EP4197094A1 - Multiples temperierverfahren für werkstücke mittels triplexofen - Google Patents

Multiples temperierverfahren für werkstücke mittels triplexofen

Info

Publication number
EP4197094A1
EP4197094A1 EP21758702.1A EP21758702A EP4197094A1 EP 4197094 A1 EP4197094 A1 EP 4197094A1 EP 21758702 A EP21758702 A EP 21758702A EP 4197094 A1 EP4197094 A1 EP 4197094A1
Authority
EP
European Patent Office
Prior art keywords
heating
component
triplex
oven
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21758702.1A
Other languages
English (en)
French (fr)
Inventor
Karl Bauch
Gerhard Karl Mais
Wolfgang Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hedrich GmbH
Original Assignee
Hedrich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hedrich GmbH filed Critical Hedrich GmbH
Publication of EP4197094A1 publication Critical patent/EP4197094A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0043Muffle furnaces; Retort furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/102Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces the metal pieces being rotated while induction heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • H05B6/6485Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating further combined with convection heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/02Induction heating
    • H05B2206/022Special supports for the induction coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method and an exemplary device in the form of a triplex furnace for quickly, efficiently and uniformly heating up preferably tubular components such as stators of electric motors made of different materials.
  • the triplex oven enables the simultaneous use of three different heating processes, tailored to the different materials and parts of components such as electric motor motors.
  • stators and rotors which are made of sheet steel and copper rods, so-called hairpins, or copper wires, to temperatures between 80 and 180 °C.
  • the impregnation and/or encapsulation of stators and rotors is carried out in particular to fix the components to one another, for better and defined heat dissipation and for additional electrical insulation.
  • the following invention is aimed in particular at stators of electric motors, which consist of a soft iron laminated core and a copper winding.
  • the copper winding is often replaced by welded hairpins made of copper, which are embedded in the laminated core on the inner diameter and protrude axially on both sides as so-called winding heads. Efficient, fast and even temperature increase is both when preheating the stator for the impregnation and/or potting as well as for the subsequent temperature increases for gelling and curing.
  • the stators have been individually tempered using infrared radiation, which is directed at the components from the outside.
  • the warming radiation hits the surface of the body to be heated directly.
  • the heat transfer from the heat source to the air and from the air, or a gas, to the stator is thus eliminated.
  • the surfaces of different materials are heated up considerably differently depending on the degree of reflection and thermal conductivity. Since the radiation affects the thin copper parts as well as the thick laminated core, an even temperature distribution in and on the stator can only be achieved by longer waiting times.
  • Induction furnaces are also known. In these furnaces or in this process for heating particularly magnetic materials such as iron, a high-frequency alternating magnetic field flows through the component. Since copper is not magnetic, essentially only the laminated core is heated with this process. The temperature must then be transferred from the laminated core to the copper parts. Hot spots, i.e Corners and edges where magnetic waves are concentrated must be taken into account. Overheating occurs very quickly here, leading to the destruction of the insulation or adjacent plastic parts.
  • DE 10 2017 005 532 A1 discloses a method and a heating device for inductively heating and keeping warm a stator or armature of an electric machine, the inductive heating taking place by means of electromagnetic fields of different frequencies, which are tuned to different materials.
  • the laminated core and the protruding copper parts are heated by different inductors with different frequencies.
  • Achieving a uniform temperature on the stator that is accurate to within a few degrees has proven to be very difficult in practice with direct heating methods such as induction and radiation and involves waiting times.
  • the temperature measurement on the parts that are inevitably constantly rotating after impregnation is particularly problematic. In particular, with different starting temperatures or longer residence times, unacceptable deviations occur that impair the overall process.
  • EP 2 905 346 A1 discloses a method for imprinting a temperature profile on a sheet steel component and a heat treatment device, comprising a production furnace for heating the sheet steel component to a temperature above the AC3 temperature and a thermal post-treatment station for impressing a temperature profile on the sheet steel component, wherein the one or more areas of the sheet steel component are cooled and heated in the thermal post-treatment station by means of convection and/or by means of radiation and/or by means of heat conduction.
  • a regulation for a method and a device for the heat treatment of parts made of aluminum or an aluminum alloy is known from DE 692 24 349 T2.
  • a regulation and control device for a device for induction heating of a workpiece with an induction device is known from DE 10 2012 007 959 A1.
  • DE 10 2018 101 226 A1 discloses a device for the inductive hardening of elongated workpieces, such as axle shafts, side shafts or drive shafts, having at least one hardening station and one tempering station, the at least one hardening station having an inductor device for heating and a quenching device for Quenching the workpieces, at least one multi-axis robot being provided in order to remove the workpieces to be hardened from a feed device into the hardening station and place them on a discharge device.
  • EP 2 640 546 B1 discloses a device for inductively heating metallic components during welding, comprising at least one flexible induction element and means for automatically controlling and regulating the power and, if necessary, the frequency of a medium-frequency generator connected to the induction element, the flexible Induction element and the coolant line can be repeatedly plastically or elastically deformed and manually or automatically adapted to the shape of components to be heated.
  • the task is therefore to generate a process and a system that allows fast, energy-efficient, uniform, space-saving and precise temperature control of components made of different materials such as e.g. B. stators made of steel and copper.
  • the new process also meets the requirement that impregnated stators and rotors, i.e. those which are dripped with resin that is still liquid, must rotate continuously in order to prevent the impregnation material from dripping off and imbalance.
  • the new process is characterized by the simultaneous heating of components made of different materials with different materials heating processes with different heat sources that are tailored to the material and the component. This process also enables stators, for example, to be heated from the inside and outside at the same time. With such a method and a device adapted to it, a very fast and thus energy- and space-saving heating and also a uniform heating of such components is possible for the first time.
  • the new process is characterized by high energy efficiency because most of the heat is fed directly to the component or, in the case of induction, is even generated in the component.
  • the thermal chamber can be made very small due to the direct introduction of a large part of the required amount of heat, because only little air circulation is necessary due to the rotating components.
  • the small design results in little radiating surface and thus low heat loss.
  • the heat-insulated housing of the solution we proposed therefore gives off only little heat to the environment. Due to the design feature that the heating elements for the direct component heating also serve to feed the convection heating is another helpful feature to keep the furnace space or the thermal space small.
  • the IR emitters or reflectors can be moved in such a way that the air surrounding the components is heated.
  • ferritic passive heating elements in particular, which the inductor acts on, serve as a heat source for the convective heating.
  • the intensity with which the inductor acts on the passive heating elements is temperature-controlled.
  • the inductor is preferably movably mounted and can be adapted to different component sizes and optionally to different component shapes by means of at least one actuator. Due to the mobility of the inductor, it can also be brought into the effective range of the passive heating elements. Som it can use the same inductor for both direct heating of the component as well as for temperature control of the passive heating elements for the convection heating.
  • Ferritic finned tubes, molded components, plates, rods or grids are proposed as passive heating elements.
  • the temperature on these stationary elements can be measured just as reliably as the air temperature in the heating station.
  • the interaction of the inductor with the passive heating elements creates a convection oven together with the rotating component that ensures air flow.
  • the circulation of the air in the thermal room can be supported by a hot air fan.
  • the convection heating process is used to slightly adjust the component temperature, to equalize the temperature in the component itself and to maintain a target temperature that has been reached during waiting times, e.g. e.g. when the following system parts are at a standstill.
  • Indirect heating is activated in particular by reducing the distance between the passive heating element and the inductor, e.g. B. by pivoting, turning, moving, etc., as well as by the different levels of loading of the inductor.
  • a feature of the new procedure is the simultaneous effect of induction, IR radiation and convection.
  • the IR radiation is replaced or supplemented by resistance heating of the copper parts using high, low-voltage currents.
  • the passive heating elements can also be heated by the infrared radiators.
  • the intensity and duration of the induction and/or the IR radiation from 0 to 100% is specified by the operator depending on the component.
