WO2014166666A1 - Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie - Google Patents

Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie Download PDF

Info

Publication number
WO2014166666A1
WO2014166666A1 PCT/EP2014/053570 EP2014053570W WO2014166666A1 WO 2014166666 A1 WO2014166666 A1 WO 2014166666A1 EP 2014053570 W EP2014053570 W EP 2014053570W WO 2014166666 A1 WO2014166666 A1 WO 2014166666A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cell
signal
battery
state
Prior art date
Application number
PCT/EP2014/053570
Other languages
German (de)
English (en)
Inventor
Eckart Reihlen
Jens Schneider
Lothar Diehl
Fabian Henrici
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2014166666A1 publication Critical patent/WO2014166666A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to accumulator technology.
  • the present invention relates to the determination of cell properties of a
  • the present invention relates to a method for determining a state quantity of a battery cell, a
  • Battery cell in particular for a vehicle, further in particular for an electric or hybrid vehicle, a battery unit for a vehicle and a vehicle, in particular an electric or hybrid vehicle.
  • Energy storage which is able to provide electrical energy for vehicle operation and deliver on demand.
  • These batteries or accumulators or generally battery units are usually composed of a plurality of individual battery cells, which, depending on the application, can be connected in parallel, in series or mixed.
  • State variables are, for example, the terminal voltage between the battery poles, the temperature of a battery cell, the pressure, in particular their internal cell pressure, charging current, charging duration and impedance.
  • an exact knowledge of different actual state variables during operation, ie during charging and discharging, of comparatively expensive batteries, such as, for example, lithium-ion batteries in automotive applications, is of increasing importance.
  • State variables such as cell temperature or cell voltage, are other battery state variables that are derived indirectly from measurable parameters, for example, by a model-based calculation.
  • SoC state of charge
  • Battery unit also consider, for example, the internal resistance, e.g. a change due to aging by e.g. Dendrite formation or outgassing of electrolyte.
  • the state of health relates to all the function and safety of a battery cell or battery unit (especially negative) affecting aging phenomena.
  • the state of health relates to all the function and safety of a battery cell or battery unit (especially negative) affecting aging phenomena.
  • the state of health relates to all the function and safety of a battery cell or battery unit (especially negative) affecting aging phenomena.
  • Fluctuations in production affect the state of health of the cell already at delivery and its presence therefore attributed to it.
  • Charging state is assumed to be too low or a life-shortening depth discharge, if the current state of charge is assumed to be too high.
  • Fig. 1 shows a Cell Supervision Circuit (CSC) with a transistor switch and a parallel resistor.
  • the cell 2 is involved via their poles 4a, b in a larger battery system. Parallel over the
  • an individual charging current of one of several cells connected in series can be influenced, for example, by "cell balancing".
  • a proportion of the charging current is conducted past a cell 2 via a bypass which can be controlled by a battery management system, for example a controllable switching element 10, and is thermally converted, for example, in the resistance element 12.
  • One aspect of the present invention is an improved determination of a state quantity of a battery cell, in particular a momentary one
  • Battery cells and battery units of the present invention relate regularly rechargeable elements.
  • the method according to the invention determines or uses a state variable-dependent transmission characteristic of the battery cell, thus a transmission characteristic of a single cell which is dependent, for example, on a state of charge or health status. It becomes one Charging or discharging current, which flows through a battery cell and / or imprinted on the battery terminals or cell terminals cell voltage signal. The current or the voltage is thus changed or modulated by the impressed signal. This can be done as a condition check before a loading or unloading or while, so in the
  • the method according to the invention is used during a charging process, it may be necessary, due to the fluctuations of the charging current or the charging voltage by means of the modulation of the signal, to lower the charging current overall in its amount for the purpose of carrying out the method. However, such a reduction does not necessarily have to be necessary.
  • the signal configured, for example, as a measuring pulse, can also be impressed during changing load states during driving operation.
  • Possible signals are, for example, a positive or negative single or multiple pulse for use, possibly with different rise and hold times or signal levels. Also, vibration excitation, for example using a sinusoidal function which may have different or varying frequencies, is possible.
  • the signal itself does not necessarily have to be generated specifically for the method, thus be an artificial signal; under certain circumstances it is sufficient to use the signal already occurring during operation current fluctuations or voltage fluctuations at the battery cell.
  • the charging of the battery cell may be formed with a signal than the use of an originating from the operation current change or voltage change to the battery cell. This natural signal may be suitably detected in / on the battery cell.
  • the battery cell has a transfer function between the injected signal and the
  • This transfer function may depend on it be of the nature of the injected signal and in particular according to the invention of just prevailing in the cell states, such as
  • the transfer function is therefore on the one hand signal, on the other hand state-dependent.
  • a transfer function may be calculated by means of a model.
  • a model For example, can be used as the basis of the model laboratory measurements, such as impedance spectroscopy measurements, with real,
  • Measured values may usually be Fourier-transformed after the measurement and before a comparison.
  • Questionable cell components may be, for example, electrode elements or electrolyte.
  • Such a changed electrical property is found, for example, in the specific conductivity as a function of the state of charge.
  • an impressed signal is output from a discharged electrode in a different manner, thus using a different transfer function, than from a charged electrode.
  • the transfer function of the signal depends in a complex and in particular empirically determinable manner on the electrical properties of the entire cell and thus receives u.a. Information about the state of charge and the health of the cell.
  • the determination of a transfer function thus a comparison of an impressed signal with a detected response, can for example take place locally in or on the cell itself.
  • this may be a
  • Processing element or a microprocessor or ASIC be provided, which is placed inside or outside the cell and is in particular adapted to determine the transfer function.
  • the ASIC itself may be arranged to provide the signal and to the
  • the ASIC can itself determine a state variable of the battery cell from the signal and response and thus the transfer function, in particular taking into account a suitable model, and forward this information to a central control unit, for example using a suitable data bus. It is also conceivable that the processing element exclusively detects the signal and the response, forwards this information to a control device, which in turn derives from this information a transfer function and / or a
  • Shared functionality may be realized by determining the transfer function through the
  • a simple function between signal strength for example, the amount of a charge or discharge pulse or voltage pulse depending on the state of charge may be evaluated. More accurate results may provide the modeling or determination of a complex transfer function. For example, the dynamics of a signal change in
  • a state of health and a state of charge may have different effects on a static and dynamic internal resistance of a battery cell, which manifests itself in a different relaxation time.
  • a static internal resistance may be more important than a state of health, a dynamic one
  • the cell voltage may first be measured as a step function.
  • a short voltage pulse as a signal is impressed on the charging current.
  • the height of the signal in the cell voltage thus the response, may in the following be directly dependent on the state of charge of the cell.
  • a cell-integrated processing element or ASIC may be provided for this purpose, which evaluates the cell voltage as a function of the voltage pulse.
  • the measurement of the cell voltage may also be implemented as a pulse width function.
  • a voltage pulse with a defined pulse width and height may be impressed on the charge / discharge current.
  • the relaxation behavior of the signal thus a change of the signal over time, may be state of charge dependent.
  • the thereby changing pulse shape can in turn be detected by a cell-integrated ASIC and brought to the evaluation or used for a determination of a state variable of the cell.
  • a measurement may be made via a flow divider.
  • a signal for example a voltage pulse, may thereby be arranged via the charging current on the one hand by a cell and on the other hand by a cell arranged parallel to the cell
  • the charge current component flowing through the cell, the charging voltage and a state variable-dependent signal change are, for example, in turn detected by an in-cell ASIC and used for
  • Control unit done This controller may directly affect the switching element or instruct the ASIC to switch the switching element.
  • the dynamic measurement with impulse response may also be conceivable.
  • Resistance element may be imprinted on the cell compared to time constants of the chemical processes of a cell, short current pulse of known height and length. From the impulse response of the system, thus the cell, a complex impedance of the cell can be determined and from this subsequently a state quantity of the cell.
  • a dynamic measurement with step response may be made.
  • a long current pulse of known magnitude and length may be impressed on the cell as compared to time constants of the chemical processes of the cell. From the step response of the system, thus the cell, the complex impedance of the cell can be determined.
  • Such a calculation can be performed for both a rising and a falling edge where both calculations can give different results. From the different results can be improved conclusions or a more accurate determination of a state variable of the battery cell, such as state of charge and health, make.
  • Fig. 1 a cell monitoring circuit
  • FIG. 2 shows an exemplary embodiment of a battery cell according to the present invention
  • FIG 3 shows another exemplary embodiment of a battery cell according to the present invention.
  • FIG. 4 shows an exemplary embodiment of the method according to the invention for determining a state variable of a battery cell.
  • FIG. 2 a first exemplary embodiment of a battery cell according to the present invention is illustrated.
  • Fig. 2 shows a cell 2, which is shown only schematically and has two poles or cell terminals 4a, b. Between cell terminals 4a, b
  • processing element 6 for example, a microprocessor or ASIC.
  • Processing element 6 may in this case be integrated in cell 2, be attached thereto or even be arranged substantially only in the vicinity.
  • Pulse signal or a triangular function on the other hand, a frequency function, such as a sine function.
  • the cell 2 can be acted upon, for example, be influenced in their terminal voltage or their charge / discharge current, resulting in an internal reaction of the
  • Cell 2 results.
  • a response is detectable, which is also schematically shown in Fig. 2.
  • Processing element 6 can determine or provide the signal, detect the response and / or a transfer function of the latter
  • this transfer function allows conclusions to be drawn about state variables of the battery cell. For example, a state of charge of the battery cell can be determined. This determination of the state of charge can be made directly in the processing element 6 and can be forwarded to a control unit using a suitable communication bus 8. Alternatively, only individual or all information relating to the signal, response and / or transfer function can be forwarded to a control unit using the data bus. In this case, the control unit may be set up to determine the state variable, such as the state of charge of a cell, from the information transmitted.
  • FIG. 3 another exemplary embodiment of a battery cell according to the present invention is illustrated.
  • Fig. 3 corresponds substantially to the Fig. 2, wherein parallel to the cell 2 with its processing element 6, a switching element 10 and a parallel conductor element 12, a parallel to the cell 2 arranged resistor R, is provided.
  • Switching element 10 for example a transistor, can from
  • switching element 10 can be used to attenuate or suppress the charge of the cell when the charging current is applied, for example by closing the switching element in order to avoid overcharging cell 2.
  • switching element 10 by suitably driving the
  • Switching element 10 is first initiated a charging process.
  • the control of the switching element 10 can use information relating to a state variable of the cell 2, as determined by the method according to the invention. For example, depending on a SoC and / or SoH, a load can be started, stopped or paused.
  • switching element 10 and resistor 12 according to the previous description, in the measurement scenarios Measurement via current divider, dynamic measurement with impulse response and dynamic measurement with step response.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé (40) de détermination d'une variable d'état d'un élément de batterie (2), comprenant la fourniture (42) à un élément de batterie d'une conduction électrique en tant que passage de courant de charge ou de décharge, caractérisé par les étapes consistant à soumettre (44) la conduction électrique de l'élément de batterie (2) à un signal, détecter (46) une réaction de l'élément de batterie (2) au signal et, sur la base de cette réaction, déterminer (48) une variable d'état de l'élément de batterie (2).
PCT/EP2014/053570 2013-04-12 2014-02-25 Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie WO2014166666A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013206612.0A DE102013206612A1 (de) 2013-04-12 2013-04-12 Verfahren und Vorrichtung zum Bestimmen einer Zustandsgröße einer Batteriezelle
DE102013206612.0 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014166666A1 true WO2014166666A1 (fr) 2014-10-16

Family

ID=50238365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053570 WO2014166666A1 (fr) 2013-04-12 2014-02-25 Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie

Country Status (2)

Country Link
DE (1) DE102013206612A1 (fr)
WO (1) WO2014166666A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217863A1 (de) 2017-10-09 2019-04-11 Robert Bosch Gmbh Batteriesystem sowie Verfahren zum Betreiben eines Batteriesystems
DE102018209461A1 (de) 2018-06-13 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum impedanzgesteuerten Schnellladen, Steuereinheit für ein Ladesystem, Energiespeicher und Arbeitsvorrichtung
CN113492727B (zh) * 2021-08-20 2022-07-19 重庆交通职业学院 一种基于empc的燃料电池混合动力系统控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060190204A1 (en) * 1996-03-27 2006-08-24 Mchardy John Analyzing the response of an electrochemical system to a time-varying electrical stimulation
US20090265121A1 (en) * 2008-04-16 2009-10-22 Phoenix Broadband Technologies, Llc Measuring and monitoring a power source
US20110295532A1 (en) * 2010-05-27 2011-12-01 Stukenberg Todd J Electronic storage battery diagnostic system
EP2447728A1 (fr) * 2010-10-28 2012-05-02 Nxp B.V. Agencement de mesure spectroscopique d'impédance de cellule de batterie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060190204A1 (en) * 1996-03-27 2006-08-24 Mchardy John Analyzing the response of an electrochemical system to a time-varying electrical stimulation
US20090265121A1 (en) * 2008-04-16 2009-10-22 Phoenix Broadband Technologies, Llc Measuring and monitoring a power source
US20110295532A1 (en) * 2010-05-27 2011-12-01 Stukenberg Todd J Electronic storage battery diagnostic system
EP2447728A1 (fr) * 2010-10-28 2012-05-02 Nxp B.V. Agencement de mesure spectroscopique d'impédance de cellule de batterie

Also Published As

Publication number Publication date
DE102013206612A1 (de) 2014-10-16

Similar Documents

Publication Publication Date Title
EP2487499B1 (fr) Temps réel capable simulation de pile à batterie
DE102009038663B4 (de) Kraftwagen mit einer Mehrzahl von Batterien und Verfahren zur Batteriediagnose
WO2012076220A1 (fr) Procédé permettant de déterminer des paramètres de fonctionnement d'une batterie, système de gestion de batterie et batterie
DE102013113951A1 (de) Verfahren zum Detektieren von Leerlaufsspannungsverschiebungen mittels Optimierung durch Anpassen der Anodenelektrodenhalbzellspannungskurve
WO2012072434A1 (fr) Procédé pour déterminer la tension en circuit ouvert d'une batterie, batterie pourvue d'un module pour déterminer la tension en circuit ouvert et véhicule automobile équipé d'une batterie correspondante
EP1189326B1 (fr) Procédé de surveillancde de l'état de charge d'un accumulateur alcalin étanche
DE102019111976A1 (de) Kapazitätsbestimmung bei Batterien
DE102018200976A1 (de) Verfahren zum Steuern des Ladens einer Batterieeinheit, Verfahren zum Laden einer Batterieeinheit, Steuereinheit, Ladesystem, Batteriesystem und Arbeitsvorrichtung
EP2944009B1 (fr) Procédé et dispositif destinés à augmenter la capacité disponible d'un groupe accumulateur par équilibrage des niveaux de charge des éléments, système de gestion d'accumulateur, accumulateur et appareil de charge d'accumulateur
DE102014208865A1 (de) Verfahren zum Ermitteln der Temperatur einer Batterie
WO2016012196A1 (fr) Procédé destiné à faire fonctionner une batterie secondaire
DE102020206272A1 (de) Batterieverwaltungssystem mit gemischter elektrode
DE102011116970A1 (de) Optimierung von Parametern elektrischer Komponenten in Modellen von Energiespeichersystemen
EP2586090B1 (fr) Procédé permettant d'établir au moins un état d'une pluralité d'éléments de batterie, programme informatique, batterie et véhicule automobile
DE102016201026A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Restkapazität einer Batterie
DE102013206188A1 (de) Bestimmen eines Zustands eines Akkumulators
WO2018036873A1 (fr) Procédé de détermination de l'âge d'un accumulateur d'énergie électrochimique
WO2014166666A1 (fr) Procédé et dispositif de détermination d'une variable d'état d'un élément de batterie
DE102019125375A1 (de) Zustandswert für wiederaufladbare Batterien
EP2856189A1 (fr) Procédé et dispositif pour la détermination de la capacité réelle d'une batterie
DE102013204522A1 (de) Verfahren und Vorrichtung zur Erhöhung der Sicherheit beim Gebrauch von Batteriemodulen
DE112013005722B4 (de) Antwort auf eine Detektion eines Überladevorgangs in einem in Serie verbundenen Batterie-Element
DE102012012765A1 (de) Verfahren und Vorrichtung zum Laden eines elektrischen Energiespeichers
DE102019129079B3 (de) Zustandsgeführtes Steuern einer Akkumulatoreinrichtung
DE102022203343A1 (de) Verfahren und Vorrichtung zum Betreiben eines Systems zum Erkennen einer Anomalie eines elektrischen Energiespeichers für ein Gerät mithilfe von maschinellen Lernverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14708511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14708511

Country of ref document: EP

Kind code of ref document: A1