplement.
  • the envelope of these soft capsules or hard gelatin capsules may contain in particular animal gelatin such as fish gelatin, glycerin, or a material of vegetable such as a cellulose or starch derivative, or a vegetable protein.
  • animal gelatin such as fish gelatin, glycerin, or a material of vegetable such as a cellulose or starch derivative, or a vegetable protein.
  • one or more glycosylated bacterioruberins according to the invention incorporated into the capsules can be dissolved in a fatty substance, advantageously caprylic and/or capric triglyceride, and preferably stabilized with tocopherol.
  • a food grade of the raw material MIRORUBERINE marketed by the company GREENTECH and corresponding to the INCI designations caprylic/capric triglyceride & tocopherol & Micrococcus lysate can be used in the food supplements according to the invention.
  • Figure 1 shows the composition of a carotenoid extract from isolate SB5 of A. agilis species.
  • BR a-Bacterioruberine
  • BR-MonoG monoglycosylated form
  • BR-DiG di-glycosylated form
  • BR-DiG2 Another form of BR-DiG
  • BR-TetraG tetraglycosylated form.
  • FIG 2 shows the percentage of heat protection of a total extract of ⁇ agilis carotenoids (Snow bacteria extract -> SBE), bacterioruberin (BR), monoglycosylated bacterioruberins (BR-MonoG) and diglycosylated bacterioruberins (BR-DiG).
  • Figure 3 shows the percentage of protection against oxidative stress of a total carotenoid extract of A agilis (Snow bacteria extract -> SBE), bacterioruberine (BR), monoglycosylated bacterioruberins (BR-MonoG ) and diglycosylated bacterioruberins (BR-DiG).
  • Example I Purification of glycosylated bacterioruberins from a carotenoid extract of the bacterium A. agilis
  • the aim of this study is to isolate and quantify the molecules contained in an extract of total carotenoids from the bacterium A. agilis.
  • the SBE extract was taken up in tetrahydrofuran (THF) until complete solubilization.
  • THF tetrahydrofuran
  • a stage of separation of the glycosylated Bactériorubérines by chromatography on silica gel was carried out in a glass column after dilution of the SBE in THF.
  • the first step of separation by column chromatography made it possible to collect the various fractions whose purity was confirmed by TLC and by HPLC-DAD, by comparing it to the absorbance spectrum of the native extract; the quantification of the different forms was carried out by UV absorption at 500 nm.
  • the monoglycosylated form BR-MonoG represents >26% of the extract.
  • the tetraglycosylated form (BR-TetraG) represents only 0.01% of the extract (Fig.1).
  • Example II Protection and stabilization of proteins by an extract of carotenoids of A. agilis as well as the bacterioruberins and glycosylated forms isolated from the component
  • the aim of this study is to compare the protein protection capacities of the different components of a carotenoid extract of the actinobacteria A. agilis separated by chromatography and HPLC. More specifically, we tested all major fractions to assess their ability to protect the alkaline phosphatase enzyme:
  • This test comes from a modification of the APox test, to measure the protection potential of proteins no longer against oxidative stress but against denaturation (thermal stress). Indeed, under the effect of heat, proteins denature and enzymes lose their activity. By varying the temperature and the incubation time, the conditions necessary to inhibit 90% of the activity of alkaline phosphatase (55°C for 1 hour) can be determined.
  • the protective power of a molecule called X against denaturation is calculated by taking the ratio of the activity of alkaline phosphatase (AP) at 55°C (stressed condition) to its activity at 37°C (condition basal) in the presence of the molecule. This ratio is then normalized using the same ratio but obtained in the presence of the solvent alone.
  • PPX (APAX55-(APAX37 X APAS 55 /APAS37))/ (APAX37-(APAX37 X APA S55 /APAS37))
  • APAX55 activity of PA in the presence of molecule X at 55°C
  • APAX37 activity of PA in the presence of molecule X at 37°C
  • APAS55 PA activity in the presence of the solvent at 55°C
  • APAS37 PA activity in the presence of the solvent at 37°C
  • APAX37 corresponds to 100% enzyme protection
  • the activity of the enzyme for each condition is calculated by taking the average of the optical density values measured at 405 nm for the replicates, values from which the average value of the so-called “blank” wells (reagents alone) is subtracted, i.e.:
  • APA [(DO replica 1 - DO white) + (DO replica 2 - DO white) + (DO replica 3 - DO white)]/ 3
  • the results of the so-called “AP-heat” test are shown in figure 2.
  • bacterioruberine but especially the glycosylated forms of bacterioruberine (in particular BR-MonoG, BR-DiG), as well as the SBE extract, which corresponds to a mixture of a-bacterioruberine (BR) and Glycosylated forms of this carotenoid, and most particularly the diglycosylated form (BR-DiG), make it possible to protect intracellular proteins both from oxidative stress and from denaturation, which is generally followed by the formation of aggregates in the cells.
  • bacterioruberine but especially the glycosylated forms of bacterioruberine (in particular BR-MonoG, BR-DiG), as well as the SBE extract, which corresponds to a mixture of a-bacterioruberine (BR) and glycosylated forms of this carotenoid, and more particularly the diglycosylated form (BR-DiG), therefore lend themselves to their exploitation for the development of treatment aimed at reducing the formation of toxic protein aggregates, for example in neurons, or in a disease involving dysregulation in protein aggregation.
  • BR-MonoG BR-MonoG
  • BR-DiG glycosylated forms of this carotenoid
  • BR-DiG diglycosylated form
  • the aim of the study was to evaluate the neuroprotective effect of an extract of carotenoids from the bacterium A. agilis rich in glycosylated bacterioruberins called "SBE” on Glutamate excitotoxicity in a cell model mimicking Alzheimer's disease (ALS).
  • SBE glycosylated bacterioruberins
  • the glutamatergic system and in particular the NMDA receptors (glutamatergic receptors) play a major role in learning and memory processes. Synaptic plasticity can be regulated by NMDA receptor signaling.
  • Overactivation of NMDA receptors is a common pathological feature in many neurodegenerative diseases, including those leading to cognitive impairment such as Alzheimer's disease.
  • Tau protein is a microtubule-associated protein involved in microtubule stability and axonal transport.
  • Pathological hyperphosphorylation of Tau triggers the formation of neurofibrillary tangles and actively participates, in association with beta-amyloid protein oligomers, in the neurodegenerative process of ALS.
  • glutamate excitotoxicity and tau protein phosphorylation are closely related phenomena.
  • BDNF Brain-Derived Neurotrophic Factor
  • Murine cortical neurons were cultured as described by Callizot et al., 2013. Cells were mechanically dissociated by three forced passages through the tip of a 10 ml pipette. The cells were then centrifuged at 515 xg for 10 minutes at 4°C. The supernatant was removed and the pellet was taken up in a defined culture medium consisting of Neurobasal medium with a 2% solution of B27 supplement, 2 mmol / liter of L-glutamine, 2% solution of PS and 10 ng /mL of BDNF. Viable cells were counted in a Neubauer cytometer, using the trypan blue exclusion test.
  • the compounds to be tested were solubilized in DMSO and the concentration was adjusted to ensure a concentration of DMSO in the culture medium of 0.1%.
  • concentration was adjusted to ensure a concentration of DMSO in the culture medium of 0.1%.
  • compounds were pre-incubated with primary cortical neurons for 1 hour, prior to glutamate application. Subsequently, on the same day, cortical neurons were exposed to glutamate for 20 min. Glutamate was added to a final concentration of 20 ⁇ M (diluted in control medium) in the presence of SBE or BDNF (used as positive control). After 20 minutes, the glutamate was removed and fresh culture medium with test compounds was added for another 48 hours.
  • the cells were incubated for 2 hours with respectively: a) an anti-MAP-2 (microtubule-associated-protein 2) mouse monoclonal antibody at a dilution of 1/400 in PBS, with 1% fetal calf serum and 0.1% saponin. This antibody binds specifically to neurons and neurites, allowing the study of the neurite network. b) a mouse monoclonal antibody AT100 anti-phosphorylated Tau on Thr212/Ser214 at a dilution of 1/400 in PBS containing 1% fetal calf serum and 0.1% saponin. This antibody makes it possible to study the hyperphosphorylation of the Tau protein.
  • Neurite network integrity Glutamate intoxication induced a significant reduction (60%) in neurite network density ( Figure 4).
  • the application of SBE has significantly improved the integrity of the neurite network The total length of the neurite network reached 83%, a significant result and comparable to that obtained with neurotrophin.
  • treatment with the neurotrophin BDNF leads to a large and significant reduction in Tau hyperphosphorylation (+121%).
  • SBE significantly reduced Tau phosphorylation (+137%).
  • the SBE extract exerts a neuroprotective effect on the neurite network and this effect is accompanied by a significant reduction in the hyperphosphorylation of the Tau protein in the cytoplasm of neurons.
  • a bacterioruberin preferably in glycosylated form, optionally mixed with different forms of glycosylated bacterioruberins, or an extract comprising it, can be used in a method for treating or preventing a neurodegenerative disease.

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Psychiatry (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne une composition comprenant au moins une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant pour son utilisation dans une méthode de traitement ou prévention d'une maladie impliquant une dérégulation dans l'agrégation de protéines, comme par exemple une maladie dégénérative, avantageusement une maladie neurodégénérative, une fibrose, avantageusement une fibrose pulmonaire, ou un diabète. L'invention concerne aussi une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans une méthode de traitement ou prévention d'une maladie présentant une dérégulation dans l'agrégation de protéines, et une méthode de traitement ou prévention d'une maladie dégénérative.

Description

TITRE : Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l’agrégation des protéines, comme les maladies neurodégénératives
Domaine de l’invention
La présente invention concerne une composition comprenant au moins une bactériorubérine et/ou au moins une bactériorubérine glycosylée pour le traitement ou la prévention d’une maladie impliquant une dérégulation de l’agrégation des protéines, comme les maladies dégénératives avantageusement neurodégénérative, notamment une maladie choisie parmi la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD), la maladie de Huntington, l'atrophie corticale postérieure ou encore la sclérose latérale amyotrophique (SLA) ainsi que les maladies neurodégénératives oculaires choisies parmi la dégénérescence maculaire, la rétinite pigmentaire et la rétinopathie.
Etat de la technique
Les maladies dégénératives, et en particulier le maladies neurodégénératives telles que la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD), la maladie de Huntington, l'atrophie corticale postérieure ou encore la sclérose latérale amyotrophique ainsi que les maladies neurodégénératives oculaires, sont des pathologies chroniques invalidantes à évolution lente. Elles provoquent généralement une détérioration du fonctionnement des cellules nerveuses, en particulier les neurones, pouvant conduire à la mort cellulaire ou à la neurodégénérescence. Les troubles induits par les maladies neurodégénératives sont variés et peuvent être d'ordre cognitivo-comportemental, sensoriel et moteur (Dugger ét al. 2017).
Il est difficile de jauger l’impact global des maladies neurodégénératives sur la population humaine mondiale ; l’organisation mondiale de la santé (OMS) estime que jusqu’à un milliard d’êtres humains pourraient être touchés si on considère toutes les manifestations de ces conditions dont les confins sont parfois flous ; ces chiffres ont vocation à augmenter au vu du vieillissement croissant de la population dans les pays développés et en cours de développement.
Au fur et à mesure que la recherche progresse, de nombreuses similitudes apparaissent reliant ces maladies les unes aux autres, notamment au niveau cellulaire par l'agrégation de protéines atypiques ou dépliées et la mort neuronales induites. La découverte de ces similitudes offre l'espoir d'avancées thérapeutiques qui pourraient améliorer simultanément de nombreuses maladies, en particulier en agissant sur les mécanismes de l’agrégation des protéines intracellulaires dans les neurones.
Les caroténoïdes sont des composés isoprénoïdes linéaires hautement conjugués responsables de la majorité de la pigmentation jaune, orange et rouge observée dans les organismes sur terre (Armstrong, 1997). La biosynthèse des caroténoïdes se produit dans tous les êtres vivants, à l'exception des animaux chez lesquels les caroténoïdes sont introduits par l'alimentation (Britton, 1995). Bien qu’environ un millier de caroténoïdes différents aient été identifiés dans la nature et qu’ils présentent des caractéristiques structurelles très variées, tous les caroténoïdes connus partagent un squelette conjugué linéaire lipophile, obtenus en passant par des voies biosynthétiques hautement conservées (Britton, 2004). Les caroténoïdes sont synthétisés à partir de la condensation linéaire des unités d'isoprène, dérivées du métabolisme primaire (Armstrong, 1994). Des modifications covalentes à chaque extrémité de la chaîne donnent lieu à la diversité structurelle observée des caroténoïdes connus (Armstrong, 1997). La désaturation des chaînes génère le chromophore, caractéristique des caroténoïdes, qui se traduit par une région d'électrons délocalisés facilement excitables ; ces propriétés sont à la base de deux caractéristiques fondamentales communes à tous les caroténoïdes, à savoir leurs propriétés photochimiques et leur action antioxydante (Britton, 1995).
Le terme de caroténoïde regroupe les molécules des familles des carotènes et des xanthophylles.
Parmi les caroténoïdes présentant le potentiel antioxydant le plus important, on se doit de mentionner les bactériorubérines, des carotènes tétra-hydroxylés à 50 atomes de carbone. Les bactériorubérines et leurs dérivés se retrouvent dans des bactéries extrêmophiles, notamment les archées halophiles et certaines actinobactéries psychrophiles ; dans ces microorganismes, ils jouent un rôle important dans la protection de l’ADN et des membranes contre l’irradiation solaire ainsi que les stress environnementaux thermiques et osmotiques auxquels ces organismes sont constamment confrontés (Mandelli et al. 2012). En particulier, ces carotènes se retrouvent dans l’actinobactérie psychrophile Arthrobacter (Micrococcus) agilis. Cette bactérie est également capable de synthétiser des formes glycosylées des bactériorubérines, c’est-à- dire, dont les groupement hydroxyles terminales sont substitués avec des sucres (Fong et al. 2001 ).
Il est connu que plusieurs caroténoïdes peuvent aider à prévenir, ralentir ou traiter des maladies neurodégénératives. Ainsi la demande de brevet WO2014/155189 divulgue l’utilisation de plusieurs xanthophylles, notamment la lutéine et la zéaxanthine pour le traitement et la prévention du PD et l’ALS.
La demande W02008/038119 divulgue le traitement du PD par une composition contenant : (a) un complexe de coenzyme Q10 et au moins une cyclodextrine; et (b) au moins un caroténoïde, notamment un carotène choisi parmi l’a-carotène, p- carotène et lycopène.
Il est également connu que les caroténoïdes glycosylés peuvent être utiles dans le traitement et prévention de maladies neurodégénératives : à titre d’exemple, une action neuroprotectrice a été associée à la crocine, un caroténoïde glycosylé responsable de la couleur jaune du safran (Farkhondeh ét al. 2018).
Malgré l’utilité des caroténoïdes déjà employés dans la prévention des maladies neurodégénératives, il subsiste un besoin évident pour des nouveaux remèdes aptes à contraster de façon plus efficace l’émergence de ces pathologies.
Buts de l’invention
L’invention a pour but de résoudre le problème technique consistant à fournir un composé ou une composition possédant une activité chaperon, c’est-à-dire ayant la capacité de lutter contre la dénaturation et l’agrégation de protéines, protégeant ainsi des protéines cellulaires.
Ainsi, l’invention a également pour but de résoudre le problème technique consistant à fournir un composé ou une composition protégeant au moins une protéine intracellulaire ou extracellulaire à la fois du stress oxydatif et de la dénaturation.
L’invention a pour but de résoudre le problème technique consistant à fournir un composé ou une composition utile dans le traitement et la prévention d’une maladie présentant une dérégulation dans l’agrégation de protéines, comme par exemple de maladies dégénératives.
Description de l’invention