  • the heating output can be calculated based on the difference between the actual and target temperature, taking into account specified Regulate maximum temperatures. Since the temperature on these moving parts can only be measured with insufficient certainty and can only be measured on the surface, the temperature of the component is preferably controlled according to the following scheme. The starting temperature of a stator with a known mass of copper and sheet steel is measured. The target temperature is fixed. From the heating power introduced into the stator, the frequency converter for the induction heating can represent this, and the duration of the effect, the amount of heat introduced can be determined and compared with the required calculated amount of heat according to a predetermined degressive power curve. Alternatively, it is possible to program the amount of heat input into the component according to a table depending on the temperature rise and the component.
  • the well-known non-contact and contact measuring methods are used to measure the temperature.
  • stator For an even temperature distribution on and in the stator, it preferably rotates during the entire heating process and is also heated from the inside and outside. So that different components or stator sizes can be effectively heated with the same inductors and IR emitters, these are movably mounted. This is also necessary for heating elements arranged inside the stators, so that the stators can move on to the next station. A moving, short inductor also enables long stators to be evenly heated through alternating linear movement. The same goes for the IR heating elements. In addition, this mobility of the active heating elements also enables the targeted start-up and heating of the passive heating elements for temperature control by convection. Another feature of the new process is the simultaneous heating of the rotating component from the inside and outside with different heat sources. The heat sources are matched to the respective material and the shape of the component. The intensity with which the heat sources act on the corresponding section of the component over a specified period of time results in the heat output to be introduced or the desired temperature.
  • Convection supports direct component heating and is mainly important when it comes to temperature equalization in the component and maintaining the desired target temperature. Due to the rotation of the components, in particular the stators and rotors, there is a continuous flow around the components without the use of the otherwise usual circulating air fan. This saves installation space, energy and generates no noise. Due to the unnecessary integration of fans and baffles and the use of the existing heating elements, a very small boiler room is possible, which can be insulated inexpensively and heated quickly. With regard to high energy efficiency, the heated room is provided with reflective elements such as mirrors or corresponding foils or coatings as far as possible. A one-way mirror pane is installed inside the triplex oven room, which reflects 60 to 95% of the thermal radiation but still allows a view into the oven.
  • the triplex oven To drive through the triplex oven, it is equipped with flaps and/or brushes or temperature-resistant drop curtains on the component feed openings and/or the thermal room recesses.
  • a uniform defined rotation of the stators is in particular after the application or introduction of the liquid impregnating compound in the Usually a varnish or resin, necessary to maintain an even layer on the winding and an even filling of the slots. At standstill, the impregnating compound would drip off. In the case of rotating components such as rotors, the uneven distribution would also result in an impermissible imbalance.
  • An exemplary device for implementing the method in the form of a triplex furnace essentially consists of a thermal chamber and a component transport unit connected to it.
  • the component transport unit transports the component carriers in steps or continuously through the thermal room.
  • the component carriers are rotatably mounted and positioned on a transport element or between several transport elements such as chains.
  • the component carriers are driven by means of a separate drive, which acts on a pinion seated on the component carriers.
  • the rotational movement of the component carriers is generated with the same chains between which the component carriers equipped with sprockets are positioned.
  • the component carriers for rotating components are designed as internal clamps or as external clamps and create the connection between the moving components in the thermal chamber and the attached component transport unit.
  • the thermal room contains the heating elements for direct and indirect
  • the triplex oven has a modular structure and has at least one heating station that has the heating elements described above. The number of heating stations lined up in a triplex oven depends on the technical specifications.
  • the housing gives the largest component only little space in order to keep the volume of the thermal room as small as possible and to achieve a small temperature difference between floor and ceiling.
  • the thermal room has a recess on one side over the entire length, in which the workpiece carrier moves. The recess is preferably covered with multiple rows of busts or other resilient covering elements.
  • the thermal room has a preferably controllable suction system.
  • the thermal room is equipped with a variety of sensors, especially contact and non-contact temperature sensors.
  • FIG. 1 shows a possible arrangement of the primary heating elements for the simultaneous heating of a stator (7) from the inside and outside with different heat sources
  • FIG. 3 shows a component carrier (6) as an internal clamp with the stator (7) placed on it
  • FIG 1 shows in section a simplified possible arrangement of the active and passive heating elements in the thermal chamber (2) using the example of a component in the form of a stator (7) for electric motors, which essentially consists of a laminated core (7.1) made of soft iron sheets and a copper winding (7.2 ) consists.
  • the ends of the copper rods that protrude beyond the laminated core on both sides are referred to as the end winding.
  • the laminated core On its inner circumference, the laminated core has longitudinal grooves in which the copper rods are embedded.
  • the stator (7) is supported, transported and set in rotation by a component carrier (6), which is shown here in simplified form as an external clamp.
  • the thermal space (2) is defined by a heat-insulating thermal space housing (2.1).
  • the thermal room housing (2.1) has at least one slot-shaped recess (2.2) towards the component transport unit (5).
  • the component carrier (6) and with it the stator (7) are moved along this recess (2.2) in order to rotate from one heating station to the other or from one part of the system to the next.
  • both an externally arranged inductor (8) for the inductive heating of the laminated core in particular and at least one infrared radiator (9) positioned in the central bore of the stator (7) for heating the copper rods can be seen.
  • these can be adapted to different component sizes, in particular to different stator dimensions, or can be inserted into the stators (7).
  • the primary heating elements and in particular the inductor (8) into the active area of the passive heating elements (10) in the case of displaceable mounting in order to temper them for the convective heating of the thermal chamber (2) and thus the component.
  • the IR heating tubes are also movably mounted so that they can move axially into and out of the central bore of the stator (7).
  • the inductor (8) and/or the IR heating tubes are preferably movably mounted and connected to actuators for automatic positioning.
  • the primary heating elements can be programmatically adapted to different component dimensions or stator dimensions and at the same time use as an energy source for the passive heating elements (10) for convective heating of the thermal chamber (2) and the stator (7), by z. B.
  • the inductor (8) is activated and moved into the interaction area of ferritic passive heating elements (10).
  • the inductor (8) thus heats either the component or the passive heating element (10).
  • the IR tubes can be used in the same way.
  • the rotational movement of the stator (7) and/or a hot-air fan (11) ensures that the air is circulated in the thermal chamber (2).
  • the stator (7) is heated simultaneously from the outside and inside by direct heat input by means of induction into the laminated core and IR radiation into the copper rods and/or additionally and subsequently on all sides by the temperature-controlled surrounding air, i.e. by convection Temperature maintained or matched to target temperature.
  • the thermal room (2) is preferably already when retracting the stator (7) brought to the target temperature by means of the infrared radiator (9) and the passive heating elements (10).
  • FIG. 2 shows a cross section through a simplified triplex furnace (1) consisting of a component transport unit (5) and a thermal chamber (2).
  • the component carrier (6) shown as an internal clamp with a clamped stator (7), is mounted with its sprockets between chains in the component transport unit (5) and extends through a recess (2.2) that runs along the transport route between the component transport unit (5) and the thermal chamber (2). is introduced into the thermal chamber (2). So that the axis of the component carrier (6) can move through the sealed recess (2.2), the recess (2.2) is covered with flexible covers, e.g. B by means of brushes, curtains, resilient fins and resilient heat-resistant seals such as inflated silicone hoses.
  • flexible covers e.g. B by means of brushes, curtains, resilient fins and resilient heat-resistant seals such as inflated silicone hoses.
  • the inductor (8) is arranged on the outside above the laminated core and the infrared radiators (9) are directed from the outside onto the copper rods of the end windings.
  • the temperature-controlled air surrounding the stator (7) for convective heating is not shown.
  • the thermal chamber (2) consists of a housing lined with a thermal insulation layer and at least one component feed opening (3), which is also used for component removal.
  • FIG. 3 shows a component carrier (6), which is equipped as an internal clamp for components with central bores and carries a stator (7).
  • the component carrier (6) has two sprockets, which are both the bearing points and drive elements for the rotation and transport of the stator (7).
  • the sprockets are mounted between chains, as shown in DE 10 2019 004 954.3. Reference list:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Multiples Temperierverfahren für Statoren (7) und Rotoren von Elektromotoren sowie Bauteile bestehend aus Werkstoffen mit unterschiedlichen magnetischen Eigenschaften mittels eines Triplexofens (1) zum schnellen effizienten und gleichmäßigen Aufheizen von vorzugsweise rohrförmigen Bauteilen wie Statoren (7) wobei die magnetischen Teile eines Bauteils primär mittels Induktion und gleichzeitig unmagnetische Teile des gleichen Bauteils primär mittels Infrarotstrahlung aufgeheizt werden und gleichzeitig sowie nachfolgend eine sekundäre Beheizung mittels Konvektion insbesondere durch Passivheizelemente (10) erfolgt, die zur Feinjustage der Zieltemperatur und zu deren Beibehaltung dient.

Description

Bezeichnung: Multiples Temperierverfahren für Werkstücke mittels Triplexofen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren und eine beispielhafte Vorrichtung in Form eines Triplexofens zum schnellen effizienten und gleichmäßigen Aufheizen von vorzugsweise rohrförmigen Bauteilen wie Statoren von Elektromotoren aus verschiedenen Werkstoffen. Der Triplexofen ermöglicht den gleichzeitigen Einsatz von drei unterschiedlichen Heizverfahren, abgestimmt auf die unterschiedlichen Werkstoffe und Teile von Bauteilen wie Elektromotorstatoren.
Zum Vergießen und/oder zum Imprägnieren der in der Regel aus Kupfer bestehenden stromführenden Bauteile eines Elektromotors ist es notwendig, die aus Stahlblechen und aus Kupferstäben, sogenannten Hairpins, oder Kupferdrähten bestehenden Statoren und Rotoren auf Temperaturen zwischen 80 und 180 °C zu erwärmen. Das Imprägnieren und/oder Vergießen von Statoren und Rotoren erfolgt insbesondere zur Fixierung der Bauteile gegeneinander, zur besseren und definierten Wärmeableitung und zur zusätzlichen elektrischen Isolierung.
Die nachfolgende Erfindung zielt insbesondere auf Statoren von Elektromotoren ab, die aus einem Weicheisenblechpaket und einer Kupferwicklung bestehen. Die Kupferwicklung ist bei neueren Motoren oft durch verschweißte Hairpins aus Kupfer ersetzt, die am Innendurchmesser in das Blechpaket eingelassen sind und beidseitig axial als sogenannte Wickelköpfe vorstehen. Eine effiziente, schnelle und gleichmäßige Temperaturerhöhung ist sowohl beim Vorheizen des Stators für das imprägnieren und/oder Vergießen als auch für die anschließenden Temperaturerhöhungen zum Gelieren und zum Aushärten gewünscht.
Bei aktuellen Anlagen zum imprägnieren oder Vergießen dieser Bauteile werden bisher meist Umluftöfen verwendet, in die die Statoren für eine Mindestdauer eingebracht werden bzw. diese Öfen durchlaufen, um die gewünschte Temperatur anzunehmen. Die Wärmeübertragung erfolgt dabei durch Konvektion. Beheizt werden diese Öfen in der Regel mittels Gas oder Strom, im Vakuum ist diese Art der Erwärmung wirkungslos, da der Wärmeträger Luft fehlt. Dieses Verfahren ist preiswert, bestens erprobt, schonend und unempfindlich gegen lange Verweildauer, es benötigt jedoch erheblich Zeit, Raum und Energie.
Seit einigen Jahren werden die Statoren vereinzelt mittels Infrarotstrahlung temperiert, die von außen auf die Bauteile gerichtet ist. Hier trifft die wärmende Strahlung direkt auf der Oberfläche des zu beheizenden Körpers auf. Der Wärmeübergang von der Wärmequelle in die Luft und von der Luft, oder einem Gas, auf den Stator entfällt damit. Die Oberflächen unterschiedlicher Werkstoffe werden dabei jedoch je nach Reflektionsgrad und Wärmeleitfähigkeit erheblich unterschiedlich erwärmt. Da die Strahlung auf die dünnen Kupferteile ebenso einwirkt wie auf das dicke Blechpaket ist eine gleichmäßige Temperaturverteilung im und auf dem Stator nur m ittels längerer Wartezeiten realisierbar.
Weiter sind Induktionsöfen bekannt. Bei diesen Öfen bzw. diesem Verfahren zur Erwärmung von insbesondere magnetischen Werkstoffen wie Eisen wird das Bauteil von einem hochfrequenten magnetischen Wechselfeld durchflossen. Da Kupfer nicht magnetisch ist, wird bei diesem Verfahren im Wesentlichen lediglich das Blechpaket erwärmt. Vom Blechpaket muss die Temperatur dann auf die Kupferteile übergehen. Insbesondere bei der induktiven Erwärmung muss auf Hot-Spots, also Ecken und Kanten geachtet werden, an denen sich Magnetwellen konzentrieren. Hier treten sehr schnell Übertemperaturen auf, die zur Zerstörung der Isolierung oder angrenzender Kunststoffteile führen.
Aus der DE 10 2017 005 532 A1 ist ein Verfahren und eine Erwärmungsvorrichtung zum induktiven Erwärmen und Warmhalten eines Stators oder Ankers einer Elektromaschine bekannt, wobei das induktive Erwärmen mittels elektromagnetischer Felder von unterschiedlichen Frequenzen erfolgt, die auf unterschiedliche Materialien abgestimmt sind. Das Blechpaket und die vorstehenden Kupferteile werden dabei durch unterschiedliche Induktoren mit verschiedenen Frequenzen erwärmt. Das Erreichen einer gleichmäßigen und auf wenige Grad genaue Temperatur am Stator stellt sich bei den direkten Beheizungsmethoden wie Induktion und Bestrahlung in der Praxis als sehr schwierig heraus und ist mit Wartezeiten behaftet. Problematisch ist insbesondere die Temperaturmessung an den nach dem Imprägnieren zwangsläufig stetig rotierenden Teilen. Insbesondere bei unterschiedlichen Starttemperaturen oder längeren Verweilzeiten ergeben sich inakzeptable Abweichungen, die den Gesamtprozess beeinträchtigen.
Ein weiteres Verfahren zum Temperieren von Elektromotorstatoren und - rotoren ist die Widerstandsbeheizung. Dabei wird die Wicklung mittels Beaufschlagung durch hohe niederfrequente Ströme bei geringer Spannung beaufschlagt. Hier wird die Wärme aufgrund des elektrischen Widerstands nur in den stromführenden Teilen erzeugt und muss von dort auf die Stahlbauteile wie das Blechpaket übergehen. Dies bedarf einer erheblichen Zeitspanne sofern gleiche Temperatur an allen Bauteilen gefordert ist und ist zudem wegen der großen Energieintensivität wenig effizient. Lange Zeiträume zum Temperieren der Bauteile bedeuten in der Serienfertigung mit den vorgegebenen kurzen Taktzeiten eine Vielzahl von Werkstückträgern und Spannvorrichtungen, große Öfen mit erheblichen Platz- und Energiebedarf und mit langen Anlauf- und Durchlaufzeiten. Eine große Anzahl in der Anlage befindlicher Bauteile machen diese unflexibel und teuer.
Aus der EP 2 905 346 A1 ist ein Verfahren zur Ausprägung eines Temperaturprofils auf ein Stahlblechbauteil und einer Wärmebehandlungsvorrichtung bekannt, aufweisend einen Produktionsofen zur Aufheizung des Stahlblechbauteils auf eine Temperatur oberhalb der AC3-Temperatur und eine thermische Nachbehandlungsstation zum Aufprägen eines Temperaturprofils auf das Stahlblechbauteil, wobei die ein oder mehreren Bereiche des Stahlblechbauteils in der thermischen Nachbehandlungsstation mittels Konvektion und/oder mittels Strahlung und/oder mittels Wärmeleitung gekühlt und geheizt werden.
Eine Regelung für ein Verfahren und eine Vorrichtung zur Wärmebehandlung von Teilen aus Aluminium oder einer Aluminium- Legierung ist aus der DE 692 24 349 T2 bekannt.
Eine Regelung- und Steuereinrichtung für eine Vorrichtung zur Induktionserwärmung eines Werkstücks mit einer Induktionseinrichtung ist aus der DE 10 2012 007 959 A1 bekannt.
Aus der DE 10 2018 101 226 A1 ist eine Vorrichtung zum induktiven Härten von langgestreckten Werkstücken, wie Achswellen, Seitenwellen oder Antriebswellen, bekannt, aufweisend wenigstens eine Härtestation und eine Anlassstation, wobei die wenigstens eine Härtestation eine Induktoreinrichtung zum Erwärmen und eine Abschreckeinrichtung zum Abschrecken der Werkstücke aufweist, wobei wenigstens ein Mehrachsroboter vorgesehen ist, um die zu härtenden Werkstücke in die Härtestation von einer Zufuhreinrichtung zu entnehmen und auf eine Abfuhreinrichtung aufzulegen.
Schließlich ist aus der EP 2 640 546 B1 eine Vorrichtung zum induktiven Erwärmen metallischer Bauteile beim Schweißen bekannt, umfassend wenigstens ein flexibles Induktionselement und Mittel zum automatischen Steuern und Regeln der Leistung und ggf. der Frequenz eines m it dem Induktionselement verbundenen Mittelfrequenzgenerators, wobei das flexible Induktionselement und die Kühlmittelleitung mehrfach plastisch oder elastisch verformbar und manuell oder automatisch an die Form zu erwärmender Bauteile anpassbar sind.
Aufgabe ist es deswegen ein Verfahren und eine Anlage zu generieren, das schnelle, energieeffiziente, gleichmäßige, raumsparende und genaue Temperierung von Bauteilen aus unterschiedlichen Werkstoffen wie z. B. Statoren aus Stahl und Kupfer ermöglicht.
Die Aufgabe ist mit einem Verfahren wie in Anspruch 1 beschrieben gelöst. Die nachfolgenden Ansprüche zeigen Ausbildungen des Verfahrens und eine beispielhafte Vorrichtung zur Umsetzung des Verfahrens auf.
Das neue Verfahren entspricht zudem der Forderung, dass imprägnierte, also m it noch flüssigem Harz beträufelte Statoren und Rotoren kontinuierlich rotieren müssen um das Abtropfen des Imprägniermaterials und Unwucht zu vermeiden.
Das neue Verfahren zeichnet sich durch die gleichzeitige Beheizung von Bauteilen aus unterschiedlichen Werkstoffen mit unterschiedlichen, auf den Werkstoff und das Bauteil abgestimmte Heizverfahren mit unterschiedlichen Heizquellen aus. Dieses Verfahren realisiert beispielsweise Statoren zudem die gleichzeitige Beheizung von innen und außen. Mit einem derartigen Verfahren und einer darauf abgestimmten Vorrichtung ist erstmals eine sehr schnelle und damit energie- und raumsparende Erwärmung und zudem eine gleichmäßige Durchwärmung derartiger Bauteile möglich. Das neue Verfahren zeichnet sich durch hohe Energieeffizienz aus, weil der größte Teil der Wärme direkt dem Bauteil zugeführt, bzw. bei der Induktion sogar im Bauteil erzeugt wird.
Im Gegensatz zu den herkömmlichen Wärmeübertragungsöfen, hier als Konvektionsöfen bezeichnet, lässt sich aufgrund der direkten Einbringung eines Großteiles der benötigten Wärmemenge der Thermoraum sehr klein gestalten, weil auch aufgrund der rotierenden Bauteile nur geringe Luftumwälzung notwendig ist. Die kleine Bauweise ergibt wenig Abstrahlfläche und damit geringen Wärmeverlust. Die wärmeisolierte Einhausung der von uns vorgeschlagenen Lösung gibt somit nur wenig Wärme an die Umgebung ab. Aufgrund des Gestaltungsmerkmales, dass die Heizelemente für die direkte Bauteilbeheizung auch zur Speisung der Konvektionsheizung dienen ist ein weiteres hilfreiches Merkmal um den Ofenraum bzw. den Thermoraum klein zu halten. Zum einen lassen sich die IR-Strahler oder Reflektoren so bewegen, dass die die Bauteile umgebende Luft beheizt wird. Zum anderen dienen insbesondere ferritische Passivheizelemente, auf die der Induktor einwirkt als Wärmequelle für die konvektive Beheizung. Die Intensität mit der der Induktor auf die Passivheizelemente einwirkt ist temperaturgeregelt. Der Induktor ist vorzugsweise beweglich gelagert und mittels zumindest eines Aktors auf unterschiedliche Bauteilgrößen und gegebenenfalls auf verschiedene Bauteilformen anpassbar. Durch die Beweglichkeit des Induktors lässt sich dieser auch in den Wirkbereich der Passivheizelemente bringen. Som it kann der gleiche Induktor sowohl zur direkten Beheizung des Bauteils als auch zur Temperierung der Passivheizelemente für die Konvektionsheizung dienen. Als Passivheizelemente werden ferritische Rippenrohre, Formbauteile, Platten, Stäbe oder Gitter vorgeschlagen. An diesen unbewegten Elementen lässt sich die Temperatur ebenso zuverlässig messen wie die Lufttemperatur in der Heizstation. Durch die Wechselwirkung des Induktors mit den Passivheizelementen wird also zusammen mit dem rotierenden Bauteil, das für eine Luftströmung sorgt ein Konvektionsofen geschaffen. Wahlweise wird die Umwälzung der Luft im Thermoraum durch einen Heiluftventilator unterstützt. Das Konvektionsheizverfahren dient zur geringfügigen Anpassung der Bauteiltemperatur, zum Temperaturausgleich im Bauteil selbst und zum Beibehalten einer erreichten Zieltemperatur bei Wartezeiten wie z. B. bei Stillstand der nachfolgenden Anlagenteile. Die Aktivierung der indirekten Heizung erfolgt insbesondere durch die Abstandsverringerung zwischen Passivheizelement und Induktor, z. B. durch Einschwenken, Drehen, Verschieben usw. sowie durch die unterschiedlich starke Beaufschlagung des Induktors.
Merkmal der neuen Verfahrensweise ist das gleichzeitige Einwirken von Induktion, IR-Strahlung und Konvektion. Wahlweise wird die IR-Strahlung durch die Widerstandserwärmung der Kupferteile mittels hoher Niederspannungsströme ersetzt oder ergänzt.
Bei entsprechender Anordnung lassen sich die Passivheizelemente auch durch die Infrarotstrahler beheizen.
