EP4256105A1 - Procédé de protection d'une pièce en alliage à base d'aluminium - Google Patents

Procédé de protection d'une pièce en alliage à base d'aluminium

Info

Publication number
EP4256105A1
EP4256105A1 EP21830452.5A EP21830452A EP4256105A1 EP 4256105 A1 EP4256105 A1 EP 4256105A1 EP 21830452 A EP21830452 A EP 21830452A EP 4256105 A1 EP4256105 A1 EP 4256105A1
Authority
EP
European Patent Office
Prior art keywords
conductive
layer
paint
equal
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21830452.5A
Other languages
German (de)
English (en)
Inventor
Mathieu LEROY
Marie SAVOYE
Coralie CHEVALLIER
Etienne NEMETH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Safran Electronics and Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics and Defense SAS filed Critical Safran Electronics and Defense SAS
Publication of EP4256105A1 publication Critical patent/EP4256105A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/584No clear coat specified at least some layers being let to dry, at least partially, before applying the next layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Definitions

  • This presentation relates to the protection, for example against corrosion, of a part comprising an aluminum-based alloy.
  • Aluminum-based alloys have the advantage of being light. However, they can be susceptible to corrosion. Also, it is known to protect parts made from aluminum-based alloys against corrosion by carrying out, for example, a chemical conversion of the surface of the part.
  • This chemical conversion treatment was generally carried out by bringing the part into contact with a bath containing hexavalent chromium (or chromium VI or Cr VI).
  • the bath can be made from a solution such as, for example, the solution commonly designated by the registered trademark Alodine® 1200S from Henkel.
  • This chemical conversion treatment is a chromating treatment of the aluminum-based alloy during which the alloy is converted at the surface in order to precipitate therein in particular aluminum oxyhydroxides and aluminum chromates.
  • This treatment makes it possible to produce a coating on the surface of the part which increases the resistance to corrosion of the part made of an aluminum-based alloy. Furthermore, this coating makes it possible to retain electrical conductivity of the coated zone and to allow easy and good quality adhesion of organic paints which are generally also based on hexavalent chromium.
  • This presentation relates to a method for protecting a part comprising an aluminum-based alloy, the method comprising the following steps:
  • the process for protecting aluminum-based alloy parts makes it possible to obtain a treated part which is effectively protected in particular from corrosion by a coating comprising conductive zones (zones having undergone the chemical conversion - conductive protective layer ) and non-conductive areas (areas bearing the non-conductive polymerized primer coat).
  • the part has, on the areas protected by the conductive protective layer, less than five pitting per dm 2 (square decimeter) after exposure to neutral salt spray for 168 and 144 hours, respectively for wrought and foundry alloys, according to the requirements of standard NF EN ISO 9227:2017; on the areas protected by the non-conductive polymerized primer coat and/or the finish paint coat after polymerization, the part exhibits acceptable behavior after more than 3000 hours of exposure to neutral salt spray, according to the requirements of the standard EN ISO 9227:2017. It is understood that the non-conductive polymerized primary paint layer does not undergo the chemical conversion. The non-conductive polymerized primer paint layer is not altered or modified by the chemical conversion step.
  • the non-conductive polymerized primary paint layer does not pollute the chemical conversion bath.
  • the chemical conversion step to trivalent chromium only takes place on the unpainted areas, that is to say the areas not protected against corrosion by the non-conductive polymerized primer paint, which were previously stripped during of the laser etching step.
  • the non-conductive polymerized primary paint layer is a non-conductive protective layer.
  • Laser stripping makes it possible to expose the part for specific areas where it is desired to have conductive parts of the protection. It is understood that the number of unpainted areas is not limited to one. During the laser stripping step, the non-conductive polymerized primary paint layer is removed only in the areas where electrical continuity between the part and external elements is desired. In these unpainted areas, the part is therefore bare again.
  • the chromating bath can be a bath marketed under the SurTec650® or Lanthane 613.3® brand.
  • the part After immersion in a chemical conversion and/or anaphoresis bath, the part is rinsed with demineralised water and dried.
  • the drying step can be carried out at room temperature under compressed air and/or in an oven at a temperature less than or equal to 60°C (degree Celsius). It is understood that compressed air can be used at room temperature and then put the part in a study at a temperature less than or equal to 60°C until the part is dry.
  • finishing coat of paint is for example applied to areas of the part to improve the fluid and UV resistance of the covered areas.
  • the finishing paint can be a paint based on polyurethane and/or acrylic (example: Interthane 870/990 from the International supplier).
  • finishing coat of paint can be applied by spraying using a pneumatic gun.
  • the unpainted area may be cleaned.
  • This step makes it possible to remove residues, for example in the form of powder, which may have been formed during the laser etching step.
  • the cleaning of the unpainted area can be carried out by mechanical brushing.
  • the cleaning of the unpainted area may be assisted by ultrasound.
  • the polymerized non-conductive primer paint layer and the unpainted area can be degreased with a solvent and/or an alkaline solution.
  • This step makes it possible to degrease the part when the non-conductive polymerized primer paint layer and/or the unpainted zone show dirt of the “fingerprint” type which may result from successive manipulations of the part during the preceding steps.
  • the degreasing step is not carried out using an acid solution.
  • the solvent may be ethanol or methyl ethyl ketone (butanone-2, also called MEK in accordance with the acronym in English for Methyl Ethyl Ketone).
  • the alkaline solution may be a solution marketed under the name Sococlean A3432.
  • the non-conductive polymerized primary paint layer may have a thickness greater than or equal to 10 ⁇ m, preferably greater than or equal to 15 ⁇ m and less than or equal to 40 ⁇ m, preferably less than or equal to 30 p.m.
  • the laser stripping can be carried out by means of a YAG laser with a wavelength of 1064 nm at a frequency comprised between 10 and 200 kHz.
  • a profile of the laser beam may be Gaussian-shaped or flat-topped.
  • a flat-top laser beam profile is also called a "Top Hat”.
  • the laser beam may have a fluence greater than or equal to 4 J/cm 2 and the laser etching may comprise one to four passes.
  • the laser beam may have a fluence less than or equal to 56 J/cm 2 and the laser etching may comprise one to four passes.
  • the laser etching can be carried out with a laser beam recovery rate greater than or equal to [0036] 20% and less than or equal to 80%.