De façon surprenante, la Demanderesse a découvert qu’une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, possède une activité chaperon, les rendant ainsi utiles dans le traitement et la prévention de maladies impliquant une dérégulation dans l’agrégation de protéines, comme par exemple une maladie dégénérative, avantageusement une maladie neurodégénérative, une fibrose, avantageusement une fibrose pulmonaire, ou un diabète. Parmi les maladies neurodégénératives, on peut citer en particulier les maladies neurodégénératives caractérisées par l’accumulation d’agrégats de protéines dans les neurones, comme l’ALS et le PD. Dans la partie expérimentale, il est montré que les bactériorubérines, et encore plus les bactériorubérines glycosylées permettent de stabiliser les protéines et en ralentir leur inactivation/dénaturation. L’effet chaperon de ces molécules peut jouer un rôle important dans le traitement de ces pathologies, en protégeant les neurones.
La présente invention concerne également une composition comprenant une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans le traitement ou la prévention d’une maladie impliquant une dérégulation dans l’agrégation de protéines, comme par exemple une maladie dégénérative, avantageusement une maladie neurodégénérative, une fibrose, avantageusement une fibrose pulmonaire, ou un diabète.
L’invention concerne notamment une composition comprenant une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans le traitement ou la prévention d’une maladie impliquant une dérégulation dans l’agrégation de protéines en réduisant la formation d’agrégats protéiques toxiques, et en particulier dans les neurones.
L’invention concerne notamment une composition comprenant une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans le traitement ou la prévention d’une maladie impliquant une dérégulation dans l’agrégation de protéines en réduisant la dénaturation de protéines.
Ainsi la présente invention concerne une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans le traitement ou la prévention d’une maladie dégénérative, avantageusement d’une maladie neurodégénérative.
La présente invention concerne également une composition comprenant une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans le traitement ou la prévention d’une maladie dégénérative, avantageusement d’une maladie neurodégénérative . La présente invention concerne également une méthode de traitement ou prévention d’une maladie dégénérative, avantageusement d’une maladie neurodégénérative dans laquelle une composition comprenant au moins une bactériorubérine et/ou au moins une bactériorubérine glycosylée est administrée à un sujet en ayant besoin.
Typiquement, la maladie neurodégénérative est choisie parmi la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD), la maladie de Huntington, l'atrophie corticale postérieure ou encore la sclérose latérale amyotrophique (SLA) ainsi que les maladies neurodégénératives oculaires choisies parmi la dégénérescence maculaire, la rétinite pigmentaire et la rétinopathie, avantageusement pour le traitement de la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD).
Les compositions selon l’invention peuvent également être utiles pour traiter d’autres pathologies présentant une dérégulation dans l’agrégation de protéines, comme par exemple, une fibrose, avantageusement une fibrose pulmonaire, ou un diabète.
Bactériorubérine (CAS No 32719-43-0), également connue sous le nom de « a- Bactériorubérine ».
L’ «-Bactériorubérine » présente la structure suivante :
[Chem 1 ]
La a-bactériorubérine comprend 4 groupements hydroxyle terminaux, dont chacun est susceptible d’être substitué par liaison éther avec un groupement du type sucre, voire un ou plusieurs sucres liés de façon covalente. Par « forme glycosylée de la bactériorubérine » ou « bactériorubérine glycosylée » on entend une bactériorubérine dont au moins un groupement hydroxyle est substitué avec un ou plusieurs, par exemple deux ou trois, résidus de sucres par le biais d’une liaison éther entre le squelette de la bactériorubérine et le sucre. Une « bactériorubérine glycosylée isolée » selon l’invention est obtenue par synthèse par biotechnologie, par synthèse chimique, suivies typiquement d’une purification, ou, alternativement par purification d’une bactériorubérine glycosylée naturellement contenue dans une bactérie naturelle.
Par exemple, une « bactériorubérine glycosylée » selon l’invention répond à la structure suivante :
[Chem 2] dans laquelle R est indépendamment choisi parmi un atome d’hydrogène, un ou plusieurs, par exemple deux, voire trois,, résidus de sucres et où R à moins une occurrence représente un ou plusieurs, par exemple deux, voire trois résidus de sucres.
Dans un mode de réalisation préféré, le sucre est un hexose ou un désoxyhexose choisi dans le groupe constitué par l’allose, l’altrose, le glucose, le mannose, le gulose, l’idose, le galactose, le fucose, fructose, le fucose.
Dans un mode de réalisation préféré, une composition selon l’invention comprend au moins une bactériorubérine glycosylée choisie parmi les bactériorubérines monoglycosylées, les bactériorubérines diglycosylées, les bactériorubérines triglycosylées, les bactériorubérines tétraglycosylées, les bactériorubérines pentaglycosylées, les bactériorubérines hexaglycosylées, les bactériorubérines heptaglycosylées, les bactériorubérines octaglycosylées, les bactériorubérines nonaglycosylées, les bactériorubérines decaglycosylées, les bactériorubérines undecaglycosylées, et les bactériorubérines dodecaglycosylées. Avantageusement il s’agit au moins une bactériorubérine glycosylée choisie parmi les bactériorubérines monoglycosylées, les bactériorubérines diglycosylées, les bactériorubérines triglycosylées, et les bactériorubérines tetraglycosylées.
Avantageusement, ladite composition comprend un mélange de bactériorubérines monoglycosylées, bactériorubérines diglycosylées et bactériorubérines tetraglycosylées ; et de préférence un mélange de bactériorubérines monoglycosylées et bactériorubérines diglycosylées. Dans une mode de réalisation privilégié, la composition selon l’invention est essentiellement exempte de formes non glycosylées de bactériorubérine.
Avantageusement, l’extrait total de caroténoïdes contenant les bactériorubérines glycosylées selon l’invention est un extrait bactérien, de préférence d’Actinobactérie, encore plus avantageusement de la famille Microccoccaceae. Avantageusement, il s’agit des espèces Micrococcus roseus et Arthobacter agilis.
Les bactériorubérines glycosylées peuvent être obtenues par extraction et purification par exemple par chromatographie, des extraits totaux de caroténoïdes d’actinobactérie des genres Micrococcus ou Arthrobacter, avantageusement les espèces A. agilis et/ou M. roseus. L’espèce A. agilis est également connue sous le nom Micrococcus agilis. Ainsi les extraits et souches décrites dans les publications Strand et al. 1997, Fong et al. 2001 et dans la demande de brevet WO 2014/167247 peuvent être utilisés comme source de bactériorubérines glycosylées. De préférence, les souches d’Æ agilis utilisées comme sources des bactériorubérines glycosylées au sens de l’invention sont la souche MB813 (décrite dans Fong ét al. 2001 ) et/ou SB5 (décrite dans la demande de brevet WO 2014/167247). Les méthodes pour obtenir des extraits de caroténoïdes totaux de ces espèces bactériennes sont connus à l’homme du métier et sont par exemple décrites dans Strand ét al. 1997, Fong ét al. 2001 ainsi que la demande de brevet WO 2014/167247. Ces méthodes ne permettent toutefois pas d’isoler les différentes bactériorubérines glycosylées.
De façon surprenante, la Demanderesse a mis au point une méthode permettant d’isoler de façon efficace les formes glycosylées de la bactériorubérine d’un extrait de caroténoïdes d’Æ agilis. La présente invention décrit une méthode pour purifier et isoler la bactériorubérine et ses formes glycosylées.
Ainsi, la présente invention concerne également la bactériorubérine isolée et/ou une bactériorubérine glycosylée isolée, ainsi que leurs mélanges, notamment pour les utilisations et applications décrites dans la présente invention.
En d’autres termes, l’invention couvre une bactériorubérine glycosylée séparée et purifiée, notamment à partir d’un extrait de bactérie extrêmophile, et de préférence d’ Arthrobacter agilis, pour son utilisation dans une méthode de traitement ou prévention d’une maladie dégénérative, avantageusement d’une maladie neurodégénérative. Dans un mode de réalisation préféré, un extrait total de caroténoïdes contenant les bactériorubérines glycosylées selon l’invention correspond aux caroténoïdes contenus dans la matière première MIRORUBERINE commercialisée par la société GREENTECH et correspondant à la désignation INCI Micrococcus lysate. Alternativement, les bactériorubérines glycosylées selon l’invention peuvent être obtenues par biotechnologie, ou par synthèse chimique, par exemple par le biais d’une glycosylation contrôlée des formes natives de bactériorubérines, typiquement d’a-bactériorubérines, par exemple en partant de l’a-bactériorubérine. Cette glycosylation peut être obtenue par voie chimique ou par biotechnologie, de préférence par biotechnologie en utilisant de glycosyltransférases adaptées. A titre d’exemple, la matière première HALORUBINE commercialisée par la société HALOTEK GMBH peut être utilisée comme source d’a-bactériorubérine dans la synthèse des bactériorubérines glycosylées au sens de l’invention.
Avantageusement, une composition selon l’invention comprend l’a- bactériorubérine. La a-bactériorubérine peut être obtenue par extraction de actinobactéries susmentionnées, qui synthétisent également des formes glycosylées de la bactériorubérine. Alternativement, l’a-bactériorubérine peut être extraite des cultures d’une ou plusieurs archées halophiles, comme par exemple les espèces Halobacterium salinarum, Halorubrum sodomense, Haloarcula valismortis, Salinibacter ruber. Ainsi, la matière première HALORUBINE commercialisée par la société HALOTEK et correspondant à la désignation INCI Halobacterium salinarum carotenoides peut être utilisée dans les compositions selon l’invention.
Dans un mode de réalisation alternatif, une composition selon l’invention comprend au moins une bactériorubérine et une bactériorubérine glycosylée. En d’autres termes, cette composition comprend un mélange de formes glycosylées de la bactériorubérine, et de formes non glycosylées, et avantageusement un mélange de a-bactériorubérine, de bactériorubérines monoglycosylées, de bactériorubérines diglycosylées. Avantageusement, le ratio entre formes non glycosylées et formes glycosylées est compris entre 2/1 et 1/2.
Dans un mode de réalisation, une composition selon l’invention comprend une ou plusieurs bactériorubérines glycosylées et ne comprend essentiellement pas de forme non- glycosylée de bactériorubérine. Par « ne comprend essentiellement pas de forme non- glycosylée de bactériorubérine » ou « essentiellement exempte de formes non glycosylées de bactériorubérine », on entend que l’on cherche à éviter et à éliminer la forme non- glycosylée de bactériorubérine, mais qu’elle peut être présente sous forme de traces. De préférence de telles traces ne sont pas détectables par analyse.
Avantageusement, une composition selon l’invention comprend un mélange de bactériorubérines monoglycosylées, bactériorubérines diglycosylées, bactériorubérines tetraglycosylées ; et de préférence un mélange de bactériorubérines glycosylées essentiellement constitué de bactériorubérines monoglycosylées et bactériorubérines diglycosylées, et ledit mélange comprenant de préférence 20 à 80% en masse de bactériorubérines monoglycosylées et 20 à 80% en masse de bactériorubérines diglycosylées par rapport à la masse totale du mélange de bactériorubérines glycosylées.
Les compositions pharmaceutiques comprenant au moins un bactériorubérine et/ou une bactériorubérine glycosylée selon l’invention se présentent généralement sous forme dosée. Ainsi, la composition comprenant au moins un bactériorubérine et/ou une bactériorubérine glycosylée peut se présenter sous forme de comprimé, dragée, gélule, suppositoire, solution injectable ou buvable, ou encore goutte et elle est apte à être administrée par voie orale, oromucosale, rectale, vaginale, intramusculaire parentérale ou ophtalmique.
Parmi les compositions pharmaceutiques selon l'invention, il sera cité plus particulièrement celles qui conviennent pour l'administration orale, oromucosale, parentérale (intraveineuse, intramusculaire ou sous-cutanée), per ou transcutanée, intravaginale, rectale, nasale, perlinguale, buccale, oculaire ou respiratoire.
Les compositions pharmaceutiques selon l'invention pour les injections parentérales comprennent notamment les solutions stériles aqueuses et non aqueuses, les dispersions, les suspensions ou émulsions ainsi que les poudres stériles pour la reconstitution des solutions ou des dispersions injectables.
Les compositions pharmaceutiques selon l'invention, pour les administrations orales solides, comprennent notamment les comprimés simples ou dragéifiés, les comprimés sublinguaux, les sachets, les gélules, les granules, et pour les administrations liquides orales, nasales, buccales ou oculaires, comprennent notamment les émulsions, les solutions, les suspensions, les gouttes, les sirops et les aérosols.
Les compositions pharmaceutiques pour l'administration rectale ou vaginale sont préférentiellement des suppositoires ou ovules, et celles pour l'administration per ou transcutanée comprennent notamment les poudres, les aérosols, les crèmes, les pommades, les gels et les patchs.
Les compositions pharmaceutiques citées précédemment illustrent l'invention mais ne la limitent en aucune façon.
Parmi les excipients ou véhicules inertes, non toxiques, acceptables pour un être humain ou pharmaceutiquement acceptables, on peut citer à titre indicatif et non limitatif les diluants, les solvants, les conservateurs, les agents mouillants, les émulsifiants, les agents dispersants, les liants, les agents gonflants, les agents désintégrants, les retardants, les lubrifiants, les absorbants, les agents de suspension, les colorants, les aromatisants, etc.
La posologie utile varie selon l'âge et le poids du patient, la voie d'administration, la composition pharmaceutique utilisée, la nature et la sévérité de l'affection. A titre d’exemple, la composition selon l’invention peut être administrée une fois par mois, semaine ou jour et elle peut contenir de 1 mg à 1 g de bactériorubérines glycosylées et/ou bactériorubérines non glycosylées ou l’un quelconque de leurs mélanges.
Les bactériorubérines glycosylées selon l’invention sont adaptées à leur utilisation dans des compléments alimentaires et nutraceutiques. Les méthodes pour formuler les compléments alimentaires sont connu à l’homme du métier. Avantageusement, les compléments alimentaires se présentent sous forme de comprimé ou gélule. Chaque dose peut contenir, à titre d’exemple, de 1 mg à 1 g de bactériorubérines glycosylées et/ou bactériorubérines non glycosylées et l’un quelconque de leurs mélanges.
Dans un comprimé, la cellulose microcristalline est par exemple utilisée en tant qu'agent de charge. Elle est utilisée de 10 à 30 % en poids par rapport au poids total du complément alimentaire, plus avantageusement autour de 20 % en poids.
