EP4255879A1 - Procédé de préparation de frambinone - Google Patents

Procédé de préparation de frambinone

Info

Publication number
EP4255879A1
EP4255879A1 EP21819879.4A EP21819879A EP4255879A1 EP 4255879 A1 EP4255879 A1 EP 4255879A1 EP 21819879 A EP21819879 A EP 21819879A EP 4255879 A1 EP4255879 A1 EP 4255879A1
Authority
EP
European Patent Office
Prior art keywords
equal
frambinone
compound
phenol
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21819879.4A
Other languages
German (de)
English (en)
Inventor
Valéry DAMBRIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Specialty Operations France SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP4255879A1 publication Critical patent/EP4255879A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton

Definitions

  • the present invention relates to a process for the preparation of frambinone comprising a step of condensation of phenol and glyoxylic acid.
  • Frambinone or 4-(4-hydroxyphenyl)-2-butanone, is the main aromatic compound of raspberries, but also present in cranberries or blackberries.
  • Frambinone is used in perfumery, cosmetics or in the food industry to give a fruity smell.
  • This natural aromatic compound can be extracted from fruits at the rate of 1 to 4 mg per kilogram of raspberry. Given the very low abundance of this aromatic compound in the fruit, synthetic processes have been developed, in particular:
  • the present invention aims at the manufacture of frambinone by a new access route using non-toxic and less expensive starting materials.
  • the method allows the manufacture of a new compound: natural frambinone, the method advantageously uses reagents of natural origin.
  • the method advantageously uses milder operating conditions, in particular in terms of temperature or pressure, than the methods of the prior art.
  • a first object of the present invention relates to a process for the preparation of frambinone comprising a stage (a) of condensation of phenol and glyoxylic acid.
  • the present invention also relates to frambinone which can be obtained according to the method of the present invention.
  • the present invention also relates to frambinone whose carbon content of biosourced origin is greater than or equal to 50% and strictly less than 100%.
  • the present invention relates to frambinone whose 13 C isotopic deviation is between -27%o and -15%o, preferably whose carbon content of biosourced origin is greater than or equal to 50%.
  • the present invention also relates to the use of frambinone according to the present invention as a flavor or perfume.
  • the present invention relates to a composition comprising frambinone according to the present invention.
  • biosourced origin refers to a product which is composed, entirely or mainly, of biological products, or renewable agricultural materials (including vegetable, animal and marine materials) or forestry.
  • carbon of bio-based origin or “bio-based carbon” refers to carbons of renewable origin such as agricultural, plant, animal, fungal, micro-organisms, marine or forest living in a natural environment in balance with the atmosphere.
  • Bio-based carbon content is typically assessed using carbon-14 dating (also called carbon dating or radiocarbon dating).
  • biobased carbon content refers to the molar ratio of biobased carbon to total carbon of the compound or product.
  • Bio-based carbon content can preferably be measured by a method of measuring the decay process of 14 C (carbon-14), in disintegrations per minute per gram of carbon (or 10 dpm/gC), by liquid scintillation counting , preferably according to the ASTM D6866-16 Standard Test Method. Said American standard ASTM D6866 test would be equivalent to ISO 16620-2. According to said ASTM D6866 standard, the test method can preferably use AMS (Accelerator Mass Spectrometry) techniques with IRMS 13 C (Isotope Ratio Mass Spectrometry) to quantify the bio-based content of a given product.
  • AMS Accelelerator Mass Spectrometry
  • Hydrogen and carbon atoms naturally co-exist with their stable isotopes: deuterium and 13 C respectively.
  • the quantity and the D/H and 13 C/ 12 C ratios are influenced by several factors such as, in particular, the environment for natural products.
  • the isotopic fingerprint of a product gives information on the origin of the product in particular the natural or fossil origin.
  • the 2 H-SNIF-NMR method measures the deuterium/hydrogen ratio of each site of a molecule.
  • the 13 C-SNIF-NMR method measures the 13 C/ 12 C ratio of each site of a molecule.
  • the D/H ratios are measured by comparison with tetramethylurea (TMU), the international reference standard.
  • TMU tetramethylurea
  • the measurements can be carried out in dioxane or in a dioxane/benzene mixture.
  • the average 13 C isotopic deviation ( ⁇ 13 C) is measured by isotopic ratio mass spectrometry (IRMS) compared to PDB (pee bee belemnite), the international reference standard.
  • the process for preparing frambinone comprises a step (a) of condensation of phenol and glyoxylic acid and can be represented according to the following diagram:
  • Step (a) of condensation of phenol and glyoxylic acid allows the formation of 2-hydroxy-2-(4-hydroxyphenyl)acetic acid (Compound I).
  • Step (a) can be carried out according to any process for the condensation of an aromatic derivative with glyoxylic acid, in particular as described in particular in WO 09/077383 or WO 2015/071431.
  • the phenol can be a biobased phenol or a non-biobased phenol.
  • phenol having a biobased carbon content greater than 50% is also called “biobased phenol”.
  • the biobased phenol according to the invention may have a biobased carbon content greater than 60%, preferably between 75% and 100%, more preferably between 90% and 100%, more preferably between 95% and 100%, more preferably between 98 % and 100%, and more preferably between 99% and 100%.
  • Biobased phenol is a commercial product. It can be obtained in a natural way from natural resources such as lignin in particular by different methods, charcoal oil, from vegetable oil or saccharide residues.
  • biochemical processes are known. Mention may be made, by way of example, of US 2013/0232852 which describes a process for the biorefining of lignin biomass. Mention may also be made of EP 2639295 which describes a biochemical process for the production of phenol from saccharides.
  • biobased phenol Given the biosourced origin of phenol, it may contain certain impurities.
  • the nature of the impurities contained in biobased phenol is different from those contained in phenol of fossil origin. Furthermore, these impurities may be specific depending on the origin of the phenol and its method of preparation.
  • phenol of biobased origin has a purity greater than or equal to 99%.
  • the content of total impurities in the biobased phenol is less than or equal to 1%, and greater than or equal to 0.5%.
  • the content of each impurity in the biobased phenol is between 0.005 and 0.1%, preferably between 0.01 and 0.08%.
  • the biosourced phenol has an average isotopic deviation ⁇ 13 C of between -33%o and -20%o, preferably between -30%o and -25%o, very preferably between -30%o and -27% y.
  • the glyoxylic acid can be a bio-based glyoxylic acid or a non-bio-based glyoxylic acid.
  • glyoxylic acid having a biobased carbon content greater than 50% is also called “biobased glyoxylic acid”.
  • the biobased glyoxylic acid according to the invention may have a biobased carbon content greater than 60%, preferably between 75% and 100%, more preferably between 90% and 100%, more preferably between 95% and 100%, more preferably between 98% and 100%, and more preferably between 99% and 100%.
  • Bio-based and non-bio-based glyoxylic acid can be purchased from several producers. Certain processes for the production of biobased glyoxylic acid are described in the prior art. In particular, different biochemical processes are available. For example, US 5219745 describes an industrially advantageous process for the biochemical production of glyoxylic acid.
  • bio-based glyoxylic acid can be produced by well-known industrial methods (see for example “Glyoxylic Acid” in Ullmann's Encyclopedia of Industrial Chemistry, G. MATTIODA and Y. CHRISTIDIS, Vol.17 p.89-92, 2012) from bio-based raw materials, such as bio-based ethanol, or bio-based glycerol or bio-based ethylene glycol.
  • bio-based glyoxylic acid Given the biosourced origin of glyoxylic acid, it may contain certain impurities. The nature of the impurities contained in bio-based glyoxylic acid is different from those contained in fossil-based glyoxylic acid. Furthermore, these impurities may be specific depending on the origin of the glyoxylic acid and its preparation process.
  • the biosourced glyoxylic acid used in the context of the present invention generally has an average 13 C isotopic deviation of between -33 and -7%o, preferably comprised between -31%o and -9%o, preferentially comprised between -30%o and -10%o, and very preferentially comprised between -31 and -25%o.
  • the biosourced glyoxylic acid used in the context of the present invention generally has an average 13 C isotopic deviation of between -7 and -3%o, preferably between -6%o and -5% y.
  • condensation reaction of phenol with glyoxylic acid allows the synthesis of the corresponding condensation product, which is a para-hydroxymandelic acid.
  • This condensation step can give rise to certain impurities, namely an ortho-hydroxymandelic acid (Compound II) and a dimandelic derivative (Compound III).
  • Other phenol impurities may react during the condensation step.
  • the compound (I) obtained at the end of step (a) has a carbon content of biosourced origin greater than or equal to 50%, preferably greater than or equal to 70%.
  • the molar ratio between phenol and glyoxylic acid can be between 1.0 and 4.0, preferably between 1.2 and 2.2.
  • the condensation reaction can be carried out in a cascade of stirred reactors. According to a variant, the reaction is carried out in a plug-flow reactor, optionally comprising a heat exchanger. Such an embodiment is for example described in application WO 09/077383.
  • the condensation reaction between phenol and glyoxylic acid can be carried out in water, in the presence of an alkali metal, said reaction being carried out in a plug flow reaction. It can also be carried out in a tubular reactor.
  • the condensation reaction can advantageously be catalyzed by a quaternary ammonium hydroxide, according to the reaction described in patent application EP 0 578 550.
  • the phenol is reacted with glyoxylic acid in the presence of a base, preferably an inorganic base or an organic base, more preferably an alkali metal, and even more preferably in the presence NaOH, KOH, lime or K2CO3.
  • a base preferably an inorganic base or an organic base, more preferably an alkali metal, and even more preferably in the presence NaOH, KOH, lime or K2CO3.
  • sodium hydroxide may be preferred.
  • the alkali metal hydroxide can be used in solution.
  • the alkali metal hydroxide solution can have a concentration between 10% and 50% by weight.
  • the quantity of alkali metal hydroxide introduced into the reaction medium takes into account the quantity necessary to salify the hydroxyl function of the phenol and the carboxylic function of the glyoxylic acid.
  • the phenol is in the phenolate form and the condensation product is a mandelate compound.
  • the amount of alkali metal hydroxide is between 80% and 120% of the
  • the phenolate reacts with glyoxylic acid to form the corresponding para-mandelate.
  • reaction steps for preparing the glyoxylate and the phenolate can be carried out according to two distinct steps.
  • the glyoxylic acid is brought into direct contact with the phenolate in the presence of the base.
  • a possible variant consists in carrying out the reaction in the presence of a catalyst of the dicarboxylic acid type, preferably oxalic acid, as described in international patent application WO 99/65853.
  • the quantity of catalyst used expressed by the ratio between the number of moles of catalyst and the number of moles of glyoxylic acid, can be advantageously chosen between 0.5% and 2.5% and preferably between 1% and 2% .
  • the phenol and the alkaline agent are mixed together before the phenol is brought into contact with the glyoxylic acid.
  • the method according to the invention may comprise a first step of bringing the phenol into contact with an alkali metal hydroxide in aqueous solution, followed by bringing the resulting solution into contact with glyoxylic acid.
  • This embodiment advantageously makes it possible to better control the reaction temperature, because the salification reaction of glyoxylic acid is exothermic.
  • the method according to the invention comprises in a first step bringing glyoxylic acid into contact with an alkali metal hydroxide in aqueous solution, followed by bringing the resulting solution into contact with phenol .
  • the process according to the invention comprises, on the one hand, bringing the phenol into contact with the alkaline agent in aqueous solution, and, on the other hand, bringing the glyoxylic acid with the alkaline agent in aqueous solution, followed by bringing the two resulting solutions into contact.
  • These optional steps of bringing glyoxylic acid into contact with an alkali metal hydroxide in aqueous solution and/or bringing phenol into contact with the alkaline agent can be carried out at a temperature between 10°C and 40°C , for example at 15°C or at 35°C.
  • the reaction mixture obtained may have a viscosity at 20° C. of between 0.5 mPa.s and 50 mPa.s and more preferably between 1.5 mPa.s and 3 mPa.s. According to the invention, this mixture is introduced into at least one reactor, in which the condensation reaction takes place.
  • the phenol is reacted with the glyoxylic acid in the absence of any added acid compound or base compound. This embodiment is further described in document WO 2015/071431.
  • This condensation step can be carried out in an aqueous medium.
  • the concentration of the phenol can preferably be between 0.5 and 1.5 mol/liter and more particularly approximately 1 mol/liter.
  • Glyoxylic acid can be used in aqueous solution with a concentration ranging for example between 15% and 70% by weight. Commercial solutions are preferably used, the concentration of which is approximately 50% by weight.
  • the phenol is reacted with glyoxylic acid without any solvent, and the glyoxylic acid is glyoxylic acid monohydrate.
  • glyoxylic acid is glyoxylic acid monohydrate.
  • the phenol is reacted with glyoxylic acid in the presence of a catalyst chosen from the group consisting of complexes of transition metals with oxygenated ligands.
  • Said catalyst is preferably chosen from the group consisting of iron(II) acetate (Fe(OAc)2), iron(III) acetate (Fe(OAc)3), copper(II) acetate (Cu(OAc)2) , iron (II) acetylacetonate (Fe (acac) 2), iron (III) acetylacetonate (Fe (acac) 3), cupper (II) acetylacetonate (Cu (acac) 2), cupper (III) acetylacetonate (Cu (acac) )3), and a transition metal complex having a glyoxylate ligand.
  • This embodiment is further described in document WO 2015/071431.
  • the operating conditions of the reaction can be fixed according to the reagents and the type of reactor or sequence of reactor used.
  • the reaction temperature can be between 10°C and 90°C. According to one embodiment, the reaction temperature can be between 10°C and 20°C. According to another embodiment, the temperature may be between 30°C and 40°C. In addition, the temperature may vary during the reaction. For example, the reaction can be carried out at a temperature between 10°C and 20°C for a certain time, and the temperature can then be raised to between 30°C and 50°C for a finishing phase.
  • the reaction can be carried out at atmospheric pressure, optionally under a controlled atmosphere of inert gases, preferably nitrogen or, optionally, rare gases, in particular argon. Nitrogen is preferentially chosen.
  • the total residence time of the reagents in continuous mode and the operating or cycle time in batch mode can vary widely, for example from a few minutes to several hours, or even several days, in particular depending on the operating conditions, in particular depending on the reaction temperature.
  • the total residence time of the reagents can be between 10 hours and 100 hours.
  • the total residence time of the reagents can be between 30 minutes and 30 hours.
  • the condensation compound obtained can be separated from the reaction mixture by conventional separation techniques, in particular by crystallization or by extraction using an appropriate organic solvent.
  • a neutralization step can be carried out.
  • the reaction mixture obtained after the condensation reaction can be used in its existing form.
  • the phenol generally being in excess relative to the glyoxylic acid, the unreacted phenol fraction is advantageously recovered from a recycling loop, for example by distillation of the water/phenol azeotrope. This excess reduces the likelihood of forming dimandelic acid type compounds (i.e. compounds resulting from the condensation of two molecules of glyoxylic acid with one molecule of guaiacol).
  • Unreacted phenol can be recovered by acidification, as described in WO 2014/016146.
  • the process for preparing frambinone may also comprise a step (b) of decarboxylating oxidation of the compound of formula (I) obtained at the end of step (a) to form a compound of formula (IV).
  • Step (b) is a step in which compound (I) is oxidized to form compound (IV) according to the following scheme, carbon dioxide is released:
  • the compounds (II) and (III) obtained at the end of step (a) can also be oxidized under the same conditions to form the compounds (V) and (VI).
  • step (a) The impurities contained in the biobased phenol which may have reacted during step (a) are also likely to be oxidized under the conditions of step (b).
  • the oxidation can be carried out under an oxidizing atmosphere, such as O2 or under air.
  • the reaction medium is an alkaline aqueous medium, preferably an inorganic base and more preferably sodium or potassium hydroxide, so as to form the corresponding phenate, and to capture the released CO2, in carbonate form.
  • the reaction can be carried out continuously or discontinuously, for example in a medium strongly diluted in water.
  • a catalyst for this oxidation reaction can be chosen from catalysts comprising at least one metallic element chosen from the group formed by copper, nickel, cobalt, iron, manganese and any mixture thereof.
  • inorganic or organic copper compounds mention may in particular be made, as copper compounds, of cuprous and cupric bromide; cuprous iodide; cuprous and cupric chloride; basic cupric carbonate; cuprous and cupric nitrate; cuprous and cupric sulphate; cuprous sulfite; cuprous and cupric oxide; cupric hydroxide; cuprous and cupric acetate; and cupric trifluoromethyl sulfonate.
  • nickel (II) halides such as nickel (II) chloride, bromide or iodide; nickel(II) sulfate; nickel(II) carbonate; nickel (II) hydroxide; salts of organic acids containing from 1 to 18 carbon atoms, such as in particular acetate or propionate; nickel (II) complexes, such as nickel (II) acetylacetonate, nickel (II) dichlorobis (triphenylphosphine) or nickel (II) dibromobis (bipyridine); and nickel(0) complexes, such as nickel(0)bis(cycloocta-1,5-diene) or nickel(0) bisdiphenylphosphinoethane.
  • nickel (II) halides such as nickel (II) chloride, bromide or iodide
  • nickel(II) sulfate nickel(II) carbonate
  • nickel (II) hydroxide such as in particular acetate or prop
  • cobalt-based compounds mention may in particular be made of cobalt (II) and (III) halides, such as cobalt (II) chloride, bromide or iodide or cobalt chloride, bromide or iodide (III); cobalt (II) sulfate and cobalt (III); cobalt(II) carbonate, basic cobalt(II) carbonate; cobalt(II) orthophosphate; cobalt(II) nitrate; cobalt (II) and cobalt (III) oxide; cobalt(II) hydroxide and cobalt
  • cobalt (II) and (III) halides such as cobalt (II) chloride, bromide or iodide or cobalt chloride, bromide or iodide (III); cobalt (II) sulfate and cobalt (III); cobalt(II) carbonate, basic cobalt(II)
  • salts of organic acids comprising from 1 to 18 carbon atoms such as in particular cobalt(II) and cobalt(III) acetate or cobalt(II) propionate; cobalt (II) complexes, such as hexaminecobalt (II) or (III) chloride, hexaminecobalt (II) or (III) sulfate, pentaminecobalt (III) chloride or triethylenediaminecobalt (III) chloride ).
  • catalytic systems based on iron generally in the form of oxides, hydroxides or salts, such as chloride, bromide, iodide or fluoride of iron (II) and iron (III ); iron (II) and iron (III) sulfate; iron (II) and iron (III) nitrate; or iron(II) oxide and iron(III).
  • the reaction can also use manganese-based catalytic systems such as manganese(II) carbonate, manganese(III) acetate.
  • the oxidation reaction can be catalyzed, for example, by a catalytic system comprising two metallic elements chosen from the group formed by copper, nickel, cobalt, iron, manganese and any mixture thereof.
  • a catalytic system comprising two metallic elements chosen from the group formed by copper, nickel, cobalt, iron, manganese and any mixture thereof.
  • the teachings of WO 2008/148760 can be applied for the preparation of the compound
  • the condensation compound (IV) obtained at the end of step (a) reacts with the base (preferably sodium hydroxide) so as to salify the phenate function of the condensation compound. Then, oxidation in an oxidizing medium (preferably in air) produces a compound of formula (IV) and CO2 (trapped in the form of carbonate). At the end of the oxidation reaction, a compound of formula (IV) is obtained in salified form, that is to say with a hydroxyl group in salified (ionic) form, and various impurities, including tars, are obtained.
  • the acidification of the compound of formula (IV) in salified form in the reaction medium is carried out using a strong acid, for example sulfuric acid.
  • the oxidation reaction can be carried out in the absence of any added acid compound or basic compound. This embodiment is further described in document WO 2015/071431.
  • the compound (IV) obtained at the end of step (b) has a carbon content of biosourced origin greater than or equal to 50%, preferably greater than or equal to 70%, preferably greater than or equal 75% and less than or equal to 100%.
  • the process for preparing frambinone may comprise a step (c) of condensation of the compound of formula (IV), obtained at the end of step (b), with acetone to form a compound of formula (VII) .
  • Step (c) is a condensation of the compound of formula (IV) obtained at the end of step (b) with acetone, followed by dehydration, to form a compound of formula (VII).
  • the acetone used in step (c) is a biosourced acetone.
  • the bio-based acetone has a bio-based carbon content of between 75% and 100%, more preferably between 90% and 100%, more preferably between 95% and 100%, more preferably between 98% and 100%, and more preferably between 99 % and 100%.
  • Bio-based acetone is a commercial product. It can be obtained naturally from natural resources such as by fermentation of sugars from corn residues, residues from the sugar industry in particular. Several biochemical processes are known, as described in Jones, DT and Woods, D R. (1986) Microbiol. Rev. 50: 484-524, or EP 2875139. Given the biosourced origin of acetone and its production process, it may contain certain impurities, such as in particular methanol, isopropanol, aldehydes. These impurities can be specific depending on the origin of the acetone.
  • the biosourced acetone used in the context of the present invention generally has an average 13 C isotopic deviation of between -10%o and -2%o, preferably of between -8%o and -4%o.
  • biobased acetone The nature of the impurities contained in biobased acetone is different from those contained in acetone of fossil origin. Moreover, these impurities can be specific depending on the origin of the acetone and its preparation process. In general, acetone of biosourced origin has a purity greater than or equal to 99%. In general, the content of total impurities in biosourced acetone is less than or equal to 1%, and greater than or equal to 0.5%. Generally, the content of each impurity in bio-based acetone is between 0.005 and 0.1%, preferably between 0.01 and 0.08%.
  • step (c) is carried out in the presence of at least 1 equivalent of acetone, preferably of at most 5 equivalents of acetone, for example 2 equivalents of acetone.
  • Step (c) can be carried out in the presence of a base or an acid.
  • step (c) is carried out in the presence of a base.
  • the base can be present in a catalytic quantity.
  • step (c) is carried out in the presence of 1 base equivalent.
  • the quantity of bases is less than or equal to 2 equivalents.
  • the base used can be an inorganic base, such as KOH, NaOH.
  • the base can be in aqueous solution at a concentration of between 10% and 50% by weight, preferably between 15% and 25% by weight.
  • the base used can also be a basic solid of an alkali metal, alkaline earth, rare earths or transition metals such as oxides, hydroxides, carbonates, or hydrooxycarbonates, preferably chosen from the group consisting of Li2 ⁇ , Na2O, Al2O3, K2O, CS2O, BaO, MgO, BaCCL, CeCh, La2O3.
  • the base used can also be an anion exchange resin having basic properties.
  • the reaction is maintained at a temperature comprised between 10°C and 60°C, preferably comprised between 20°C and 50°C, preferentially comprised between 25°C and 40°C.
  • the reaction is generally carried out in a solvent, preferably chosen from water, acetone, alcohols, or mixtures thereof.
  • the alcohol is chosen from methanol, ethanol, isopropanol. This embodiment is described in particular in document CN 1097729.
  • step (c) is carried out in the presence of an acid.
  • Step (c) can be carried out in a mixture comprising water, an alcohol, preferably ethanol, acetone and an acid or with an acid in catalytic quantity.
  • the amount of acid is generally less than or equal to 1 equivalent, relative to the amount of compound of formula (IV), preferably less than or equal to 0.8 equivalents, preferably less than or equal to 0.5 equivalents.
  • the amount of acid is greater than or equal to 0.01 equivalents, preferably greater than or equal to 0.1 equivalents.
  • the solvent for step (c) can be chosen from water, acetone, alcohols, acetic acid or mixtures thereof.
  • the reaction is carried out in a water/acid mixture, in general the volume of water relative to the volume of acid is between 1:1 and 5:1.
  • the acid used can also be a resin cation exchanger with acidic properties.
  • the reaction is maintained at a temperature comprised between 10°C and 60°C, preferably comprised between 20°C and 50°C, preferentially comprised between 25°C and 40°C.
  • the acid is generally a strong acid, preferably the acid is chosen from acids having a pKa of less than or equal to 2, such as sulfuric acid, triflic acid, hydrochloric acid, hydrobromic acid.
  • step (c) can be carried out in the presence of an amino acid, preferably chosen from proline, azetidine-2-carboxylic acid, piperidine-2-carboxylic acid, 4-hydroxypyrrolidine-2- carboxylic acid, pyrrolidine-2-carboxamide, thiazolidine-4-carboxylic acid, 4-acetoxypyrrolidine-2-carboxylic acid.
  • the amount of amino acid is generally between 15% by volume and 40% by volume.
  • the solvent is generally a mixture of DMSO and acetone.
  • the compound (VII) obtained at the end of step (c) has a carbon content of biosourced origin greater than or equal to 50%, preferably greater than or equal to 70%, preferably greater than or equal to 75 % and less than or equal to 100%.
  • the compound (VII) obtained at the end of step (c) is recovered in salified form.
  • the process for preparing frambinone may comprise a stage (d) of hydrogenation of the compound of formula (VII) obtained at the end of stage (c), in protonated or salified form.
  • Stage (d) is a stage of hydrogenation of the compound of formula (VII) obtained at the end of stage (d) to form frambinone (VIII). live. (Wine)
  • step (d) is carried out in the presence of a reducing agent with or without heterogeneous catalysis.
  • step (d) is carried out in the presence of a metal-based catalyst, preferably chosen from catalysts based on Pd, Pt, Ni, Ru, Rh, such as Pd/C, Pt/Alumina or Raney Nickel.
  • a metal-based catalyst preferably chosen from catalysts based on Pd, Pt, Ni, Ru, Rh, such as Pd/C, Pt/Alumina or Raney Nickel.
  • the amount of catalyst is generally greater than or equal to 0.1% by weight, preferably greater than or equal to 0.5% by weight, and less than or equal to 25% by weight, preferably less than or equal to 20% by weight.
  • Stage (d) is generally carried out in the presence of a reducing agent
  • the reducing agent can be chosen from dihydrogen, phosphite and hypophosphite derivatives such as than described in Org. Biomol. Chem., 2015, 13, 7879-7906.
  • the reducing agent can be chosen from HCO 2 (NH 4 ), NaH 2 PO 2 , Na 2 HPO 3 , HCO 2 H.
  • the amount of reducing agent is generally greater than or equal to 1 equivalent relative to the amount of compound of formula (VII), preferably greater than or equal to 1.5 equivalents, and less than or equal to 10 equivalents, preferably less than or equal to 7 equivalents, very preferably less than or equal to 5 equivalents.
  • the solvent can be chosen from the group consisting of water, alcohols, or acetic acid and their mixtures, in particular the solvent can be water, methanol, ethanol, isopropanol , acetic acid or mixtures thereof.
  • step (d) can be carried out in the presence of a base, preferably a strong base, very preferably a non-nucleophilic strong base.
  • a base preferably a strong base, very preferably a non-nucleophilic strong base.
  • the base can be chosen from tertiary amines, such as triethylamine.
  • Step (d) is generally carried out at a temperature greater than or equal to 25°C, preferably greater than or equal to 30°C, preferably greater than 40°C, very preferably greater than 50°C.
  • the temperature of step (d) is less than or equal to 190°C, preferably less than or equal to 175°C, very preferably less than or equal to 150°C.
  • step (d) is carried out at a temperature of between 25°C and 100°C.
  • Step (d) can be carried out at atmospheric pressure, alternatively step (d) can be carried out under autogenous pressure.
  • step (d) can be carried out by biochemical transformation, in particular transformation of the compound of formula (VII) into frambinone of formula (VIII) can be carried out via a microorganism having an ene activity -reductase, as described in particular in GB2416769 or in Journal of Molecular Catalysis B: Enzymatic (1998), 4(5-6), 289-293.
  • steps (c) and (d) can be carried out without isolation of the compound of formula (VII).
  • steps (c) and (d) can be carried out according to a “one-pot” process.
  • steps (c) and (d) can be carried out without isolation of the compound of formula (VII) and can be carried out by heterogeneous catalysis, in particular in the presence of a resin, preferably an acid resin. This embodiment is described in particular in ACS Omega 2020, 5, 14291-14296.
  • steps (c) and (d) can be carried out without isolation of the compound of formula (VII) and can be carried out by acid catalysis, in the presence of a reducing agent and a metal-based catalyst.
  • the metal-based catalyst is chosen from catalysts based on Pd, Pt, Ni, Ru, Rh, such as Pd/C or Raney Nickel.
  • the reducing agent is generally chosen from NaHzPCh, HCO2H, NaHPCb.
  • the catalyst is generally a strong acid such as hydrochloric acid, sulfuric acid.
  • the solvent can be chosen from the group consisting of water, alcohols, or acetic acid and their mixtures, in particular the solvent can be water, methanol, ethanol, isopropanol , acetic acid or mixtures thereof.
  • the compound (VIII) obtained at the end of step (d) has a carbon content of biosourced origin greater than or equal to 50%, preferably greater than or equal to 70%, preferably greater than or equal to 75 % and less than or equal to 100%.
  • the present invention relates to a process for the preparation of frambinone from 4-hydroxybenzyl alcohol and acetone.
  • the preparation process can be represented by the following diagram:
  • 4-Hydroxybenzyl alcohol is a commercial product, in particular the commercial product can be adapted for use in the food industry.
  • 4-Hydroxybenzyl alcohol can be of biobased or non-biobased origin.
  • 4-hydroxybenzyl alcohol can also be obtained by reduction of the aldehyde (IV) obtained at the end of step (b).
  • the 4-hydroxybenzyl alcohol has a carbon content of biosourced origin greater than or equal to 60%, preferably greater than or equal to 70%, preferably greater than or equal to 75% and less than or equal to 100%.
  • the acetone can be of biobased origin, as described previously in step (c).
  • the condensation reaction of the compound of formula (IX) and acetone is carried out in a basic medium.
  • the base used can be a base chosen from NaOH, KOH, K3PO4.
  • the amount of base is generally greater than or equal to 1 equivalent, preferably greater than or equal to 1.1 equivalents, preferably greater than or equal to 1.5 equivalents relative to the compound of formula (IX).
  • the amount of base is less than or equal to 5 equivalents, preferably less than or equal to 4, very preferably less than or equal to 3 equivalent equivalents with respect to the compound of formula (IX).
  • the condensation reaction of the compound of formula (IX) and acetone is carried out in the presence of a metal-based catalyst, preferably chosen from catalysts based on Pd, Pt, Ni, Ru, Rh, such as Pd/C or Raney Nickel.
  • a metal-based catalyst preferably chosen from catalysts based on Pd, Pt, Ni, Ru, Rh, such as Pd/C or Raney Nickel.
  • the amount of catalyst is generally greater than or equal to 0.1% by weight, preferably greater than or equal to 0.5% by weight, and less than or equal to 25% by weight, preferably less than or equal to 20% by weight.
  • the solvent can be chosen from the group consisting of water, alcohols, acetone, dioxane and their mixtures, in particular the solvent can be water, methanol, ethanol, isopropanol, acetone, dioxane or mixtures thereof.
  • a third aspect of the present invention refers to a frambinone capable of being obtained according to the process of the invention, in particular to a biosourced frambinone capable of being obtained by the process of the invention.
  • the compound (VIII) obtained at the end of the condensation step of the compound of formula (IX) and acetone has a carbon content of biosourced origin greater than or equal to 50%, preferably greater than or equal to to 70%, preferably greater than or equal to 75% and less than or equal to 100%.
  • a fourth aspect of the present invention covers a frambinone whose carbon content of biosourced origin is greater than or equal to 50%, preferably greater than or equal to 75% and strictly less than 100%.
  • the present invention also covers a frambinone characterized in that the average isotopic deviation 13 C is between -27%o and -15%o, preferably between -23%o and -15%o, preferably between -22%o o and -15%o, preferably between -23%o and -18%o, preferably between -22%o and -18%o, very preferably between -21%o and -19%o.
  • the frambinone of the present invention has a carbon content of biobased origin greater than or equal to 50%, preferably greater than or equal to 75%.
  • the frambinone of the present invention has a carbon content of biosourced origin less than or equal to 110%, preferably less than or equal to 105%, preferentially less than or equal to 103%, preferentially less than or equal to 100% and very preferably strictly less than 100%.
  • all the carbon atoms of the frambinone according to the present invention are of biobased origin, in particular the 10 carbon atoms of the frambinone of the present invention are of biobased origin.
  • Preferably 9 carbon atoms of frambinone are of biosourced origin, preferably 8 carbon atoms, preferably 7 carbon atoms, preferably 6 carbon atoms are of biosourced origin.
  • frambinone may have a (D/H) 3 /(D/H) 2 ratio of less than or equal to 1.10, preferably less than or equal to 1.00, very preferably less than or equal to 0.90 and very preferably less than or equal to 0.80.
  • frambinone may have a (D/H) 3 /(D/H) 2 ratio greater than or equal to 0.10, preferably greater than or equal to 0.20 very preferably greater than or equal to 0.30 and very preferably greater than or equal to 0.40.
  • frambinone may have a (D/H)S/(D/H)4 ratio of less than or equal to 1.10, preferably less than or equal to 10, very preferably less than or equal to 0.90 and very preferably less than or equal to 0.85.
  • frambinone may have a ratio (D/H)S/(D/H)4 greater than or equal to 0.10, preferably greater than or equal to 0.20 very preferably greater than or equal to 0.30 and very preferably greater than or equal to 0.40.
  • the frambinone of the present invention has a (D/H) 3 /(D/H) 2 ratio of less than or equal to 1.10, preferably less than or equal to 1.00, very preferably less than or equal to 0.90 and very preferably less than or equal to 0.80 and a ratio (D/H)S/(D/H)4 less than or equal to 1.10, preferably less than or equal to 10, very preferably less than or equal to 0.90 and very preferably less than or equal to 0.85.
  • frambinone has a (D/H) 3 /(D/H) 2 ratio greater than or equal to 0.10, preferably greater than or equal to 0.20, very preferably greater than or equal to 0.30 and very preferably greater than or equal to 0.40 and a ratio (D/H)s/(D/H)4 greater than or equal to 0.10, preferably greater than or equal to 0.20 very preferably greater than or equal to 0.30 and very preferably greater than or equal to 0.40.
  • the organoleptic properties of a flavoring substance can depend on the presence and the quantity of certain impurities. This is why the manufacturing process is essential for the flavor of the final compound.
  • the frambinone of the present invention exhibits satisfactory organoleptic properties. It should be noted that the organoleptic profile of the frambinone of the present invention is equivalent to the organoleptic profile of the frambinone extracted from fruits.
  • the present invention covers the use of frambinone according to the present invention or of frambinone obtained according to the process of the invention as flavoring or perfume.
  • the present invention also covers a composition comprising frambinone according to the invention preferably chosen from the group consisting of food products, beverages, cosmetic formulations, pharmaceutical formulations and perfumes.
  • Example 1 Phenol is condensed with a 50% by weight solution of glyoxylic acid at 30° C. in the presence of NaOH. The compound of formula (I) was obtained with a yield of 60%.
  • the compound of formula (I) obtained in Example 1 is oxidized in the presence of a metal catalyst (metal content 8% by weight) and heated to 75° C. with bubbling of air under pressure. Autogenous (6-8bars) in an alkaline aqueous medium.
  • the compound of formula (IV) is obtained after acidification with ELSCM with a yield of 95%.
  • Example 2 The compound of formula (IV) obtained in Example 2 is condensed with acetone (4 equivalents) in acetic acid, in the presence of sulfuric acid (0.5 equivalent) at 50°C.
  • the compound of formula (VII) is obtained with a selectivity of 87%.
  • Example 2 The compound of formula (IV) obtained in Example 2 is condensed with acetone (8.6 equivalents), in the presence of 10% aqueous sodium hydroxide (2.2 equivalents) at 20°C.
  • the compound of formula (VII) is obtained with a selectivity of 94%.
  • Example 2 The compound of formula (IV) obtained in Example 2 is condensed with acetone (4 equivalents), in the presence of glycine (0.3 equivalent) and NaHCOs (0.1 equivalent) in DMSO at 58°C.
  • the compound of formula (VII) is obtained with a selectivity of 83%.
  • Example 3 The compound of formula (VII) obtained in Example 3 is reduced in the presence of NaEhPC EbO (4 equivalents), Pd/C (20% by weight) in a solvent composed of water and ethanol (mixture 1: 1).
  • the frambinone of formula (VII) is obtained with a selectivity of 81%.
  • Example 4b The compound of formula (VII) obtained in Example 3 is reduced in the presence of Na HPCL, 5 H2O (4 equivalents), Pd/C (20% by weight) in a solvent composed of water and ethanol ( 1:1 mixture). The frambinone of formula (VII) is obtained with a selectivity of 91%.
  • Example 4c The compound of formula (VII) obtained in Example 3 is reduced in the presence of HCO2H (4 equivalents), Pd/C (20% by weight) in a solvent composed of water and ethanol (mixture 1 : 1). The frambinone of formula (VII) is obtained with a selectivity of 78%.
  • the frambinone obtained of formula (VII) has 10 carbon atoms of biosourced origin and an isotopic deviation of between -22%o and -18%o.
  • the organoleptic profile of the frambinone of the present invention is equivalent to the organoleptic profile of the frambinone extracted from fruits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

La présente invention concerne un procédé de préparation de frambinone comprenant une étape de condensation du phénol et de l'acide glyoxylique.

Description

Procédé de préparation de frambinone
Domaine de l’invention
La présente invention concerne un procédé de préparation de frambinone comprenant une étape de condensation du phénol et de l’acide glyoxylique.
Art antérieur
La frambinone, ou 4-(4-hydroxyphényl)-2-butanone, est le principal composé aromatique de la framboise, mais également présent dans les canneberges ou les mûres.
La frambinone est utilisée en parfumerie, cosmétique ou dans l’industrie agro-alimentaire afin de donner une odeur fruitée.
Ce composé aromatique naturel peut être extrait des fruits à raison de 1 à 4 mg par kilogramme de framboise. Compte tenu de la très faible abondance de ce composé aromatique dans le fruit, des procédés de synthèse ont été développés, notamment :
- Par alkylation du phénol en présence de buténone telle que décrite dans FR1227595, ou dans Guo Hui et al. Bulletin of the Korean Chemical Society, 2013, 34(9), 2594-2596,
- Par condensation du phénol en présence de 4-hydroxy-2-butanone, telle que décrite dans US 2011/257439, DE 2145308, CN104355977 ou CN104496778. Le 4-hydroxy-2- butanone est préparé par condensation d’acétone et de formaldéhyde.
- Par condensation du phénol en présence de 2-acétyl-2-hydroxym éthyle d’acétate d’éthyle, telle que décrite dans FR 2221433. Le composé 2-acétyl -2 -hydroxym éthyle d’acétate d’éthyle est préparé à partir de formaldehyde, et d’acéto-acétate d’éthyle,
- Par condensation du phénol avec l,3-dichloro-2-butène, telle que décrite dans JPO 1242549, ou
- Par déméthylation, en présence d’acide bromhydrique, d’anisylacétone telle que décrite dans le document CN104193607.
Ces procédés présentent des inconvénients et notamment utilisent des composés dont l’innocuité est connue : but-2-én-l-one, formaldehyde ou acide bromhydrique. La présente invention vise la fabrication de la frambinone par une nouvelle voie d’accès utilisant des matières premières non toxiques et moins coûteuses. Avantageusement, le procédé permet la fabrication d’un nouveau composé : la frambinone naturelle, le procédé utilise avantageusement des réactifs d’origine naturelle. Le procédé utilise avantageusement des conditions opératoires plus douces notamment en termes de température ou de pression que les procédés de l’art antérieur.
Brève description
Un premier objet de la présente invention porte sur un procédé de préparation de frambinone comprenant une étape (a) de condensation du phénol et de l’acide glyoxylique.
La présente invention porte également sur de la frambinone susceptible d’être obtenue selon le procédé de la présente invention.
La présente invention porte également sur de la frambinone dont la teneur en carbone d’origine biosourcée est supérieure ou égale à 50% et strictement inférieure à 100%.
La présente invention porte sur de la frambinone dont la déviation isotopique 13C est comprise entre -27 %o et -15 %o, de préférence dont la teneur en carbone d’origine biosourcée est supérieure ou égale à 50%.
La présente invention porte également sur l’utilisation de frambinone selon la présente invention en tant qu’arôme ou parfum.
Enfin la présente invention porte sur une composition comprenant de la frambinone selon la présente invention.
Figure 1 : Numérotation des positions de la frambinone utilisée pour la caractérisation des rapports D/H
Description détaillée
Dans le cadre de la présente invention, et sauf indication contraire, l’expression « compris entre . . . et. . . » inclut les bornes. Sauf indications contraires, les pourcentages et ppm sont des pourcentages et ppm massiques.
Dans le cadre de la présente invention, et sauf indication contraire, le terme « ppm » signifie « partie par million ». Cette unité représente une fraction massique : 1 ppm = 1 mg/kg. Dans le cadre de la présente invention, l’expression « origine biosourcée » réfère à un produit qui est composé, entièrement ou majoritairement, de produits biologiques, ou de matières agricoles (y compris matières végétales, animales et marines) ou forestières renouvelables.
Dans le cadre de la présente invention, l’expression « carbone d’origine biosourcée » ou « carbone biosourcé » réfère à des carbones d’origine renouvelable tel que agricoles, végétales, animales, fongiques, micro-organismes, marines ou forestières vivant dans un milieu naturel en équilibre avec l'atmosphère. La teneur en carbone biosourcé est typiquement évaluée au moyen de la datation au carbone 14 (également appelée datation au carbone ou datation au radiocarbone). En outre, dans la présente invention, la "teneur en carbone biosourcé" se réfère au rapport molaire du carbone biosourcé au carbone total du composé ou du produit. La teneur en carbone biosourcé peut de préférence être mesurée par une méthode consistant à mesurer le processus de désintégration du 14C (carbone-14), en désintégrations par minute par gramme de carbone (ou 10 dpm / gC), par comptage par scintillation liquide, de préférence selon le Méthode d'essai standard ASTM D6866-16. Ledit test standard américain ASTM D6866 serait équivalent à la norme ISO 16620-2. Selon ladite norme ASTM D6866, la méthode de test peut utiliser de préférence des techniques AMS (Accelerator Mass Spectrometry) avec IRMS 13C (Isotope Ratio Mass Spectrometry) pour quantifier le contenu biosourcé d'un produit donné.
Les atomes d’hydrogène et de carbone co-existent naturellement avec leurs isotopes stables : deutérium et 13C respectivement. La quantité et les rapports D/H et 13C/12C sont influencés par plusieurs facteurs tels que notamment l’environnement pour les produits naturels. L’empreinte isotopique d’un produit donne des informations sur l’origine du produit en particulier l’origine naturelle ou fossile. La méthode 2H-SNIF-NMR mesure le rapport deutérium/hydrogène de chaque site d’une molécule. La méthode 13C-SNIF-NMR mesure le rapport 13C/12C de chaque site d’une molécule.
Les rapports D/H sont mesurés par comparaison à la tétraméthylurée (TMU), standard international de référence. A titre d’exemple les mesures peuvent être réalisées dans le dioxane ou dans un mélange dioxane/benzène.
La déviation isotopique 13C moyenne (ô13C) est mesurée par spectrométrie de masse à rapport isotopique (IRMS) par rapport au PDB (pee bee belemnite), standard international de référence.
Etape (a) : Le procédé de préparation de frambinone comprend une étape (a) de condensation du phénol et de l’acide glyoxylique et peut être représentée selon le schéma suivant :
L’étape (a) de condensation du phénol et de l’acide glyoxylique permet la formation d’acide 2- hydroxy-2-(4-hydroxyphényl) acétique (Composé I).
L’étape (a) peut être réalisée selon tout procédé de condensation d’un dérivé aromatique avec de l’acide glyoxylique notamment tel que décrit notamment dans WO 09/077383 ou WO 2015/071431.
Le phénol peut être un phénol biosourcé ou un phénol non biosourcé.
Selon un mode de réalisation de la présente invention, le phénol ayant une teneur en carbone biosourcé supérieure à 50% est également appelé «phénol biosourcé». Le phénol biosourcé selon l'invention peut avoir une teneur en carbone biosourcé supérieure à 60%, de préférence entre 75% et 100%, plus préférentiellement entre 90% et 100%, plus préférentiellement entre 95% et 100%, plus préférentiellement entre 98% et 100%, et plus préférentiellement entre 99% et 100%. Le phénol biosourcé est un produit commercial. Il peut être obtenu de manière naturelle à partir de ressources naturelles telles que la lignine notamment par différentes méthodes, l’huile de charbon de bois, à partir de résidus d’huile végétale ou de saccharide. Plusieurs procédés biochimiques sont connus. On peut citer à titre d’exemple US 2013/0232852 qui décrit un procédé de bioraffinage de biomasse de lignine. On peut également citer EP 2639295 qui décrit un procédé biochimique de production de phénol à partir de saccharides.
Compte-tenu de l’origine biosourcée du phénol, celui-ci peut contenir certaines impuretés. La nature des impuretés contenues dans le phénol biosourcée est différente de celles contenues dans le phénol d’origine fossile. Par ailleurs, ces impuretés peuvent être spécifiques selon l’origine du phénol et son procédé de préparation. De manière générale, le phénol d’origine biosourcée a une pureté supérieure ou égale à 99%. De manière générale la teneur en impuretés totales dans le phénol biosourcé est inférieur ou égal à 1 %, et supérieur ou égal à 0,5%. De manière générale la teneur de chaque impureté dans le phénol biosourcé est comprise entre 0,005 et 0,1%, de préférence entre 0,01 et 0,08%.
En général le phénol biosourcé présente une déviation isotopique moyenne ô13C comprise entre -33 %o et -20 %o, de préférence compris entre -30 %o et -25 %o, très préférentiellement entre -30 %o et -27%o.
L'acide glyoxylique peut être un acide glyoxylique biosourcé ou un acide glyoxylique non biosourcé.
Selon un mode de réalisation de la présente invention, l'acide glyoxylique ayant une teneur en carbone biosourcé supérieure à 50% est également appelé «acide glyoxylique biosourcé». L'acide glyoxylique biosourcé selon l'invention peut avoir une teneur en carbone biosourcé supérieure à 60%, de préférence entre 75% et 100%, plus préférentiellement entre 90% et 100%, plus préférentiellement entre 95% et 100%, plus préférentiellement entre 98% et 100%, et plus préférentiellement entre 99% et 100%. L'acide glyoxylique biosourcé et non biosourcé peut être acheté auprès de plusieurs producteurs. Certains procédés de production d'acide glyoxylique biosourcé sont décrits dans l'art antérieur. En particulier, différents processus biochimiques sont disponibles. Par exemple, US 5219745 décrit un procédé industriellement avantageux pour la production biochimique d'acide glyoxylique. Alternativement, l'acide glyoxylique biosourcé peut être produit selon des méthodes industrielles bien connues (voir par exemple «Glyoxylic Acid» dans Ullmann's Encyclopedia of Industrial Chemistry, G. MATTIODA et Y. CHRISTIDIS, Vol.17 p.89-92, 2012) à partir de matières premières biosourcées, comme l'éthanol biosourcé, ou le glycérol biosourcé ou l'éthylène glycol biosourcé.
Compte-tenu de l’origine biosourcée de l’acide glyoxylique, celui-ci peut contenir certaines impuretés. La nature des impuretés contenues dans l’acide glyoxylique biosourcé est différente de celles contenues dans l’acide glyoxylique d’origine fossile. Par ailleurs, ces impuretés peuvent être spécifiques selon l’origine de l’acide glyoxylique et son procédé de préparation.
Selon un aspect particulier, l’acide glyoxylique biosourcée utilisé dans le cadre de la présente invention présente en générale une déviation isotopique 13C moyenne comprise entre -33 et -7%o, de préférence comprise entre -31%o et -9%o, préférentiellement comprise entre -30%o et -10%o, et très préférentiellement comprise entre -31 et -25%o.
Selon un autre aspect particulier, l’acide glyoxylique biosourcée utilisé dans le cadre de la présente invention présente en générale une déviation isotopique 13C moyenne comprise entre -7 et -3%o, de préférence comprise entre -6%o et -5%o.
La réaction de condensation du phénol avec l'acide glyoxylique permet la synthèse du produit de condensation correspondant, qui est un acide para-hydroxymandélique. Cette étape de condensation peut donner naissance à certaines impuretés, à savoir un acide-ortho- hydroxymandélique (Composé II) et un dérivé dimandélique (Composé III). D'autres impuretés du phénol peuvent réagir lors de l'étape de condensation.
Selon un aspect, le composé (I) obtenu à l’issue de l’étape (a) a une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 70%.
Préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%.
Le rapport molaire entre le phénol et l'acide glyoxylique peut être compris entre 1,0 et 4,0, de préférence entre 1,2 et 2,2.
La réaction de condensation peut être effectuée dans une cascade de réacteurs agités. Selon une variante, la réaction est réalisée dans un réacteur à écoulement piston, comprenant éventuellement un échangeur de chaleur. Un tel mode de réalisation est par exemple décrit dans la demande WO 09/077383. La réaction de condensation entre le phénol et l'acide glyoxylique peut être effectuée dans l'eau, en présence d'un métal alcalin, ladite réaction étant réalisée dans une réaction d'écoulement piston. Elle peut également être réalisée dans un réacteur tubulaire. La réaction de condensation peut avantageusement être catalysée par un hydroxyde d'ammonium quaternaire, selon la réaction décrite dans la demande de brevet EP 0 578 550.
Selon un mode de réalisation de l'invention, le phénol est mis à réagir avec l'acide glyoxylique en présence d'une base, de préférence une base minérale ou une base organique, plus préférentiellement un métal alcalin, et encore plus préférentiellement en présence de NaOH, KOH, de chaux ou de K2CO3. Pour des raisons économiques, l'hydroxyde de sodium peut être préféré. L'hydroxyde de métal alcalin peut être utilisé en solution. Dans cet aspect, la solution d'hydroxyde de métal alcalin peut avoir une concentration comprise entre 10% et 50% en poids. La quantité d'hydroxyde de métal alcalin introduite dans le milieu réactionnel tient compte de la quantité nécessaire pour salifier la fonction hydroxyle du phénol et la fonction carboxylique de l'acide glyoxylique. Selon cette variante, le phénol est sous forme de phénolate et le produit de condensation est un composé mandélate. Généralement, la quantité d'hydroxyde de métal alcalin est comprise entre 80% et 120% de la quantité stoechiométrique.
Ensuite, le phénolate réagit avec l'acide glyoxylique pour former le para-mandélate correspondant. Ces deux étapes réactionnelles de préparation du glyoxylate et du phénolate peuvent être réalisées selon deux étapes distinctes. Alternativement, l'acide glyoxylique est mis en contact directement avec le phénolate en présence de la base.
Une variante possible consiste à effectuer la réaction en présence d'un catalyseur de type acide dicarboxylique, de préférence l'acide oxalique, comme décrit dans la demande de brevet internationale WO 99/65853. La quantité de catalyseur utilisée, exprimée par le rapport entre le nombre de moles de catalyseur et le nombre de moles d'acide glyoxylique, peut être avantageusement choisie entre 0,5% et 2,5% et de préférence entre 1% et 2%.
Selon un mode de réalisation de la présente invention, le phénol et l'agent alcalin sont mélangés ensemble avant que le phénol ne soit mis en contact avec l'acide glyoxylique. Ainsi, le procédé selon l'invention peut comprendre une première étape de mise en contact du phénol avec un hydroxyde de métal alcalin en solution aqueuse, suivie de la mise en contact de la solution résultante avec l'acide glyoxylique. Ce mode de réalisation permet avantageusement de mieux contrôler la température de réaction, car la réaction de salification de l'acide glyoxylique est exothermique. Selon un autre mode de réalisation, le procédé selon l'invention comprend dans une première étape la mise en contact de l'acide glyoxylique avec un hydroxyde de métal alcalin en solution aqueuse, suivie de la mise en contact de la solution résultante avec le phénol.
Selon encore un autre mode de réalisation, le procédé selon l'invention comprend, d'une part, la mise en contact du phénol avec l'agent alcalin en solution aqueuse, et, d'autre part, la mise en contact de l'acide glyoxylique avec l'agent alcalin en solution aqueuse, suivie de la mise en contact des deux solutions résultantes.
Ces étapes optionnelles de mise en contact de l'acide glyoxylique avec un hydroxyde de métal alcalin en solution aqueuse et / ou de mise en contact du phénol avec l'agent alcalin peuvent être réalisées à une température comprise entre 10 °C et 40 °C, pour exemple à 15 °C ou à 35 °C.
Le mélange réactionnel obtenu peut avoir une viscosité à 20 °C comprise entre 0,5 mPa.s et 50 mPa.s et plus préférentiellement entre 1,5 mPa.s et 3 mPa.s. Selon l'invention, ce mélange est introduit dans au moins un réacteur, dans lequel a lieu la réaction de condensation.
Selon un autre mode de réalisation de l'invention, le phénol est mis à réagir avec l'acide glyoxylique en l'absence de tout composé acide ajouté ou composé de base. Ce mode de réalisation est en outre décrit dans le document WO 2015/071431.
Cette étape de condensation peut être réalisée en milieu aqueux. Dans le cas d'une utilisation en milieu aqueux, la concentration du phénol peut être de préférence comprise entre 0,5 et 1,5 mol / litre et plus particulièrement d'environ 1 mol / litre. L'acide glyoxylique peut être utilisé en solution aqueuse avec une concentration allant par exemple entre 15% et 70% en poids. On utilise de préférence des solutions commerciales dont la concentration est d'environ 50% en poids.
Selon un autre mode de réalisation de l'invention, le phénol est mis à réagir avec l'acide glyoxylique sans aucun solvant, et l'acide glyoxylique est l'acide glyoxylique monohydraté. Ce mode de réalisation est en outre décrit dans le document WO 2015/071431.
Selon un autre mode de réalisation de l'invention, le phénol est mis à réagir avec l'acide glyoxylique en présence d'un catalyseur choisi dans le groupe constitué des complexes de métaux de transition à ligands oxygénés. Ledit catalyseur est préférentiellement choisi dans le groupe constitué par l'acétate de fer (II) (Fe (OAc) 2), l'acétate de fer (III) (Fe (OAc) 3), l'acétate de cuivre (II) (Cu (OAc) 2), le fer (II) acétylacétonate (Fe (acac) 2), fer (III) acétylacétonate (Fe (acac) 3), cupper (II) acétylacétonate (Cu (acac) 2), cupper (III) acétylacétonate (Cu (acac) 3) , et un complexe de métal de transition ayant un ligand glyoxylate. Ce mode de réalisation est en outre décrit dans le document WO 2015/071431.
Les conditions opératoires de la réaction peuvent être fixées en fonction des réactifs et du type de réacteur ou de séquence de réacteur utilisé.
La température de réaction peut être comprise entre 10 °C et 90 °C. Selon un mode de réalisation, la température de réaction peut être comprise entre 10 °C et 20 °C. Selon un autre mode de réalisation, la température peut être comprise entre 30 °C et 40 °C. De plus, la température peut varier au cours de la réaction. Par exemple, la réaction peut être effectuée à une température comprise entre 10 °C et 20 °C pendant un certain temps, et la température peut alors être élevée entre 30 °C et 50 °C pour une phase de finition.
La réaction peut être effectuée à pression atmosphérique, optionnellement sous atmosphère contrôlée de gaz inertes, de préférence d'azote ou, éventuellement, de gaz rares, en particulier d'argon. L'azote est préférentiellement choisi.
Le temps de séjour total des réactifs en régime continu et le temps de fonctionnement ou de cycle en régime batch peuvent varier largement, par exemple de quelques minutes à plusieurs heures, voire plusieurs jours, notamment en fonction des conditions opératoires, notamment en fonction de la température de réaction. Lorsque la température est comprise entre 10 °C et 20 °C, le temps de séjour total des réactifs peut être compris entre 10 heures et 100 heures. Lorsque la température est comprise entre 30 °C et 50 °C, le temps de séjour total des réactifs peut être compris entre 30 minutes et 30 heures.
Après la réaction de condensation, le composé de condensation obtenu peut être séparé du mélange réactionnel par des techniques de séparation classiques, notamment par cristallisation ou par extraction à l'aide d'un solvant organique approprié. Une étape de neutralisation peut être réalisée.
En variante, le mélange réactionnel obtenu après la réaction de condensation peut être utilisé sous sa forme existante. Cependant, il est préférable de récupérer le phénol n'ayant pas réagi. Le phénol étant généralement en excès par rapport à l'acide glyoxylique, la fraction de phénol n'ayant pas réagi est avantageusement récupérée à partir d'une boucle de recyclage, par exemple par distillation de l’azéotrope eau/phénol. Cet excès réduit la probabilité de former des composés de type acide dimandélique (c'est-à-dire des composés résultant de la condensation de deux molécules d'acide glyoxylique avec une molécule de gaïacol). Le phénol n'ayant pas réagi peut être récupéré par acidification, comme décrit dans le document WO 2014/016146. Elle consiste à ajouter un acide minéral, par exemple de l'acide chlorhydrique ou sulfurique, pour ajuster le pH entre 5 et 7, puis à extraire le phénol n'ayant pas réagi dans un solvant organique, notamment dans l'éther ou le toluène. Après extraction, les phases aqueuse et organique peuvent être séparées.
Etape (b) :
Le procédé de préparation de frambinone peut comprendre en outre une étape (b) d’oxydation décarboxylante du composé de formule (I) obtenu à l’issue de l’étape (a) pour former un composé de formule (IV). L’étape (b) est une étape dans laquelle le composé (I) est oxydé pour former le composé (IV) selon le schéma suivant, du dioxyde de carbone est libéré :
De plus, les composés (II) et (III) obtenus à l’issus de l’étape (a) peuvent également être oxydés dans les mêmes conditions pour former les composés (V) et (VI).
Les impuretés contenues dans le phénol biosourcé qui ont pu réagir lors de l’étape (a) sont également susceptibles d’être oxydées dans les conditions de l’étape (b).
L’oxydation peut être réalisée sous atmosphère oxydante, tel que O2 ou sous air.
Selon une variante, le milieu réactionnel est un milieu aqueux alcalin, de préférence une base minérale et plus préférentiellement de l'hydroxyde de sodium ou de potassium, de manière à former le phénate correspondant, et à capter le CO2 libéré, sous forme carbonate.
La réaction peut être effectuée en continu ou en discontinu, par exemple dans un milieu fortement dilué dans l'eau.
La réaction peut être catalysée. Un catalyseur de cette réaction d'oxydation peut être choisi parmi les catalyseurs comprenant au moins un élément métallique choisi dans le groupe formé par le cuivre, le nickel, le cobalt, le fer, le manganèse et tout mélange de ceux-ci. A titre d'exemples de composés inorganiques ou organiques du cuivre, on peut notamment citer comme composés du cuivre, le bromure cuivreux et cuivrique; iodure cuivreux; chlorure cuivreux et cuivrique; carbonate cuivrique basique; nitrate cuivreux et cuivrique; sulfate cuivreux et cuivrique; sulfite cuivreux; oxyde cuivreux et cuivrique; hydroxyde cuivrique; acétate cuivreux et cuivrique; et trifluorométhyl sulfonate cuivrique. A titre d'exemples spécifiques de dérivés du nickel, on peut citer les halogénures de nickel (II), tels que le chlorure, le bromure ou l'iodure de nickel (II); sulfate de nickel (II); carbonate de nickel (II); hydroxyde de nickel (II) ; les sels d'acides organiques comportant de 1 à 18 atomes de carbone, tels que notamment l'acétate ou le propionate; les complexes de nickel (II), tels que l'acétylacétonate de nickel (II), le dichlorobis de nickel (II) (triphénylphosphine) ou le dibromobis de nickel (II) (bipyridine); et des complexes de nickel (0), tels que le nickel (0) bis (cycloocta-1, 5-diène) ou le nickel (0) bisdiphénylphosphinoéthane. A titre d'exemples de composés à base de cobalt, on peut notamment citer les halogénures de cobalt (II) et (III), tels que le chlorure, bromure ou iodure de cobalt (II) ou le chlorure, bromure ou iodure de cobalt (III); sulfate de cobalt (II) et de cobalt (III); carbonate de cobalt (II), carbonate basique de cobalt (II); orthophosphate de cobalt (II); nitrate de cobalt (II); oxyde de cobalt (II) et de cobalt (III); l'hydroxyde de cobalt (II) et de cobalt
(III); les sels d'acides organiques comprenant de 1 à 18 atomes de carbone, tels que notamment l'acétate de cobalt (II) et de cobalt (III) ou le propionate de cobalt (II); les complexes de cobalt (II), tels que le chlorure d'hexaminécobalt (II) ou (III), le sulfate d'hexaminécobalt (II) ou (III), le chlorure de pentaminécobalt (III) ou le chlorure de triéthylènediaminecobalt (III). On peut également utiliser des systèmes catalytiques à base de fer, généralement sous forme d'oxydes, d'hydroxydes ou de sels, tels que le chlorure, le bromure, l'iodure ou le fluorure de fer (II) et de fer (III); sulfate de fer (II) et de fer (III); le nitrate de fer (II) et de fer (III); ou l'oxyde de fer (II) et de fer (III). On peut également utiliser l'acétate de fer (II) (Fe (OAc)2), l'acétate de fer (III) (Fe (OAc)3), le fer (II) acétylacétonate (Fe(acac)2), fer (III) acétylacétonate (Fe(acac)3). La réaction peut également utiliser des systèmes catalytiques à base de manganèse tels que carbonate de manganèse (II), acétate de manganèse (III). La réaction d'oxydation peut être catalysée, par exemple, par un système catalytique comprenant deux éléments métalliques choisis dans le groupe formé par le cuivre, le nickel, le cobalt, le fer, le manganèse et tout mélange de ceux-ci. Les enseignements de WO 2008/148760 peuvent être appliqués pour la préparation du composé
(IV). La présente invention couvre notamment les réactions décrites selon la demande de brevet WO 08/148760.
Dans un premier temps, le composé de condensation (IV) obtenu à l’issue de l’étape (a) réagit avec la base (de préférence la soude) de manière à salifier la fonction phénate du composé de condensation. Ensuite, l'oxydation en milieu oxydant (de préférence à l'air) produit un composé de formule (IV) et du CO2 (piégés sous forme de carbonate). A la fin de la réaction d'oxydation, on obtient un composé de formule (IV) sous forme salifiée, c'est-à-dire avec un groupement hydroxyle sous forme salifiée (ionique), et diverses impuretés, dont les goudrons, sont obtenus. Dans une étape ultérieure, l'acidification du composé de formule (IV) sous forme salifiée dans le milieu réactionnel est réalisée à l'aide d'un acide fort, par exemple l'acide sulfurique. Selon un autre mode de réalisation de l'invention, la réaction d'oxydation peut être réalisée en l'absence de tout composé acide ou composé basique ajouté. Ce mode de réalisation est en outre décrit dans le document WO 2015/071431.
Selon un aspect, le composé (IV) obtenu à l’issue de l’étape (b) a une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 70%, préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%.
Etape (c) :
Le procédé de préparation de frambinone peut comprendre une étape (c) de condensation du composé de formule (IV), obtenu à l’issue de l’étape (b), avec de l’acétone pour former un composé de formule (VII).
L’étape (c) est une condensation du composé de formule (IV) obtenu à l’issue de l’étape (b) avec de l’acétone, suivie d’une déshydratation, pour former un composé de formule (VII).
(TO ÇVH
Selon un aspect, l’acétone utilisée à l’étape (c) est une acétone biosourcée. L’acétone biosourcée a une teneur en carbone biosourcé comprise entre 75% et 100%, plus préférentiellement entre 90% et 100%, plus préférentiellement entre 95% et 100%, plus préférentiellement entre 98% et 100%, et plus préférentiellement entre 99% et 100%. L’acétone biosourcée est un produit commercial. Elle peut être obtenue de manière naturelle à partir de ressources naturelles telles que par fermentation de sucres issus de résidus de maïs, résidus de l’industrie sucrière notamment. Plusieurs procédés biochimiques sont connus, tels que décrits dans Jones, D.T. and Woods, D R. (1986) Microbiol. Rev. 50: 484-524, ou EP 2875139. Compte-tenu de l’origine biosourcée de l’acétone et de son procédé de production, celle-ci peut contenir certaines impuretés, telles que notamment du méthanol, de l’isopropanol, des aldehydes. Ces impuretés peuvent être spécifiques selon l’origine de l’acétone.
L’acétone biosourcée utilisé dans le cadre de la présente invention présente en générale une déviation isotopique 13C moyenne comprise entre -10 %o et -2 %o, de préférence compris entre -8 %o et -4 %o.
La nature des impuretés contenues dans l’acétone biosourcée est différente de celles contenues dans l’acétone d’origine fossile. Par ailleurs, ces impuretés peuvent être spécifiques selon l’origine de l’acétone et son procédé de préparation. De manière générale, l’acétone d’origine biosourcée a une pureté supérieure ou égale à 99%. De manière générale la teneur en impuretés totales dans l’acétone biosourcée est inférieur ou égal à 1 %, et supérieur ou égal à 0,5%. De manière générale, la teneur de chaque impureté dans l’acétone biosourcée est comprise entre 0,005 et 0,1%, de préférence entre 0,01 et 0,08%.
En générale, l’étape (c) est conduite en présence d’au moins 1 équivalent d’acétone, de préférence d’au plus 5 équivalents d’acétone, par exemple 2 équivalents d’acétone.
L’étape (c) peut être conduite en présence d’une base ou d’un acide.
Selon un premier aspect, l’étape (c) est conduite en présence d’une base. Selon un aspect particulier, la base peut être présente en quantité catalytique. Selon un autre aspect, l’étape (c) est conduite en présence de 1 équivalent de base. En général la quantité de bases est inférieure ou égale à 2 équivalents.
La base utilisée peut être une base minérale, telle que KOH, NaOH. La base peut être en solution aqueuse à une concentration comprise entre 10% et 50% en poids, de préférence entre 15% et 25% en poids.
La base utilisée peut également être un solide basique d’un métal alcalin, d’alcalino-terreux, de terres rares ou de métaux de transition tels que des oxydes, hydroxydes, carbonates, ou hydrooxycarbonates, de préférence choisi parmi le groupe constitué de Li2Û, Na2Û, AI2O3, K2O, CS2O, BaO, MgO, BaCCL, CeCh, La2Û3. La base utilisée peut également être une résine échangeuse d’ anions présentant des propriétés basiques.
De manière générale la réaction est maintenue à une température comprise entre 10°C et 60°C, de préférence comprise entre 20°C et 50°C, préférentiellement comprise entre 25°C et 40°C. La réaction est généralement conduite dans un solvant, de préférence choisi parmi l’eau, l’acétone, les alcools, ou leurs mélanges. De préférence l’alcool est choisi parmi méthanol, éthanol, isopropanol. Ce mode de réalisation est notamment décrit dans le document CN 1097729.
Selon un autre aspect, l’étape (c) est conduite en présence d’un acide. L’étape (c) peut être conduite dans un mélange comprenant de l’eau, un alcool, de préférence l’éthanol, de l’acétone et un acide ou avec un acide en quantité catalytique. Selon un aspect, la quantité d’acide est généralement inférieure ou égale à 1 équivalent, par rapport à la quantité de composé de formule (IV), de préférence inférieure ou égale à 0,8 équivalents, préférentiellement inférieure ou égale à 0,5 équivalents. De manière générale, la quantité d’acide est supérieure ou égale à 0,01 équivalents, de préférence supérieure ou égale à 0,1 équivalents. Le solvant de l’étape (c) peut être choisi parmi l’eau, l’acétone, les alcools, l’acide acétique ou leurs mélanges. Selon un autre aspect, la réaction est conduite dans un mélange eau/acide, en générale le volume d’eau par rapport au volume d’acide est compris entre 1 : 1 et 5 : 1. L’acide utilisé peut également être une résine échangeuse de cations présentant des propriétés acides.
De manière générale la réaction est maintenue à une température comprise entre 10°C et 60°C, de préférence comprise entre 20°C et 50°C, préférentiellement comprise entre 25°C et 40°C. L’acide est généralement un acide fort, de préférence l’acide est choisi parmi les acides ayant un pKa inférieur ou égale à 2, tel que l’acide sulfurique, l’acide triflique, l’acide chlorhydrique, l’acide bromhydrique.
Selon un autre aspect, l’étape (c) peut être conduite en présence d’un amino-acide, de préférence choisi parmi proline, acide azétidine-2-carboxylique, acide pipéridine-2-carboxylique, acide 4- hydroxypyrrolidine-2-carboxylique, pyrrolidine-2-carboxamide, acide thiazolidine-4- carboxylique, acide 4-acétoxypyrrolidine-2-carboxylique. La quantité d’ amino-acide est généralement comprise entre 15% en volume et 40% en volume. Le solvant est en général un mélange de DMSO et d’acétone. Ces conditions sont notamment décrites dans le document J. Am. Chem. Soc. 2000, 122 (10), 2395. Cependant, contrairement à ce qui est décrit dans ce document, la réaction permet la formation de la cétone a-P-insaturée de manière majoritaire.
Avantageusement, le composé (VII) obtenu à l’issue de l’étape (c) a une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 70%, préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%.
Selon un aspect particulier le composé (VII) obtenu à l’issue de l’étape (c) est récupéré sous forme salifiée.
Etape (d) :
Le procédé de préparation de frambinone peut comprendre une étape (d) d’hydrogénation composé de formule (VII) obtenu à l’issue de l’étape (c), sous forme protonée ou salifiée. L’étape (d) est une étape d’hydrogénation du composé de formule (VII) obtenu à l’issue de l’étape (d) pour former la frambinone (VIII). ivir. (Vin)
Selon un aspect de la présente invention, l’étape (d) est réalisée en présence d’un réducteur avec ou sans catalyse hétérogène.
De préférence l’étape (d) est conduite en présence d’un catalyseur à base de métal, de préférence choisi parmi les catalyseurs à base de Pd, Pt, Ni, Ru, Rh, tel que Pd/C, Pt/ Alumine ou Nickel de Raney.
La quantité de catalyseur est en générale supérieure ou égale à 0,1% en poids, de préférence supérieure ou égale à 0,5% en poids, et inférieure ou égale à 25% en poids, de préférence inférieure ou égale à 20% en poids.
L’étape (d) est, de manière générale, conduite en présence d’un réducteur, en particulier le réducteur peut être choisi parmi, le dihydrogène, les dérivés phosphites et hypophosphites tels que décrit dans Org. Biomol. Chem., 2015, 13, 7879-7906. Le réducteur peut être choisi parmi HCO2(NH4), NaH2PO2, Na2HPO3, HCO2H.
La quantité de réducteur est en générale supérieure ou égale à 1 équivalent par rapport à la quantité de composé de formule (VII), de préférence supérieure ou égale à 1,5 équivalents, et inférieure ou égale à 10 équivalents, de préférence inférieure ou égale à 7 équivalents, très préférentiellement inférieure ou égale à 5 équivalents.
De manière générale, le solvant peut être choisi dans le groupe constitué de l’eau, les alcools, ou l’acide acétique et leurs mélanges, en particulier le solvant peut être l’eau, le méthanol, l’éthanol, l’isopropanol, l’acide acétique ou leurs mélanges.
Selon un aspect particulier, l’étape (d) peut être conduite en présence d’une base, de préférence une base forte, très préférentiellement une base forte non nucléophile. De préférence la base peut être choisie parmi les amines tertiaires, telles que triéthylamine.
L’étape (d) est en générale conduite à une température supérieure ou égale à 25°C, de préférence supérieure ou égale à 30°C, préférentiellement supérieure à 40°C, très préférentiellement supérieure à 50°C. En général la température de l’étape (d) est inférieure ou égale à 190°C, de préférence inférieure ou égale à 175°C, très préférentiellement inférieure ou égale à 150°C. Selon un aspect particulier, l’étape (d) est conduite à une température comprise entre 25°C et 100°C.
L’étape (d) peut être réalisée à pression atmosphérique, alternativement l’étape (d) peut être réalisée sous pression autogène.
Selon un autre aspect, l’étape (d) peut être réalisé par transformation biochimique, en particulier transformation du composé de formule (VII) en frambinone de formule (VIII) peut être réalisée par l’intermédiaire d’un microorganisme ayant une activité ène-réductase, telle que décrit notamment dans GB2416769 ou dans Journal of Molecular Catalysis B: Enzymatic (1998), 4(5- 6), 289-293.
Selon un aspect particulier de la présente invention, les étapes (c) et (d) peuvent être réalisées sans isolation du composé de formule (VII). Les étapes (c) et (d) peuvent être réalisées selon un procédé « one-pot ». Selon un autre aspect, les étapes (c) et (d) peuvent être réalisées sans isolation du composé de formule (VII) et peuvent être conduites par catalyse hétérogène, notamment en présence d’une résine, de préférence une résine acide. Ce mode de réalisation est notamment décrit dans ACS Omega 2020, 5, 14291-14296.
Selon un autre aspect, les étapes (c) et (d) peuvent être réalisées sans isolation du composé de formule (VII) et peuvent être conduite par catalyse acide, en présence d’un réducteur et d’un catalyseur à base de métal. De préférence le catalyseur à base de métal est choisi parmi les catalyseurs à base de Pd, Pt, Ni, Ru, Rh, tel que Pd/C ou Nickel de Raney. Le réducteur est en général choisi parmi NaHzPCh, HCO2H, NaHPCb. Le catalyseur est en général un acide fort tel que acide chlorhydrique, acide sulfurique. De manière générale, le solvant peut être choisi dans le groupe constitué de l’eau, les alcools, ou l’acide acétique et leurs mélanges, en particulier le solvant peut être l’eau, le méthanol, l’éthanol, l’isopropanol, l’acide acétique ou leurs mélanges.
Avantageusement, le composé (VIII) obtenu à l’issue de l’étape (d) a une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 70%, préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%.
Dans un deuxième aspect, la présente invention se réfère à un procédé de préparation de frambinone à partir de l’alcool 4-hydroxybenzylique et de l’acétone. Le procédé de préparation peut être représentée par le schéma suivant :
L’alcool 4-hydroxybenzylique est un produit commercial, en particulier le produit commercial peut être adapté pour son utilisation dans l’industrie agro-alimentaire. L’alcool 4- hydroxybenzylique peut être d’origine biosourcée ou non-biosourcée. L’alcool 4- hydroxybenzylique peut également être obtenu par réduction de l’aldéhyde (IV) obtenu à l’issue de l’étape (b). Avantageusement, l’alcool 4-hydroxybenzylique a une teneur en carbone d’origine biosourcée supérieure ou égale à 60%, de préférence supérieure ou égale à 70%, préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%.
L’acétone peut être d’origine biosourcée, telle que décrite précédemment à l’étape (c).
En général la réaction de condensation du composé de formule (IX) et de l’acétone est conduite en milieu basique. La base utilisée peut être une base choisie parmi NaOH, KOH, K3PO4. La quantité de base est généralement supérieure ou égale à 1 équivalent, de préférence supérieure ou égale à 1,1 équivalents, préférentiellement supérieure ou égale à 1,5 équivalents par rapport au composé de formule (IX). En général la quantité de base est inférieure ou égale à 5 équivalents, de préférence inférieure ou égale à 4, très préférentiellement inférieure ou égale à 3 équivalents équivalents par rapport au composé de formule (IX).
De préférence la réaction de condensation du composé de formule (IX) et de l’acétone est conduite en présence d’un catalyseur à base de métal, de préférence choisi parmi les catalyseurs à base de Pd, Pt, Ni, Ru, Rh, tel que Pd/C ou Nickel de Raney.
La quantité de catalyseur est en générale supérieure ou égale à 0,1% en poids, de préférence supérieure ou égale à 0,5% en poids, et inférieure ou égale à 25% en poids, de préférence inférieure ou égale à 20% en poids.
De manière générale, le solvant peut être choisi dans le groupe constitué de l’eau, les alcools, l’acétone, le dioxane et leurs mélanges, en particulier le solvant peut être l’eau, le méthanol, l’éthanol, l’isopropanol, l’acétone, le dioxane ou leurs mélanges.
Un troisième aspect de la présente invention se réfère à une frambinone susceptible d’être obtenue selon le procédé de l’invention, en particulier à une frambinone biosourcée susceptible d’être obtenue par le procédé de l’invention.
Avantageusement, le composé (VIII) obtenu à l’issue de l’étape condensation du composé de formule (IX) et de l’acétone a une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 70%, préférentiellement supérieure ou égale à 75% et inférieure ou égale à 100%. Un quatrième aspect de la présente invention couvre une frambinone dont la teneur en carbone d’origine biosourcée est supérieure ou égale à 50%, de préférence supérieure ou égale à 75% et strictement inférieure à 100%.
La présente invention couvre également une frambinone caractérisée en ce que la déviation isotopique moyenne 13C est comprise entre -27 %o et -15 %o, de préférence comprise entre -23 %o et -15 %o, préférentiellement comprise entre -22 %o et -15 %o, de préférence comprise entre -23 %o et -18 %o, préférentiellement comprise entre -22 %o et -18 %o, très préférentiellement comprise entre -21 %o et -19 %o.
En général, la frambinone de la présente invention présente une teneur en carbone d’origine biosourcée supérieure ou égale à 50%, de préférence supérieure ou égale à 75%.
En général, la frambinone de la présente invention présente une teneur en carbone d’origine biosourcée inférieure ou égale à 110%, de préférence inférieure ou égale à 105%, préférentiellement inférieure ou égale à 103%, préférentiellement inférieure ou égale à 100% et très préférentiellement inférieure strictement à 100%.
Dans le cadre de la présente invention, tous les atomes de carbone de la frambinone selon la présente invention sont d’origine biosourcée, en particulier les 10 atomes de carbone de la frambinone de la présente invention sont d’origine biosourcée. De préférence 9 atomes de carbone de la frambinone sont d’origine biorsourcée, de préférence 8 atomes de carbone, de préférence 7 atomes de carbone, de préférence 6 atomes de carbones sont d’origine biosourcée.
Dans tous les aspects de la présente invention, la frambinone peut présenter un ratio (D/H)3/(D/H)2 inférieur ou égal à 1,10, de préférence inférieur ou égal à 1,00, très préférentiellement inférieur ou égal à 0,90 et très préférentiellement inférieur ou égal à 0,80.
Dans tous les aspects de la présente invention, la frambinone peut présenter un ratio (D/H)3/(D/H)2 supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,20 très préférentiellement supérieur ou égal à 0,30 et très préférentiellement supérieur ou égal à 0,40.
Dans tous les aspects de la présente invention, la frambinone peut présenter un ratio (D/H)S/(D/H)4 inférieur ou égal à 1,10, de préférence inférieur ou égal à 10, très préférentiellement inférieur ou égal à 0,90et très préférentiellement inférieur ou égal à 0,85. Dans tous les aspects de la présente invention, la frambinone peut présenter un ratio (D/H)S/(D/H)4 supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,20 très préférentiellement supérieur ou égal à 0,30 et très préférentiellement supérieur ou égal à 0,40.
Dans le cadre de la présente invention, la frambinone de la présente invention présente un ratio (D/H)3/(D/H)2 inférieur ou égal à 1,10, de préférence inférieur ou égal à 1,00, très préférentiellement inférieur ou égal à 0,90 et très préférentiellement inférieur ou égal à 0,80 et un ratio (D/H)S/(D/H)4 inférieur ou égal à 1,10, de préférence inférieur ou égal à 10, très préférentiellement inférieur ou égal à 0,90et très préférentiellement inférieur ou égal à 0,85. En général, la frambinone présente un ratio (D/H)3/(D/H)2 supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,20 très préférentiellement supérieur ou égal à 0,30 et très préférentiellement supérieur ou égal à 0,40 et un ratio (D/H)s/(D/H)4 supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,20 très préférentiellement supérieur ou égal à 0,30 et très préférentiellement supérieur ou égal à 0,40.
Il est bien connu de l'homme du métier que les propriétés organoleptiques d'une substance aromatisante peuvent dépendre de la présence et de la quantité de certaines impuretés. C'est pourquoi le procédé de fabrication est essentiel pour la saveur du composé final. Avantageusement, on a découvert que la frambinone de la présente invention présentait des propriétés organoleptiques satisfaisantes. Il est à noter que le profil organoleptique de la frambinone de la présente invention est équivalent au profil organoleptique de la frambinone extraite de fruits.
Selon un autre aspect, la présente invention couvre l’utilisation de frambinone selon la présente invention ou de frambinone obtenue selon le procédé de l’invention en tant qu’arôme ou parfum.
Enfin la présente invention couvre également une composition comprenant de la frambinone selon l’invention choisie de préférence dans le groupe constitué par les produits alimentaires, les boissons, les formulations cosmétiques, les formulations pharmaceutiques et les parfums.
Exemples
Exemple 1 Du phénol est condensé avec une solution à 50% en poids d’acide glyoxylique à 30°C en présence de NaOH. Le composé de formule (I) a été obtenu avec un rendement de 60 %.
Exemple 2
Après élimination du phénol résiduel, le composé de formule (I) obtenu à l’exemple 1 est oxydé en présence d’un catalyseur métallique (teneur en métal 8% en poids) et chauffé à 75°C avec bullage d’air sous pression autogène (6-8bars) dans un milieu aqueux alcalin. Le composé de formule (IV) est obtenu après acidification avec ELSCM avec un rendement de 95 %.
Exemple 3 a
Le composé de formule (IV) obtenu à l’exemple 2 est condensé avec de l’acétone (4 équivalents) dans l’acide acétique, en présence d’acide sulfurique (0,5 équivalent) à 50°C. Le composé de formule (VII) est obtenu avec une sélectivité de 87 %.
Exemple 3b
Le composé de formule (IV) obtenu à l’exemple 2 est condensé avec de l’acétone (8.6 équivalents), en présence de soude aqueuse à 10 % (2.2 équivalent) à 20°C. Le composé de formule (VII) est obtenu avec une sélectivité de 94%.
Exemple 3 c
Le composé de formule (IV) obtenu à l’exemple 2 est condensé avec de l’acétone (4 équivalents), en présence de glycine (0.3 équivalent) et de NaHCOs (0.1 équivalent) dans le DMSO à 58°C. Le composé de formule (VII) est obtenu avec une sélectivité de 83%.
Exemple 4a
Le composé de formule (VII) obtenu à l’exemple 3 est réduit en présence de NaEhPC EbO (4 équivalents), de Pd/C (20% en poids) dans un solvant composé d’eau et d’éthanol (mélange 1 : 1). La frambinone de formule (VII) est obtenue avec une sélectivité de 81 %.
Exemple 4b Le composé de formule (VII) obtenu à l’exemple 3 est réduit en présence de Na HPCL, 5 H2O (4 équivalents), de Pd/C (20% en poids) dans un solvant composé d’eau et d’éthanol (mélange 1 : 1). La frambinone de formule (VII) est obtenue avec une sélectivité de 91 %.
Exemple 4c Le composé de formule (VII) obtenu à l’exemple 3 est réduit en présence de HCO2H (4 équivalents), de Pd/C (20% en poids) dans un solvant composé d’eau et d’éthanol (mélange 1 : 1). La frambinone de formule (VII) est obtenue avec une sélectivité de 78 %.
La frambinone obtenue de formule (VII) présente 10 atomes de carbone d’origine biosourcée et une déviation isotopique comprise entre -22 %o et -18 %o. Le profil organoleptique de la frambinone de la présente invention est équivalent au profil organoleptique de la frambinone extraite de fruits.

Claims

REVENDICATIONS
1. Procédé de préparation de frambinone comprenant une étape (a) de condensation du phénol et de l’acide glyoxylique pour former un composé de formule (I) selon le schéma suivant :
2. Procédé de préparation de frambinone selon la revendication 1 comprenant en outre une étape (b) dans laquelle le composé (I) obtenu à l’issue de l’étape (a) est oxydé pour former le composé (IV).
3. Procédé de préparation de frambinone selon la revendication 2 comprenant une étape (c) de condensation du composé de formule (IV), obtenu à l’issue de l’étape (b), avec de l’acétone pour former un composé de formule (VII).
4. Procédé de préparation de frambinone selon la revendication 3, comprenant une étape (d) d’hydrogénation composé de formule (VII) obtenu à l’issue de l’étape (c).
5. Procédé de préparation de frambinone selon l’une quelconque des revendications 1 à 4 dans lequel au moins un composé choisi parmi le phénol et l’acide glyoxylique est d’origine biosourcée, et optionnellement l’acétone.
6. Procédé de préparation de frambinone comprenant une étape de condensation de l’alcool 4-hydroxybenzylique avec de l’acétone.
7. Frambinone caractérisée en ce que la déviation isotopique moyenne 13C est comprise entre -27 %o et -15 %o.
8. Frambinone selon la revendication 7 caractérisée en ce que la teneur en carbone d’origine biosourcée est supérieure ou égale à 50%.
9. Frambinone selon l’une quelconque des revendications 7à 8 caractérisée en ce que la teneur en carbone d’origine biosourcée est inférieure ou égale à 110%.
10. Frambinone selon l’une quelconque des revendications 7 à 9 caractérisée en ce que le ratio (D/H)S/(D/H)4 inférieur ou égal à 1,10, de préférence inférieur ou égal à 10, très préférentiellement inférieur ou égal à 0,90et très préférentiellement inférieur ou égal à 0,85.
11. Frambinone selon l’une quelconque des revendications 7 à 10 caractérisée en ce que le
(D/H)3/(D/H)2 inférieur ou égal à 1,10, de préférence inférieur ou égal à 1,00, très préférentiellement inférieur ou égal à 0,90 et très préférentiellement inférieur ou égal à 0,80.
12. Frambinone selon l’une quelconque des revendications 7 à 11 caractérisée en ce que 10 atomes de carbone sont d’origine biosourcée.
13. Utilisation de frambinone selon l’une quelconque des revendications 7 à 12 ou de frambinone obtenue selon le procédé des revendications 1 à 6 en tant qu’ arôme ou parfum.
14. Composition comprenant de la frambinone selon l’une quelconque des revendications 7 à 12 ou de frambinone obtenue selon le procédé des revendications 1 à 6 choisie de préférence dans le groupe constitué par les produits alimentaires, les boissons, les formulations cosmétiques, les formulations pharmaceutiques et les parfums.
EP21819879.4A 2020-12-01 2021-12-01 Procédé de préparation de frambinone Pending EP4255879A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012448A FR3116819B1 (fr) 2020-12-01 2020-12-01 Procédé de préparation de frambinone
PCT/EP2021/083815 WO2022117670A1 (fr) 2020-12-01 2021-12-01 Procédé de préparation de frambinone

Publications (1)

Publication Number Publication Date
EP4255879A1 true EP4255879A1 (fr) 2023-10-11

Family

ID=74592154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21819879.4A Pending EP4255879A1 (fr) 2020-12-01 2021-12-01 Procédé de préparation de frambinone

Country Status (6)

Country Link
US (1) US20230416182A1 (fr)
EP (1) EP4255879A1 (fr)
CN (1) CN116615407A (fr)
AU (1) AU2021391841A1 (fr)
FR (1) FR3116819B1 (fr)
WO (1) WO2022117670A1 (fr)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1227595A (fr) 1958-07-03 1960-08-22 Dragoco Gerberding Co Gmbh Procédé de préparation de 1-(4-hydroxyphényl)-butanone-3 et parfum contenant ledit produit
FR2221433A1 (en) 1972-09-15 1974-10-11 Shell Int Research Hydroxy phenyl substd ketones - useful as flavourings and aromatising agents
JPH01242549A (ja) 1988-03-24 1989-09-27 Denki Kagaku Kogyo Kk 4−(4−ヒドロキシフエニル)−2−ブタノンの製造方法
US5219745A (en) 1989-10-16 1993-06-15 E. I. Du Pont De Nemours And Company Production of glyoxylic acid from glycolic acid
FR2693458B1 (fr) 1992-07-10 1994-12-09 Rhone Poulenc Chimie Procédé de para-hydroxyalkylation de composés aromatiques hydroxylés.
CN1036455C (zh) 1993-12-18 1997-11-19 江阴市顾山香料厂 对羟基苯基丁酮的合成方法
FR2779718B1 (fr) 1998-06-16 2000-12-29 Rhodia Chimie Sa Procede de preparation de composes p-hydroxymandeliques eventuellement substitues et derives
GB2416769A (en) 2004-07-28 2006-02-08 Danisco Biosynthesis of raspberry ketone
FR2917085B1 (fr) 2007-06-06 2009-07-17 Rhodia Recherches & Tech Procede de preparation d'un aldehyde hydroxyaromatique.
FR2925047B1 (fr) 2007-12-18 2010-01-01 Rhodia Operations Procede de preparation de composes p-hydroxymandeliques eventuellement substitues et derives.
CA2719274C (fr) * 2008-03-26 2015-12-29 Council Of Scientific & Industrial Research Procede de preparation de 4-(4-hydroxyphenyl)butan-2-one utilisant un catalyseur acide solide a base d'argile
EP2639295B1 (fr) 2010-11-10 2017-06-28 Green Phenol Development Co., Ltd. Transformant de bactérie corynéforme ainsi que procédé de fabrication de phénol mettant en oeuvre ce transformant
US20130232852A1 (en) 2012-03-09 2013-09-12 Thesis Chemistry, Llc Method for tiered production of biobased chemicals and biofuels from lignin
GB2505638B (en) 2012-07-23 2016-01-06 Green Biologics Ltd Continuous culture
FR2993881B1 (fr) 2012-07-26 2014-08-15 Rhodia Operations Procede de preparation d'alkoxyphenol et d'alkoxyhydroxybenzaldehyde
FR3013351B1 (fr) 2013-11-15 2016-01-01 Rhodia Operations Procede de preparation de compose aromatique mandelique et de compose aldehyde aromatique
CN104193607B (zh) 2014-09-10 2016-01-20 曹仪山 一种覆盆子酮的合成方法
CN104355977B (zh) 2014-11-06 2016-03-02 南京林业大学 一种覆盆子酮的合成工艺
CN104496778B (zh) 2014-12-11 2017-06-16 南京林业大学 一种固体酸碱催化合成覆盆子酮的方法

Also Published As

Publication number Publication date
CN116615407A (zh) 2023-08-18
AU2021391841A1 (en) 2023-06-08
US20230416182A1 (en) 2023-12-28
FR3116819B1 (fr) 2023-11-17
FR3116819A1 (fr) 2022-06-03
WO2022117670A1 (fr) 2022-06-09

Similar Documents

Publication Publication Date Title
EP0596809B1 (fr) Proédé de preparation de Beta-dicetones
EP1890990B1 (fr) Procede de fabrication d'acides carboxyliques
WO2008148760A2 (fr) Procede de preparation d'un aldehyde hydroxyaromatique
EP0792862B1 (fr) Procédé d'obtention de composés carbonyles beta hydroxy et/ou alpha-beta insaturés
CA3068785A1 (fr) Nouvelle vanilline et/ou ethylvanilline, son procede de preparation et son utilisation
EP4255879A1 (fr) Procédé de préparation de frambinone
EP0773919A1 (fr) Procede de preparation de 3-carboxy-4-hydroxybenzaldehydes et derives
FR2756278A1 (fr) Procede de preparation d'un 4-hydroxybenzaldehyde et derives
FR2754533A1 (fr) Procede de preparation selective d'un acide 2-hydroxybenzoique et d'un 4-hydroxybenzaldehyde et derives
JPH11228467A (ja) 飽和アルコールの製造方法
EP3233779B1 (fr) Nouveau procede de preparation d'intermediaires de synthese utilisant des produits d'origine naturelle et application des intermedaires obtenus
EP0779883A1 (fr) Procede de preparation d'un 4-hydroxybenzaldehyde substitue
FR2462415A1 (fr) Procede de preparation d'acides hydroxyarylglycoliques racemiques et produits nouveaux en resultant
US11484052B2 (en) Vanillin and/or ethylvanillin, process for their preparations and use thereof
EP0461972A1 (fr) Procédé de transformation de N-oxydes d'amines tertiaires en aldéhydes
US20240217904A1 (en) Method for preparing cedrene diol
CN118871415A (zh) 生物基二氢茉莉酮酸甲酯、生物基环戊酮、其制备方法及其用途
US20240051910A1 (en) Method for producing glycolic acid
FR2567876A1 (fr) Procede de preparation des hydrates de fluoral et d'hexafluoroacetone purs a partir d'hemiacetals
BE857270A (fr) Procede de preparation d'esters a partir d'homologues d'ethers ou d'esters inferieurs
WO2004000763A2 (fr) Procede de preparation d'un acide carboxylique insature
FR2706450A1 (fr) Procédé de préparation de composés difonctionnels de haute pureté énantiomérique.
CH617652A5 (fr)
CH618670A5 (en) Process for preparing pyrogallol and certain of its derivatives
CH360990A (fr) Procédé pour la préparation de la 1-carvone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SPECIALTY OPERATIONS FRANCE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)