  • the recovery rate can be in one or both directions of movement of the laser beam.
  • the values in the two directions can be different from each other.
  • the recovery rate may be equal to 50% in both directions.
  • Figure 1 is a flowchart representing the steps of a method of protecting a part comprising an aluminum-based alloy.
  • Figure 2 a partial schematic view in section and in perspective of a part with a layer of non-conductive polymerized primer paint.
  • Figure 3 is a partial schematic view in section and in perspective of the part of Figure 2 after laser etching.
  • Figure 4 is a partial schematic view in section and in perspective of the part of Figure 3 after chemical conversion and drying.
  • Figure 5 is a partial schematic view in section and in perspective of the part of Figure 4 after deposition of the finishing paint layer.
  • Figure 1 shows a method 100 of protection, in particular against corrosion, of a part 12 comprising an aluminum-based alloy.
  • the method 100 comprises a first step 102 of depositing a layer of primary paint by anaphoresis over the entire part 12.
  • the step of depositing the layer of primary paint by anaphoresis is followed by a polymerization step 104 of the primer paint layer to obtain a non-conductive polymerized primer paint layer 14 over the entire part 12, as shown in Figure 2.
  • Figure 2 is a schematic view in partial section of an element 10. It is therefore understood that the part 12 is completely covered by the non-conductive polymerized primary paint layer 14. A partial view is shown in section to see part 12 and the non-conductive polymerized primer coat 14.
  • the deposition step 102 of the protective layer 14 is carried out by anaphoresis.
  • Anaphoresis is a process for forming the non-conductive polymerized primary paint layer 14 by immersing the part 12 in a bath of electrically charged paint, and which, under the effect of an electrical voltage applied between the part serving as an anode and a counter-electrode, is deposited on part 12. Once the deposit has reached the thickness desired, the deposit is polymerized at a temperature making it possible to fix the paint on the part 12 and form the non-conductive polymerized primary paint layer 14.
  • the Aerocron 2200 electrodeposited paint system mention may be made of the Aerocron 2200 electrodeposited paint system.
  • part 12 When part 12 is completely coated with the non-conductive polymerized primary paint layer 14, part 12 is protected in particular against corrosion. However, this protective layer is non-conductive.
  • the method 100 includes a laser stripping step 106 using a laser beam of an area of the non-conductive polymerized primary paint layer 14 to form an unpainted area 16, as shown in Figure 3. understands that in the unpainted area 16, part 12 is exposed.
  • the laser stripping 106 can be carried out using a YAG laser with a wavelength of 1064 nm at a frequency of between 10 and 200 kHz.
  • the profile of the laser beam can be Gaussian or flat-topped.
  • the part 12, the non-conductive polymerized primary paint layer 14 has been removed in one area, has an unpainted area 16. It is understood that the number of unpainted areas 16 n ' is not limited to one.
  • Figure 3 being a schematic figure, the unpainted area 16 is shown as having the shape of a square. It is understood that this shape is not limiting and that the unpainted area 16 can have any shape.
  • the shape of the unpainted area 16 is defined by the passage of the laser beam over the non-conductive polymerized primary paint layer 14.
  • the method 100 includes a step 108 of chemical conversion to trivalent chromium of the unpainted area 16 to form a conductive protective layer 18, as shown in Figure 4.
  • the non-conductive polymerized primary paint layer 14 is not altered or modified by the chemical conversion step 108.
  • the chemical conversion step 106 to trivalent chromium does not takes place only on the unpainted areas 16 which have been previously stripped during the laser stripping step 106 and the formation of the conductive protective layer 18 is formed only at the location of the unpainted areas 16.
  • the method 100 includes a drying step 110.
  • the drying step 110 can be carried out at room temperature under compressed air and/or in an oven at a temperature less than or equal to 60 °C (degree Celsius). It is understood that compressed air can be used at room temperature and then put part 12 in a study at a temperature less than or equal to 60°C until part 12 is dry.
  • the method 100 includes a step 112 of depositing a layer of finishing paint on at least a portion of the non-conductive polymerized primary paint layer.
  • the method 100 includes a step 114 of polymerization of the finish paint layer to form a layer of polymerized finish paint 20 on the layer of non-conductive polymerized primer paint 18, as shown schematically in Figure 5.
  • the polymerized finishing paint layer 20 may not cover all of the non-conductive polymerized primer paint layer 18, as shown schematically in Figure 5.
  • the method 100 can also include a cleaning step 116 of the unpainted area 16 after the laser stripping step 106.
  • the unpainted area or areas 16 are covered with a light dusting due to laser stripping, it is advantageous to clean the unpainted areas 16 to remove these residues, for example in the form of powder, which may have been formed during of the laser etching step 106.
  • the cleaning 116 of the unpainted area 16 can be carried out by mechanical brushing.
  • the cleaning 116 of the unpainted area 16 can be assisted by ultrasound.
  • the method 100 may also include a degreasing step 118 of the non-conductive polymerized primary paint layer 14 and of the unpainted area 16 after the laser stripping step 106.
  • the degreasing step 118 may or may not be carried out after the cleaning step 116.
  • the part 12 and the non-conductive polymerized primary paint layer 14 can be degreased 118 with a solvent and/or an alkaline solution.
  • This step makes it possible to degrease the part when the layer of non-conductive polymerized primer paint 14 and/or the unpainted zone 16 show dirt of the "fingerprint" type which may result from successive manipulations of the part during previous steps.
  • degreasing step 118 is not carried out using an acid solution.
  • the solvent may be ethanol or methyl ethyl ketone (butanone-2, also called MEK in accordance with the acronym in English for Methyl Ethyl Ketone
  • the alkaline solution may be a solution marketed under the name Sococlean A3432.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Procédé (100) de protection d'une pièce comprenant un alliage à base d'aluminium, le procédé comprenant le dépôt (102) d'une couche de peinture primaire par anaphorèse sur toute la pièce, la polymérisation (104) de la couche de peinture primaire pour former une couche de peinture primaire polymérisée non conductrice, le décapage laser (106) au moyen d'un faisceau laser d'une zone de la couche de peinture primaire polymérisée non conductrice pour former une zone non peinte, la conversion chimique (108) au chrome trivalent de la zone non peinte pour former une couche de protection conductrice et le séchage (110) de la pièce, le dépôt (112) d'une couche de peinture de finition sur au moins une partie de la couche de peinture primaire polymérisée non conductrice, la polymérisation (114) de la couche de peinture de finition.

Description

PROCEDE DE PROTECTION D'UNE PIECE EN ALLIAGE A BASE D'ALUMINIUM
Domaine technique
[0001] Le présent exposé concerne la protection, par exemple contre la corrosion, d'une pièce comprenant un alliage à base d'aluminium.
Technique antérieure
[0002] Les alliages à base d'aluminium ont l'avantage d'être légers. Toutefois, ils peuvent être sensibles à la corrosion. Aussi, il est connu de protéger les pièces fabriquées à partir d'alliages à base d'aluminium contre la corrosion en réalisant, par exemple, une conversion chimique de la surface de la pièce.
[0003] Ce traitement de conversion chimique était généralement réalisé en mettant la pièce en contact avec un bain contenant du chrome hexavalent (ou chrome VI ou Cr VI). Le bain peut être réalisé à partir d'une solution comme par exemple la solution communément désignée par la marque déposée Alodine® 1200S d'Henkel. Ce traitement de conversion chimique est un traitement de chromatation de l'alliage à base d'aluminium au cours duquel l'alliage est converti en surface afin d'y faire précipiter notamment des oxyhydroxydes d'aluminium et des chromates d'aluminium. Ce traitement permet de produire en surface de la pièce un revêtement qui augmente la résistance à la corrosion de la pièce réalisée en alliage à base d'aluminium. Par ailleurs, ce revêtement permet de conserver une conductivité électrique de la zone revêtue et de permettre un accrochage facile et de bonne qualité de peintures organiques qui sont généralement également à base de chrome hexavalent.
[0004] Par ailleurs, dans le procédé utilisé, la conversion chimique est réalisée sur toute la pièce. Une peinture est ensuite appliquée mais afin de préserver des zones de continuité électrique sur la pièce, chacune de ces zones est recouverte d'une épargne. Cette opération est généralement réalisée manuellement, par exemple en appliquant un adhésif protecteur sur les zones que l'on souhaite garder exemptes de peinture. [0005] Or, en application du règlement REACH (sigle anglais pour « Registration, Evaluation, Authorisation and Restriction of Chemicals »), l'utilisation du chrome hexavalent a été interdite.
[0006] Il existe donc un besoin de développer de nouveaux procédés permettant de s'affranchir de l'utilisation de chrome hexavent et également de simplifier les étapes du procédé et/ou de réduire les coûts de production tout en améliorant la fiabilité du procédé.
Exposé de l'invention
[0007] Le présent exposé vise à remédier au moins en partie à ces inconvénients.
[0008] Le présent exposé concerne un procédé de protection d'une pièce comprenant un alliage à base d'aluminium, le procédé comprenant les étapes suivantes :
- dépôt d'une couche de peinture primaire par anaphorèse sur toute la pièce ;
- polymérisation de la couche de peinture primaire pour former une couche de peinture primaire polymérisée non conductrice ;
- décapage laser au moyen d'un faisceau laser d'une zone de la couche de peinture primaire polymérisée non conductrice pour former une zone non peinte ;
- conversion chimique au chrome trivalent de la zone non peinte pour former une couche de protection conductrice ;
- séchage de la pièce ;
- dépôt d'une couche de peinture de finition sur au moins une partie de la couche de peinture primaire polymérisée non conductrice ;
- polymérisation de la couche de peinture de finition.
[0009] Le procédé de protection des pièces en alliage à base d'aluminium permet d'obtenir une pièce traitée qui est protégée efficacement notamment de la corrosion par un revêtement comportant des zones conductrices (zones ayant subi la conversion chimique - couche de protection conductrice) et des zones non conductrices (zones portant la couche de peinture primaire polymérisée non conductrice). Notamment, la pièce présente, sur les zones protégées par la couche de protection conductrice, moins de cinq piqûres par dm2 (décimètre carré) après une exposition de 168 et 144 heures au brouillard salin neutre, respectivement pour les alliages corroyés et de fonderie, suivant les exigence de la norme NF EN ISO 9227:2017 ; sur les zones protégées par la couche de peinture primaire polymérisée non conductrice et/ou la couche de peinture de finition après polymérisation, la pièce présente une tenue acceptable après plus de 3000 heures d'exposition au brouillard salin neutre, suivant les exigences de la norme NF EN ISO 9227:2017. On comprend que la couche de peinture primaire polymérisée non conductrice ne subit pas la conversion chimique. La couche de peinture primaire polymérisée non conductrice n'est pas altérée ou modifiée par l'étape de conversion chimique. Et, inversement, la couche de peinture primaire polymérisée non conductrice ne pollue pas le bain de conversion chimique. Ainsi, l'étape de conversion chimique au chrome trivalent n'a lieu que sur les zones non peintes, c'est-à-dire les zones non protégées contre la corrosion par la peinture primaire polymérisée non conductrice, qui ont été préalablement décapées lors de l'étape de décapage laser. On comprend que la couche de peinture primaire polymérisée non conductrice est une couche de protection non conductrice.
