EP4246077A1 - Dampfkammer - Google Patents
Dampfkammer Download PDFInfo
- Publication number
- EP4246077A1 EP4246077A1 EP22161773.1A EP22161773A EP4246077A1 EP 4246077 A1 EP4246077 A1 EP 4246077A1 EP 22161773 A EP22161773 A EP 22161773A EP 4246077 A1 EP4246077 A1 EP 4246077A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pillars
- vapor chamber
- wall
- porous
- chamber according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 25
- 238000001704 evaporation Methods 0.000 claims abstract description 3
- 238000007789 sealing Methods 0.000 claims abstract description 3
- 230000004907 flux Effects 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
Definitions
- This invention relates to a vapor chamber which may be utilized as a cooling element.
- a vapor chamber having walls which seal off an interior space of the chamber.
- a wick implemented as porous areas is arranged in proximity of an evaporator wall of the chamber. Fluid entering the wick is vaporized by a heat load received via the evaporator wall. Driven by the vapor pressure the fluid flows towards the condenser wall, condensation occurs, and the fluid is returned towards the wick.
- a challenge with this known vapor chamber is the implementation of the porosity.
- a high level of porosity ensures that an efficient fluid flow is achieved in the vapor chamber.
- the wick is not sufficiently rigid to remain intact in the vapor chamber during the entire lifetime of the vapor chamber. Due to this the wick creates a weak point in terms of reliability.
- An object of the present invention is to solve the above-mentioned drawback and to provide an improved vapor chamber. This object is achieved with a vapor chamber according to independent claim 1.
- the vapor chamber comprises porous pillars with different porosity in different parts of the porous pillars, sufficient rigidity and efficient flow can be ensured by providing a suitably dimensioned porosity in different parts of the pillars.
- Figure 1 illustrates a vapor chamber 1 with walls sealing off an interior space of the vapor chamber 1 from surroundings. These walls include at et least an evaporator wall 3 and a condenser wall 4. A fluid 5 is arranged to circulate within the vapor chamber 1, as will be explained in the following.
- a wick implemented with porous pillars 6 is provided into the vapor chamber at the evaporator wall 3.
- a heat load 7 received by the evaporator wall 3 increases the temperature of the porous pillars 6 and evaporates the fluid 5 at the porous pillars 6.
- the evaporated fluid 5 is in a vapor state passed on from the porous pillars 6 towards a condenser section 8 located in proximity of the condenser wall 4.
- the condenser wall 4 dissipates to the surrounding heat 9 released from the fluid 5 which condensates in the condenser section 8.
- the condensed fluid is returned to the porous pillars 6 in a liquid state.
- An advantage with a vapor chamber 1 as described is that a heat load 7 directed towards a relatively small area of the evaporator wall 3 can be dissipated to surroundings via a much bigger area of the condenser wall 4. This facilitates efficient cooling for devices which may be attached to the evaporator wall, for instance.
- One practical implementation is cooling of electric components, in which case one or more electric components may be attached to different locations of the evaporator wall 3 in order to provide efficient cooling for them with the vapor chamber 1.
- the fluid circulation in the vapor chamber 1 may be implemented without a need for a separate pump
- the heat load 7 vaporizes the fluid 5 at the porous pillars 6 forming a wick at the evaporator wall 3. Driven by the vapor pressure, the fluid flows as vapor through smooth channels of the wick towards the condenser section 8. Once condensed into liquid, the fluid 5 returns to the porous pillars 6 where capillary pressure generated by the porosity of the pillars and channels between the pillars 6 of the wick provides a pumping force that ensures circulation of the fluid within the vapor chamber 1 irrespectively of the position (gravity does not affect) in which the vapor chamber 1 is utilized. Consequently, the vapor chamber may work 1 as an orientation free cooling element, for instance.
- FIG 2 illustrates porous pillars of the vapor chamber in Figure 1 .
- the porous pillars 6 are arranged to extend into the vapor chamber 1 from the evaporator wall 3.
- the porous pillars 6 have been implemented as rectangular pillars with different porosity in different parts of the pillars. This makes it possible to ensure sufficient rigidity to the pillars at those locations where it is most needed by providing a lower porosity. Simultaneously, other parts of the same pillars where rigidity is not a problem, may be provided with a higher porosity, which ensures that an efficient fluid flow can be obtained in the vapor chamber 1.
- the porosity is different in different parts of the pillars, the pore size of the pores may be the same in the different parts of the pillars.
- Figure 2 illustrates rectangular pillars, it should be observed that instead of rectangular, the pillars may be polygonal, circular or elliptical, for instance.
- each pillar may be an entirely separate part from the other pillars.
- the lowermost section is a base layer 10 having a lowest porosity. This relatively dense lowest section may be common to all the porous pillars 6, and it may work as the evaporator wall 3.
- the base layer 10 may be a separate layer arranged closest to the evaporator wall 3.
- the porosity of the base layer 10 may be 5% or less.
- the purpose of the base layer 10 is to mechanically fix heating elements, to conduct heat and provide a leak tightness for the fluid 5.
- the porous pillars 6 continue as a second porous section 11 with a low porosity, such as 20-50%.
- the purpose of the second porous section 11 is to mechanically and thermally connect the dense base layer 10 with a following third porous section 12. It also provides a part of the structure of the porous pillars.
- the pillars may be dimensioned to have a width of 0.4-1 mm and a height of 0.5-3 mm, for instance.
- the third porous section 12 may have a high porosity of about 40-70%. It covers the pillar structure including the second porous section 11.
- the purpose of the third porous section 12 is to provide a capillary force pumping the fluid 5, a large evaporation heat transfer area and easy liquid penetration.
- Figure 2 also illustrates a space between neighboring porous pillars 6 working as channels 13 which are empty, except for fluid 5 contained in them. Consequently, the porosity is 100%.
- the purpose of the channels 13 is to provide a low pressure drop liquid circulation and a vapor escape.
- the channels may be bout 0.05 - 0.3 mm wide, for instance. They also participate in generating a fluid flow by providing a capillary force moving the fluid.
- porous pillars 6 are additive manufacturing, such as 3D printing.
- the manufacturing can be implemented by Selective Laser Sintering/Melting (SLS/SLM), Laser Metal Deposition/Direct Metal Deposition (LMD/DMD) and Binder-Jetting (BJ), for instance.
- SLS/SLM Selective Laser Sintering/Melting
- LMD/DMD Laser Metal Deposition/Direct Metal Deposition
- BJ Binder-Jetting
- the pillars may be manufactured of any sufficiently heat conducting material, such as of aluminum alloys.
- the selected aluminum alloy or alloys used in a pillar is selected to be suitable for additive manufacturing.
- the porous pillars may be manufactured to have a polygonal, circular, elliptical or rectangular cross-sectional shape, for instance.
- One alternative is to manufacture such pillars to have a largest cross-sectional area closer to the evaporator wall, and a smallest cross-sectional area closer to the condenser wall. In this way more vapor escape space can be obtained at locations where more vapor is produced, as the distance between the neighboring pillars is in that case larger closer to the condenser wall.
- Such pillars may also be manufactured to have a truncated shape, such as the shape of a truncated cone or a truncated pyramid, for instance.
- Figure 3 illustrates a second embodiment of porous pillars which may be utilized in the vapor chamber 1 of Figure1 .
- the embodiment of Figure 3 is very similar to the one explained in connection with Figure 2 . Therefore, the embodiment of Figure 3 will in the following be explained mainly by pointing out the differences between these embodiments.
- the evaporator wall 3 of the vapor chamber 1 may receive a heat load 7 which is unevenly distributed over the area of the evaporator wall 3.
- a heat load 7 which is unevenly distributed over the area of the evaporator wall 3.
- several components, such as electrical components, are cooled by the vapor chamber, in which case the head load may be largest at the locations of the components, while areas of the evaporator wall where no components are located, may receive a smaller head load.
- the amount of heat generated by the different components may vary.
- the side dimensions S1 and S2 and the density of the pillars 6 and 16 is proportional to the heat load received via the evaporator wall 3 at the location of the respective pillars 6 and 16.
- density refers to the number of pillars per on an area of a specific size, in other words a high density refers to an area with many pillars as compared to a low density where an area of the same size has a smaller number of pillars.
- a solution as illustrated in Figure 3 makes it possible to provide high heat flux pillars 16 at locations 14 where the porous pillars need to handle a higher heat load than the other porous pillars 6 at other locations 15.
- Such high heat flus pillars 16 may have a smaller side dimensions S1 and possibly the largest cross-sectional area of the high heat flux pillars 16 may be smaller than for other pillars 6.
- "smaller side dimension" of a pillar refers to the dimension of a side of an area facing away from the evaporator wall 3. In this way transfer of the heat load from the porous pillars to the fluid may be as efficient as possible at locations where it is most needed.
- Figures 4 and 5 illustrate a third embodiment of porous pillars which may be utilized in the vapor chamber 1 of Figure1 .
- the embodiment of Figures 4 and 5 is very similar to the one explained in connection with Figure 3 . Therefore, the embodiment of Figures 4 and 5 will in the following be explained mainly by pointing out the differences between these embodiments.
- the height h and density of the pillars 6 and 26 is proportional to the heat load received via the evaporator wall 3 at the location of the respective pillars 6 and 26.
- the side length S of the pillars may wary, at least for some of the pillars, with the height and the heat flux to provide pillars with a truncated shape, such as a shape of a truncated pyramid.
- a truncated shape such as a shape of a truncated pyramid.
- the surface area of the surface facing away from the evaporator wall is smaller for higher pillars than for lower pillars.
- a solution as illustrated in Figure 4 makes it possible to provide high heat flux pillars 26 at locations 24 where the porous pillars need to handle a higher heat load such that these pillars are higher than at locations where a smaller heat load is received.
- the pillars may also be shaped to have a side length which varies with the height h of the pillars 26 to provide a truncated shape, such a s a shape of a truncated pyramid.
- An advantage in having pillars with a largest cross-sectional area at the evaporator wall 3 and a cross-sectional area which decreases as the distance to the evaporator wall increases, is that more vapor escape space can be obtained at locations where more vapor is produced.
- Figure 5 illustrates a side view of a part of the porous pillars of Figure 4 . From Figure 5 the height difference between the high flux pillars 26 as compared to other pillars 6 is clearly visible. Additionally, it can be seen that there may be pillars of many different heights, as the height of the pillars is selected based on the heat load at the location of the respective pillar.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22161773.1A EP4246077A1 (de) | 2022-03-14 | 2022-03-14 | Dampfkammer |
PCT/EP2023/056365 WO2023174882A1 (en) | 2022-03-14 | 2023-03-13 | A vapor chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22161773.1A EP4246077A1 (de) | 2022-03-14 | 2022-03-14 | Dampfkammer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4246077A1 true EP4246077A1 (de) | 2023-09-20 |
Family
ID=80738869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22161773.1A Pending EP4246077A1 (de) | 2022-03-14 | 2022-03-14 | Dampfkammer |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4246077A1 (de) |
WO (1) | WO2023174882A1 (de) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124281A1 (en) * | 2003-06-26 | 2006-06-15 | Rosenfeld John H | Heat transfer device and method of making same |
US20090025910A1 (en) * | 2007-07-27 | 2009-01-29 | Paul Hoffman | Vapor chamber structure with improved wick and method for manufacturing the same |
TW201030302A (en) * | 2009-02-13 | 2010-08-16 | Foxconn Tech Co Ltd | Heat pipe and manufacturing method of wick structure thereof |
CN104534906A (zh) * | 2015-01-14 | 2015-04-22 | 厦门大学 | 一种具有嵌套式多孔吸液芯的平板热管及其制造方法 |
US20180073814A1 (en) * | 2016-09-09 | 2018-03-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vapor chamber heat flux rectifier and thermal switch |
US20180259268A1 (en) * | 2017-03-10 | 2018-09-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Multi-layer wick structures with surface enhancement and fabrication methods |
US20200025459A1 (en) * | 2017-06-01 | 2020-01-23 | Furukawa Electric Co., Ltd. | Flat heat pipe |
-
2022
- 2022-03-14 EP EP22161773.1A patent/EP4246077A1/de active Pending
-
2023
- 2023-03-13 WO PCT/EP2023/056365 patent/WO2023174882A1/en active Search and Examination
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124281A1 (en) * | 2003-06-26 | 2006-06-15 | Rosenfeld John H | Heat transfer device and method of making same |
US20090025910A1 (en) * | 2007-07-27 | 2009-01-29 | Paul Hoffman | Vapor chamber structure with improved wick and method for manufacturing the same |
TW201030302A (en) * | 2009-02-13 | 2010-08-16 | Foxconn Tech Co Ltd | Heat pipe and manufacturing method of wick structure thereof |
CN104534906A (zh) * | 2015-01-14 | 2015-04-22 | 厦门大学 | 一种具有嵌套式多孔吸液芯的平板热管及其制造方法 |
US20180073814A1 (en) * | 2016-09-09 | 2018-03-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vapor chamber heat flux rectifier and thermal switch |
US20180259268A1 (en) * | 2017-03-10 | 2018-09-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Multi-layer wick structures with surface enhancement and fabrication methods |
US20200025459A1 (en) * | 2017-06-01 | 2020-01-23 | Furukawa Electric Co., Ltd. | Flat heat pipe |
Also Published As
Publication number | Publication date |
---|---|
WO2023174882A1 (en) | 2023-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103424020B (zh) | 通过环式热管对发热构件进行冷却的冷却装置 | |
US6990816B1 (en) | Hybrid capillary cooling apparatus | |
US10212862B2 (en) | Cooling apparatus and method | |
US10514211B2 (en) | Vapor chamber | |
US20110000649A1 (en) | Heat sink device | |
US20090314472A1 (en) | Evaporator For Loop Heat Pipe System | |
US4951740A (en) | Bellows heat pipe for thermal control of electronic components | |
JP4427445B2 (ja) | マルチウィック構造をもつ蒸気増強ヒートシンク | |
US20190014688A1 (en) | Vapor chamber heat spreaders and methods of manufacturng thereof | |
EP2713132A1 (de) | Vorrichtung zur Wärmeübertragung durch Verdampfung | |
US20060124280A1 (en) | Flat plate heat transferring apparatus and manufacturing method thereof | |
JP2007519877A (ja) | 板型熱伝達装置及びその製造方法 | |
JP2006170602A (ja) | 熱輸送装置 | |
JP2003161594A (ja) | 沸騰冷却装置 | |
WO2005114084A1 (en) | Integrated circuit heat pipe heat spreader with through mounting holes | |
KR20030068448A (ko) | 자기 조절 심지를 가진 열 전달 장치 및 그 제조 방법 | |
US10597286B2 (en) | Monolithic phase change heat sink | |
EP4246077A1 (de) | Dampfkammer | |
WO2009154323A1 (en) | Evaporator for loop heat pipe system | |
JP2005268658A (ja) | 沸騰冷却装置 | |
JP2011142298A (ja) | 沸騰冷却装置 | |
CN111818756B (zh) | 带有集成的两相散热器的热交换器 | |
JP2008281253A (ja) | 冷却装置 | |
JP2021188890A (ja) | 伝熱部材および伝熱部材を有する冷却デバイス | |
JP2016133287A (ja) | ループ型ヒートパイプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240212 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |