EP4217753A1 - Procédé pour déterminer l'état d'un système de batterie rechargeable - Google Patents

Procédé pour déterminer l'état d'un système de batterie rechargeable

Info

Publication number
EP4217753A1
EP4217753A1 EP21787312.4A EP21787312A EP4217753A1 EP 4217753 A1 EP4217753 A1 EP 4217753A1 EP 21787312 A EP21787312 A EP 21787312A EP 4217753 A1 EP4217753 A1 EP 4217753A1
Authority
EP
European Patent Office
Prior art keywords
state
battery system
internal resistance
current
storage cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21787312.4A
Other languages
German (de)
English (en)
Inventor
Lars Weller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ElringKlinger AG
Original Assignee
ElringKlinger AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ElringKlinger AG filed Critical ElringKlinger AG
Publication of EP4217753A1 publication Critical patent/EP4217753A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to a method for determining the state of a rechargeable battery system, such as is used today, for example, as an energy store in purely electrically powered or hybrid vehicles.
  • the internal cell resistance Due to the associated internal power loss, the internal cell resistance has an effect on the predicted power that can be made available to the electric vehicle.
  • known approaches do not provide very accurate results for a current one Size of the internal resistance, because they use and evaluate current and voltage pulses to determine the internal resistance during operation.
  • the aim of the present invention is to create an improved method for determining the state of a rechargeable battery system on the basis of a more precise determination of a current direct current internal resistance of an individual storage cell or of the entire battery system.
  • a direct current internal resistance in a state of rest or equilibrium or a relaxed status of the respective battery system is determined by a defined current pulse based on Ohm's law during charging.
  • the internal resistance of the storage cell is determined from the current and voltage values at the beginning and end of the pulse or a current flow over a predetermined measuring time.
  • the basis of the invention is the finding that the known methods with a measurement of the internal resistance of the memory cell during operation lack a reference to the actual idle state of the memory cell in question, which z. B. Oscillation and temporary equalization processes in the memory cell lead to inaccuracies in the determination of a current value of the internal resistance, even with numerous measurements.
  • a further advantage of a method according to the invention is that a reliable determination of a current value of the internal resistance makes continuous validations and new measurements superfluous, which are otherwise usually provided according to the prior art.
  • the effort involved in an approach according to the invention is therefore lower than in the case of known methods.
  • the framework conditions in a battery system are precisely defined according to the invention in order to be able to precisely determine parameters on this basis.
  • Advantageous developments are the subject of the subclaims. Accordingly, a number of factors influencing the determination of the internal resistance are further minimized by initiating a current pulse in a specific operating range of the battery system.
  • the method is carried out when the storage cell is in a state of charge, SOC for short, in a range of 40-50% SOC of a maximum cell charge.
  • This approach is based on the knowledge that, viewed across various cell types and aging states, a characteristic curve of the open circuit voltage, or OCV for short, has a flat area in the range of 40-50% SOC mentioned Has a course with a minimal incline, ie runs almost horizontally in this section. This area also has the advantage that it remains almost unaffected by the effects of aging, which have an impact on the characteristic curve of the OCV curve.
  • the range mentioned can thus be used very well to determine the current internal resistance of the storage cell, regardless of the current aging state of the storage cell and the associated change in the OCV characteristic curve in other SOC ranges.
  • short-term charging and discharging processes for determining an internal resistance cannot cause any falsifications due to significant changes in the measured voltage values.
  • a temporal pulse width of the currents is limited to a duration or measuring time of approx. 5 s to about 10 s, which depends ability of a respective cell type and the respective cell chemistry is determined. For example, a value of approximately 10 s is preferably used as the width of the current pulses for direct current internal resistance measurement for prismatic NMC622—nickel manganese cobalt lithium-ion storage cells.
  • a pulse height or current intensity used is preferably 1 C, that is to say a current intensity which is calculated from a respective capacity of a rechargeable storage cell as a constant current flow over a period of one hour.
  • a current of 0.5 C can also be used for the current pulse in order to map the total current of the system to an acceptable level for the charge controller used.
  • great importance is attached to a high degree of accuracy in the setting of a respective pulse through undisturbed adjustment, since these measurements are made at a point in time when the vehicle is not actively being driven.
  • the vehicle is preferably at a standstill.
  • the method is carried out periodically approximately once a month, but at least after approximately every 30th full charge of the battery system.
  • the respective measurement results are preferably already updated internally for plausibility checks and, if necessary, error detection and stored in a fail-safe manner or stored in a non-volatile manner.
  • the measurement method described above is integrated into a battery management system BMS. It is applied to each individual storage cell and/or the entire battery system, which means that local problems can be identified at an early stage and an influence on the entire battery system can be observed, also so that suitable countermeasures can be taken. This approach can be applied particularly advantageously when using prismatic storage cells with individual monitoring of each of the cells within a rechargeable battery system.
  • the BMS can determine the current SOH for the battery.
  • the highest internal resistance represents the value for the storage cell that has aged the most, which limits the entire system.
  • SOH based on the stored Begin of Life bw. BOL and End of Life or EOL characteristic fields for the internal resistance of the storage cell over temperature and SOG, a characteristic field for the current internal resistance over temperature and SOG can be determined, which can be used for the current performance prediction.
  • FIG. 1 a typical curve profile of an no-load voltage characteristic as a function of a state of charge of a lithium-ion battery
  • FIG. 2a a time profile of a charging current pulse
  • FIG. 2b a time profile of an associated voltage pulse
  • FIG. 3 a time course of a cell voltage from a state of rest when loaded by a pulsed current flow and the relaxation that begins thereafter and
  • FIG. 4 a time course of a direct current internal resistance measurement according to the prior art.
  • the SOG can therefore only be estimated, which means that the no-load voltage OCV cannot be known exactly either. Only the voltage at the beginning and at the end of the defined measurement current pulse is known. According to a known measurement approach, there is therefore no exact assignment of the charge-dependent internal resistance value IR to the SOG.
  • FIG. 1 shows a typical curve of an open-circuit voltage characteristic OCV as a function of a state of charge SOC of a lithium-ion battery.
  • FIG. 2b shows charging and discharging pulses according to FIG. 4 used according to the prior art.
  • This measurement strategy is used during operation, ie while driving. In order to be able to remain unnoticed during ferry operation and also to avoid changing the charging status of the battery as far as possible, only short time intervals At are used for these measurements.
  • FIG. 2a traces the voltage curve according to the prior art.
  • a first voltage value is measured at a point M1, and a second voltage value at a point M2 at the end of the current pulse.
  • a current internal resistance IR is calculated from this pair of values.
  • relaxation effects of the memory cell are here End of each respective current pulses have been neglected so far, been drawn as relaxation curves R with. These are now shown with dashed lines and show a shift in the curve between the two charging and discharging pulses.
  • a voltage value of approx. 3.8V does not correspond to an open circuit voltage OCV of the memory cell at the current SOG, because relaxation processes within the memory cell have not yet been completed or may have subsided, this effect also contributes to the inaccuracy of known measurements.
  • FIG. 3 now shows a diagram of a method that significantly reduces the inaccuracies outlined above and thus leads to improved values for a respective direct current internal resistance IR of the storage cell:
  • This method is basically carried out with the vehicle stationary. It is thereby started from a relaxed or quiescent state of the memory cell.
  • the charging of the memory cell is interrupted long enough to carry out a pulse measurement with a current of 0.5 to IC only from the relaxed state of the memory cell, ie from a respective open-circuit voltage OCV.
  • IC denotes a current of 100A.
  • a first measurement point M1 is taken here when the constant current pulse is reached.
  • a further loading of the storage cell now follows here until it is fully loaded.
  • a curve progression according to FIG. 2a has been drawn in as a dashed line merely to clarify and enlarge the representation of a basic progression of relaxation processes, as is the case when the system is switched off of the charging current would adjust.
  • the IR value calculated using the marked measuring points M1, M2 is in turn stored, with the no-load voltage OCV now being precisely known for this purpose.
  • a repetition of this procedure is approximately monthly or at the latest after approx. 30 stationary charges provided to monitor a state of the relevant memory cell.
  • the SOC is precisely known, to which a precisely determined direct current internal resistance IR is now assigned. From this, the SOH of the relevant memory cell is determined with increased reliability.
  • the method described above is integrated into a battery management system BMS and thus does not cause any significant additional effort.
  • the IR values determined in each case are also used for plausibility checks and, if necessary, Error detection updated internally and stored with other important operating parameters in a fail-safe manner or stored in a non-volatile manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

La présente invention concerne un procédé pour déterminer l'état d'un système de batterie rechargeable. L'invention vise à fournir un procédé amélioré pour déterminer l'état d'un système de batterie rechargeable sur la base d'une détermination d'une résistance interne en courant continu instantanée. À cet effet, une résistance interne en courant continu est déterminée dans un état d'équilibre du système de batterie respectif par l'intermédiaire d'une impulsion de courant définie ou d'un flux de courant pendant une durée de mesure prédéfinie avec la loi d'Ohm en mode de charge.
EP21787312.4A 2020-09-25 2021-09-24 Procédé pour déterminer l'état d'un système de batterie rechargeable Pending EP4217753A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020125127.0A DE102020125127A1 (de) 2020-09-25 2020-09-25 Verfahren zur Bestimmung des Zustands eines wiederaufladbaren Batteriesystems
PCT/EP2021/076400 WO2022064003A1 (fr) 2020-09-25 2021-09-24 Procédé pour déterminer l'état d'un système de batterie rechargeable

Publications (1)

Publication Number Publication Date
EP4217753A1 true EP4217753A1 (fr) 2023-08-02

Family

ID=80624265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21787312.4A Pending EP4217753A1 (fr) 2020-09-25 2021-09-24 Procédé pour déterminer l'état d'un système de batterie rechargeable

Country Status (3)

Country Link
EP (1) EP4217753A1 (fr)
DE (1) DE102020125127A1 (fr)
WO (1) WO2022064003A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208195A1 (de) 2022-08-05 2024-02-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug
CN115037020A (zh) * 2022-08-12 2022-09-09 四川嘉逸新能源科技有限公司 一种光伏电动车充电方法及光伏电动车
DE102022128836A1 (de) 2022-10-31 2024-05-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen eines Innenwiderstands einer Energiespeichervorrichtung eines Kraftfahrzeugs, Computerprogramm und/oder computerlesbares Medium, Datenverarbeitungsvorrichtung, Batteriesteuergerät und Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (ja) * 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP4782663B2 (ja) 2006-11-29 2011-09-28 パナソニック株式会社 充電システム、充電装置、及び電池パック
JP4744622B2 (ja) * 2009-07-01 2011-08-10 トヨタ自動車株式会社 車両の制御装置
DE102011119005A1 (de) 2011-11-19 2012-05-24 Daimler Ag Verfahren zur Ermittlung einer Kenngröße einer Einzelzelle oder eines Zellverbundes einer Batterie
JP6252487B2 (ja) * 2012-11-30 2017-12-27 株式会社Gsユアサ 蓄電素子の性能低下検知装置、性能低下検知方法及び蓄電システム
IL239852A (en) * 2015-07-08 2016-12-29 Algolion Ltd Lithium-ion battery safety monitoring
DE102018200976A1 (de) 2018-01-23 2019-07-25 Volkswagen Aktiengesellschaft Verfahren zum Steuern des Ladens einer Batterieeinheit, Verfahren zum Laden einer Batterieeinheit, Steuereinheit, Ladesystem, Batteriesystem und Arbeitsvorrichtung
JP7087799B2 (ja) * 2018-08-02 2022-06-21 株式会社デンソー 劣化状態推定装置及びこれを含む電源装置

Also Published As

Publication number Publication date
DE102020125127A1 (de) 2022-03-31
WO2022064003A1 (fr) 2022-03-31

Similar Documents

Publication Publication Date Title
EP4217753A1 (fr) Procédé pour déterminer l'état d'un système de batterie rechargeable
DE10231700B4 (de) Verfahren zur Ermittlung des Alterungszustandes einer Speicherbatterie hinsichtlich der entnehmbaren Ladungsmenge und Überwachungseinrichtung
DE10246383B4 (de) Verfahren und Einrichtung zum Berechnen des Ladewirkungsgrads und der elektrischen Ladungsmenge einer Batterie
EP1308738B1 (fr) Procédé de détermination de l'état de charge des accumulateurs par intégration des flux de courants pendant la charge et la décharge
DE102012010486B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
EP1952169B1 (fr) Procede pour determiner l'etat de fonctionnement d'un accumulateur
DE112014006399T5 (de) Ladezustandschätzvorrichtung für eine Sekundärbatterie
EP1562049A1 (fr) Procédé pour la détermination de caractéristiques pour les états électriques d'une batterie d'accumulateurs et dispositif de surveillance correspondant
DE10107583A1 (de) Verfahren zur Bestimmung der Leistungsfähigkeit einer Speicherbatterie
DE102008034461A1 (de) Verfahren und Vorrichtung zur Ermittlung des Betriebszustandes einer Fahrzeugbatterie
EP1128187A2 (fr) Procédé pour déterminer l'état de charge des accumulateurs au plomb
WO2004070407A1 (fr) Procede et dispositif pour determiner la charge pouvant etre prelevee d'un accumulateur d'energie
EP1382978B1 (fr) Procédé pour surveiller la charge résiduelle d'une batterie
DE112018001790T5 (de) Vorrichtung zur verwaltung eines energiespeichergeräts und verfahren zur ver waltung eines energiespeichergeräts
EP1391742A2 (fr) Dispositif de surveillance et procédé de détermination de l'état de fonctionnement d'une batterie d'accumulateurs
DE102013204885A1 (de) Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
WO2011057846A1 (fr) Unité de gestion d'accumulateur, destinée à estimer l'impédance de l'accumulateur
DE102013206189A1 (de) Bestimmen eines Ladezustands eines Akkumulators
DE102012010487B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
DE102013013471A1 (de) Verfahren zur Bestimmung der Zuleitungsimpedanz in mehrzelligen Batteriepacks zur Leitungsfehlererkennung
WO2021122368A1 (fr) Dispositif et procédé pour surveiller au moins trois éléments de batterie d'une batterie
WO2021083587A1 (fr) Procédé de charge rapide
DE102018129426B3 (de) Verfahren zum aktiven Ladungsausgleich in Energiespeichern
WO2014166666A1 (fr) Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie
DE102019132768A1 (de) Kalibriereinrichtung zur Kalibrierung einer elekrischen Ersatzschaltung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)