[0010] Les zones subissant la conversion chimique étant dénudées par décapage laser, l'étape manuelle d'application d'épargnes n'est plus requise pour l'application de la peinture primaire polymérisée non conductrice.
[0011] Le décapage laser permet de mettre à nu la pièce pour des zones précises où l'on désire avoir des parties conductrices de la protection. On comprend que le nombre de zones non peintes n'est pas limité à une. Lors de l'étape de décapage laser, on retire la couche peinture primaire polymérisée non conductrice uniquement dans les zones où une continuité électrique entre la pièce et des éléments extérieurs est souhaitée. Dans ces zones non peintes, la pièce est donc à nouveau à nu.
[0012] L'étape de conversion chimique au chrome trivalent est connue en soi. Typiquement, les conditions de mise en oeuvre sont fournies avec les fiches techniques par les fabricants des bains de conversion chimique.
[0013] A titre d'exemple non limitatif, le bain de chromatation peut être un bain commercialisé sous la marque SurTec650® ou Lanthane 613.3®.
[0014] Après immersion dans un bain de conversion chimique et/ou d'anaphorèse, la pièce est rincée à l'eau déminéralisée et séchée.
[0015] A titre d'exemple non limitatif, l'étape de séchage peut être réalisée à température ambiante sous air comprimé et/ou dans une étuve à une température inférieure ou égale à 60°C (degré Celsius). On comprend que l'on peut utiliser l'air comprimé à température ambiante et ensuite mettre la pièce dans une étude à une température inférieure ou égale à 60°C jusqu'à séchage de la pièce.
[0016] La couche de peinture de finition est par exemple appliquée sur des zones de la pièce pour améliorer la tenue aux fluides et aux UV des zones recouvertes.
[0017] A titre d'exemple non limitatif, la peinture de finition peut être une peinture à base de polyuréthane et/ou d'acrylique (exemple : Interthane 870/990 du fournisseur International).
[0018] A titre d'exemple non limitatif, la couche de peintre de finition peut être appliquée par projection à l'aide d'un pistolet pneumatique.
[0019] A titre d'exemple non limitatif,
[0020] Dans certains modes de réalisation, après le décapage laser, la zone non peinte peut être nettoyée.
[0021] Cette étape permet de retirer des résidus, par exemple sous forme de poudre, pouvant avoir été formé lors de l'étape de décapage laser.
[0022] Dans certains modes de réalisation, le nettoyage de la zone non peinte peut être réalisé par brossage mécanique.
[0023] Dans certains modes de réalisation, le nettoyage de la zone non peinte peut être assisté par ultrasons.
[0024] Dans certains modes de réalisation, avant la conversion chimique, la couche peinture primaire polymérisée non conductrice et la zone non peinte peuvent être dégraissées avec un solvant et/ou une solution alcaline.
[0025] Cette étape permet de dégraisser la pièce lorsque la couche peinture primaire polymérisée non conductrice et/ou la zone non peinte présentent des salissures de type « traces de doigts » qui peuvent être issues des manipulations successives de la pièce lors des étapes précédentes.
[0026] On comprend que l'étape de dégraissage n'est pas réalisée à l'aide d'une solution acide.
[0027] A titre d'exemple non limitatif, le solvant peut être de l'éthanol ou du méthyléthyl cétone (butanone-2, aussi appelé MEK conformément au sigle en anglais pour Methyl Ethyl Ketone).
[0028] A titre d'exemple non limitatif, la solution alcaline peut être une solution commercialisée sous la dénomination Sococlean A3432. [0029] Dans certains modes de réalisation, la couche de peinture primaire polymérisée non conductrice peut présenter une épaisseur supérieure ou égale à 10 pm, de préférence supérieure ou égale à 15 pm et inférieure ou égale à 40 pm, de préférence inférieure ou égale à 30 pm.
[0030] Dans certains modes de réalisation, le décapage laser peut être réalisé au moyen d'un laser YAG de longueur d'onde 1064 nm à une fréquence comprise entre 10 à 200 kHz.
[0031] Dans certains modes de réalisation, un profil du faisceau laser peut être de forme gaussienne ou à sommet plat.
[0032] Un profil de faisceau laser à sommet plat est aussi appelé en anglais « Top Hat ».
[0033] Dans certains modes de réalisation, le faisceau laser peut avoir une fluence supérieure ou égale à 4 J/cm2 et le décapage laser peut comprendre une à quatre passes.
[0034] Dans certains modes de réalisation, le faisceau laser peut avoir une fluence inférieure ou égale à 56 J/cm2 et le décapage laser peut comprendre une à quatre passes.
[0035] Dans certains modes de réalisation, le décapage laser peut être réalisé avec un taux de recouvrement du faisceau laser supérieur ou égal à [0036] 20% et inférieure ou égal à 80%.
[0037] On comprend que le taux de recouvrement peut être dans une ou les deux directions de déplacement du faisceau laser. Les valeurs dans les deux directions peuvent être différentes l'une de l'autre.
[0038] A titre d'exemple non limitatif, le taux de recouvrement peut être égal à 50% dans les deux directions.
Brève description des dessins
[0039] D’autres caractéristiques et avantages de l’objet du présent exposé ressortiront de la description suivante de modes de réalisation, donnés à titre d’exemples non limitatifs, en référence aux figures annexées.
[0040] [Fig. 1] La figure 1 est un ordinogramme représentant les étapes d'un procédé de protection d'une pièce comprenant un alliage à base d'aluminium. [0041] [Fig. 2] La figure 2 une vue schématique partielle en coupe et en perspective d'une pièce avec une couche de peinture primaire polymérisée non conductrice.
[0042] [Fig. 3] La figure 3 est une vue schématique partielle en coupe et en perspective de la pièce de la figure 2 après décapage laser.
[0043] [Fig. 4] La figure 4 est une vue schématique partielle en coupe et en perspective de la pièce de la figure 3 après conversion chimique et séchage.
[0044] [Fig. 5] La figure 5 est une vue schématique partielle en coupe et en perspective de la pièce de la figure 4 après dépôt de la couche de peinture de finition.
[0045] Sur l'ensemble des figures, les éléments en commun sont repérés par des références numériques identiques.
Description détaillée
[0046] La figure 1 représente un procédé 100 de protection, notamment contre la corrosion, d'une pièce 12 comprenant un alliage à base d'aluminium.
[0047] Le procédé 100 comprend une première étape de dépôt 102 d'une couche de peinture primaire par anaphorèse sur toute la pièce 12. L'étape de dépôt de la couche de peinture primaire par anaphorèse est suivie d'une étape de polymérisation 104 de la couche de peinture primaire pour obtenir une couche de peinture primaire polymérisée non conductrice 14 sur toute la pièce 12, comme représenté sur la figure 2.
[0048] On notera que la figure 2 est une vue schématique en coupe partielle d'un élément 10. On comprend donc que la pièce 12 est entièrement recouverte par la couche de peinture primaire polymérisée non conductrice 14. On a représenté une vue partielle en coupe afin de voir la pièce 12 et la couche de peinture primaire polymérisée non conductrice 14.
[0049] L'étape de dépôt 102 de la couche de protection 14 est réalisée par anaphorèse.
[0050] L'anaphorèse est un procédé permettant de former la couche de peinture primaire polymérisée non conductrice 14 par immersion de la pièce 12 dans un bain de peinture chargée électriquement, et qui, sous l'effet d'une tension électrique appliquée entre la pièce servant d'anode et une contre- électrode, se dépose sur la pièce 12. Une fois le dépôt ayant atteint l'épaisseur désirée, le dépôt est polymérisé à une température permettant de fixer la peinture sur la pièce 12 et former la couche de peinture primaire polymérisée non conductrice 14. A titre d'exemple non limitatif, on peut citer le système de peinture électrodéposé Aerocron 2200.
[0051] Lorsque la pièce 12 est entièrement revêtue par la couche de peinture primaire polymérisée non conductrice 14, la pièce 12 est protégée notamment contre la corrosion. Toutefois, cette couche de protection est non conductrice.
[0052] Le procédé 100 comprend une étape de décapage laser 106 au moyen d'un faisceau laser d'une zone de la couche de peinture primaire polymérisée non conductrice 14 pour former une zone non peinte 16, comme représenté sur la figure 3. On comprend que dans la zone non peinte 16, la pièce 12 est mise à nu.