Le phosphate dicalcique et le phosphate tricalcique sont utilisés comme agents de compression pour préparer des comprimés. Le phosphate dicalcique est utilisé de 10 à 30% en poids par rapport au poids total du complément alimentaire, plus avantageusement autour de 15 % en poids. Le phosphate tricalcique est utilisé en une quantité variant de 2,5 à 7,5 % en poids par rapport au poids total du complément alimentaire, et plus avantageusement autour de 5 % en poids. La silice hydratée, le stéarate de magnésium et la silice colloïdale peuvent avantageusement être utilisés comme fluidifiants dans le complément alimentaire sous forme de comprimés ou de gélules. Ils sont introduits en une quantité située aux alentours de 2 % en poids, 1 % en poids et 0,6 % en poids par rapport au poids total du complément alimentaire, respectivement.
D'autres adjuvants, tels que des arômes (arômes naturels ou chimiques, de fruits ou autres) ou des pigments sont avantageusement incorporés dans la préparation du complément alimentaire.
Lorsque le complément alimentaire se présente sous forme de capsule molle ou de gélule, l'enveloppe de ces capsules molles ou de ces gélules peut contenir notamment de la gélatine animale telle que la gélatine de poisson, de la glycérine, ou un matériau d'origine végétale tel qu'un dérivé de cellulose ou d'amidon, ou une protéine végétale. Dans un mode de réalisation préféré, une ou plusieurs bactériorubérines glycosylées selon l’invention incorporées dans les gélules peuvent être solubilisée dans un corps gras, avantageusement de triglycéride caprylique et/ou caprique, et de préférence stabilisées par du tocophérol. Ainsi un grade alimentaire de la matière première MIRORUBERINE commercialisée par la société GREENTECH et correspondant aux désignations INCI caprylic/capric triglyceride & tocopherol & Micrococcus lysate peut être utilisé dans les compléments alimentaires selon l’invention.
La manière dont l’invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif, à l’appui des figures annexées.
[Fig 1 ] La Figure 1 montre la composition d’un extrait de caroténoïdes de l’isolat SB5 de l’espèce A. agilis. : BR= a-Bacterioruberine, BR-MonoG : forme monoglycosylée , BR-DiG : forme di-glycosylée, BR-DiG2 : Autre forme de BR-DiG, BR-TetraG : forme tétraglycosylée.
[Fig 2] La Figure 2 montre le pourcentage de protection contre la chaleur d’un extrait total de caroténoïdes d’Æ agilis (Snow bacteria extract -> SBE), de la bactériorubérine (BR), des bactériorubérines monoglycosylées (BR-MonoG) et des bactériorubérines diglycosylées (BR-DiG). [Fig 3] La Figure 3 montre le pourcentage de protection contre le stress oxydant d’un extrait total de caroténoïdes d’A agilis (Snow bacteria extract -> SBE), de la bactériorubérine (BR), des bactériorubérines monoglycosylées (BR-MonoG) et des bactériorubérines diglycosylées (BR-DiG). [Fig 4], [Fig 5] Les Figures 4 et 5 représentent respectivement les résultats sur un réseau de neurites (Fig. 4) et l’hyperphosphorylation de Tau (Fig. 5) des neurones corticaux lésés par le glutamate et la protection conférée par la neurotrophine BDNF et les caroténoïdes d’A. agilis (SBE). Les résultats sont exprimés en pourcentage de la condition de contrôle sous forme de moyenne +/- erreur type (n = 4-6). Traitement statistique : One- way ANOVA suivie par le test de Différence Significative Minimale (LSD) de Fisher. * = p< 0.05 a été considéré significatif.
Exemples de réalisation
Exemple I - Purification des bactériorubérines glycosylées d’un extrait de caroténoïdes de la bactérie A. agilis
I -1 But de l’étude
Le but de cette étude est d’isoler et quantifier les molécules contenues dans un extrait de caroténoïdes totaux de la bactérie A. agilis.
I-2 Matériels et méthodes
1-2.1 Extrait
L’extrait total de caroténoïdes de la bactérie A. agilis contenu dans la matière première GREENTECH dénommée «Miroruberine » et correspondant à la désignation INCI Micrococcus lysate a été utilisé dans cette étude, issue de la souche SB5. Cet extrait dit « SBE » peut être obtenu en employant la méthode décrite dans la publication de la demande de brevet WO2014167247.
I-2.2 Chromatographie sur colonne et sur couche mince
L’extrait SBE a été repris dans du tétrahydrofurane (THF) jusqu’à solubilisation complète. Une étape de séparation des Bactériorubérines glycosylées par chromatographie sur gel de silice a été réalisée dans une colonne en verre après dilution du SBE dans du THF.
1. Suspension du gel de silice dans un mélange DCM/méthanol (10/1 ) avant d’être coulé dans la colonne
2. Après sédimentation du gel de silice, 1 cm de sable est ajouté avant d’effectuer 3 lavages avec le mélange DCM/méthanol
3. 0,5 ml de SBE dilué dans le THF sont déposés sur le sable et laissés ainsi 5 minutes
4. 50 ml de mélange DCM/méthanol (10/1) sont ajoutés progressivement permettant de collecter séparément les fractions 1 , 2, 3 et 4
5. 40 ml de mélange DCM/méthanol (8/2) sont ajoutés progressivement permettant la collecte séparée des fractions 5 et 6 6. 40 ml de mélange DCM/méthanol (5/5) sont ajoutés progressivement permettant la collecte de la fraction 7
7. 40 ml de mélange DCM/méthanol (3/7) sont ajoutés progressivement pour permettre la collecte de la fraction 8
8. Toutes les fractions sont ensuite comparées par CCM (DCM/méthanol (10/1)) avec le SBE et quantifiées par absorption (en utilisant le maximum d’absorption de chaque fraction).
I-2.3 Séparation des fractions par HPLC
Equipement: Nexera XR, pompe binaire (Shimadzu)
Colonne : C18; Intersustainable Swift 5pm 4,6 x 150 mm Producteur: GL Sciences
Phases mobiles:
A: 20% H2O dans MeOH
B: 20% EtOAc dans MeOH
Flux: 1 ,5 ml / min
Volume d'injection: 50 pL
[Table 1 ]
1-3 Résultats et discussion
Dans cette purification, la première étape de séparation par chromatographie sur colonne a permis de collecter les diverses fractions dont la pureté a été confirmée par CCM et par HPLC-DAD, en le comparant au spectre d’absorbance de l’extrait natif ; la quantification des différentes formes a été réalisées par absorption UV à 500nm.
Chacune des molécules de chacune des fractions collectées par chromatographie a été identifiée par spectroscopie Maldi-TOF-TOF en utilisant un appareil AUTOFLEX (Brucker). La méthode utilisée est "CHCA and DHB Matrix without TFA in reflector aquisition". La répartition entre les différentes formes a été calculée en combinant les résultats obtenus avec les quantifications effectuées sur ces fractions par HPLC-DAD (Figure 1 ). La fraction 1 correspond au bêta-carotène, produit secondaire de la synthèse de bactériorubérine, mais cette molécule ne représente que 0,79% de l’extrait. La fraction 4 présente le même profil d’extrait d’ Halobacter salinarium (Halorubine) dont la molécule majoritaire est la bactériorubérine (BR) Cette molécule représente environ la moitié de l’extrait sec (Fig 1).
Deux formes diglycosylées, migrant séparément (BR-DiG1 et BR-DiG2) ont été identifiées. Les formes diglycosylées représentent >22% de l’extrait.
La forme monoglycosylée BR-MonoG représente >26% de l’extrait. La forme tétraglycosylée (BR-TetraG) ne représente que 0,01 % de l’extrait (Fig.1 ).
Exemple II - Protection et stabilisation des protéines par un extrait de caroténoïdes de A. agilis ainsi que les bactériorubérines et formes glycosylées isolées le composant
11-1 But de l’étude
Le but de cette étude est de comparer les capacités de protection des protéines des différents composants d’un extrait de caroténoïdes de l’actinobactérie A. agilis séparés par chromatographie et HPLC. Plus spécifiquement, nous avons testé toutes les fractions majoritaires pour évaluer leur capacité de protéger l’enzyme phosphatase alcaline :
Contre la dénaturation via leur effet de protection des protéines de la dénaturation (test AP-Heat) (effet chaperon)
Contre l’oxydation (test APox) (Effet protecteur du stress oxydant).
11-2 Matériels et méthodes
11-2.1 Echantillons à tester
[Table 21
Quatre doses ont été testées pour SBE, BR, BR-MonoG et BR-DiG : 20 pM, 10 pM, 5 pM, 2,5 pM, 1 ,25pM
II-2.2 Test APox et AP-Heat Test APox et protocole :
Ce test est décrit dans la demande de brevet FR3002544-A1 - et mesure l’aptitude d’une substance à protéger l’enzyme phosphatase alcaline d’un stress oxydant. Matériel nécessaire :
Phosphatase alcaline (PA) bovine (Sigma P0114)
Substrat liquide de la PA (Sigma P7998)
Peroxyde d’hydrogène à 30% Solution de FeC S (30mg dans 1ml d’H2O)
Plaque 96 puits à fond plat
Lecteur de plaque à 405nm
Dans chaque puits, sont déposés :
10 pi de PA diluée à 10-5 dans du MgSO4 10-2M.
4 pl de molécule à tester, de solvant (contrôle négatif) ou d’H2O (contrôle positif) +6 pL d’H2O
30 pl d’une solution de peroxyde d’hydrogène (à partir d’une solution mère composée de 940pl H2O + 40pl H2O2 30% + 20 pl FeC S 10-2) ou 30pl d’H2O (contrôle positif)
Laisser incuber 15 min à 37°C.
Ajouter 50 pl de substrat liquide.
Lecture de DO à 405nm pendant 20 min à 37°C.
Test AP-Heat et protocole :
Ce test est issu d’une modification du test APox, pour mesurer le potentiel de protection des protéines non plus contre le stress oxydant mais contre la dénaturation (stress thermique). En effet, sous l’effet de la chaleur, les protéines se dénaturent et les enzymes perdent leur activité. En jouant sur la température et le temps d’incubation on peut déterminer les conditions nécessaires pour inhiber 90% de l’activité de la phosphatase alcaline (55°C pendant 1 heure).
Matériel nécessaire :
Phosphatase alcaline (PA) bovine (Sigma P0114)
- Substrat liquide de la phosphatase alcaline (Sigma P7998)
Bloc chauffant
Plaque 96 puits à fond plat
Lecteur de plaque à 405nm
Dans chaque puits, on dépose :
10pL de PA diluée à 10-5 dans du MgSC 10-2M
4pL de molécule à tester ou de solvant seul + 6pL d’H2O
Laisser incuber pendant 15min sous agitation à 37°C. Laisser incuber 1 h à 37°C ou à 55°C sur un bloc chauffant.
Ajouter 50pL de substrat liquide.
Lecture des DO à 405nm pendant 20min à 37°C.
Le pouvoir de protection d’une molécule dite X contre la dénaturation (PPX) est calculé en faisant le ratio de l’activité de la phosphatase alcaline (PA) à 55°C (condition stressée) sur son activité à 37°C (condition basale) en présence de la molécule. Ce ratio est ensuite normalisé grâce au même ratio mais obtenu en présence du solvant seul.
Schématiquement, le calcul est le suivant :
PPX = (APAX55-(APAX37 X APAS55/APAS37))/ (APAX37-(APAX37 X APAS55/APAS37))
Avec :
APAX55 : activité de la PA en présence de la molécule X à 55°C
APAX37 : activité de la PA en présence de la molécule X à 37°C
APAS55 : activité de la PA en présence du solvant à 55°C
APAS37 : activité de la PA en présence du solvant à 37°C
Et en considérant que :
APAX37 correspond à une protection de l’enzyme de 100%
- APAX37 x AP AS55/AP AS37 correspond à une protection nulle.
L’activité de l’enzyme pour chaque condition est calculée en faisant la moyenne des valeurs de densité optique mesurées à 405nm pour les réplicats, valeurs auxquelles on retranche la valeur moyenne des puits dits « blancs » (réactifs seuls), soit :
APA= [(DO replicat 1 - DO blanc) + (DO replicat 2 - DO blanc) + (DO replicat 3 - DO blanc)]/ 3
Ces calculs ne peuvent s’appliquer qu’avec des valeurs de DO situées dans la partie linéaire de la courbe, généralement comprises entre 0,15 et 1 ,5.
Toutes les mesures d’activité de l’enzyme ont été réalisées sur un lecteur de plaque 96 puits EnSight- Perkin Elmer. II-3 Résultats et discussion
Les résultats du test dit « AP-heat » sont montrés en figure 2. Les formes glycosylées de la bactériorubérine (BR-MonoG, BR-DiG) ainsi que l’extrait SBE, qui correspond à un mélange de a-bactériorubérine (BR) et de formes glycosylées de ce caroténoïde, en particulier la forme diglycosylée (BR-DiG), protègent la protéine de façon plus efficace que la BR même. Cet effet se retrouve de façon cohérente à toutes les concentrations testées.
Les résultats du test APOX sont montrés en figure 3. Ces résultats montrent que les formes glycosylées présentent un plus fort potentiel de protection que la BR non- glycosylées et que cet effet est en parfaite adéquation avec l’effet chaperon. Dans ce cas encore un fois la protection de la protéine de l’oxydation est particulièrement prononcée pour la forme diglycosylée de la bactériorubérine (BR-DiG) ainsi que l’extrait total SBE. Cet effet se retrouve de façon cohérente à toutes les concentrations testées.
Ces résultats indiquent que la bactériorubérine (BR) mais surtout les formes glycosylées de la bactériorubérine (en particulier BR-MonoG, BR-DiG), ainsi que l’extrait SBE, qui correspond à un mélange de a-bactériorubérine (BR) et de formes glycosylées de ce caroténoïde, et tout particulièrement la forme diglycosylée (BR-DiG), permettent de protéger les protéines intracellulaires à la fois du stress oxydatif et de la dénaturation, qui est généralement suivie par la formation d’agrégats dans les cellules. Ainsi, la bactériorubérine (BR) mais surtout les formes glycosylées de la bactériorubérine (en particulier BR-MonoG, BR-DiG), ainsi que l’extrait SBE, qui correspond à un mélange de a- bactériorubérine (BR) et de formes glycosylées de ce caroténoïde, et tout particulièrement la forme diglycosylée (BR-DiG), se prêtent donc à leur exploitation pour la mise au point de traitement visant à réduire la formation d’agrégats protéiques toxiques, par exemple dans les neurones, ou dans une maladie impliquant une dérégulation dans l’agrégation de protéines.
Exemple III - Effet neuroprotecteur sur modèle de neurones
III-1 But de l’étude
Le but de l’étude était d'évaluer l'effet neuroprotecteur d’un extrait de caroténoïdes de la bactérie A. agilis riches en bactériorubérines glycosylées dénommé « SBE » sur l’excitotoxicité du glutamate dans un modèle cellulaire mimant la maladie d'Alzheimer (ALS).
Le système glutamatergique, et en particulier les récepteurs NMDA (récepteurs glutamatergiques) joue un rôle majeur dans les processus d'apprentissage et de mémoire. La plasticité synaptique peut être régulée par la signalisation du récepteur NMDA.
Une suractivation des récepteurs NMDA est une caractéristique pathologique courante dans de nombreuses maladies neurodégénératives, y compris celles conduisant à un déficit cognitif comme la maladie d'Alzheimer. Dans cette optique, un traitement pharmacologique précoce avec des substances réduisant la sur-stimulation du glutamate est une voie pour traiter les patients diagnostiqués avec un déclin cognitif. La protéine Tau est une protéine associée aux microtubules impliquée dans la stabilité du microtubule et le transport axonal. L’hyperphosphorylation pathologique de Tau déclenche la formation d'enchevêtrements neurofibrillaires et participe activement, en association avec les oligomères de protéine bêta-amyloïde, au processus neurodégénératif de l’ALS. De plus, l’excitotoxicité du glutamate et la phosphorylation de la protéine Tau sont des phénomènes étroitement liés.
Dans cet exemple, le BDNF (Brain-Derived Neurotrophic Factor, facteur neurotrophique issu du cerveau) a été utilisé comme témoin positif, car cette neurotrophine est connue pour promouvoir la survie et la différenciation des neurones in vivo et in vitro.
111-2 Matériels et méthodes
Il 1-2-1. Culture primaire de neurones corticaux
Toutes les expériences ont été réalisées ont suivi les réglementations en vigueur dans l'Union européenne (Directive 2010/63 / UE).
Des neurones corticaux murins ont été cultivés comme décrit par Callizot et al., 2013. Les cellules ont été mécaniquement dissociées par trois passages forcés à travers la pointe d'une pipette de 10 ml. Les cellules ont ensuite été centrifugées à 515 x g pendant 10 minutes à 4 °C. Le surnageant a été retiré et le culot a été repris dans un milieu de culture défini constitué de milieu Neurobasal avec une solution à 2% de supplément de B27, 2 mmol / litre de L-glutamine, 2% de solution de PS et 10 ng/mL de BDNF. Les cellules viables ont été comptées dans un cytomètre Neubauer, en utilisant le test d'exclusion au bleu trypan. Les cellules ont été ensemencées à une densité de 25000 par puits dans une plaque de 96 puits pré-enduite de poly-L-lysine et ont été cultivées à 37 °C dans un incubateur à CO2 (5%). Le milieu a été changé tous les 2 jours. Les expériences ont été par la suite effectués sur les plaques à 96 puits (n = 6 puits de culture par condition). Dans les 96 puits de chaque plaque, seuls 60 ont été utilisés. Les puits des première et dernière lignes et colonnes n'ont pas été utilisés pour éviter tout effet de bord et ont été remplis d'eau stérile.
111-2-2 Composés d'essai et intoxication au glutamate
Les composés suivants ont été testés dans cet exemple :
[Table 3]
Les composés à tester ont été solubilisés dans du DMSO et la concentration a été ajustée afin d’assurer une concentration de DMSO dans le milieu de culture de 0,1 %. Au jour 13 de la culture, les composés ont été pré-incubés avec des neurones corticaux primaires pendant 1 heure, avant l'application de glutamate. Par la suite, le même jour, les neurones corticaux ont été exposés au glutamate pendant 20 min. Le glutamate a été ajouté à une concentration finale de 20 pM (dilué dans le milieu témoin) en présence de SBE ou de BDNF (utilisé comme témoin positif). Au bout de 20 minutes, le glutamate a été éliminé et du milieu de culture frais avec les composés à l’étude a été ajouté pendant 48 heures supplémentaires.
Il 1-2-3 Evaluation des effets des composés par immunomarquage
48 heures après l’intoxication au glutamate, le surnageant de culture cellulaire a été retiré en utilisant des pipettes automatiques multicanaux. Les cellules ont ensuite été lavées avec une solution saline tamponnée au phosphate (PBS). Les neurones corticaux ont été fixés par une solution froide d'éthanol (95%) et d'acide acétique (5%) pendant 5 min à -20 °C. Ils ont été lavés à nouveau deux fois dans du PBS, puis perméabilisés. Les sites non spécifiques ont été bloqués avec une solution de PBS contenant 0,1 % de saponine et 1% de PCS, pendant 15 min à température ambiante. Les cellules ont été incubées pendant 2 heures avec respectivement : a) un anticorps monoclonal de souris anti-MAP-2 (microtubule-associated-protein 2) à une dilution de 1/400 dans du PBS, avec 1% de sérum de veau fœtal et 0,1 % de saponine. Cet anticorps se lie spécifiquement aux neurones et neurites, permettant l'étude du réseau de neurites. b) un anticorps monoclonal de souris AT100 anti-phosphorylé Tau sur Thr212/Ser214 à la dilution de 1/400 dans du PBS contenant 1% de sérum de veau fœtal et 0,1 % de saponine. Cet anticorps permet d’étudier l’hyperphosphorylation de la protéine Tau.
Ces anticorps ont été révélés avec les anticorps secondaires Alexa Fluor 488 IgG chèvre anti-souris, Alexa Fluor 568 IgG chèvre anti-poulet anti-souris, Alexa fluor 568 IgG chèvre anti-lapin. Ces anticorps secondaires ont été incubés avec les préparations des neurones à la dilution 1/400 dans du PBS contenant 1% de FCS, 0,1% saponine, pendant 1 heure à température ambiante.
Pour chaque condition, 30 images par puits ont été automatiquement prises en utilisant ImageXpress (Molecular Devices) à un grossissement de 20x. Toutes les images ont été générées en utilisant les mêmes paramètres d'acquisition. À partir d'images, des analyses ont été automatiquement effectuées par Custom Module Editor® (Molecular Devices). Les paramètres suivants ont été examinés :
Réseau de neurites total (longueur du neurite positif à MAP-2)
Hyperphosphorylation de la protéine Tau (chevauchement Tau / MAP-2, pm2 de chevauchement)
III-2-4 Traitement statistique des données
Les données sont exprimées en pourcentage du témoin. Toutes les valeurs montrent la moyenne +/- erreur standard de la moyenne de 4-6 puits par condition. Les graphiques et les analyses statistiques sur les différentes conditions (ANOVA suivi du test LSD de Fisher [tous les groupes versus groupe glutamate]) ont été effectuées à l'aide du logiciel GraphPad Prism version 8.1 .2. * P <0,05 était considéré comme significatif.
111-3 Résultats et discussion
Intégrité du réseau de neurites : L’intoxication au glutamate a induit une réduction significative (60%) dans la densité du réseau de neurites (figure 4). Comme attendu, le BDNF exerce un effet protecteur significatif sur l'intégrité du réseau de neurites (réseau de neurites total = 85%,). L'application de SBE a considérablement amélioré l'intégrité du réseau de neurites La longueur totale du réseau de neurites a atteint 83%, un résultat significatif et comparable à celui obtenu avec la neurotrophine.
Hyperphosphorylation de la protéine Tau (AT100): L’intoxication au glutamate a induit une augmentation significative de la zone AT100 correspondant à une hyperphosphorylation de la protéine Tau et une accumulation de la protéine dans le cytoplasme des neurones (+193% du témoin négatif (100%= valeur 0); figure 5). Comme prévu, le traitement avec la neurotrophine BDNF entraine une réduction importante et significative de l'hyperphosphorylation de Tau (+121%). Tout comme le BDNF, l'application de SBE réduit significativement la phosphorylation de Tau (+137%). En synthèse, l’extrait SBE exerce un effet neuroprotecteur sur le réseau de neurites et cet effet est accompagné par une réduction importante de l'hyperphosphorylation de la protéine Tau dans le cytoplasme des neurones.
Ainsi, une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, peut être utilisé dans une méthode de traitement ou prévention d’une maladie neurodégénérative.
Bibliographie
Armstrong GA (1994) Eubacteria show their true colors - genetics of carotenoid pigment biosynthesis from microbes to plants. J Bacteriol. 176:4795-4802.
Armstrong, GA (1997). Genetics of eubacterial carotenoid biosynthesis: A colorful tale. In: Ornston, LN., editor. Annu Rev Microbiol. USA: Annual Reviews Inc.; . p. 629-659.
Britton G. (1995) Structure and properties of carotenoids in relation to function. FASEB J. 9:1551-1558.
Britton, GL-JSPH. (2004) Carotenoids handbook. Basel; Boston: Birkhâuser Verlag.
Callizot N, Combes M, Steinschneider R, Poindron P. (2013). Operational dissection of p-amyloid cytopathic effects on cultured neurons. J Neurosci Res. 91 : 706-16.
Dugger BN, Dickson DW (2017) Pathology of Neurodegenerative Diseases Cold Spring Harb Perspect Biol 9(7): a028035.
Farkhondeh T, Samarghandian S, Shaterzadeh Yazdi H, Samini F (2018) The protective effects of crocin in the management of neurodegenerative diseases: a review. Am J Neurodegener Dis 7:1 -10.
Fong N, Burgess M, Barrow K, Glenn D (2001 ) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress Appl Microbiol Biotechnol 56, 750-756.
Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ.. (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms, world J Microbiol Biotechnol 28:1781 -1790.
Strand A, Shivaji, S, Liaaen-Jensen (1997) Bacterial carotenoids 55. C50- carotenoids 25: revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Bioch. Syst. & Eco. 25(6) : 547-552

Claims

25 REVENDICATIONS
1 . Composition comprenant au moins une bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant pour son utilisation dans une méthode de traitement ou prévention d’une maladie impliquant une dérégulation dans l’agrégation de protéines, caractérisée en ce que la maladie est une maladie neurodégénérative choisie parmi la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD), la maladie de Huntington, l'atrophie corticale postérieure, la sclérose latérale amyotrophique (SLA) ainsi que les maladies neurodégénératives oculaires choisies parmi la dégénérescence maculaire, la rétinite pigmentaire et la rétinopathie.
2. Composition pour son utilisation selon la revendication 1 , caractérisée en que la maladie neurodégénérative est la maladie d'Alzheimer (ALS) ou la maladie de Parkinson (PD).
3. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que l’au moins une bactériorubérine glycosylée est choisie parmi les bactériorubérines monoglycosylées, les bactériorubérines diglycosylées, les bactériorubérines triglycosylées, les bactériorubérines tétraglycosylées, les bactériorubérines pentaglycosylées, les bactériorubérines hexaglycosylées, les bactériorubérines heptaglycosylées, les bactériorubérines octaglycosylées, les bactériorubérines nonaglycosylées, les bactériorubérines decaglycosylées, les bactériorubérines undecaglycosylées, et les bactériorubérines dodecaglycosylées.
4. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que l’au moins une bactériorubérine glycosylée est choisie parmi les bactériorubérines monoglycosylées, les bactériorubérines diglycosylées, les bactériorubérines triglycosylées, les bactériorubérines tétraglycosylées.
5. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend au moins un extrait comprenant au moins une bactériorubérine et/ou une bactériorubérine glycosylée.
6. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend au moins une bactériorubérine et une bactériorubérine glycosylée, avantageusement un mélange de a- bactériorubérine, de bactériorubérine monoglycosylée et de bactériorubérine diglycosylée.
7. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée ratio entre formes non glycosylées et formes glycosylées de bactériorubérine est compris entre 2/1 et 1/2.
8. Composition pour son utilisation selon l’une des revendication précédentes, caractérisée en ce qu’elle est essentiellement exempte de formes non glycosylées de bactériorubérine.
9. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle se présente sous forme de comprimé, dragée, gélule, suppositoire, solution injectable ou buvable, ou encore goutte et elle est apte à être administrée par voie oromucosale, orale, rectale, vaginale, intramusculaire parentérale ou ophtalmique.
10. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle se présente sous forme de complément alimentaire.
11. Composition pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée ce qu’elle contient de 1 mg à 1 g de bactériorubérines glycosylées et/ou bactériorubérines non glycosylées ou leurs mélanges.
12. Bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation dans une méthode de traitement ou prévention d’une maladie présentant une dérégulation dans l’agrégation de protéines, caractérisée en ce que la maladie est une maladie neurodégénérative choisie parmi la maladie d'Alzheimer (ALS), la maladie de Parkinson (PD), la maladie de Huntington, l'atrophie corticale postérieure, la sclérose latérale amyotrophique (SLA) ainsi que les maladies neurodégénératives oculaires choisies parmi la dégénérescence maculaire, la rétinite pigmentaire et la rétinopathie.
13. Bactériorubérine, de préférence sous forme glycosylée, éventuellement en mélange avec différentes formes de bactériorubérines glycosylées, ou un extrait en comprenant, pour son utilisation selon la revendication 12, caractérisée en que la maladie neurodégénérative est la maladie d'Alzheimer (ALS) ou la maladie de Parkinson (PD).
EP21823624.8A 2020-12-16 2021-12-16 Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l'agrégation des protéines, comme les maladies neurodégénératives Pending EP4262765A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013390A FR3117339A1 (fr) 2020-12-16 2020-12-16 Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l’agrégation des protéines, comme les maladies neurodégénératives
PCT/EP2021/086302 WO2022129407A1 (fr) 2020-12-16 2021-12-16 Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l'agrégation des protéines, comme les maladies neurodégénératives

Publications (1)

Publication Number Publication Date
EP4262765A1 true EP4262765A1 (fr) 2023-10-25

Family

ID=75953911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21823624.8A Pending EP4262765A1 (fr) 2020-12-16 2021-12-16 Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l'agrégation des protéines, comme les maladies neurodégénératives

Country Status (6)

Country Link
EP (1) EP4262765A1 (fr)
JP (1) JP2024502203A (fr)
CN (1) CN117500485A (fr)
CA (1) CA3202415A1 (fr)
FR (1) FR3117339A1 (fr)
WO (1) WO2022129407A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20061874A1 (it) 2006-09-29 2006-12-29 Rosario Ammirante Composizione per il trattamento degli stati patologici neurodegenerativi del sistema nervoso centrale ed in particolare nel morbo di parkinson
GB201101669D0 (en) * 2011-01-31 2011-03-16 Ip Science Ltd Carotenoid particles and uses thereof
FR3002544B1 (fr) 2013-02-26 2017-09-29 Innovance Procede et kit pour evaluer le pouvoir d'un compose ou d'un extrait a proteger les proteines contre un stress oxydant
WO2014155189A1 (fr) 2013-03-28 2014-10-02 Omniactive Health Technologies Ltd. Effet neuroprotecteur des caroténoïdes dans le cerveau
FR3004108B1 (fr) 2013-04-09 2015-04-10 Jean-Noel Thorel Extrait d'arthrobacter agilis pour son utilisation en cosmetique

Also Published As

Publication number Publication date
CA3202415A1 (fr) 2022-06-23
CN117500485A (zh) 2024-02-02
FR3117339A1 (fr) 2022-06-17
JP2024502203A (ja) 2024-01-17
WO2022129407A1 (fr) 2022-06-23

Similar Documents

Publication Publication Date Title
EP2983797B1 (fr) Composition cosmetique, pharmaceutique ou alimentaire comprenant un extrait riche en carotenoides d&#39;arthrobacter agilis
EP3071212B1 (fr) Extrait d&#39;algues pour son utilisation en tant qu&#39;agent immunomodulateur
EP2931295B1 (fr) Extrait d&#39;algues comprenant des polysaccharides polyanioniques sulfatés et non sulfatés et ses applications
EP1948128B1 (fr) Substance pour restaurer une co-expression et une interaction normales entre les proteines lox et nrage
EP1743628A1 (fr) Composition cosmétique comprenant un extrait d&#39;algue rouge comprenant une association de floridoside et d&#39;acide iséthionique.
EP4262765A1 (fr) Utilisation des bactériorubérines et leurs dérivés glycosylés pour prévenir et traiter les maladies impliquant une dérégulation de l&#39;agrégation des protéines, comme les maladies neurodégénératives
EP2726087A1 (fr) Compositions pour le traitement ou la prévention du cancer de la prostate à base d&#39;extrait de graines de brocoli
EP2958547B1 (fr) Utilisation cosmétique de la queuine
EP3247466A1 (fr) Extrait peptidique et osidique de fruit de schizandra et amelioration de la reponse du systeme neurosensoriel cutane
EP2254567B1 (fr) N-acetyl-taurinate de zinc pour son utilisation dans une méthode de prévention et/ou de traitement des maladies avec accumulation de lipofuscine
WO2022129382A1 (fr) Bactériorubérines glycosylées et leurs applications industrielles
EP0826367A2 (fr) Utilisation d&#39;un extrait de Bertholletia dans le domaine cosmétique ou pharmaceutique, et pour la préparation de milieux de cultures de cellules
FR2929510A1 (fr) Utilisation d&#39;au moins un glycoside d&#39;alkyle en tant qu&#39;agen qu&#39;agent anti-vieillissement et/ou calmant des peaux sensibles dans des compositions cosmetiques, et methodes de soin cosmetique utilisant les dites compositions.
FR3089974A1 (fr) Nouveaux composés dépigmentants extraits de Eryngium maritimum
FR3113809A1 (fr) Plathelminthe et extrait de plathelminthe dépourvu de microorganismes pathogènes pour l’Homme
EP3197458A1 (fr) Utilisation dermocosmetique ou pharmaceutique d&#39;une composition contenant au moins un inhibiteur de certaines cytokines chimio-attractantes
EP3996729A1 (fr) Composition pour le traitement des troubles des émotions
WO2020083923A2 (fr) Composition pour traiter le surpoids et/ou l&#39;obesite
JP2021031424A (ja) 抗糖化組成物
TW202000219A (zh) 具有rage訊息抑制作用之食品材料
WO2018115407A1 (fr) Extrait de fraisier des bois et utilisations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)