Die Intensität und Dauer der Induktion und/oder der IR-Bestrahlung von 0 bis 100% wird einerseits vom Bediener je nach Bauteil vorgegeben. Andererseits lässt sich die Heizleistung aufgrund der Differenz von Ist- und Solltemperatur unter Berücksichtigung von vorgegebenen Maximaltemperaturen regeln. Da sich die Temperatur an diesen bewegten Teilen nur unzureichend sicher und zudem nur an der Oberfläche messen lässt, erfolgt die Temperierung des Bauteils vorzugsweise entsprechend folgendem Schema. Die Starttemperatur eines Stators m it bekannter Masse an Kupfer und Stahlblech wird gemessen. Die Zieltemperatur steht fest. Aus der in den Stator eingebrachten Heizleistung, der Frequenzumrichter für die Induktionsheizung kann diese darstellen, und der Dauer der Einwirkung lässt sich die eingebrachte Wärmemenge ermitteln und mit der benötigten errechneten Wärmemenge entsprechend eines vorgegebenen degressiven Leistungsverlaufs abgleichen. Alternativ ist es möglich, den Wärmemengeneintrag in das Bauteil entsprechend einer Tabelle in Abhängigkeit vom Temperaturanstieg und dem Bauteil zu programmieren.
Zur Temperaturmessung werden die bekannten berührungslosen und kontaktierenden Messverfahren eingesetzt.
Für eine gleichmäßige Temperaturverteilung am und im Stator rotiert dieser vorzugsweise während des gesamten Aufheizprozesses und wird zudem von Innen und außen beheizt. Damit unterschiedliche Bauteile bzw. Statorgrößen mit den gleichen Induktoren und IR-Strahlern effektiv beheizt werden können sind diese beweglich gelagert. Für innerhalb der Statoren angeordneten Heizelemente ist dies auch deswegen notwendig, damit sich die Statoren zur nächsten Station weiterbewegen können. Ein bewegter kurzer Induktor ermöglicht durch alternierend lineare Bewegung auch die gleichmäßige Erwärmung langer Statoren. Gleiches gilt für die IR-Heizelemente. Zudem ermöglicht diese Beweglichkeit der aktiven Heizelemente auch das gezielte Anfahren und Beheizen der Passivheizelemente für die Temperierung durch Konvektion. Ein weiteres Merkmal des neuen Verfahrens ist die gleichzeitige Beheizung des rotierenden Bauteiles von Innen und außen mit unterschiedlichen Wärmequellen. Dabei sind die Wärmequellen auf den jeweiligen Werkstoff und die Ausformung des Bauteils abgestimmt. Die Intensität, mit der die Wärmequellen auf den entsprechenden Abschnitt des Bauteils über eine vorgegebene Zeit einwirken, ergeben die einzubringende Wärmeleistung bzw. die gewünschte Temperatur.
Die Konvektion unterstützt die direkte Bauteilerwärmung und erlangt hauptsächlich dann Bedeutung, wenn es um den Temperaturausgleich im Bauteil und um das Halten der gewünschten Zieltemperatur geht. Durch die Rotation der Bauteile, insbesondere Statoren und Rotoren, ist die kontinuierliche Umströmung der Bauteile ohne Einsatz der sonst üblichen Umluftgebläse gegeben. Dies spart Bauraum, Energie und erzeugt keinen Lärm. Aufgrund der nicht notwendigen Einbindung von Gebläsen und Leitblechen und der Nutzung der bereits vorhandenen Heizelemente ist ein sehr kleiner Heizraum möglich, der sich preiswert isolieren und schnell beheizen lässt. Hinsichtlich großer Energieeffizienz wird der beheizte Raum soweit möglich mit reflektierenden Elementen wie Spiegel oder entsprechenden Folien bzw. Beschichtungen versehen. Zur Einsicht in den Triplexofenraum wird im Innenbereich eine Einwegspiegelscheibe verbaut, die 60 bis 95% der Wärmestrahlung reflektiert, jedoch den Blick in den Ofen erlaubt.
Zum Durchfahren des Triplexofens ist dieser mit Klappen und oder Bürsten oder temperaturbeständigen Fallvorhängen an den Bauteilzuführöffnungen und/oder den Thermoraumaussparungen ausgestattet.
Eine gleichmäßige definierte Rotation der Statoren ist insbesondere nach dem Aufbringen oder Einbringen der flüssigen Imprägniermasse, in der Regel ein Lack oder Harz, notwendig damit eine gleichmäßige Schicht auf der Wicklung und eine gleichmäßige Füllung der Nuten erhalten bleibt. Bei Stillstand würde die Imprägniermasse abtropfen. Bei rotierenden Bauteilen wie Rotoren würde sich durch die ungleichmäßige Verteilung zudem eine unzulässige Unwucht ergeben.
Für Bauteile, die aufgrund einer fehlenden Bohrung nicht gleichzeitig von außen und innen beheizbar sind wird die gegenüberliegende oder aufgereihte Anordnung der vorzugsweise beweglichen Heizelemente vorgeschlagen.
Eine beispielhafte Vorrichtung zur Umsetzung des Verfahrens in Form eines Triplexofens besteht im Wesentlichen aus einem Thermoraum und einer damit verbundenen Bauteiltransporteinheit. Die Bauteiltransporteinheit transportiert die Bauteilträger in Schritten oder kontinuierlich durch den Thermoraum . Die Bauteilträger sind hierfür drehbar gelagert und an einem Transportelement oder zwischen mehreren Transportelementen wie Ketten positioniert. Zur kontinuierlichen Rotation der Bauteile werden die Bauteilträger mittels eines gesonderten Antriebs, der auf ein den Bauteilträgern sitzenden Ritzeln einwirken angetrieben.
Optional wird die Drehbewegung der Bauteilträger mit den gleichen Ketten erzeugt, zwischen denen die mit Kettenrädern bestückten Bauteilträger positioniert sind.
Die Bauteilträger für rotierende Bauteile sind als Innenspanner oder als Außenspanner ausgeführt und stellen die Verbindung zwischen den im Thermoraum befindlichen und bewegten Bauteilen und der angebauten Bauteiltransporteinheit her.
Der Thermoraum beinhaltet die Heizelemente zur direkten und indirekten
Bauteilbeheizung wie z. B. Induktoren, IR-Strahler sowie Passivheizelemente und IR-Strahlungsabsorber oder Reflektoren für die konvektive Beheizung. Der Triplexofen ist modular aufgebaut und weist mindestens eine Heizstation auf, die über die zuvor beschriebenen Heizelemente verfügt. Die Anzahl der in einem Triplexofen aufgereihten Heizstationen richtet sich nach den technischen Vorgaben. Die Einhausung gibt dem größten Bauteil nur wenig Raum um das Volumen des Thermoraums möglichst gering zu halten und einen geringen Temperaturunterschied zwischen Boden und Decke zu erreichen. Der Thermoraum verfügt zur Bauteiltransporteinheit hin einseitig über die gesamte Länge über eine Aussparung in der sich der Werkstückträger bewegt. Die Aussparung ist vorzugsweise mit mehrreihigen Büstenleisten oder anderen federnden Abdeckelementen abgedeckt. Falls anschließende oder vorgelagerte Anlagenteile ein anderes Temperaturniveau als der Thermoraum haben, sind diese am Eingang und am Ausgang mit verschieblich gelagerten und mit Aktoren versehenen Verschlusselementen wie Klappen oder Tore verschlossen. Diese vorzugsweise als Schiebeelement ausgeführten Eingänge werden nur zur Durchfahrt der Werkstückträger ggf. mit Bauteil geöffnet. Da es bei der Erwärmung der Bauteile und insbesondere des Vergussmaterials oder des Imprägnierharzes beim Gelieren und Aushärten zu Ausdünstungen kommt verfügt der Thermoraum über eine vorzugsweise regelbare Absaugung. Der Thermoraum ist mit einer Vielzahl von Sensoren ausgestattet, insbesondere mit berührenden und berührungslosen Temperatursensoren.
Anhand der zeichnerisch dargestellten Figuren werden das Verfahren und eine beispielhafte Vorrichtung in Form eines Triplexofens näher erläutert. Es zeigen:
FIG 1 eine mögliche Anordnung der Primärheizelemente zum zeitgleichen Erhitzen eines Stators (7) von innen und außen mit unterschiedlichen Heizquellen
FIG 2 den Ausschnitt einer beispielhaften Ausführung eines Triplexofens (1 )
FIG 3 einen Bauteilträger (6) als Innenspanner mit aufgesetzten Stator (7)
FIG 1 zeigt im Schnitt eine vereinfachte mögliche Anordnung der aktiven und passiven Heizelemente im Thermoraum (2) am Beispiel eines Bauteils in Form eines Stators (7) für Elektromotoren, der im Wesentlichen aus einem Blechpaket (7.1 ) aus Weicheisenblechen und aus einer Kupferwicklung (7.2) besteht. Die beidseitig über das Blechpaket hinausragenden Kupferstabenden werden als Wickelkopf bezeichnet. Das Blechpaket hat an seinem Innenumfang Längsnuten in die die Kupferstäbe eingebettet sind. Der Stator (7) wird durch einen Bauteilträger (6), der hier vereinfacht als Außenspanner dargestellt ist, gelagert, transportiert und in Rotation versetzt. Der Thermoraum (2) ist durch eine wärmeisolierenden Thermoraumeinhausung (2.1 ) definiert. Die Thermoraumeinhausung (2.1 ) verfügt über zum indest eine schlitzförmige Aussparung (2.2) zur Bauteiltransporteinheit (5) hin. Entlang dieser Aussparung (2.2) wird der Bauteilträger (6) und mit ihm auch der Stator (7) bewegt um unter Rotation von einer Heizstation zur anderen oder von einem Anlagenteil zum nächsten zu gelangen. Zur primären Beheizung des Stators (7) sind sowohl ein außen angeordneter Induktor (8) für die induktive Erwärmung insbesondere des Blechpaketes und zumindest ein in der zentrischen Bohrung des Stators (7) positionierter Infrarotstrahler (9) für die Erwärmung der Kupferstäbe zu erkennen. In Verbindung mit einem Aktor und durch die verschiebliche Lagerung der Primärheizelemente lassen sich diese an unterschiedliche Bauteilgrößen, im Speziellen an unterschiedliche Statorenabmessungen anpassen oder in die Statoren (7) einzufahren. Weiter ist es Primärheizelementen und insbesondere dem Induktor (8) bei verschieblicher Lagerung möglich in den Wirkbereich der Passivheizelemente (10) zu fahren um diese für die konvektive Beheizung des Thermoraumes (2) und damit des Bauteils zu temperieren. Die IR-Heizröhren sind im dargestellten Fall ebenfalls beweglich gelagert um axial in die zentrische Bohrung des Stators (7) einfahren und ausfahren zu können.
Der Induktor (8) und/oder die IR-Heizröhren sind vorzugsweise verschieblich gelagert und zur automatischen Positionierung mit Aktoren verbunden. Somit lassen sich die Primärheizelemente programmgesteuert auf unterschiedliche Bauteilabmessungen bzw. Statorabmessungen anpassen und zugleich als Energiequelle für die Passivheizelemente (10) zur konvektiven Beheizung des Thermoraumes (2) und des Stators (7) nutzen, indem z. B. der Induktor (8) aktiviert und in den Wechselwirkungsbereich ferritischer Passivheizelemente (10) bewegt wird. Somit beheizt der Induktor (8) wahlweise das Bauteil oder das Passivheizelement (10). In gleicher Weise kann auch mit den IR-Röhren verfahren werden. Für die Luftumwälzung im Thermoraum (2) sorgt die Rotationsbewegung des Stators (7) und/oder ein Heißluftventilator (1 1 ).
Der Stator (7) wird bei dieser Anordnung der Heizelemente gleichzeig von außen und innen durch direkte Wärmeeinbringung m ittels Induktion in das Blechpaket und IR-Strahlung in die Kupferstäbe beheizt und/oder ergänzend sowie nachfolgend allseitig durch die temperierte umströmende Luft, also durch Konvektion auf Temperatur gehalten oder der Zieltemperatur angeglichen. Der Thermoraum (2) ist vorzugsweise bereits beim Einfahren des Stators (7) mittels der Infrarotstrahler (9) und der Passivheizelemente (10) auf Solltemperatur gebracht.
FIG 2 zeigt einen Querschnitt durch einen vereinfacht dargestellten Triplexofen (1 ) bestehend aus einer Bauteiltransporteinheit (5) und einem Thermoraum (2). Der als Innenspanner mit aufgespanntem Stator (7) dargestellte Bauteilträger (6) ist mit seinen Kettenrädern zwischen Ketten in der Bauteiltransporteinheit (5) gelagert und reicht durch eine Aussparung (2.2), die entlang der Transportstrecke zwischen Bauteiltransporteinheit (5) und Thermoraum (2) eingebracht ist, in den Thermoraum (2) hinein. Damit sich die Achse des Bauteilträgers (6) durch die abgedichtete Aussparung (2.2) bewegen kann, ist die Aussparung (2.2) mit flexiblen Abdeckungen z. B mittels Bürsten, Vorhänge, federnden Lamellen und federnden hitzebeständigen Abdichtungen wie aufgeblasene Silikonschläuche versehen. In dieser Darstellung ist der Induktor (8) außen über dem Blechpaket angeordnet und die Infrarotstrahler (9) sind von außen auf die Kupferstäbe der Wickelköpfe gerichtet. Die temperierte den Stator (7) umgebende Luft zur konvektiven Beheizung ist nicht sichtbar dargestellt. Der Thermoraum (2) besteht aus einer Einhausung, die mit einer thermischen Isolationsschicht ausgekleidet ist, sowie über zumindest eine Bauteilzuführöffnung (3), die gleichzeitig auch zur Bauteilabfuhr dient.
FIG 3 zeigt einen Bauteilträger (6), der als Innenspanner für Bauteile mit zentrischer Bohrungen ausgestattet ist und einen Stator (7) trägt. Der Bauteilträger (6) weist in der dargestellten Ausführung zwei Kettenräder auf, die sowohl die Lagerpunkte als auch Antriebselemente für die Rotation und den Transport des Stators (7) sind. Die Kettenräder sind zwischen Ketten gelagert, wie in DE 10 2019 004 954.3 dargestellt. Bezugszeichenliste:
1 = Triplexofen
2 = Thermoraum
2.1 = Thermoraumeinhausung
2.2 = Thermoraumaussparung
3 = Bauteilzuführöffnung
4 = Absaugöffnung
5 = Bauteiltransporteinheit
6 = Bauteilträger
7 = Stator
7.1 = Blechpaket
7.2 = Kupferwicklung
8 = Induktor
9 = Infrarotstrahler
10 = Passivheizelement
1 1 = Heißluftventilator

Claims

Patentansprüche
1. Multiples Temperierverfahren für Statoren (7) und Rotoren von Elektromotoren bestehend aus Weicheisenblechen und aus Kupferstäben sowie allgemein für Bauteile bestehend aus verschiedenen Werkstoffen mit unterschiedlichen magnetischen und wärmetechnischen Eigenschaften dadurch gekennzeichnet, dass die magnetischen Teile eines Bauteils primär mittels Induktion und gleichzeitig die unmagnetischen Teile des gleichen Bauteils primär mittels Infrarotstrahlung aufgeheizt werden und sekundär die Erwärmung gleichzeitig und zur nachfolgenden Feinjustage der Zieltemperatur und deren Beibehaltung durch Konvektion erfolgt.
2. Multiples Temperierverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass rohrförmige Bauteile, insbesondere Statoren (7), bei der Primärbeheizung zur schnellen und gleichmäßigen Durchwärmung von innen und von außen gleichzeitig mit unterschiedlichen Heizverfahren, insbesondere mittels Induktion und Infrarotbestrahlung beheizt werden.
3. Multiples Temperierverfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass sich die Intensität der inneren und der äußeren Heizquelle und damit der Induktionsheizung (8) und der Infrarotheizung unabhängig voneinander entsprechend dem Energiebedarf und der Zieltemperatur des am oder im Bauteil zugeordneten Werkstoffteils regeln und steuern lässt. Multiples Temperierverfahren nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Bauteil während der Erwärmung zur gleichmäßigen Temperaturverteilung und zum besseren Wärmeübergang bei konvektiver Beheizung durch die umgebende Luft in Bewegung und insbesondere in Rotation versetzt wird und/oder sich der Induktor (8) und die Infrarotstrahler (9) wahlweise linear bewegen. Multiples Temperierverfahren nach zumindest einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Heizenergie für die konvektive Beheizung der Bauteile, teilwiese von der vom Bauteil reflektierten oder der vorbeigestrahlten Infrarotquelle stammt und/oder durch zumindest ein ferritisches Passivheizelement (10) eingebracht wird, das vom Induktor (8) temperiert wird. Multiples Temperierverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die unmagnetischen, aber elektrisch leitende Teile des zu beheizenden Bauteils ergänzend oder alternativ zur Infrarotbestrahlung mittels Widerstandsbeheizung aufgrund hoher 18
Stromdurchleitung aufgeheizt werden. Multiples Temperierverfahren nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Erwärmung eines Bauteils entsprechend der benötigten Wärmemenge des Bauteils und insbesondere deren einzelner Werkstoffteile zur geforderten Temperaturerhöhung auf Basis der Massen der verschiedenen Werkstoffe und deren Wärmekapazität in der Weise erfolgt, dass die auf den einzelnen Werkstoffteil eines Bauteils einwirkende Wärmeenergie nach Programmvorgabe zugeführt wird, bis die gewünschte Wärmemenge eingebracht und damit die Zieltemperatur erreicht ist. Triplexofen (1 ) als Vorrichtung zur schnellen und effizienten Erwärmung von Statoren (7) und Rotoren von Elektromotoren zur Realisierung des Verfahrens nach zumindest einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Triplexofen (1 ) aus zumindest einer Heizstation bestehend aus einer Primärheizung aus zumindest einem vorzugsweise beweglich gelagerten Induktor (8) und mindestens einem vorzugsweise beweglich gelagerten Infrarotstrahler (9), einer Sekundärkonvektionsheizung und zumindest einer außerhalb des Thermoraumes (2) befindlichen 19
Bauteiltransporteinheit (5) mit Bauteildrehantrieb besteht. Triplexofen (1 ) nach Anspruch 8, dadurch gekennzeichnet, dass die Wärmequelle der Sekundärkonvektionsheizung Passivheizelemente (10) sind, wobei die ferritischen Passivheizelemente (10) mit zumindest einem Induktor (8) in Verbindung stehen und/oder Infrarotlichtabsorber die Passivheizelemente für die Infrarotlichtstrahler darstellen. Triplexofen (1 ) nach zumindest einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass wahlweise sowohl Primärheizelemente als auch Sekundärheizelemente positionsveränderlich gelagert und mit Aktoren verbunden sind. Triplexofen (1 ) nach zumindest einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Triplexofen (1 ) zum einen aus einem wärmeisolierten Thermoraum (2) mit aktiven und vorzugsweise ergänzenden passiven Heizelementen, zumindest einer verschließbaren Bauteilzuführöffnung (3) und einer entlang der Bauteilbewegungsrichtung verlaufenden Thermoraumaussparung (2.2) sowie wahlweise über Absaugöffnungen (4), Temperatursensoren, Beleuchtung und zumindest eine einwegverspiegelte Glasscheibe verfügt, und zum 20 anderen aus einer mit dem Thermoraum (2) verbundenen Bauteiltransporteinrichtung, deren darin befindlichen Bauteilträger (6) in den Thermoraum (2) ragen und durch Aktoren mittels Maschinenelemente bewegt und in Rotation versetzt werden. Triplexofen (1 ) nach zumindest einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass der Induktor (8) als flexibler, wahlweise durch Aktoren verformbarer Hohlkörper, vorzugsweise in Form eines Kupferflexrohres oder eines Kupferwellrohres ausgestaltet ist. Triplexofen (1 ) nach zumindest einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass der Triplexofen (1 ) über eine Temperatursteuerung für jedes der drei Heizverfahren und für die Bauteiltransporteinheit (5) verfügt. Triplexofen (1 ) nach zumindest einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass in einem Thermoraum (2) mehrere Heizstationen mit primären und sekundären Heizelementen in Reihe angeordnet sind.
EP21758702.1A 2020-08-12 2021-08-12 Multiples temperierverfahren für werkstücke mittels triplexofen Pending EP4197094A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004905.2A DE102020004905A1 (de) 2020-08-12 2020-08-12 Multiples Temperierverfahren für Werkstücke mittels Triplexofen
PCT/EP2021/072456 WO2022034164A1 (de) 2020-08-12 2021-08-12 Multiples temperierverfahren für werkstücke mittels triplexofen

Publications (1)

Publication Number Publication Date
EP4197094A1 true EP4197094A1 (de) 2023-06-21

Family

ID=77447914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21758702.1A Pending EP4197094A1 (de) 2020-08-12 2021-08-12 Multiples temperierverfahren für werkstücke mittels triplexofen

Country Status (9)

Country Link
US (1) US20230299652A1 (de)
EP (1) EP4197094A1 (de)
JP (1) JP2023539566A (de)
KR (1) KR20230061404A (de)
CN (1) CN116348618A (de)
BR (1) BR112023002594A2 (de)
DE (1) DE102020004905A1 (de)
MX (1) MX2023001806A (de)
WO (1) WO2022034164A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2081055C (en) 1991-11-05 1999-12-21 John R. Eppeland Method and apparatus for heat treatment of metal parts utilizing infrared radiation
CN102016472B (zh) * 2008-05-08 2013-07-24 西门子Vai金属科技有限公司 用于干燥和/或烘干连续移动的金属带上的有机覆层的方法和用于施行该方法的装置
HUE031472T2 (en) 2010-11-19 2017-07-28 Andreas Nebelung Apparatus and method for induction heating of metal parts during welding using a cooled, flexible induction element
DE102012007959B4 (de) 2012-04-20 2015-08-27 Cay-Oliver Bartsch Vorrichtung und Verfahren zur Induktionserwärmung
HUE051924T2 (hu) 2014-01-23 2021-03-29 Schwartz Gmbh Hõkezelési eljárás
DE102017005532A1 (de) 2017-06-10 2018-12-13 copperING GmbH Verfahren und Vorrichtung zum induktiven Erwärmen eines Stators oder Ankers einer Elektromaschine
DE102018101226A1 (de) 2018-01-19 2019-07-25 Maschinenfabrik Alfing Kessler Gmbh Vorrichtung zum induktiven Härten von langgestreckten Werkstücken
DE102019004954B3 (de) 2019-07-17 2020-08-20 Hedrich Gmbh Kettentransportsystem

Also Published As

Publication number Publication date
US20230299652A1 (en) 2023-09-21
JP2023539566A (ja) 2023-09-15
BR112023002594A2 (pt) 2023-05-09
WO2022034164A1 (de) 2022-02-17
KR20230061404A (ko) 2023-05-08
CN116348618A (zh) 2023-06-27
MX2023001806A (es) 2023-07-10
DE102020004905A1 (de) 2022-02-17

Similar Documents

Publication Publication Date Title
DE102009047541A1 (de) Ofen zum Konditionieren von Vorformlingen
DE102006003014B3 (de) Verfahren zum Härten eines einen geschlossenen Kurvenzug beschreibenden Werkstücks
DE102017001939A1 (de) Vorrichtung zur Träufelimprägnierung eines Stators oder Ankers einer Elektromaschine
EP2274475B1 (de) Beheizte prägewalze
DE102009047536A1 (de) Ofen zum Konditionieren von Vorformlingen
EP2511639A1 (de) Drehherdofen
WO2004085925A1 (de) Verfahren zum betreiben eines backofens
WO2022034164A1 (de) Multiples temperierverfahren für werkstücke mittels triplexofen
EP3590180B1 (de) Verfahren zur träufelimprägnierung des stators oder ankers einer elektromaschine
DE102013017299A1 (de) Verfahren und System zum Imprägnieren, Verfestigen oder Elektroisolieren eines ein-oder mehrlagige Wicklungen tragenden Körpers
DE20221980U1 (de) Anordnung zur thermischen Behandlung eines Werkstücks
DE102016005273A1 (de) Vorrichtung und Verfahren zur thermischen Konditionierung von Vorformlingen
EP1943364B1 (de) Verfahren und anlage zur trockenen umwandlung eines material-gefüges von halbzeugen
DE3329855A1 (de) Heizschrank
WO2012037905A1 (de) Verfahren und einrichtung zur leitung der strömung in industrieöfen für die wärmebehandlung von metallischen werkstoffen/werkstücken
DE4007123C2 (de)
DE3541988C1 (de) Vorrichtung zum Ziehen von Kristallen
EP0796934B1 (de) Beheizte Galette zum Erwärmen synthetischer Fäden
WO2002042045A1 (de) Verfahren zur anwärmung von kunststoffrohren und vorrichtung zur durchführung des verfahrens
DE1921938A1 (de) Heizkoerper
EP2872845B1 (de) Ofen mit flächenstrahler und verfahren zum beheizen eines werkstückes mit solch einem ofen
WO2001078955A2 (de) Beschichtungseinrichtung
DE10361756B3 (de) Schwerkraftbiegeofen und Schwerkraftbiegeverfahren für Glas
EP1270088B1 (de) Verfahren zum Trocknen und/oder Einbrennen einer auf ein metallisches Band aufgebrachten Beschichtung
DE202017007015U1 (de) Vorrichtung zur Träufelimprägnierung eines Stators oder Ankers einer Elektromaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)