[0053] Le décapage laser 106 peut être réalisé au moyen d'un laser YAG de longueur d'onde 1064 nm à une fréquence comprise entre 10 à 200 kHz.
[0054] Le profil du faisceau laser peut être de forme gaussienne ou à sommet plat.
[0055] Comme représenté sur la figure 3, la pièce 12, dont la couche de peinture primaire polymérisée non conductrice 14 a été retirée en une zone, présente une zone non peinte 16. On comprend que le nombre de zones non peintes 16 n'est pas limité à une. La figure 3 étant une figure schématique, la zone non peinte 16 est représentée comme ayant la forme d'un carré. On comprend que cette forme n'est pas limitative et que la zone non peinte 16 peut avoir n'importe quelle forme. La forme de la zone non peinte 16 est définie par le passage du faisceau laser sur la couche de peinture primaire polymérisée non conductrice 14.
[0056] Le procédé 100 comprend une étape de conversion chimique 108 au chrome trivalent de la zone non peinte 16 pour former une couche de protection conductrice 18, comme représenté sur la figure 4.
[0057] Comme représenté schématiquement sur la figure 4, la couche de peinture primaire polymérisée non conductrice 14 n'est pas altérée ou modifiée par l'étape de conversion chimique 108. Ainsi, l'étape de conversion chimique 106 au chrome trivalent n'a lieu que sur les zones non peintes 16 qui ont été préalablement décapées lors de l'étape de décapage laser 106 et la formation de la couche de protection conductrice 18 se forme uniquement à l'emplacement des zones non peintes 16.
[0058] Le procédé 100 comprend une étape de séchage 110. A titre d'exemple non limitatif, l'étape de séchage 110 peut être réalisée à température ambiante sous air comprimé et/ou dans une étuve à une température inférieure ou égale à 60°C (degré Celsius). On comprend que l'on peut utiliser l'air comprimé à température ambiante et ensuite mettre la pièce 12 dans une étude à une température inférieure ou égale à 60°C jusqu'à séchage de la pièce 12.
[0059] Le procédé 100 comprend une étape de dépôt 112 d'une couche de peinture de finition sur au moins une partie de la couche de peinture primaire polymérisée non conductrice.
[0060] Le procédé 100 comprend une étape de polymérisation 114 de la couche de peinture de finition pour former une couche de peinture de finition polymérisée 20 sur la couche de peinture primaire polymérisée non conductrice 18, comme représenté schématiquement sur la figure 5.
[0061] La couche de peinture de finition polymérisée 20 peut ne pas couvrir toute la couche de peinture primaire polymérisée non conductrice 18, comme schématiquement sur la figure 5.
[0062] Le procédé 100 peut également comprendre une étape de nettoyage 116 de la zone non peinte 16 après l'étape de décapage laser 106.
[0063] Lorsque la ou les zones non peintes 16 sont recouvertes d'un léger poudrage dû au décapage laser, il est avantageux de nettoyer les zones non peintes 16 pour retirer ces résidus, par exemple sous forme de poudre, pouvant avoir été formé lors de l'étape de décapage laser 106.
[0064] Le nettoyage 116 de la zone non peinte 16 peut être réalisé par brossage mécanique.
[0065] Le nettoyage 116 de la zone non peinte 16 peut être assisté par ultrasons.
[0066] Le procédé 100 peut également comprendre une étape de dégraissage 118 de la couche de peinture primaire polymérisée non conductrice 14 et de la zone non peinte 16 après l'étape de décapage laser 106.
[0067] L'étape de dégraissage 118 peut ou non être réalisée après l'étape de nettoyage 116. [0068] Ainsi, avant la conversion chimique 108, la pièce 12 et la couche de peinture primaire polymérisée non conductrice 14 peuvent être dégraissées 118 avec un solvant et/ou une solution alcaline.
[0069] Cette étape permet de dégraisser la pièce lorsque la couche de peinture primaire polymérisée non conductrice 14 et/ou la zone non peinte 16 présentent des salissures de type « traces de doigts » qui peuvent être issues des manipulations successives de la pièce lors des étapes précédentes.
[0070] On comprend que l'étape de dégraissage 118 n'est pas réalisée à l'aide d'une solution acide.
[0071] A titre d'exemple non limitatif, le solvant peut être de l'éthanol ou du méthyléthyl cétone (butanone-2, aussi appelé MEK conformément au sigle en anglais pour Methyl Ethyl Ketone
[0072] A titre d'exemple non limitatif, la solution alcaline peut être une solution commercialisée sous la dénomination Sococlean A3432.
[0073] Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l’invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.

Claims

REVENDICATIONS
[Revendication 1] Procédé (100) de protection d'une pièce (12) comprenant un alliage à base d'aluminium, le procédé (100) comprenant les étapes suivantes :
- dépôt (102) d'une couche de peinture primaire par anaphorèse sur toute la pièce ;
- polymérisation (104) de la couche de peinture primaire pour former une couche de peinture primaire polymérisée non conductrice (14) ;
- décapage laser (106) au moyen d'un faisceau laser d'une zone de la couche de peinture primaire polymérisée non conductrice (14) pour former une zone non peinte (16) ;
- conversion chimique (108) au chrome trivalent de la zone non peinte (16) pour former une couche de protection conductrice (18) ;
- séchage (110) de la pièce ;
- dépôt (112) d'une couche de peinture de finition sur au moins une partie de la couche de peinture primaire polymérisée non conductrice (14) ;
- polymérisation (114) de la couche de peinture de finition.
[Revendication 2] Procédé (100) selon la revendication 1, dans lequel, après le décapage laser (106), la zone non peinte (16) est nettoyée (116).
[Revendication 3] Procédé (100) selon la revendication 2, dans lequel le nettoyage (116) de la zone non peinte (16) est réalisé par brossage mécanique.
[Revendication 4] Procédé (100) selon la revendication 2, dans lequel le nettoyage (116) de la zone non peinte (16) est assisté par ultrasons.
[Revendication 5] Procédé (100) selon l'une quelconque des revendications 1 à 4, dans laquelle, avant la conversion chimique (108), la couche de peinture primaire polymérisée non conductrice (14) et la zone non peinte (16) sont dégraissées (118) avec un solvant et/ou une solution alcaline.
[Revendication 6] Procédé (100) selon l'une quelconque des revendications 1 à 5, dans lequel la couche de peinture primaire polymérisée non conductrice (14) présente une épaisseur supérieure ou égale à 10 pm, de préférence supérieure ou égale à 15 pm et inférieure ou égale à 40 pm, de préférence inférieure ou égale à 30 pm.
[Revendication 7] Procédé (100) selon l'une quelconque des revendications 1 à 6, dans lequel le décapage laser (106) est réalisé au moyen d'un laser YAG de longueur d'onde 1064 nm à une fréquence comprise entre 10 à 200 kHz.
[Revendication 8] Procédé (100) selon l'une quelconque des revendications 1 à 7, dans lequel le profil du faisceau laser est de forme gaussienne ou à sommet plat.
[Revendication 9] Procédé (100) selon l'une quelconque des revendications 1 à 8, dans lequel le faisceau laser a une fluence supérieure ou égale à 4 J/cm2 et le décapage laser comprend une quatre passes. [Revendication 10] Procédé (100) selon l'une quelconque des revendications 1 à 9, dans lequel le décapage laser (100) est réalisé avec un taux de recouvrement du faisceau laser supérieur ou égal à 20% et inférieure ou égal à 80%.
EP21830452.5A 2020-12-03 2021-11-25 Procédé de protection d'une pièce en alliage à base d'aluminium Pending EP4256105A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012621A FR3117131B1 (fr) 2020-12-03 2020-12-03 Procede de protection d’une piece en alliage a base d’aluminium
PCT/FR2021/052092 WO2022117935A1 (fr) 2020-12-03 2021-11-25 Procede de protection d'une piece en alliage a base d'aluminium

Publications (1)

Publication Number Publication Date
EP4256105A1 true EP4256105A1 (fr) 2023-10-11

Family

ID=75108446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21830452.5A Pending EP4256105A1 (fr) 2020-12-03 2021-11-25 Procédé de protection d'une pièce en alliage à base d'aluminium

Country Status (6)

Country Link
US (1) US20240009700A1 (fr)
EP (1) EP4256105A1 (fr)
CN (1) CN116583625A (fr)
FR (1) FR3117131B1 (fr)
IL (1) IL303282A (fr)
WO (1) WO2022117935A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509497C1 (de) * 1995-03-16 1996-07-25 Braun Ag Verfahren zur Herstellung einer Oberflächenstruktur auf einer Bügeleisensohle oder einem Bügeleisenschuh
WO2017208101A1 (fr) * 2016-06-03 2017-12-07 Leistchamm Beteiligungen Ag Procédé de fabrication d'une pièce et pièce produite selon ledit procédé
GB201702213D0 (en) * 2017-02-10 2017-03-29 Multitechnic Ltd Aluminium panels

Also Published As

Publication number Publication date
CN116583625A (zh) 2023-08-11
WO2022117935A1 (fr) 2022-06-09
US20240009700A1 (en) 2024-01-11
IL303282A (en) 2023-07-01
FR3117131A1 (fr) 2022-06-10
FR3117131B1 (fr) 2022-12-09

Similar Documents

Publication Publication Date Title
FR2708289A1 (fr) Système pour produire des pièces d'aluminium brillantes.
FR2475565A1 (fr) Peinture anticorrosion a pigments metalliques
FR2632383A1 (fr) Tuyau metallique a revetement multicouche resistant a la corrosion
FR2585732A1 (fr) Materiau d'acier a revetement multicouche resistant a la corrosion
EP2825691B1 (fr) Revêtement de protection multicouche pour un échangeur de chaleur en aluminium
CN102016133A (zh) 在镁合金上的自沉积涂层
EP4097278A1 (fr) Procédé de colmatage des alliages d'aluminium
US20220333265A1 (en) Methods of preparing 7xxx aluminum alloys for adhesive bonding, and products relating to the same
EP1570915A1 (fr) Procede pour l'obtention d'un substrat metallique comportant un revetement protecteur
EP2841613B1 (fr) PROCÉDÉS DE RÉALISATION D'UNE TÔLE PRÉLAQUÉE À REVÊTEMENTS ZnAlMg ET TÔLE CORRESPONDANTE
EP4256105A1 (fr) Procédé de protection d'une pièce en alliage à base d'aluminium
WO2022117970A1 (fr) Procede de protection d'une piece en alliage a base d'aluminium contenant du cuivre
US10174427B2 (en) Method for treatment of surfaces
FR2941241A1 (fr) Procede et solution de decapage sans chrome hexavalent d'une surface en aluminium ou en alliage d'aluminium et procede de traitement comprenant au moins une etape de decapage par ce procede.
FR3108633A1 (fr) Procédé de dépôt d’un revêtement sur une pièce métallique et pièce métallique obtenue selon un tel procédé
WO2005018828A2 (fr) Procede et installation pour la mise en place sur des pieces exposees a l’impact de divers projectiles, notamment de gravillons, d’un revetement anti-gravillonage propre a assurer la protection notamment contre la corrosion perforante
JP2007050369A (ja) 亜鉛末を含む粉体塗料を使用した粉体塗装方法及びその塗装品
WO2024074774A1 (fr) Procede de colmatage post-anodisation de l'aluminium et des alliages d'aluminium sans utiliser de chrome
RU2506351C2 (ru) Способ изоляции поверхностей деталей, не подлежащих анодному окислению
CA2122198A1 (fr) Procede d'electrodeposition sur une surface d'un substrat en acier d'une couche d'un revetement d'un alliage a base de zinc et materiau d'acier revetu d'une couche de revetement d'un alliage a base de zinc
JPS60150874A (ja) ふつ素樹脂による鋼材面被覆方法
BE849581A (fr) Procede pour appliquer un revetement sur un objet metallique creux
JPH0913176A (ja) 化成処理アルミニウム等板材及びその製造方法
JPH02157067A (ja) 塗膜剥離法
FR2960561A1 (fr) Procede de traitement de surface d'une piece plastique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240802