EP4257867B1 - Method for filling a natural gas cavern - Google Patents

Method for filling a natural gas cavern Download PDF

Info

Publication number
EP4257867B1
EP4257867B1 EP23166450.9A EP23166450A EP4257867B1 EP 4257867 B1 EP4257867 B1 EP 4257867B1 EP 23166450 A EP23166450 A EP 23166450A EP 4257867 B1 EP4257867 B1 EP 4257867B1
Authority
EP
European Patent Office
Prior art keywords
cavern
natural gas
lng
heat exchanger
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP23166450.9A
Other languages
German (de)
French (fr)
Other versions
EP4257867A1 (en
Inventor
Steffen Päßler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ontras Gastransport GmbH
Original Assignee
Ontras Gastransport GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ontras Gastransport GmbH filed Critical Ontras Gastransport GmbH
Publication of EP4257867A1 publication Critical patent/EP4257867A1/en
Application granted granted Critical
Publication of EP4257867B1 publication Critical patent/EP4257867B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0149Type of cavity by digging cavities
    • F17C2270/0152Salt caverns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0155Type of cavity by using natural cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0157Location of cavity
    • F17C2270/016Location of cavity onshore

Definitions

  • the invention relates to a method for filling a cavern storage facility for natural gas.
  • Typical caverns are arranged at a depth of between 800 m and 2,000 m, have heights of between 100 m and 300 m and a diameter of between 30 m and 80 m. There are also significantly larger caverns.
  • the caverns of the previously described type is predominant in Germany. Caverns of this size in Germany have nominal volumes of 100 million standard cubic meters to 300 million standard cubic meters. If such a cavern is filled with a typical overseas ship's cargo of LNG without first gasifying the LNG, which requires a lot of energy, the cavern is likely to collapse as described above.
  • the LNG is introduced directly into the cavern.
  • the LNG is introduced into the cavern through a heat exchanger coil or a pipe ('coil tubing').
  • the heat exchanger coil or pipe is present in the cased borehole that leads to the cavern head.
  • a typical truckload of between 10 m3 and 50 m3 of liquid natural gas (LNG) can be introduced into the cavern.
  • LNG liquid natural gas
  • the gas in the cavern heats up again due to the earth's heat and the pressure increases. Only when the pressure has risen again to between 70% and 120% of the original pressure is another truckload of between 10 m3 and 50 m3 filled into the cavern.
  • Cavern storage facilities usually include several neighboring caverns.
  • the neighboring caverns can be filled with truckloads in turn. If there are four or more caverns, the first cavern can be refilled as soon as the last of four caverns has been refueled. In this way, a ship can be unloaded with a large number of tankers and the tankers travel from the port to the cavern site, whereby the distance can be up to several hundred kilometers, for example from Wilhelmshaven, Bremerhaven or Brunsbüttel to the Salzland district in Halle/Saale, where cavern storage facilities are located.
  • gaseous natural gas flows from the outside along the heat exchanger coil or the pipe.
  • gaseous natural gas can be taken from the cavern.
  • gaseous gas is also introduced into the caverns.
  • the natural gas heated by the compression heats the heat exchanger coil or the pipeline and helps to gasify the LNG. Contrary to the expectation that the introduction of liquid LNG would cause the cavern pressure to drop even further, the opposite is observed.
  • the natural gas flowing towards or along the liquefied petroleum gas (LNG) in the heat exchanger coil or the pipeline gives off heat to the LNG and cools itself down in the process and leaves the cavern or enters the cavern.
  • LNG liquefied petroleum gas
  • the cold, gaseous natural gas from the cavern has to go through a heating process anyway when it is expanded in order to adjust the temperature to the local gas network.
  • the cooled natural gas would have to be heated by atmospheric or heated heat exchangers or absorb more atmospheric heat in the expansion process or absorb heat from the combustion of natural gas.
  • the extracted natural gas is mixed with natural gas extracted from other, neighboring caverns of the same cavern storage facility.
  • the cavern is filled with LNG and gaseous natural gas at the same time, the cooling of the natural gas heated by compression is actually advantageous.
  • Fig.1 a refueling process of a cavern storage facility
  • a cavern 100 is outlined, which is arranged at a depth assumed here of 800 m to 2,000 m.
  • This cavern 100 is connected to the earth's surface via a cased borehole 120, through which gaseous natural gas 310 can be extracted from the cavern 100.
  • LNG it is necessary to pump the LNG into the cavern against the cavern pressure using a cryogenic high-pressure pump 105.
  • a heat exchanger coil 110 or a line into the cased borehole 120 is introduced, or at least a line that is present in the gas extraction piping.
  • This heat exchanger coil 110 or line leads to the cavern head 130, where the LNG 300 emerging from the outlet 111 falls onto an impact plate 112 and is thereby widely spread out.
  • the fanning out creates the cone of the LNG 300 shown here, in which the fanned out LNG falls freely over a wide diameter within the cavern 100, which can have a height of between 100 m and 300 m, to a residual level at the bottom.
  • the LNG gasifies into gaseous natural gas and absorbs the heat from the gaseous natural gas in the cavern 100.
  • the cavern 100 is then reheated using geothermal energy, which is available at a depth of 800 m to 2,000 m.
  • gaseous natural gas is taken from the cavern 100 during the refueling of a cavern 100 with a nominal volume of 100 million standard cubic meters to 300 million standard cubic meters. This creates a countercurrent heat exchanger effect between the gaseous natural gas 310 flowing out of the cavern 100 and the countercurrent LNG 300.
  • the cooled natural gas 310 can then be reheated using an atmospheric or heated heat exchanger 400.
  • the method according to the invention may provide for various neighboring caverns 100 to be filled with LNG in turn using the method according to the invention.
  • Detail A shows the outlet of the heat exchanger coil 110 or the line, which has a baffle plate 112 at its outlet 111, which widely fans out the outflowing LNG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Befüllen eines Kavernenspeichers für Erdgas.The invention relates to a method for filling a cavern storage facility for natural gas.

Zum befüllen eines Kavernenspeichers mit Erdgas ist es üblich, gasförmiges Erdgas, also Methan mit natürlichen Fremdgasbeimengungen, mit Hilfe eines bestehenden Pipelinedrucks und einer Nachverdichtung unmittelbar in die Kaverne zu pumpen. Die durch die Kompressionswärme erzeugte Temperaturerhöhung des verdichteten Erdgases wird durch Abgabe der Wärme im Kavernenspeicher an das Gebirge und/oder an eine bestehende Grundsole in der Kaverne wieder ausgeglichen. Es ist zu beobachten, dass eine Temperaturäquilibrierung in der Kaverne stattfindet, so dass die Gastemperatur in einer Kaverne zwischen 20°C und 30°C betragen kann. Je nach Teufe der Kaverne kann die dort vorherrschende Temperatur der Erdwärme das Gas erwärmen oder gegenüber der Kompressionswärme, die sich in dem großen Gasvolumen der Kaverne verliert, abkühlen.To fill a cavern storage facility with natural gas, it is usual to pump gaseous natural gas, i.e. methane with natural foreign gas admixtures, directly into the cavern using existing pipeline pressure and subsequent compression. The increase in temperature of the compressed natural gas caused by the compression heat is compensated for by the release of heat in the cavern storage facility to the rock and/or to an existing ground brine in the cavern. It can be observed that a temperature equilibration takes place in the cavern, so that the gas temperature in a cavern can be between 20°C and 30°C. Depending on the depth of the cavern, the temperature of the earth's heat prevailing there can heat the gas or cool it compared to the compression heat that is lost in the large gas volume of the cavern.

Im Zuge einer Befüllung mit LNG (Liquified Natural Gas, deutsch: flüssiges Erdgas) wurde festgestellt, dass eine unmittelbare Befüllung einer Kaverne mit LNG dazu führt, dass die Temperatur in der Kaverne so weit abfällt, dass ein Mindestdruck in der Kaverne nicht aufrecht erhalten werden kann. Der mit dem Temperaturabfall einhergehende Druckabfall kann zu Schäden an der Kaverne führen und im extremsten Fall zu einem Zusammenbruch des Gebirges führen, was eine schwerwiegende Havarie darstellt.During the filling process with LNG (liquefied natural gas), it was found that immediately filling a cavern with LNG causes the temperature in the cavern to drop so low that a minimum pressure in the cavern cannot be maintained. The pressure drop associated with the drop in temperature can cause damage to the cavern and, in the most extreme case, lead to the collapse of the rock, which is a serious accident.

Übliche Kavernen sind in einer Teufe zwischen 800 m und 2.000 m angeordnet, haben Höhen zwischen 100 m und 300 m und einen Durchmesser zwischen 30 m und 80 m. Es gibt auch deutlich größere Kavernen. Die Kavernen des zuvor beschriebenen Typs jedoch in Deutschland vorherrschend. Bei diesen Größen haben in Deutschland vorherrschende Kavernen Nennvolumina von 100 Mio Normkubikmeter bis 300 Mio Normkubikmeter. Wenn eine solche Kaverne mit einer typischen Übersee-Schiffsladung LNG befüllt wird, ohne das LNG vorher energieaufwändig zu vergasen, so ist ein zuvor beschriebener Zusammenbruch der Kaverne wahrscheinlich. Um die LNG-Ladung eines Schiff möglichst rasch abzuleichtern, wäre es mithin notwendig, das LNG in speziellen Anlagen mit entsprechend hoher Kapazität zu vergasen, um das vergaste LNG in ein Pipeline-System zu leiten, wo das vergaste Erdgas mit üblichen Mitteln in die Kaverne gepumpt wird. Das Dokument US6932121 offenbart ein Verfahren zum Befüllen einer Kaverne eines Kavernenspeichers für Erdgas In der aktuellen Situation ist in Deutschland kein LNG-Terminal vorhanden, das übliche Schiffladungen LNG in einem Zeitraum vergasen kann, die für das Ableichtern eines Schiffes noch wirtschaftlich vertretbar wäre. Es besteht daher ein Bedarf, ein Verfahren zu finden, um ein mit LNG beladenes Schiff möglichst rasch abzuleichtern und das LNG in eine Kaverne zu füllen.Typical caverns are arranged at a depth of between 800 m and 2,000 m, have heights of between 100 m and 300 m and a diameter of between 30 m and 80 m. There are also significantly larger caverns. The caverns of the previously described type is predominant in Germany. Caverns of this size in Germany have nominal volumes of 100 million standard cubic meters to 300 million standard cubic meters. If such a cavern is filled with a typical overseas ship's cargo of LNG without first gasifying the LNG, which requires a lot of energy, the cavern is likely to collapse as described above. In order to unload a ship's LNG cargo as quickly as possible, it would be necessary to gasify the LNG in special plants with a correspondingly high capacity in order to feed the gasified LNG into a pipeline system, where the gasified natural gas is pumped into the cavern using conventional means. The document US6932121 discloses a method for filling a cavern of a cavern storage facility for natural gas. In the current situation, there is no LNG terminal in Germany that can gasify normal shiploads of LNG in a time period that would still be economically viable for unloading a ship. There is therefore a need to find a method to unload a ship loaded with LNG as quickly as possible and to fill the LNG into a cavern.

Die der Erfindung zugrunde liegende Aufgabe wird gelöst durch die Schrittfolge in Anspruch 1. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen zu Anspruch 1 angegeben.The object underlying the invention is achieved by the sequence of steps in claim 1. Further advantageous embodiments are specified in the subclaims to claim 1.

Nach dem Gedanken der Erfindung ist es vorgesehen, LNG entgegen der Erwartungshaltung, dass die Temperatur in der Kaverne unter einen kritischen Punkt mit einhergehendem Druckabfall sinken könnte, LNG unmittelbar in die Kaverne einzuleiten. Um die zu erwartenden Folgen des Druckabfalls zu vermeiden, ist nach dem Gedanken der Erfindung vorgesehen, dass das LNG durch eine Wärmetauscherwendel oder eine Leitung ('Coil Tubing') in die Kaverne geleitet wird. Die Wärmetauscherwendel oder die Leitung ist in dem verrohrten Bohrloch vorhanden, das bis zum Kavernenkopf führt. Beim Einleiten des LNG in die Wärmetauscherwendel oder in die Leitung nimmt das LNG Wärme aus dem Gebirge und oder dem entgegenströmenden Erdgas oberhalb der Kaverne auf. Diese Wärmemenge reicht allerdings nicht aus, das eingeleitete LNG vollständig zu vergasen, auch wenn die Teufe und damit die Länge der Wärmetauscherwendel oder der Leitung 800 m bis 2 km lang sein kann. Am Kavernenkopf kommt immer noch LNG an. Dieses LNG wird über eine Prallplatte am Ende der Wärmetauscherwendel oder der Leitung aufgefächert. Dadurch vergast das LNG beim feien Fall in der Kaverne über einen Weg bis zu 300 m.According to the idea of the invention, contrary to the expectation that the temperature in the cavern could fall below a critical point with an associated drop in pressure, LNG is introduced directly into the cavern. In order to avoid the expected consequences of the drop in pressure, according to the idea of the invention, the LNG is introduced into the cavern through a heat exchanger coil or a pipe ('coil tubing'). The heat exchanger coil or pipe is present in the cased borehole that leads to the cavern head. When the LNG is introduced into the heat exchanger coil or pipe, the LNG absorbs heat from the rock and/or the counterflowing natural gas above the cavern. However, this amount of heat is not sufficient to heat the introduced LNG is completely gasified, even if the depth and thus the length of the heat exchanger coil or the pipe can be 800 m to 2 km. LNG still arrives at the top of the cavern. This LNG is spread out over a baffle plate at the end of the heat exchanger coil or the pipe. This causes the LNG to gasify as it falls freely in the cavern over a distance of up to 300 m.

Um den beim Vergasen einhergehenden Temperatur -und Druckabfall nicht zu groß werden zu lassen, kann vorgesehen sein, dass eine typische LKW-Ladung zwischen 10 m3 und 50 m3 flüssiges Erdgas (LNG) in die Kaverne eingeleitet wird. Der hierdurch erzeugte Temperaturabfall, der merklich ist, führt noch nicht zu einem solchen Druckabfall, dass die Stabilität der Kaverne gefährdet ist. Das Gas in der Kaverne heizt sich durch die Erdwärme wieder auf und somit steigt der Druck. Erst wenn der Druck wieder zwischen 70% und 120 % des ursprünglichen Drucks angestiegen ist, wird eine weitere LKW-Ladung zwischen 10 m3 und 50 m3 in die Kaverne verfüllt. In der Regel umfassen Kavernenspeicher gleich mehrere benachbarte Kavernen. Für ein Befüllen des Kavernenspeichers, der mehrere, benachbarte Kavernen umfasst, können die benachbarten Kavernen reihum mit LKW-Ladungen betankt werden. Ab einer Anzahl von 4 Kavernen kann die erste Kaverne schon dann wieder befüllt werden, wenn die letzte von vier Kavernen betankt worden ist. Auf diese Weise kann ein Schiff mit einer größeren Anzahl von Tankfahrzeugen abgeleichtert werden und die Tankfahrzeuge fahren vom Hafen bis zur Kavernenstätte, wobei die Entfernung bis zu mehrere 100 km betragen kann, beispielsweise von Wilhelmshaven, Bremerhaven oder Brunsbüttel bis in den Salzlandkreis in Halle/Saale, wo sich Kavernenspeicher befinden.In order to prevent the temperature and pressure drop that occurs during gasification from becoming too great, a typical truckload of between 10 m3 and 50 m3 of liquid natural gas (LNG) can be introduced into the cavern. The resulting temperature drop, which is noticeable, does not lead to such a pressure drop that the stability of the cavern is endangered. The gas in the cavern heats up again due to the earth's heat and the pressure increases. Only when the pressure has risen again to between 70% and 120% of the original pressure is another truckload of between 10 m3 and 50 m3 filled into the cavern. Cavern storage facilities usually include several neighboring caverns. To fill the cavern storage facility, which includes several neighboring caverns, the neighboring caverns can be filled with truckloads in turn. If there are four or more caverns, the first cavern can be refilled as soon as the last of four caverns has been refueled. In this way, a ship can be unloaded with a large number of tankers and the tankers travel from the port to the cavern site, whereby the distance can be up to several hundred kilometers, for example from Wilhelmshaven, Bremerhaven or Brunsbüttel to the Salzland district in Halle/Saale, where cavern storage facilities are located.

Es hat sich als vorteilhaft herausgestellt, wenn während des Betankens mit flüssigem Erdgas gasförmiges Erdgas von außen entlang der Wärmetauscherwendel oder der Leitung strömt. Dazu kann vorgesehen sein, dass aus der Kaverne gasförmiges Erdgas entnommen wird. Noch vorteilhafter ist, es, wenn während des Einleitens von LNG zusätzlich gasförmiges Gas in die Kavernen gepumpt wird. Das durch die Kompression erwärmte Erdgas wärmt somit die Wärmetauscherwendel oder der Leitung und hilft so, das LNG zu vergasen. Entgegen der Erwartungshaltung, dass durch Einleiten von flüssigem LNG der Kavernendruck noch weiter abfällt, ist das Gegenteil zu beobachten. Das dem Flüssiggas (LNG) in der Wärmetauscherwendel oder der Leitung entgegen- oder entlangströmende Erdgas gibt Wärme an das LNG ab und kühlt sich dabei selbst ab und verlässt die Kaverne bzw. geht in die Kaverne ein. Wird Erdgas aus der Kaverne entnommen, so muss das kalte, gasförmige Erdgas aus der Kaverne beim Entspannen ohnehin eine Erwärmungsprozess durchlaufen, um die Temperatur an das lokale Gasnetz anzupassen. In diesem Fall müsste also das abgekühlte Erdgas durch atmosphärische oder beheizte Wärmetauscher erwärmt werden oder im Entspannungsprozess mehr atmosphärische Wärme aufnehmen oder auch Wärme aus der Verbrennung von Erdgas aufnehmen. Um die Temperatur des während des Betankens entnommenen Erdgases nicht zu weit zu verringern, kann vorgesehen sein, dass das entnommene Erdgas mit Erdgas gemischt wird, das aus anderen, benachbarten Kavernen des gleichen Kavernenspeichers entnommen wird. Wird hingegen die Kaverne gleichzeitig mit LNG gefüllt und auch mit gasförmigen Erdgas gefüllt, so ist die Kühlung des durch die Kompression erwärmten Erdgases sogar von Vorteil.It has proven to be advantageous if, during the filling with liquid natural gas, gaseous natural gas flows from the outside along the heat exchanger coil or the pipe. For this purpose, gaseous natural gas can be taken from the cavern. It is even more advantageous if, during the introduction of LNG, gaseous gas is also introduced into the caverns. The natural gas heated by the compression heats the heat exchanger coil or the pipeline and helps to gasify the LNG. Contrary to the expectation that the introduction of liquid LNG would cause the cavern pressure to drop even further, the opposite is observed. The natural gas flowing towards or along the liquefied petroleum gas (LNG) in the heat exchanger coil or the pipeline gives off heat to the LNG and cools itself down in the process and leaves the cavern or enters the cavern. If natural gas is taken from the cavern, the cold, gaseous natural gas from the cavern has to go through a heating process anyway when it is expanded in order to adjust the temperature to the local gas network. In this case, the cooled natural gas would have to be heated by atmospheric or heated heat exchangers or absorb more atmospheric heat in the expansion process or absorb heat from the combustion of natural gas. In order not to reduce the temperature of the natural gas extracted during refueling too much, it can be planned that the extracted natural gas is mixed with natural gas extracted from other, neighboring caverns of the same cavern storage facility. However, if the cavern is filled with LNG and gaseous natural gas at the same time, the cooling of the natural gas heated by compression is actually advantageous.

Die Erfindung wird anhand der folgenden Figuren näher erläutert.The invention is explained in more detail with reference to the following figures.

Es zeigt:It shows:

Fig. 1 einen Betankungsvorgang eines Kavernenspeichers Fig.1 a refueling process of a cavern storage facility

In Figur 1 ist eine Kaverne 100 skizziert, die in einer hier angenommenen Teufe von 800 m bis 2.000 m angeordnet ist. Diese Kaverne 100 ist über ein verrohrtes Bohrloch 120 mit der Erdoberfläche verbunden, durch welches gasförmiges Erdgas 310 aus der Kaverne 100 entnommen werden kann. Zum Einleiten von LNG ist es notwendig, das LNG mit einer Kryo-Hochdruckpumpe 105 gegen den Kavernendruck in die Kaverne zu pumpen. Nach dem Gedanken der Erfindung ist vorgesehen, dass eine Wärmetauscherwendel 110 oder eine Leitung in das verrohrte Bohrloch 120 eingebracht wird, zumindest aber eine Leitung, die in der Gasentnahmeverrohrung vorliegt. Diese Wärmetauscherwendel 110 oder Leitung führt bis zum Kavernenkopf 130, wo das aus dem Ausgang 111 austretende LNG 300 auf eine Prallplatte 112 fällt und dadurch breit aufgefächert wird. Durch das Auffächern bildet sich der hier dargestellt Kegel des LNG 300, in dem das aufgefächerte LNG innerhalb der Kaverne 100, die eine Höhe zwischen 100 m und 300 m haben kann, über einen breiten Durchmesser im freien Fall innerhalb der Kaverne 100 bis auf eine am Grund befindliche Restsohle fällt. Dabei vergast das LNG zu gasförmigen Erdgas und nimmt dabei die Wärme aus dem gasförmigen Erdgas in der Kaverne 100 auf. Die Kaverne 100 wird sodann mit Erdwärme, die in 800 m bis 2.000 m Teufe vorliegt, wieder aufgewärmt. Um die Vergasung des LNG 300 zu beschleunigen, kann vorgesehen sein, dass während des Betankens einer Kaverne 100 mit 100 Mio Normkubikmeter bis 300 Mio Normkubikmeter Nennvolumen gasförmiges Erdgas aus der Kaverne 100 entnommen wird. Dabei stellt sich ein Gegenstrom-Wärmetauscher-Effekt zwischen dem gasförmigen Erdgas 310, das aus der Kaverne 100 strömt, und dem entgegenströmenden LNG 300 ein. Das abgekühlte Erdgas 310 kann sodann über einen atmosphärischen oder beheizten Wärmetauscher 400 wieder erwärmt werden. Alternativ ist es möglich, dass parallel zum Befüllen mit LNG gasförmiges Erdgas in die Kaverne gefüllt wird. Die durch die Kompression erzeugte Wärme hilft, das eingeleitete LNG zu vergasen.In Figure 1 a cavern 100 is outlined, which is arranged at a depth assumed here of 800 m to 2,000 m. This cavern 100 is connected to the earth's surface via a cased borehole 120, through which gaseous natural gas 310 can be extracted from the cavern 100. To introduce LNG, it is necessary to pump the LNG into the cavern against the cavern pressure using a cryogenic high-pressure pump 105. According to the idea of the invention, it is provided that a heat exchanger coil 110 or a line into the cased borehole 120 is introduced, or at least a line that is present in the gas extraction piping. This heat exchanger coil 110 or line leads to the cavern head 130, where the LNG 300 emerging from the outlet 111 falls onto an impact plate 112 and is thereby widely spread out. The fanning out creates the cone of the LNG 300 shown here, in which the fanned out LNG falls freely over a wide diameter within the cavern 100, which can have a height of between 100 m and 300 m, to a residual level at the bottom. The LNG gasifies into gaseous natural gas and absorbs the heat from the gaseous natural gas in the cavern 100. The cavern 100 is then reheated using geothermal energy, which is available at a depth of 800 m to 2,000 m. In order to accelerate the gasification of the LNG 300, it can be provided that gaseous natural gas is taken from the cavern 100 during the refueling of a cavern 100 with a nominal volume of 100 million standard cubic meters to 300 million standard cubic meters. This creates a countercurrent heat exchanger effect between the gaseous natural gas 310 flowing out of the cavern 100 and the countercurrent LNG 300. The cooled natural gas 310 can then be reheated using an atmospheric or heated heat exchanger 400. Alternatively, it is possible to fill the cavern with gaseous natural gas in parallel with the filling with LNG. The heat generated by the compression helps to gasify the LNG introduced.

Um die Temperatur in der Kaverne 100 nicht unterhalb eines kritischen Punktes, der zu einem zu starken Druckabfall führt, fallen zu lassen, kann in Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen sein, dass verschiedene, benachbarte Kavernen 100 reihum mit LNG nach dem erfindungsgemäßen Verfahren betankt werden.In order to prevent the temperature in the cavern 100 from falling below a critical point that would lead to an excessive drop in pressure, the method according to the invention may provide for various neighboring caverns 100 to be filled with LNG in turn using the method according to the invention.

In Detail A ist der Ausgang der Wärmetauscherwendel 110 oder der Leitung dargestellt, die an ihrem Ausgang 111 ein Prallblech 112 aufweist, welches das ausströmende LNG weit auffächert.Detail A shows the outlet of the heat exchanger coil 110 or the line, which has a baffle plate 112 at its outlet 111, which widely fans out the outflowing LNG.

BEZUGSZEICHENLISTELIST OF REFERENCE SYMBOLS

100100 KavernenspeicherCavern storage 130130 Kavernenkopf 300 LNGCavern head 300 LNG 105105 Kryo-HochdruckpumpeCryogenic high pressure pump 310310 Erdgasnatural gas 110110 WärmetauscherwendelHeat exchanger coil 400400 WärmetauschervorrichtungHeat exchanger device 111111 AusgangExit AA Detaildetail 112112 PrallblechBaffle plate 120120 Bohrlochborehole

Claims (8)

  1. A method for filling a cavern (100) of a cavern storage facility (101) for natural gas,
    characterized by
    - the introduction of a heat exchanger coil (110) or a pipe (coil tubing) into a cased bore hole (120), which leads from the earth's surface (200) to the cavern head (130), up to the cavern head (130),
    - the termination an outlet (111) of the heat exchanger coil (110) or the line with a baffle plate (112),
    - the introduction of 10 m3 to 50 m3 LNG (300) into the heat exchanger coil (110) or into the pipe,
    - waiting until the pressure in the cavern of the cavern storage facility (100) has risen again to 70% to 120% of the original pressure,
    - the re-introduction of 10 m3 to 50 m3 of LNG (300) into the heat exchanger coil (110) or into the pipe,
    - wherein the waiting and re-introduction are repeated until a pre-selected filling quantity of the cavern storage (100) is reached.
  2. The method according to Claim 1,
    characterized by
    a standard volume of the cavern storage facility to be filled (100) between 100 million m3 and 300 million m3,
  3. The method according to Claim 1 or 2,
    characterized by
    the introduction of 10 m3 to 50 m3 of liquid LNG for each individual refuelling operation.
  4. The method according to any one of the Claims 1 to 3,
    characterized in that
    the cavern storage facility (100) consists of a plurality of adjacent individual caverns that are filled in turn.
  5. The method according to any one of the Claims 1 to 4,
    characterized by
    the simultaneous extraction of gaseous natural gas (310) during filling.
  6. The method according to Claim 5,
    characterized by
    the decompression of the extracted natural gas (310) and heating of the natural gas (310) by at least one atmospheric or heated heat exchanger device (400).
  7. The method according to Claim 5,
    characterized by
    mixing natural gas from the currently filled cavern (100) with natural gas from an adjacent cavern before the natural gas is decompressed.
  8. The method according to any one of the Claims 1 to 4,
    characterized by
    the simultaneous introduction of gaseous natural gas (310) during filling.
EP23166450.9A 2022-04-07 2023-04-04 Method for filling a natural gas cavern Active EP4257867B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022001198.0A DE102022001198B3 (en) 2022-04-07 2022-04-07 Method for filling a cavern storage facility for natural gas

Publications (2)

Publication Number Publication Date
EP4257867A1 EP4257867A1 (en) 2023-10-11
EP4257867B1 true EP4257867B1 (en) 2024-07-31

Family

ID=87891027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23166450.9A Active EP4257867B1 (en) 2022-04-07 2023-04-04 Method for filling a natural gas cavern

Country Status (2)

Country Link
EP (1) EP4257867B1 (en)
DE (1) DE102022001198B3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023101619B3 (en) 2023-01-24 2024-06-27 Ontras Gastransport Gmbh Method for filling a cavern storage facility with liquid hydrogen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950958A (en) 1971-03-01 1976-04-20 Loofbourow Robert L Refrigerated underground storage and tempering system for compressed gas received as a cryogenic liquid
US5511905A (en) 1993-10-26 1996-04-30 Pb-Kbb, Inc. Direct injection of cold fluids into a subterranean cavern
DE19653725C1 (en) * 1996-12-11 1998-01-22 Verbundnetz Gas Ag Storage process monitoring method for underground storage reservoir
US6517286B1 (en) 2001-02-06 2003-02-11 Spectrum Energy Services, Llc Method for handling liquified natural gas (LNG)
US6813893B2 (en) 2001-12-19 2004-11-09 Conversion Gas Imports, L.L.C. Flexible natural gas storage facility
US7451605B2 (en) * 2001-12-19 2008-11-18 Conversion Gas Imports, L.P. LNG receiving terminal that primarily uses compensated salt cavern storage and method of use
US6932121B1 (en) * 2003-10-06 2005-08-23 Atp Oil & Gas Corporation Method for offloading and storage of liquefied compressed natural gas
DE102007046268B4 (en) * 2007-09-20 2010-07-08 Vng-Verbundnetz Gas Ag Method and device for filling and emptying caverns
US8425149B2 (en) * 2010-06-10 2013-04-23 Praxair Technology, Inc. Hydrogen storage method and system
US9284120B2 (en) * 2012-05-25 2016-03-15 Praxair Technology, Inc. Methods for storing hydrogen in a salt cavern with a permeation barrier
ES2865823T3 (en) * 2015-12-24 2021-10-18 Air Liquide Oil And Gas Services Ltd Method of controlling pressure in an underground storage volume

Also Published As

Publication number Publication date
DE102022001198B3 (en) 2023-10-12
EP4257867A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
DE69631062T2 (en) SHIP-BASED SYSTEM FOR THE TRANSPORT OF PRESSURE NATURAL GAS
EP4257867B1 (en) Method for filling a natural gas cavern
DE69430310T2 (en) SYSTEM AND METHOD FOR COMPRESSING NATURAL GAS
EP2148127A2 (en) Storage device for compressed media and method for filling the tank of vehicles
EP2132476A2 (en) Method for filling a pressurised reservoir provided for a cryogenic stored medium in particular hydrogen
EP2473772A1 (en) Filling storage containers with compressed media
EP2773866A2 (en) Units and methods for energy storage
DE19949336A1 (en) Cryogenic liquid storage tank includes an ullage tank disposed within main tank and has opening where pipe segment is connected
DE102015003340B4 (en) Method and device for filling a mobile tank with liquid carbon dioxide
EP2823247A1 (en) Pressurised energy storage system in which the heat accumulator is arranged in an overpressure zone
EP2565514A1 (en) Device and method for topping up a storage tank
EP2076707B1 (en) Apparatus for the rapid filling of compressed gas containers
EP0874188A2 (en) Process for the treatment of cryogenic liquefied gas
DE19946557A1 (en) Methane transport ship or tanker with sealed isothermal tank circulates cooling fluid in gas mass assisted by upstream heat exchanger and gauge-monitored compressor.
DE102016002749A1 (en) Energy storage, combined by air pressure and water
DE2620023A1 (en) METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS
WO2008000103A1 (en) Road-transportable installation for liquefying and temporarily storing natural gas and refueling vehicles therewith
DE102023101619B3 (en) Method for filling a cavern storage facility with liquid hydrogen
DE102009037109A1 (en) Filling a storage tank with a compressed medium
EP0377405A1 (en) Artificial subterranean cavern for the storage of natural gas in the gaseous state at an elevated pressure and a low temperature, and method for its production
DE102010010108B4 (en) Method of storing and storing natural gas
EP1642062A1 (en) Storage system for cryogenic media
DE60310772T2 (en) CHARGING EAR IN THE FREIGHT PRINT TANK OF A SHIP
DE2728418A1 (en) Power plant driven by unburnt natural gas - has turbine which discharges gas via after-cooler to buffer vessel formed by parallel connected large dia. pipes
DE102008053463A1 (en) Storage of compressed media

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231026

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F17C 6/00 20060101ALI20240321BHEP

Ipc: F17C 1/00 20060101AFI20240321BHEP

INTG Intention to grant announced

Effective date: 20240415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502023000093

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN