EP4189772A1 - Dispositif a metasurface - Google Patents
Dispositif a metasurfaceInfo
- Publication number
- EP4189772A1 EP4189772A1 EP21759241.9A EP21759241A EP4189772A1 EP 4189772 A1 EP4189772 A1 EP 4189772A1 EP 21759241 A EP21759241 A EP 21759241A EP 4189772 A1 EP4189772 A1 EP 4189772A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- photoconductive
- conductive
- layer
- ground
- illuminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 59
- 230000001902 propagating effect Effects 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 30
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000005286 illumination Methods 0.000 claims description 7
- 230000035515 penetration Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 125
- 230000006870 function Effects 0.000 description 12
- 230000005855 radiation Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 230000005404 monopole Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/24—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
- H01Q3/247—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2676—Optically controlled phased array
Definitions
- the field of the invention is that of metasurface devices, for example metasurface antennas.
- the invention applies to microwave devices.
- Such devices can be used in various applications such as radar applications in avionics and aerospace, high-speed communication, space telecommunications.
- Patent application WO2019219708 discloses an antenna device comprising a substrate, a ground plane formed on a rear surface of the substrate and an antenna element formed on the front surface of the substrate and comprising a first array of conductive pads separated by switches arranged between the conductive pads.
- the antenna device includes a source of electromagnetic waves configured and arranged to generate a surface wave on the front face of the substrate.
- the surface wave is transformed by the two-dimensional array of conductive pads into leaky waves emitted along a direction presenting a component perpendicular to the front surface of the substrate.
- the electrical connection of certain conductive pads to each other makes it possible to form a network of groups of pads connected to each other. This solution makes it possible, without using phase shifters, to control the main direction of the emission pattern of the antenna and therefore to produce electronically scanned antennas at low cost.
- An object of the invention is to propose a metasurface antenna device making it possible to obtain good temporal precision.
- the subject of the invention is a metasurface device comprising: a substrate having a rear surface and a front surface; - a transmitting and/or receiving device capable of transmitting and/or receiving an electromagnetic wave, configured and arranged so that the wave is capable of propagate in the form of a surface wave on the front surface of the substrate,
- an antenna element comprising a two-dimensional array of conductive pads arranged on the front surface of the substrate, spaced from each other and having dimensions smaller than the operating wavelength of the transmitting and/or receiving device
- the substrate comprising a ground structure capable of having a ground plane function, the ground structure being capable of being alternately in an insulating state in which it prevents the propagation of the surface wave on the front surface of the substrate, from the transmitting and/or receiving device to the conductive pads, or vice versa, and in a conductive state in which the ground structure has the function of a ground plane allowing the propagation of the surface wave on the surface front of the substrate, from the emitter-receiver device to the conductive pads, or vice versa, the ground structure being capable of passing from the insulating state to the conductive state by illumination of the ground structure at a length of so-called switching wave.
- the antenna element is capable of reflecting or transforming the surface wave to radiate in a direction having a component perpendicular to the front surface of the substrate (in transmission mode) or to reflect or transform a wave received on the front surface of the substrate to transform it into a surface wave (in reception mode ).
- the metasurface device comprises a switching source capable of passing from a state in which it does not illuminate the ground structure so that the ground structure is in the insulating state, to a state in which it illuminates the ground structure so that the ground structure is in the conductive state.
- the substrate comprises a ground layer and an intermediate layer isolating the ground plane of the conductive pads when the ground structure has the function of ground plane, the ground structure comprising a central part photoconductive part and a conductive peripheral part surrounding the photoconductive central part, the photoconductive central part being in an insulating state, when it is not illuminated, in which it prevents propagation of the surface wave from the transmitting and/or receiving device to the conductive pads, or vice versa, the photoconductive central part being capable of being in a conductive state, when it is illuminated at the switching wavelength, wherein the central photoconductive portion is conductive so that the ground structure has the function of a ground plane.
- the ground structure is a ground layer, the intermediate layer being interposed between the conductive pads and the ground layer.
- the intermediate layer is made of a photoconductive semiconductor material able to be in a conductive state when it is illuminated at the switching wavelength, the intermediate layer being interposed between the conductive pads and the conductive peripheral part, the photoconductive central part comprising a central part of a rear face of the intermediate layer, the rear face of the intermediate layer being in direct physical contact with the conductive peripheral part.
- the device comprises several switching sources, the ground structure comprising several photoconductive central parts and a switch making it possible to selectively illuminate only one of the photoconductive central parts taken from among the photoconductive central parts and/or making it possible to selectively illuminate several photoconductive central parts simultaneously.
- the ground structure is a first photoconductive layer made of a single photoconductive semiconductor material, the photoconductive material being insulating when it is not illuminated and conductive when it is illuminated at the switching wavelength.
- the photoconductive semiconductor material forming the first photoconductive layer is chosen so that the first photoconductive layer has a depth of penetration less than the thickness of the first photoconductive layer at the switching wavelength so that when an entire rear face of the first photoconductive layer is illuminated at the switching wavelength by the switching source, the first photoconductive layer comprises:
- the metasurface device comprises an intermediate semiconductor layer, the metasurface device comprising an optical reconfiguration device comprising a so-called reconfiguration source emitting an optical beam and a diffractive optical device capable of illuminating a set of at least an area, called the illuminated area, of the intermediate layer so that the intermediate layer is conductive only in the whole of at least one illuminated area, so as to electrically connect two by two the metal pads of the element of antenna separated and connected by a continuous area of the intermediate layer located entirely in an illuminated area of the set of at least one illuminated area to form at least one group of conductive pads (4) electrically connected to each other.
- an optical reconfiguration device comprising a so-called reconfiguration source emitting an optical beam and a diffractive optical device capable of illuminating a set of at least an area, called the illuminated area, of the intermediate layer so that the intermediate layer is conductive only in the whole of at least one illuminated area, so as to electrically connect two by two the metal pads of the element of antenna separated and connected by a continuous area
- the intermediate layer is interposed between the ground layer and the conductive pads.
- the middle layer is the ground layer
- the metasurface device has the advantage of providing an optical control for the generation of the ground plane. This command is therefore independent of the command of the source of electromagnetic waves excitation of the metasurface (or of the antenna element) and therefore of the signal radiated by the metasurface device.
- the temporal precision of an optical command is better than that of an electrical command. This solution therefore makes it possible to obtain very good temporal precision at a time at which the metasurface device is switched on or off and therefore at a time at which electromagnetic radiation is emitted. Indeed, the antenna only radiates when the ground structure is illuminated so as to create the ground plane. [0019] This temporal precision makes it possible to carry out precise measurements, for example, for radar or telecommunications applications. It makes it possible, for example, to obtain good precision on the measurement of the round-trip travel time of the wave emitted to the illuminated object.
- the ground plane optical drive may also be decorrelated from another optical drive to provide selective electrical connection of the conductive pads of the metasurface to configure the antenna element, for example, to adjust the scale of the metasurface, i.e. the pitch of the antenna elements of the metasurface.
- Figure 1 schematically illustrates, in top view, a first example of a metasurface device according to a first embodiment of the invention
- FIG.2 Figure 2 schematically illustrates more precisely, part of the antenna element of the device of Figure 1, in top view, a first example of a metasurface device according to a first mode
- FIG.3 Figure 3 schematically illustrates another example of an antenna element
- Figure 4 schematically illustrates, in section, the device of Figure
- Figure 5 schematically illustrates, in bottom view, the device of Figure 1,
- FIG.6 Figure 6 schematically illustrates, in section, a second example of the device according to the first embodiment of the invention
- FIG.7 Figure 7 schematically illustrates, in section, a third example of the device according to the first embodiment of the invention.
- Figure 8 schematically illustrates, in section, a metasurface device according to a second embodiment
- Figure 9 schematically illustrates, in exploded view, the metasurface device of Figure 8.
- conductor electrically conductive
- insulator electrically insulator
- optical beam is meant a beam whose wavelength is located in the optical domain comprising the infrared, the ultraviolet and the visible.
- Figure 1 schematically illustrates, in top view, a metasurface device 1 according to the invention.
- the metasurface device 1 comprises a stack E of layers stacked along a stacking axis z perpendicular to the plane of FIG. 1.
- the stack comprises a substrate 2, a central conductive crown CM and an antenna element 3 formed around the central conductive crown CM.
- the central conductive crown CM is distant from a central channel O and from the antenna element 3.
- the antenna element 3 comprises a two-dimensional periodic array of conductive pads 4 (or conductive patches) arranged on the front surface of the substrate.
- the conductive pads 4 are spaced from each other.
- the conductive pads 4 are separated by openings 5.
- the antenna element 3 constitutes a metasurface.
- the conductive pads 4 are, for example, metal or indium-tin oxide or ITO pads, just like the metal ring CM.
- the conductive pads 4 and the openings 5 are substantially self complementary. Unlike a metasurface composed of conductive pads 4 and strictly self-complementary openings 5, the conductive pads 4 of the antenna element 3 are separated from each other as can be seen in FIG. 2 representing part of the element antenna or metasurface 3. In other words, the closest points of two adjacent conductive pads 4 are separated by an interval 6. The openings 5 are therefore larger than the conductive pads 4.
- the antenna element 3 therefore comprises intervals 6 separating the adjacent pads by their adjacent vertices.
- the antenna element 3 substantially has a checkerboard structure.
- the openings 5 and the conductive pads 4 are substantially square in shape.
- the conductive pads 4 can have a strictly square shape or a substantially square shape with clipped or flattened tops. They can have a different shape, such as for example an oval or rounded shape.
- the conductive pads 4 have sub-wavelength sides or dimensions. It is the same for the pitch of the network.
- the conductive pads 4 have dimensions or sides of lengths less than or equal to l/50 and, preferably, between l/50 and l/100.
- l is the operating wavelength of the metasurface device, i.e. the wave radiated by the antenna element 3.
- the size of the interval 6, that is to say the minimum distance between two adjacent pads which may be the distance between two vertices of two adjacent conductive pads 4, is between l/1000 and l/2000 .
- the wavelength is approximately 10 mm in air
- the sides of the pads have a length of between 100 and 200 ⁇ m and the distance between pads 4 adjacent by their vertices is between 5 and 10 pm.
- conductive pads 4 and substantially self-complementary openings 5 are possible.
- the pellets 4 and/or the openings 5 can, for example, have substantially the shapes of equilateral triangles, crosses or ovals.
- the conductive pads are arranged in rows and columns. The columns can be perpendicular or not in relation to the columns.
- the conductive pads 4 all have the same orientation in a two-dimensional frame linked to the front face of the substrate.
- conductive pads can have different orientations in a two-dimensional marker linked to the front face of the substrate.
- the conductive pads 4 all have the same shape and the same dimensions. Alternatively, conductive pads have different shapes and/or different dimensions.
- FIG 3 there is shown a metasurface 30 whose conductive pads 40 have substantially an oval shape. Conductive pads are not all the same. Conductive pads differ from other conductive pads by their shapes and their orientations a two-dimensional mark linked to the front face of the substrate.
- the selective electrical connection between conductive pads 4 makes it possible to form a reconfigurable antenna element 3, that is to say, capable of presenting different radiation patterns from the same excitation. It makes it possible, for example, to obtain a multi-scale antenna element which may comprise a two-dimensional network of conductive pads electrically insulated from each other or a two-dimensional network of groups of conductive pads electrically connected to each other as we will see. afterwards.
- FIG. 4 schematically illustrates in section the metasurface device 1 of FIG. 1 constituting a first example of a metasurface device according to a first embodiment of the invention.
- Figure 5 is a schematic rear view of the same device.
- the metasurface device comprises a source S for emitting electromagnetic waves (not visible in FIG. 1) and configured and arranged so as to generate surface waves on the front surface 22 of the substrate 2.
- the source is advantageously isotropic.
- the source advantageously makes it possible to emit spherical or cylindrical electromagnetic waves.
- the source includes, for example, a monopoly.
- the electromagnetic waves are preferably microwaves, preferably microwaves.
- the metasurface device is, for example, an antenna, for example microwave.
- the metasurface device 1 comprises a channel O passing through the stack E along the z axis.
- the source S comprises, for example, a coaxial cable C comprising a conductive central core A, surrounded by a dielectric material MD itself surrounded by a shield B.
- the source S also comprises an electrical source SE capable of generate a microwave electric signal transmitted by the coaxial cable C to an end ED of the central core A.
- the stripped end ED crosses the substrate 2 and extends opposite the metal crown CM.
- the part of the stripped end ED extending opposite the antenna element 3 constitutes a monopole which radiates an electromagnetic wave, the essential part of which is diffused towards the antenna element 3 and propagates on the front face of the substrate 2 in the form of a surface wave. The rest of the wave emitted by the stripped end ED is transmitted in free space.
- the antenna element 3 whatever its scale, reflects or transforms the surface wave emitted on the front surface 22 of the substrate 2 to radiate, at the wavelength of the electromagnetic wave, according to a direction presenting a component perpendicular to the front surface 22 of the substrate 2, ie it presents a component along the z axis.
- the total wave radiated by the antenna element comes from a recombination of the leaky waves reflected or transformed by the various conductive pads, whether it is the scale of the antenna element, i.e. say even when the conductive pads 4 are electrically isolated from each other.
- the interference between the leaky waves radiated by the different conductive pads are radiated along a direction presenting a component along the z axis.
- the central crown CM is configured and arranged to optimize the coupling rate between the wave generated by the antenna element 3 at a predetermined frequency.
- the configuration of the central crown CM depends on the frequency of the wave generated by the monopole ED.
- the antennas are conventionally circular as in Figure 1 but may have another geometric shape, such as a rectangular shape, for example square.
- the substrate 2 comprises a ground layer 7 able to have a ground plane function.
- the ground layer 7 is continuous and extends opposite the entire antenna element 3.
- the ground layer 7 is capable of being in an insulating state in which it prevents the propagation of the surface wave (generated by the source S) on the front surface 22 or front face of the substrate 2 so as to prevent the antenna element 3 to radiate.
- the ground layer 7 is also able to be in a conductive state in which the ground layer 7 has a ground plane function allowing the transmission of the surface wave on the front surface 22 of the substrate 2, from the source up to the conductive pads 4, that is to say up to the antenna element 3, so that the antenna element 3 radiates in a direction having a component perpendicular to the front surface 22 of the substrate 20, that is to say a component along the z axis.
- the ground layer 7 is capable of passing from the insulating state to the conductive state by illumination of the ground layer 7 at a so-called switching wavelength lo. It is also capable of being maintained in the conductive state when the illumination is maintained.
- the antenna element 3 is passed from an off state, in which it is unsuitable to radiate under the effect of the radiation from the source S, in an on state, in which it is capable of radiating under the effect of the radiation from the source S.
- the metasurface device 1 advantageously comprises a switching source 8 able to pass from a state in which it does not illuminate the ground layer so that the ground layer 7 either in the insulating state to a state in which it illuminates the ground layer 7 so that ground layer 7 passes from the insulating state to the conducting state.
- Figure 4 schematically illustrates in section the device according to the invention.
- the substrate 2 comprises a stack of several layers comprising the ground layer 7 and an intermediate layer 9 interposed between the conductive pads and the ground layer 7.
- the function of the intermediate layer 9 is to electrically insulate the ground layer 7 conductive pads 4.
- the intermediate layer 9 is insulating regardless of the state (first state or second state of the source 8).
- the intermediate layer 9 is, for example, made of an insulating semiconductor when it is illuminated at the switching wavelength 7c. It is, for example, made of silicon or gallium arsenide.
- the intermediate layer 9 comprises the front surface 22 of the substrate 2.
- the front surface 22 of the substrate 2 is in direct physical contact with the conductive pads 4.
- the intermediate layer 9 comprises a rear face 23 on which the ground layer 7 is formed, that is to say in direct physical contact with the ground layer 7.
- the ground layer 7 comprises the rear face 21 of the substrate 2.
- the ground layer 7 is advantageously electrically connected to the coaxial cable C and, more particularly to the shield B.
- Figure 5 shows a rear view of the stack E and the coaxial cable C. For clarity, the mirror 82 is not shown.
- the ground layer 7 comprises a central photoconductive part PC surrounding the channel O and a peripheral conductive part PF surrounding the central photoconductive part PC.
- the central photoconductive part PC has a crown shape surrounding and delimiting the channel O.
- the conductive peripheral part PF has a crown shape surrounding the photoconductive central part PC.
- the peripheral conductive part PF is attached to the central photoconductive part PC.
- the photoconductive central part PC is capable of being alternately in an insulating state and in a conductive state.
- the central photoconductive part PC is in the insulating state when it is not illuminated.
- the photoconductive central part PC is capable of passing into the conductive state, in which it is totally conductive, when it is illuminated at the switching wavelength 7c by photoconductivity.
- the central photoconductive part PC is made of a semiconductor material such as, for example, silicon, gallium arsenide GaAs or a two-dimensional material such as, for example, a transition metal dichalocgenide or TMD, acronym of the Anglo-Saxon expression "Transition metal dichalcogenide” or in an organic semiconductor material.
- a semiconductor material such as, for example, silicon, gallium arsenide GaAs or a two-dimensional material such as, for example, a transition metal dichalocgenide or TMD, acronym of the Anglo-Saxon expression "Transition metal dichalcogenide” or in an organic semiconductor material.
- the conductive peripheral part PF is, for example, metallic or made of indium tin oxide or ITO for the English name "Indium tin oxide”) which is transparent in the visible spectrum.
- the photoconductive central part PC When the photoconductive central part PC is in the insulating state, it prevents the propagation of the surface wave on the front surface 22 of the substrate 2 from the source to the antenna element or the conductive pads. 4.
- the ground layer 7 is substantially totally conductive. It is substantially continuously conductive facing the whole of the antenna element 3 or metasurface. Ground layer 7 therefore has a ground plane function allowing transmission of the surface wave on front surface 22 of substrate 2.
- Antenna element 3 reflects or transforms the surface wave.
- the antenna element 3 radiates in a direction comprising a component perpendicular to the upper surface 22.
- the metasurface device advantageously comprises the switching source 8, capable of illuminating the photoconductive central part PC at the switching wavelength lo so as to cause the central part to pass photoconductive PC from the insulating state to the conductive state in which the photoconductive central part PC is substantially totally conductive or totally conductive.
- the switching source 8 capable of illuminating the photoconductive central part PC at the switching wavelength lo so as to cause the central part to pass photoconductive PC from the insulating state to the conductive state in which the photoconductive central part PC is substantially totally conductive or totally conductive.
- the switching source 8 is arranged and configured so as to make it possible to emit a light beam substantially completely illuminating the rear face 25 of the central photoconductive part PC at the switching wavelength lo so as to passing or maintaining the central photoconductive part PC in the conductive state in which it is fully conductive.
- rear face 25 of the central photoconductive part PC is meant the face of the central photoconductive part PC which is opposite to the intermediate layer 9.
- the front face 26 of the central photoconductive part faces the intermediate layer 9.
- the switching source 8 comprises, for example, a laser source 81, for example surface-emitting vertical cavity laser diode or VCSEL, acronym for the English expression "surface-emitting vertical cavity laser diode”. or a light emitting diode.
- a laser source 81 for example surface-emitting vertical cavity laser diode or VCSEL, acronym for the English expression "surface-emitting vertical cavity laser diode”. or a light emitting diode.
- the switching source 8 comprises, for example, a mirror 82, to deflect the optical beam emitted by the laser source 81 so that the optical beam illuminates the desired surface.
- the optical source comprises, for example, an optical lens intended to collimate the beam coming from the laser source.
- the metasurface device 1 advantageously comprises a DC control device making it possible to control the switching source 8 so as to cause it to pass from an on state in which it illuminates the central photoconductive part PC, so that the layer mass 7 either in the conductive state, in an off state in which it does not illuminate the central photoconductive part PC, and vice versa.
- Figure 6 schematically shows, in section, a second example of the first embodiment according to the invention.
- the metasurface device 101 differs from that of Figure 4 in that the substrate 122 comprises two channels 01, 02 and in that the metasurface device 101 comprises two wave sources electromagnetic.
- Each source of electromagnetic waves comprises a stripped end ED1, ED2 or monopole, crossing one of the two channels 01, 02, visible in FIG. 6, and facing the conductive pads 4 and is configured and arranged so as to surface waves on the front surface 22 of the substrate 2.
- Each stripped end belongs to a core of a coax not shown in Figure 6 for reasons of clarity, just like the SE source.
- Each channel 01, 02 is surrounded by a central conductive crown CM1, CM2.
- the antenna element 103 of Figure 6 differs from that of Figure 4 in that it is formed around the two channels 01, 02.
- the two sources of spherical waves ED1, ED2 are able to radiate waves of the same frequency or of different frequency and/or of the same amplitude and/or of different amplitude.
- the metasurface device 101 is able to radiate a microwave wave resulting from the recombination of two microwave waves each being generated by the propagation of a surface wave generated by one of the two sources ED1 or ED2 on the front surface 22 of substrate 2.
- the ground layer 107 differs from the ground layer of FIG. 4 in that it comprises two central photoconductive parts PC1, PC2 semi-conductive remote from each other and each surrounding one of the two channels 01, 02.
- the ground layer 107 also includes a conductive peripheral part PF1 surrounding the photoconductive central parts PC1, PC2.
- the central photoconductive parts PC1, PC2 each have a crown shape surrounding and delimiting one of the two respective channels 01 and 02.
- the metasurface device 101 advantageously comprises an optical switch COM allowing the metasurface device 101 to pass from a first state in which the antenna element 103 is able to radiate under the effect of the radiation from the first source of spherical waves S1 only, to a second state in which the antenna element 103 is able to radiate under the effect of the radiation of the second source of spherical waves S2 only.
- the metasurface device 101 comprises, for example, a single switching source 108 generating an optical beam, the optical switch COM being capable of deflecting this optical beam so that it selectively illuminates a single photoconductive central parts among the photoconductive central parts PC1 and PC2 so that the illuminated photoconductive central part is conductive and the ground layer 107 has a ground plane function.
- the switch COM is capable of being in a state in which it selectively illuminates several photoconductive central zones simultaneously, here the two photoconductive central parts PC1, PC2, so that each illuminated photoconductive central zone is totally driver.
- the total wave emitted by the source comes from the recombination of waves emitted under the effect of radiation by the various sources of electromagnetic waves ED1, ED2.
- the lighting of the photoconductive parts can also be done on the rear face as in FIG. 6 or on the front face.
- the metasurface device could, as a variant, comprise more than two sources of electromagnetic waves intended to propagate in the form of surface waves on the surface of the substrate and more than two photoconductive central parts being each associated with one of the spherical wave sources.
- FIG. 7 represents a variant of a metasurface device 301.
- the metasurface device 301 differs from that of FIG. 4 by its substrate 302 which differs from the substrate 2 of FIG.
- Ground layer 370 includes rear face 221 of substrate 302.
- the rear face 291 of the intermediate layer 290 is attached to the ground layer 370.
- the central part 292 connects the channel O to the peripheral part PF.
- the device therefore comprises a ground structure comprising the ground layer 370; comprising only the peripheral part PF, and the central part 292 of the rear face 291 of the intermediate layer 290.
- the thickness EP of the intermediate layer 290 is greater than the depth of penetration of the material which forms it so that the intermediate layer 290 provides electrical insulation between the ground plane and the conductive pads 4.
- FIG. 8 schematically represents, in section, a metasurface device according to a second embodiment of the invention. To simplify this figure, only the stripped end ED of the coaxial cable is shown.
- the second embodiment of the invention differs from the first embodiment in that the ground layer is entirely made of a single photoconductive semiconductor material.
- This photoconductive material is insulating when it is not illuminated and capable of being conductive when it is illuminated at the switching wavelength lo.
- the semiconductive photoconductive material is, for example, of the same type as the materials given as an example for the central conductive part PC.
- the metasurface device 201 of FIG. 8 differs from the embodiment of FIG. 4 in that the substrate 202 comprises a first photoconductive layer 212 corresponding to a single layer of a single material. photoconductive semiconductor.
- the first photoconductive layer 212 is homogeneous.
- the semiconductor layer 212 is the ground layer.
- the metasurface device comprises an intermediate photoconductive layer 213 of semiconductor material interposed between the conductive pads 4 and the first photoconductive layer 212.
- the first semiconductor layer 212 comprises a front face 224, joined to the photoconductive intermediate layer 213 comprising the front face 22 of the substrate 202, and a rear face 225 opposite the photoconductive intermediate layer 213.
- An insulating layer 214 is formed on the rear face 225 of the first photoconductive layer 212.
- the insulating layer 214 is transparent to the switching wavelength lo.
- insulating layer 214 is transparent to optical beams.
- the insulating layer 214 is, for example, made of glass, for example silicon dioxide or borosilicate, which have the advantage of growing easily on silicon.
- thickness of a part of the device is meant its dimension along the z axis of the stack.
- the photoconductive semiconductor material of the first photoconductive layer 212 is chosen so that the first photoconductive layer 212 has a penetration depth denoted E1 less than the thickness Ep of the first photoconductive layer 212 at the wavelength switching lo so that when the entire rear face 225 of the first photoconductive layer 212 is illuminated at the switching wavelength lo, the first photoconductive layer 212 comprises:
- a conductive portion 215 forming the ground plane and extending from the rear face 225 of the semiconductor layer 212 over a thickness of the conductive portion less than the thickness Ep of the first semiconductor layer 212 and,
- the penetration depth of a material at a predetermined wavelength is equal to the inverse of the absorption coefficient of this material at the same wavelength.
- the metasurface device 201 comprises, in addition to the source S and the switching source 8, visible in FIG. 8 and not represented in FIG. 9 for reasons of clarity, a device for optical reconfiguration DR of the antenna element 3 making it possible to optically reconfigure the antenna element 3.
- the antenna reconfiguration device DR advantageously comprises a so-called reconfiguration source SR capable of emitting an optical beam at the reconfiguration wavelength 7r and a diffractive device DIFF capable of illuminating a set of at least one zone, said illuminated area ZE, of the intermediate layer 213 so that the intermediate layer 213 is conductive only in the whole of at least one illuminated area ZE, so as to electrically connect two by two the metal pads 4 of the element of antenna separated and connected by a continuous zone of the intermediate layer 213 located totally in an illuminated zone ZE of the set of at least one illuminated zone ZE to form at least one group G of conductive pads 4 electrically connected to each other .
- the white areas separating the groups G of conductive pads 4 electrically connected to each other comprise conductive pads 4 electrically isolated from each other.
- the reconfiguration device DR comprises a single reconfiguration optical source SR.
- the reconfiguration source SR is configured to emit an optical beam at the reconfiguration wavelength lh
- the metasurface device 1 further comprises a diffractive optical device DIFF making it possible, from the optical beam emitted by the source SR, by diffraction, to illuminate all of at least one illuminated zone ZE of the layer of connection to reconfiguration wavelength lh
- the diffractive device DIFF makes it possible to illuminate, at the reconfiguration wavelength lG, a network of continuous illuminated zones ZE (or spots) of the layer 213, the illuminated areas ZE are distant from each other and separated by an unlit area ZNE of the layer 213 so that the layer 213 is conductive only in the illuminated areas ZE.
- the light spots formed on the layer 213 by the diffractive optical device DIFF that is to say the illuminated zones ZE, are rounded in shape in the non-limiting example of FIG. 9 but could quite present different shapes. .
- the illuminated areas ZE of layer 213 are separated by an unlit area ZNE.
- the illuminated zones ZE are distant from each other. This makes it possible to create groups of conductive pads electrically connected to each other, the groups being electrically isolated from each other.
- the network may as a variant comprise a set of at least lit zones delimiting a network of unlit zones.
- the illuminated areas are distant from each other. This makes it possible to create groups of conductive pads electrically connected to each other, the groups being electrically connected to each other.
- the network can comprise at least one illuminated zone completely surrounded by an unlit zone and at least one unlit zone completely surrounded by an illuminated zone.
- each illuminated zone ZE comprises several intervals 6 and/or openings 5, that is to say comprises a group of more than 2 metal pads 4 so that the illumination of the illuminated area ZE ensures the electrical connection, between them, of all the metal pads 4 of the antenna element 3 located in the illuminated area ZE.
- the diffractive device DIFF is configured so that each illuminated zone comprises a single gap 6 or a single opening 5, thus making it possible to connect only two adjacent pads to each other.
- the solution of FIG. 7 is however easier to implement.
- the antenna element 4 consists of the elements of the conductive pads 4 insulated from each other.
- the reconfiguration device DR is configured to illuminate the rear face 21 of the substrate 202.
- the layer 212 is advantageously made of photoconductive material transparent to the reconfiguration wavelength lG different from the switching wavelength lo and the intermediate layer 213 is made of a material transparent to the switching wavelength lo .
- Materials transparent to respective wavelengths far from each other are advantageously chosen, for example a material transparent at 800 nm and having a high absorption coefficient at 1.5 micrometers and another material substantially transparent at 1.5 micrometers and having a high absorption coefficient at 800 nm.
- the reconfiguration device DR is configured to illuminate the stack EE on the front face.
- the layer 213 advantageously has a thickness such that the optical beams illuminating the front face 22 of the substrate 20 at the wavelength lG are completely absorbed by the layer 213 which makes it possible to produce the layer 212 of absorbent material at the length of r wave
- the thickness of the layer 213 is advantageously chosen so as to be greater than the penetration depth of the light at the wavelength r.
- the optical reconfiguration of the antenna element uses photoconductivity to make the substrate conductive at the intervals 6 between the conductive pads 4. This optical control has the advantage of being contactless and of being able to be fast.
- the speed of reconfiguration depends mainly on the characteristics of the semiconductor material used and of the laser source used. It can vary from a few ms to a few ps.
- the proposed solution has the advantage of using a single optical source to reconfigure the antenna by collectively controlling in a selective manner the areas of the substrate located opposite the intervals separating the conductive pads so as to allow connection selectively two by two the conductive pads 4 adjacent. It is relatively simple to perform since it includes a single optical source to reconfigure the antenna. It is more reliable than a solution that would include one optical source per spot to be created on the intermediate layer.
- This optical control ensures independence between the reconfiguration function of the antenna and the radiation of the antenna, the emission of the spherical wave being electrically controlled).
- the metasurface device of FIG. 8 does not have the photoconductive intermediate layer. It is possible to reconfigure the metasurface device by the reconfiguration device DR by front face illumination when the switching source 8 illuminates the substrate on the rear face by choosing the wavelengths lG and lo and the thickness of the conductive layer 212 so that the first photoconductive layer 212 comprises an insulating portion electrically insulating the illuminated zones ZE made conductive by the reconfiguration device DR and the conductive zone 216 made conductive by the switching source 8.
- DIFF diffractive optical devices for illuminating a network of illuminated areas such as, for example, diffractive optical elements or DOE, in reference to the Anglo-Saxon expression “Diffractive Optical Elements”. or optical devices based on a matrix of micro-mirrors or DMD, with reference to the Anglo-Saxon expression “digital micromirror device”.
- Such diffractive optical devices DIFF make it possible to generate, by diffraction, a one-dimensional or two-dimensional grating of illuminated zones or unlit zones.
- the network can be regular or irregular.
- the DIFF diffractive optical device can be configured to be capable of illuminating, from the beam radiated by the source, a single set of illuminated areas of the conductive layer, such as, for example, a DIFF diffractive optical device based on an element diffractive optics DOE located at a fixed distance from the source SR and the layer 213.
- the diffractive optical device DIFF can be configured to make it possible to illuminate, from the beam radiated by the source, SR alternately, different networks of illuminated zones of the layer 213, each network of illuminated zones being different from the other sets. illuminated areas.
- a DIFF diffractive optical device comprising a matrix of micro-mirrors or DMD, a control device and a set of actuators making it possible, on command from the actuator, to move individually each of the mirrors between a first position in which it reflects the light towards a diffusing lens and a second position in which it reflects the light towards an absorbing surface so that the matrix of micro-mirrors illuminates, from the beam radiated by the reconfiguration source SR, a network of groups of conductive pads 4 connected together taken from a set of predetermined networks.
- the control device comprises, for example, a memory storing a set of networks of groups of conductive pads 4 connected together taken from a set of predetermined networks and, associating with each of these networks, the position taken from among the first position and the second position, to be occupied by each of the micro-mirrors so that the matrix of micro-mirrors illuminates the grating considered from the beam radiated by the reconfiguration source.
- the continuous illuminated zones ZE or the unlit zones may differ, for example, by their shape and/or their size and/or their orientation in a reference frame linked to the antenna element.
- Each of the arrays of groups of electrically connected pads can be one-dimensional or two-dimensional, periodic or aperiodic.
- Each switch is configured to allow two adjacent pads 4 separated by an interval 6 to be electrically connected to each other.
- switches can be of the electrically controlled type, such as for example micro-electromechanical systems or MEMS in reference to the Anglo-Saxon expression "micro-electro-mechanical systems” or of the type comprising a phase-change material.
- control of unitary switches poses a complex problem of distribution of electrical control signals which leads to electromagnetic disturbances, induced by the power supply wires, on the radiation diagram of the metasurface device.
- the switching and/or reconfiguration wavelengths are, for example, located in the infrared range. They are, for example, between 800 nm and 1500 nm, which makes it possible to use conventional semiconductor materials such as silicon and gallium arsenide (AsGa). Switching and reconfiguration wavelengths can be located throughout the optical domain. They can, for example, be located in the ultraviolet or visible range. It is for example possible to use two-dimensional semiconductor materials or gallium nitride (GaN).
- the metasurface device comprises a source of emission of electromagnetic waves S such that the metasurface device is able to radiate an electromagnetic wave. More generally, applicable to all the examples and embodiments, the metasurface device comprises a transmitting and/or receiving device capable of transmitting and/or receiving an electromagnetic wave, the transmitting device and/or receiver being configured and arranged so that the electromagnetic wave it emits or receives is capable of propagating in the form of a surface wave on the front surface of the substrate.
- the antenna element is capable of reflecting or transforming a wave moving along a direction comprising a non-zero component along the x axis to transform it into a wave propagating on the surface front of the substrate and being received by the reception device which may comprise a coaxial cable as represented in FIG. 4.
- the device then comprises means for processing the signal received by the coaxial cable.
- the transmission and/or reception device is intended to operate at a certain wavelength.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Dispositif à métasurface comprenant une structure de masse (7) apte à avoir une fonction de plan de masse, la structure de masse (7) étant apte à être alternativement dans un état isolant dans lequel elle empêche la propagation de l'onde de surface sur la surface avant (22) de substrat (2) de sorte à empêcher l'élément d'antenne de rayonner, et dans un état conducteur dans lequel la structure de masse (7) a la fonction de plan de masse permettant la propagation de l'onde de surface sur la surface avant (22) du substrat (2) depuis le dispositif d'émission réception jusqu'aux pastilles conductrices, ou inversement, la structure de masse (7) étant apte à passer de l'état isolant à l'état conducteur par éclairement de la structure de masse (7) à une longueur d'onde dite de commutation.
Description
DESCRIPTION
Titre de l’invention : Dispositif à métasurface
[0001] Le domaine de l’invention est celui des dispositifs à métasurface, par exemple des antennes à métasurfaces. L’invention s’applique aux dispositifs hyperfréquences.
[0002] De tels dispositifs peuvent être utilisés dans différentes applications telles que les applications radar dans l’avionique et l’aérospatiale, la communication haut débit, les télécommunications spatiales.
[0003] La demande de brevet WO2019219708 divulgue un dispositif d’antenne comprenant un substrat, un plan de masse formé sur une surface arrière du substrat et un élément d’antenne formé sur la surface avant du substrat et comprenant un premier réseau de pastilles conductrices séparées par des interrupteurs disposés entre les pastilles conductrices. Le dispositif d’antenne comprend une source d’ondes électromagnétiques configurée et disposée pour générer une onde de surface sur la face avant du substrat. L’onde de surface est transformée par le réseau bidimensionnel de pastilles conductrices en ondes de fuite émises selon une direction présentant une composante perpendiculaire à la surface avant du substrat. La connexion électrique de certaines pastilles conductrices entre-elles permet de former un réseau de groupes de pastilles connectées entre elles. Cette solution permet, sans utiliser de déphaseurs, de contrôler la direction principale du diagramme d’émission de l’antenne et donc de réaliser des antennes à balayage électronique à bas coût.
[0004] Il existe un besoin de proposer de tels dispositifs à métasurface présentant une bonne précision temporelle de façon, par exemple, à permettre de mesurer des distances avec une bonne précision lorsque le dispositif à métasurface est utilisé en radar.
[0005] Un but de l’invention est de proposer un dispositif d’antenne à métasurface permettant d’obtenir une bonne précision temporelle.
[0006] A cet effet, l’invention a pour objet un dispositif à métasurface comprenant : un substrat ayant une surface arrière et une surface avant; - un dispositif d’émission et/ou de réception apte à émettre et/ou recevoir une onde électromagnétique, configurée et disposée de façon que l’onde soit apte à se
propager sous forme d’une onde de surface sur la surface avant du substrat,
- un élément d’antenne comprenant un réseau bidimensionnel de pastilles conductrices disposées sur la surface avant du substrat, distantes les unes des autres et présentant des dimensions inférieures à la longueur d’onde de fonctionnement du dispositif d’émission et/ou de réception,
- le substrat comprenant une structure de masse apte à avoir une fonction de plan de masse, la structure de masse étant apte à être alternativement dans un état isolant dans lequel elle empêche la propagation de l’onde de surface sur la surface avant de substrat, depuis le dispositif d’émission et/ou de réception jusqu’aux pastilles conductrices, ou inversement, et dans un état conducteur dans lequel la structure de masse a la fonction de plan de masse permettant la propagation de l’onde de surface sur la surface avant du substrat, depuis le dispositif d’émission réception jusqu’aux pastilles conductrices, ou inversement, la structure de masse étant apte à passer de l’état isolant à l’état conducteur par éclairement de la structure de masse à une longueur d’onde dite de commutation.
[0007] Lorsque la structure de masse à un plan de masse autorisant l’onde de surface à se propager depuis le dispositif d’émission réception jusqu’aux pastilles conductrices ou inversement, l’élément d’antenne est apte à réfléchir ou transformer l’onde de surface pour rayonner selon une direction présentant une composante perpendiculaire à la surface avant du substrat (en mode émission) ou à réfléchir ou transformer une onde reçue sur la surface avant du substrat pour la transformer en une onde de surface (en mode réception).
[0008] Avantageusement, le dispositif à métasurface comprend une source de commutation apte passer d’un état dans lequel elle n’éclaire pas la structure de masse de sorte que la structure de masse soit dans l’état isolant, à un état dans lequel elle éclaire la structure de masse de façon que la structure de masse soit à l’état conducteur.
[0009] Dans un premier mode de réalisation, le substrat comprend une couche de masse et une couche intermédiaire isolant le plan de masse des pastilles conductrices lorsque la structure de masse a la fonction de plan de masse, la structure de masse comprenant une partie centrale photoconductrice et une partie périphérique conductrice entourant la partie centrale photoconductrice, la partie centrale photoconductrice étant dans un état isolant, lorsqu’elle n’est pas éclairée,
dans lequel elle empêche la propagation de l’onde de surface depuis le dispositif d’émission et/ou de réception jusqu’aux pastilles conductrices, ou inversement, la partie centrale photoconductrice étant apte à être dans un état conducteur, lorsqu’elle est éclairée à la longueur d’onde de commutation, dans lequel la partie centrale photoconductrice est conductrice de sorte que la structure de masse a la fonction de plan de masse.
[0010] Dans un premier exemple, la structure de masse est une couche de masse, la couche intermédiaire étant interposée entre les pastilles conductrices et la couche de masse.
[0011] Dans un deuxième exemple, la couche intermédiaire est en un matériau semi- conducteur photoconducteur apte à être dans un état conducteur lorsqu’il est éclairé à la longueur d’onde de commutation, la couche intermédiaire étant interposée entre les pastilles conductrices et la partie périphérique conductrice, la partie centrale photoconductrice comprenant une partie centrale d’une face arrière de la couche intermédiaire, la face arrière de la couche intermédiaire étant en contact physique direct avec la partie périphérique conductrice.
[0012] Dans un exemple particulier, le dispositif comprend plusieurs sources de commutation, la structure de masse comprenant plusieurs parties centrales photoconductrices et un commutateur permettant d’éclairer de façon sélective une seule des parties centrales photoconductrice prise parmi les parties centrales photoconductrices et/ou permettant d’éclairer simultanément de façon sélective plusieurs parties centrales photoconductrices.
[0013] Dans une deuxième mode de réalisation, la structure de masse est une première couche photoconductrice réalisée dans un unique matériau semi- conducteur photoconducteur, le matériau photoconducteur étant isolant lorsqu’il n’est pas éclairé et conducteur lorsqu’il est éclairé à la longueur d’onde de commutation.
[0014] Avantageusement, le matériau semi-conducteur photoconducteur formant la première couche photoconductrice est choisi de façon que la première couche photoconductrice présente une profondeur de pénétration inférieure à l’épaisseur de la couche première photoconductrice à la longueur d’onde de commutation de sorte que lorsque la totalité d’une face arrière de la première couche photoconductrice est éclairée à la longueur d’onde de commutation par la source de commutation, la
première couche photoconductrice comprend :
- une portion conductrice formant le plan de masse et s’étendant depuis la face arrière de la couche semi-conductrice sur une épaisseur inférieure à l’épaisseur de la première couche semi-conductrice et,
- une portion isolante s’étendant sur le reste de l’épaisseur de la couche semi- conductrice de sorte que la portion conductrice soit isolée des pastilles conductrices par la portion isolante.
[0015] Avantageusement, le dispositif à métasurface comprend une couche intermédiaire semi-conductrice, le dispositif à métasurface comprenant un dispositif de reconfiguration optique comprenant une source dite de reconfiguration émettant un faisceau optique et un dispositif optique diffractif apte éclairer un ensemble d’au moins une zone, dite zone éclairée, de la couche intermédiaire de façon que la couche de intermédiaire soit conductrice uniquement dans l’ensemble d’au moins une zone éclairée, de sorte à connecter électriquement deux à deux les pastilles métalliques de l’élément d’antenne séparées et reliées par une zone continue de la couche de intermédiaire située totalement dans une zone éclairée de l’ensemble d’au moins une zone éclairée pour former au moins un groupe de pastilles conductrices (4) connectées électriquement entre elles.
[0016] Avantageusement, la couche intermédiaire est interposée entre la couche de masse et les pastilles conductrices. En variante, la couche intermédiaire est la couche de masse
[0017] Le dispositif à métasurface selon l’invention présente l’avantage de prévoir une commande optique pour la génération du plan de masse. Cette commande est donc indépendante de la commande de la source d’ondes électromagnétiques d’excitation de la métasurface (ou de l’élément d’antenne) et donc du signal rayonné par le dispositif à métasurface.
[0018] La précision temporelle d’une commande optique est meilleure que celle d’une commande électrique. Cette solution permet donc d’obtenir une très bonne précision temporelle sur un instant auquel on allume ou on éteint le dispositif à métasurface et donc sur un instant auquel on émet un rayonnement électromagnétique. En effet, l’antenne ne rayonne que lorsque la structure de masse est éclairée de façon à créer le plan de masse.
[0019] Cette précision temporelle permet de réaliser des mesures précises, par exemple, pour les applications radar ou en télécommunications. Elle permet, par exemple, d’obtenir une bonne précision sur la mesure du temps de trajet aller-retour de l’onde émise jusqu’à l’objet éclairé.
[0020] La commande optique du plan de masse peut également être décorrélée d’une autre commande optique pour assurer la connexion électrique sélective des pastilles conductrices de la métasurface pour configurer l’élément d’antenne, par exemple, pour régler l’échelle de la métasurface, c’est-à-dire le pas des éléments d’antenne de la métasurface.
[0021] D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d’exemple et qui représentent, respectivement :
[0022] [Fig.1 ] la figure 1 illustre schématiquement, en vue de dessus, un premier exemple d’un dispositif à métasurface selon un premier mode de réalisation de l’invention,
[0023] [Fig.2] la figure 2 illustre schématiquement de façon plus précise, une partie de l’élément d’antenne du dispositif de la figure 1 , en vue de dessus, un premier exemple d’un dispositif à métasurface selon un premier mode,
[0024] [Fig.3] la figure 3 illustre schématiquement, un autre exemple d’élément d’antenne,
[0025] [Fig.4] la figure 4 illustre schématiquement, en coupe, le dispositif de la figure
1 ,
[0026] [Fig.5] la figure 5 illustre schématiquement, en vue de dessous, le dispositif de la figure 1 ,
[0027] [Fig.6] la figure 6 illustre schématiquement, en coupe, un deuxième exemple du dispositif selon le premier mode de réalisation de l’invention,
[0028] [Fig.7] la figure 7 illustre schématiquement, en coupe, un troisième exemple du dispositif selon le premier mode de réalisation de l’invention,
[0029] [Fig.8] la figure 8 illustre schématiquement, en coupe, un dispositif à métasurface selon un deuxième mode de réalisation,
[0030] [Fig.9] la figure 9 illustre schématiquement, en vue éclatée, le dispositif à métasurface de la figure 8.
[0031] D’une figure à l’autre, les mêmes éléments sont repérés par les mêmes références.
[0032] Dans la suite du texte, par conducteur, on entend conducteur électriquement et par isolant, on entend isolant électriquement.
[0033] Par faisceau optique, on entend un faisceau dont la longueur d’onde est située dans le domaine optique comprenant l’infrarouge, l’ultraviolet et le visible.
[0034] La figure 1 illustre schématiquement, en vue de dessus, un dispositif à métasurface 1 selon l’invention.
[0035] Le dispositif à métasurface 1 comprend un empilement E de couches empilées selon un axe d’empilement z perpendiculaire au plan de la figure 1. L’empilement comprend un substrat 2, une couronne centrale conductrice CM et un élément d’antenne 3 formé autour de la couronne centrale conductrice CM. La couronne centrale conductrice CM est distante d’un canal O central et de l’élément d’antenne 3.
[0036] L’élément d’antenne 3 comprend un réseau périodique bidimensionnel de pastilles conductrices 4 (ou patchs conducteurs) disposées sur la surface avant du substrat.
[0037] Les pastilles conductrices 4 sont distantes les unes des autres. Les pastilles conductrices 4 sont séparées par des ouvertures 5. L’élément d’antenne 3 constitue une métasurface.
[0038] Les pastilles conductrices 4 sont, par exemple, des pastilles métalliques ou d’oxyde d’indium-étain ou ITO tout comme la couronne métalliques CM.
[0039] Les pastilles conductrices 4 et les ouvertures 5 sont sensiblement auto complémentaires. Contrairement à une métasurface composée de pastilles conductrices 4 et d’ouvertures 5 strictement auto-complémentaires, les pastilles conductrices 4 de l’élément d’antenne 3 sont écartées les unes des autres comme visible sur la figure 2 représentant une partie de l’élément d’antenne ou métasurface 3.
[0040] Autrement dit, les points les plus proches de deux pastilles conductrices 4 adjacentes sont séparés par un intervalle 6. Les ouvertures 5 sont donc plus grandes que les pastilles conductrices 4.
[0041] L’élément d’antenne 3 comprend donc des intervalles 6 séparant les pastilles adjacentes par leurs sommets adjacents.
[0042] Dans l’exemple non limitatif de la figure 1 , l’élément d’antenne 3 présente sensiblement une structure de damier. Les ouvertures 5 et les pastilles conductrices 4 sont sensiblement de forme carrée.
[0043] Les pastilles conductrices 4 peuvent présenter une forme strictement carrée ou une forme sensiblement carrée aux sommets écrêtés ou aplatis. Elles peuvent présenter une forme différente, comme par exemple une forme ovale ou arrondie.
[0044] Les pastilles conductrices 4 présentent des côtés ou des dimensions sub longueur d’ondes. Il en est de même pour le pas du réseau.
[0045] Avantageusement, les pastilles conductrices 4 présentent des dimensions ou des côtés de longueurs inférieures ou égales l/50 et, de préférence, comprises entre l/50 et l/100. l est la longueur d’onde de fonctionnement du dispositif à métasurface, c’est-à-dire de l’onde rayonnée par l’élément d’antenne 3.
[0046] La taille de l’intervalle 6, c'est-à-dire la distance minimale entre deux pastilles adjacentes qui peut être la distance entre deux sommets de deux pastilles conductrices 4 adjacentes, est comprise entre l/1000 et l/2000. Pour une antenne fonctionnant à la fréquence de 30 GHz, la longueur d’onde est d’environ 10 mm dans l’air, les côtés des pastilles présentent une longueur compris entre 100 et 200 pm et la distance entre pastilles 4 adjacentes par leurs sommets est comprise entre 5 et 10 pm.
[0047] D’autres métasurfaces comprenant des pastilles conductrices 4 et d’ouvertures 5 sensiblement auto-complémentaires sont envisageables. Les pastilles 4 et/ou les ouvertures 5 peuvent, par exemple, présenter sensiblement des formes de triangles équilatéraux de croix ou d’ovales. Ainsi les pastilles conductrices sont disposées en lignes et en colonnes. Les colonnes pouvant être perpendiculaires ou non par rapport aux colonnes.
[0048] Dans l’exemple de la figure 1 , les pastilles conductrices 4 présentent toutes une même orientation dans un repère bidimensionnel lié à la face avant du substrat. En variante, des pastilles conductrices peuvent présenter des orientations différentes dans un repère bidimensionnel lié à la face avant du substrat.
[0049] Dans l’exemple de la figure 1 , les pastilles conductrices 4 présentent toutes une même forme et les mêmes dimensions. En variante, des pastilles conductrices présentent des formes différentes et/ou des dimensions différentes.
[0050] En figure 3, on a représenté une métasurface 30 dont les pastilles conductrices 40 présentent sensiblement une forme d’ovale. Les pastilles conductrices ne sont pas toutes identiques. Des pastilles conductrices diffèrent d’autres pastilles conductrices par leurs formes et leurs orientations un repère bidimensionnel lié à la face avant du substrat.
[0051] La connexion électrique sélective entre des pastilles conductrices 4 permet de former un élément d’antenne 3 reconfigurable, c’est-à-dire, susceptible de présenter des diagrammes de rayonnement différents à partir d’une même excitation. Elle permet, par exemple, d’obtenir un élément d’antenne multi-échelle pouvant comprendre un réseau bidimensionnel de pastilles conductrices isolées électriquement les unes des autres ou d’un réseau bidimensionnel de groupes de pastilles conductrices connectées électriquement entre elles comme nous le verrons par la suite.
[0052] La figure 4 illustre schématiquement en coupe le dispositif à métasurface 1 de la figure 1 constituant un premier exemple de dispositif à métasurface selon un premier mode de réalisation de l’invention. La figure 5 est une vue schématique arrière du même dispositif.
[0053] Le dispositif à métasurface comprend une source S permettant d’émettre des ondes électromagnétiques (non visible en figure 1) et configurée et disposée de façon à générer des ondes de surface sur la surface avant 22 du substrat 2.
[0054] La source est, avantageusement isotrope.
[0055] La source, permet, avantageusement, d’émettre des ondes électromagnétiques sphériques ou cylindriques. La source comprend, par exemple, un monopole.
[0056] Les ondes électromagnétiques sont, de préférence, des micro-ondes, de préférence des hyperfréquences. Le dispositif à métasurface est, par exemple, une antenne, par exemple hyperfréquence.
[0057] Le dispositif à métasurface 1 comprend un canal O traversant l’empilement E selon l’axe z.
[0058] La source S comprend, par exemple, un câble coaxial C comprenant une âme centrale A conductrice, entouré d’un matériau diélectrique MD lui-même entouré d’un blindage B. La source S comprend également une source électrique SE apte à générer un signal électrique hyperfréquence transmis par le câble coaxial C jusqu’à une extrémité ED de l’âme centrale A.
[0059] L’extrémité dénudée ED traverse le substrat 2 et s’étend en regard de couronne métallique CM.
[0060] La partie de l’extrémité dénudée ED s’étendant en regard de l’élément d’antenne 3 constitue un monopole qui rayonne une onde électromagnétique dont la partie essentielle est diffusée vers l’élément d’antenne 3 et se propage sur la face avant du substrat 2 sous forme d’une onde de surface. Le reste de l’onde émise par l’extrémité dénudée ED est transmis dans l’espace libre.
[0061] L’élément d’antenne 3, quelle que soit son échelle, réfléchit ou transforme l’onde de surface émise sur la surface avant 22 du substrat 2 pour rayonner, à la longueur d’onde de l’onde électromagnétique, selon une direction présentant une composante perpendiculaire à la surface avant 22 du substrat 2, c’est-à-dire qu’elle présente une composante selon l’axe z. L’onde totale rayonnée par l’élément d’antenne est issue d’une recombinaison des ondes de fuite réfléchies ou transformées par les différentes pastilles conductrices qu’elle soit l’échelle de l’élément d’antenne c’est-à-dire même lorsque les pastilles conductrices 4 sont isolées électriquement les unes des autres. Les interférences entre les ondes de fuite rayonnées par les différentes pastilles conductrices sont rayonnées selon une direction présentant une composante selon l’axe z.
[0062] Avantageusement, la couronne centrale CM est configurée et disposée pour optimiser le taux de couplage entre l’onde générée par l’élément d’antenne 3 à une fréquence prédéterminée. La configuration de la couronne centrale CM dépend de la fréquence de l’onde générée par le monopole ED.
[0063] Les antennes sont classiquement circulaires comme sur la figure 1 mais peuvent présenter une autre forme géométrique, comme par exemple, une forme rectangulaire, par exemple carrée.
[0064] Le substrat 2 comprend une couche de masse 7 apte à avoir une fonction de plan de masse.
[0065] La couche de masse 7 est continue et s’étend en regard de la totalité de l’élément d’antenne 3.
[0066] La couche de masse 7 est apte à être dans un état isolant dans lequel elle empêche la propagation de l’onde de surface (générée par la source S) sur la surface avant 22 ou face avant du substrat 2 de sorte à empêcher l’élément d’antenne 3 de rayonner.
[0067] La couche de masse 7 est également apte à être dans un état conducteur dans lequel la couche de masse 7 a une fonction de plan de masse permettant la transmission de l’onde de surface sur la surface avant 22 du substrat 2, depuis la source jusqu’aux pastilles conductrices 4, c’est-à-dire jusqu’à l’élément d’antenne 3, afin que l’élément d’antenne 3 rayonne selon une direction présentant une composante perpendiculaire à la surface avant 22 du substrat 20, c’est-à-dire une composante selon l’axe z.
[0068] La couche de masse 7 est apte à passer de l’état isolant à l’état conducteur par éclairement de la couche de masse 7 à une longueur d’onde dite de commutation lo. Elle est également apte à être maintenue dans l’état conducteur lorsque l’éclairement est maintenu.
[0069] Ainsi, en commandant optiquement la couche de masse 7, pour la faire passer de l’état isolant à l’état conducteur, on fait passer l’élément d’antenne 3 d’un état éteint, dans lequel il est inapte à rayonner sous l’effet du rayonnement de la source S, à un état allumé, dans lequel il est apte à rayonner sous l’effet du rayonnement de la source S.
[0070] Afin de commander optiquement la couche de masse 7, le dispositif à métasurface 1 comprend avantageusement une source de commutation 8 apte passer d’un état dans lequel elle n’illumine pas la couche de masse de sorte que la couche de masse 7 soit dans l’état isolant à un état dans lequel elle illumine la
couche de masse 7 de façon que la couche de masse 7 passe de l’état isolant à l’état conducteur.
[0071] Nous allons maintenant décrire plus précisément le premier exemple du premier mode de réalisation de l’invention représenté sen figures 4 et 5. La figure 4 illustre schématiquement en coupe le dispositif selon l’invention.
[0072] Le substrat 2 comprend un empilement de plusieurs couches comprenant la couche de masse 7 et une couche intermédiaire 9 interposée entre les pastilles conductrices et la couche de masse 7. La couche intermédiaire 9 a pour fonction d’isoler électriquement la couche de masse 7 des pastilles conductrices 4.
[0073] Dans la réalisation particulière de la figure 4, la couche intermédiaire 9 est isolante quel que soit l’état (premier état ou deuxième état de la source 8).
[0074] Le couche intermédiaire 9 est, par exemple, réalisée en un semi-conducteur isolant lorsqu’il est éclairé à la longueur d’onde de commutation 7c. Elle est, par exemple, en silicium ou en arséniure de gallium.
[0075] La couche intermédiaire 9 comprend la surface avant 22 du substrat 2. La surface avant 22 du substrat 2 est en contact physique direct avec les pastilles conductrices 4.
[0076] La couche intermédiaire 9 comprend une face arrière 23 sur laquelle est formée la couche de masse 7, c’est-à-dire en contact physique direct avec la couche de masse 7.
[0077] La couche de masse 7 comprend la face arrière 21 du substrat 2.
[0078] La couche de masse 7 est avantageusement reliée électriquement au câble coaxial C et, plus particulièrement au blindage B.
[0079] La figure 5 représente une vue de derrière de l’empilement E et du câble coaxial C. Pour plus de clarté, le miroir 82 n’est pas représenté.
[0080] La couche de masse 7 comprend une partie centrale photoconductrice PC entourant le canal O et une partie périphérique conductrice PF entourant la partie centrale photoconductrice PC.
[0081] La partie centrale photoconductrice PC présente une forme de couronne entourant et délimitant le canal O.
[0082] La partie périphérique conductrice PF présente une forme de couronne entourant la partie centrale photoconductrice PC.
[0083] La partie périphérique conductrice PF est accolée à la partie centrale photoconductrice PC.
[0084] La partie centrale photoconductrice PC est apte à être alternativement dans un état isolant et dans un état conducteur.
[0085] La partie centrale photoconductrice PC est dans l’état isolant lorsqu’elle n’est pas éclairée.
[0086] La partie centrale photoconductrice PC est apte à passer dans l’état conducteur, dans lequel elle totalement conductrice, lorsqu’elle est éclairée à la longueur d’onde de commutation 7c par photoconductivité.
[0087] La partie centrale photoconductrice PC est réalisée en un matériau semi- conducteur comme, par exemple, le Silicium, l’arséniure de gallium GaAs ou un matériau bi-dimensionnel comme, par exemple, un dichalocgénure de métal de transition ou TMD, acronyme de l’expression anglo-saxonne « Transition métal dichalcogenide » ou en un matériau semi-conducteur organique.
[0088] La partie périphérique conductrice PF est, par exemple, métallique ou en oxyde d’indium étain ou ITO pour l'appellation anglaise « Indium tin oxide ») qui est transparent dans le spectre visible.
[0089] Lorsque la partie centrale photoconductrice PC est dans l’état isolant, elle empêche la propagation de l’onde de surface sur la surface avant 22 de substrat 2 depuis la source jusqu’à l’élément d’antenne ou les pastilles conductrices 4.
[0090] Lorsque la partie centrale photoconductrice PC est dans l’état conducteur, la couche de masse 7 est sensiblement totalement conductrice. Elle est sensiblement continûment conductrice en regard de la totalité de l’élément d’antenne 3 ou métasurface. La couche de masse 7 a donc une fonction de plan de masse permettant la transmission de l’onde de surface sur la surface avant 22 du substrat 2. L’élément d’antenne 3 réfléchit ou transforme l’onde de surface. L’élément d’antenne 3 rayonne selon une direction comprenant une composante perpendiculaire à la surface supérieure 22.
[0091] Ainsi, en commandant optiquement la partie centrale photoconductrice PC pour la faire passer de l’état isolant à l’état conducteur, on fait passer le dispositif à métasurface d’un état éteint dans lequel l’élément d’antenne 3 est inapte à rayonner sous l’effet du rayonnement de la source S à un état allumé dans lequel le dispositif à métasurface est apte à rayonner sous l’effet du rayonnement de la source S.
[0092] Afin de commander optiquement la partie centrale photoconductrice PC, le dispositif à métasurface comprend avantageusement la source de commutation 8, apte à illuminer la partie centrale photoconductrice PC à la longueur d’onde de commutation lo de façon à faire passer la partie centrale photoconductrice PC de l’état isolant à l’état conducteur dans lequel la partie centrale photoconductrice PC est sensiblement totalement conductrice ou totalement conductrice. Lorsque l’éclairement de la partie centrale photoconductrice est maintenu, la partie centrale photoconductrice est maintenue à l’état conducteur.
[0093] Avantageusement, la source de commutation 8 est disposée et configurée de façon à permettre d’émettre un faisceau lumineux éclairant sensiblement totalement la face arrière 25 de la partie centrale photoconductrice PC à la longueur d’onde de commutation lo de façon à faire passer ou à maintenir la partie centrale photoconductrice PC dans l’état conducteur dans lequel elle est totalement conductrice.
[0094] Par face arrière 25 de la partie centrale photoconductrice PC, on entend la face de la partie centrale photoconductrice PC qui est opposée à la couche intermédiaire 9. La face avant 26 de la partie centrale photoconductrice fait face à la couche intermédiaire 9.
[0095] La source de commutation 8 comprend, par exemple, une source laser 81 , par exemple diode laser à cavité verticale émettant par la surface ou VCSEL acronyme de l’expression anglo-saxonne « diode laser à cavité verticale émettant par la surface » ou une diode électroluminescente.
[0096] La source de commutation 8 comprend, par exemple, un miroir 82, pour dévier le faisceau optique émis par la source laser 81 de façon que le faisceau optique éclaire la surface souhaitée. La source optique comprend, par exemple, une lentille optique destinée à collimater le faisceau issu de la source laser.
[0097] Le dispositif à métasurface 1 comprend, avantageusement, un dispositif de commande DC permettant de commander la source de commutation 8 de façon à la faire passer d’un état allumé dans lequel elle éclaire la partie centrale photoconductrice PC, pour que la couche de masse 7 soit dans l’état conducteur, à un état éteint dans lequel elle n’éclaire pas la partie centrale photoconductrice PC, et inversement.
[0098] La figure 6 représente schématiquement, en coupe, un deuxième exemple du premier mode de réalisation selon l’invention.
[0099] Dans la réalisation de la figure 6, le dispositif à métasurface 101 diffère de celui de la figure 4 en ce que le substrat 122 comprend deux canaux 01 , 02 et en ce que le dispositif à métasurface 101 comprend deux sources d’ondes électromagnétiques.
[0100] Chaque source d’ondes électromagnétiques comprend une extrémité dénudée ED1 , ED2 ou monopole, traversant un des deux canaux 01 , 02, visible en figure 6, et étant en regard des pastilles conductrices 4 et est configurée et disposée de façon à générer des ondes de surface sur la surface avant 22 du substrat 2.
[0101] Chaque extrémité dénudée appartient une âme d’un coaxial non représenté en figure 6 pour des raisons de clarté, tout comme la source SE.
[0102] . Chaque canal 01 , 02 est entouré d’une couronne centrale conductrice CM1 , CM2.
[0103] L’élément d’antenne 103 de la figure 6, diffère de celui de la figure 4 en ce qu’il est formé autour des deux canaux 01 , 02. Les deux sources d’ondes sphériques ED1 , ED2 sont aptes à rayonner des ondes de même fréquence ou de fréquence différente et/ou de même amplitude et/ou d’amplitude différente.
[0104] Ainsi, le dispositif à métasurface 101 est apte à rayonner une onde hyperfréquence issu de la recombinaison de deux ondes hyperfréquence étant chacune générée par la propagation d’une onde de surface générée par une des deux sources ED1 ou ED2 sur la surface avant 22 du substrat 2.
[0105] La couche de masse 107 diffère de la couche de masse de de la figure 4 en ce qu’elle comprend deux parties centrale photoconductrice PC1 , PC2 semi- conductrices distantes l’une de l’autre et entourant chacune un des deux canaux 01,
02. La couche de masse 107 comprend également une partie périphérique conductrice PF1 entourant les parties centrales photoconductrices PC1 , PC2.
[0106] Les parties centrales photoconductrices PC1 , PC2 présentent chacune une forme de couronne entourant et délimitant un des deux canaux respectifs 01 et 02.
[0107] Le dispositif à métasurface 101 comprend avantageusement un commutateur optique COM permettant de faire passer le dispositif à métasurface 101 d’un premier état dans lequel l’élément d’antenne 103 est apte à rayonner sous l’effet du rayonnement de la première source d’ondes sphériques S1 uniquement, à un deuxième état dans lequel l’élément d’antenne 103 est apte à rayonner sous l’effet du rayonnement de la deuxième source d’ondes sphériques S2 uniquement.
[0108] A cet effet, le dispositif à métasurface 101 comprend, par exemple, une unique source de commutation 108 générant un faisceau optique, le commutateur optique COM étant apte à dévier ce faisceau optique de sorte qu’il éclaire de façon sélective une seule des parties centrales photoconductrice parmi les parties centrales photoconductrices PC1 et PC2 de façon que la partie centrale photoconductrice éclairée soit conductrice et que la couche de masse 107 ait une fonction de plan de masse .
[0109] Cela permet d’émettre dans des directions différentes, ce qui permet, par exemple, de suivre un objet.
[0110] En variante ou en sus, le commutateur COM est apte à être dans un état dans lequel il éclaire sélectivement simultanément plusieurs zones centrales photoconductrices, ici les deux parties centrales photoconductrices PC1 , PC2, de sorte que chaque zone centrale photoconductrice éclairée soit totalement conductrice. L’onde totale émise par la source est issue de la recombinaison d’ondes émises sous l’effet du rayonnement par les différentes sources d’ondes électromagnétiques ED1 , ED2.
[0111] L’éclairage des parties photoconductrices peut aussi bien se faire en face arrière comme en figure 6 ou en face avant.
[0112] Il est à noter que le dispositif à métasurface pourrait, en variante, comprendre plus de deux sources d’ondes électromagnétiques destinées à se propager sous forme d’ondes de surface à la surface du substrat et plus de deux parties centrales photoconductrices étant chacune associée à une des sources d’ondes sphériques.
[0113] La figure 7 représente une variante de dispositif à métasurface 301. Le dispositif à métasurface 301 diffère de celui de la figure 4 par son substrat 302 qui diffère du substrat 2 de la figure 4 par la couche de masse 370 qui est dépourvue de la partie centrale PC et par la couche intermédiaire 290 qui est réalisée en matériau semi-conducteur photoconducteur choisi de sorte que, lorsque la source 8 éclaire la partie centrale 292 de la face arrière 291 de la couche intermédiaire 290 à la longueur d’onde de commutation lo, cette partie centrale 292 devient conductrice et la couche de masse 370 a la fonction de plan de masse. La couche de masse 370 comprend la face arrière 221 du substrat 302.
[0114] La face arrière 291 de la couche intermédiaire 290 est accolée à la couche de masse 370.
[0115] La partie centrale 292 relie le canal O à la partie périphérique PF.
[0116] Le dispositif comprend donc une structure de masse comprenant la couche de masse 370; comprenant uniquement la partie périphérique PF, et la partie centrale 292 de la face arrière 291 de la couche intermédiaire 290. L’épaisseur EP de la couche intermédiaire 290 est supérieure à la profondeur de pénétration du matériau qui la forme de façon que la couche intermédiaire 290 assure l’isolation électrique entre le plan de masse et les pastilles conductrices 4.
[0117] La figure 8 représente schématiquement, en coupe, un dispositif à métasurface selon un deuxième mode de réalisation de l’invention. Pour simplifier cette figure, seule l’extrémité dénudée ED du câble coaxial est représentée.
[0118] Le deuxième mode de réalisation de l’invention diffère du premier mode de réalisation en ce que la couche de masse est entièrement réalisée dans un unique matériau photoconducteur semi-conducteur. Ce matériau photoconducteur est isolant lorsqu’il n’est pas illuminé et apte à être conducteur lorsqu’il est éclairé à la longueur d’onde de commutation lo.
[0119] Le matériau photoconducteur semi-conducteur est, par exemple, du même type que les matériaux donnés en exemple pour la partie conductrice centrale PC.
[0120] Plus précisément, le dispositif à métasurface 201 de la figure 8 diffère de la réalisation de la figure 4 en ce que le substrat 202 comprend une première couche photoconductrice 212 correspondant à une unique couche d’un unique matériau
semi-conducteur photoconducteur. Autrement dit, la première couche photoconductrice 212 est homogène. La couche semi-conductrice 212 est la couche de masse.
[0121] Avantageusement, le dispositif à métasurface comprend une couche intermédiaire photoconductrice 213 en matériau semi-conducteur interposée entre les pastilles conductrices 4 et la première couche photoconductrice 212.
[0122] Par exemple, la première couche semi-conductrice 212 comprend une face avant 224, accolée à la couche intermédiaire photoconductrice 213 comprenant la face avant 22 du substrat 202, et une face arrière 225 opposée à la couche intermédiaire photoconductrice 213.
[0123] Une couche isolante 214 est formée sur la face arrière 225 de la première couche photoconductrice 212. La couche isolante 214 est transparente à la longueur d’onde de commutation lo. Par exemple, la couche isolante 214 est transparente aux faisceaux optiques. La couche isolante 214 est, par exemple, réalisée en verre, par exemple en dioxyde de silicium ou en borosilicate, qui présentent l’avantage de croître aisément sur le silicium.
[0124] Dans la suite du texte, par épaisseur d’une partie du dispositif, on entend sa dimension selon l’axe z de l’empilement.
[0125] Le matériau semi-conducteur photoconducteur de la première couche photoconductrice 212 est choisi de façon que la première couche photoconductrice 212 présente une profondeur de pénétration notée E1 inférieure à l’épaisseur Ep de la couche première photoconductrice 212 à la longueur d’onde de commutation lo de sorte que lorsque la totalité de la face arrière 225 de la première couche photoconductrice 212 est éclairée à la longueur d’onde de commutation lo, la première couche photoconductrice 212 comprend :
- une portion conductrice 215 formant le plan de masse et s’étendant depuis la face arrière 225 de la couche semi-conductrice 212 sur une épaisseur de la portion conductrice inférieure à l’épaisseur Ep de la première couche semi-conductrice 212 et,
- une portion isolante 216 s’étendant sur le reste de l’épaisseur Ep de sorte que la portion conductrice 215 soit isolée des pastilles conductrices 4 par la portion isolante 216.
[0126] La profondeur de pénétration d’un matériau à une longueur d’onde prédéterminée est égale à l’inverse du coefficient d’absorption de ce matériau à la même longueur d’onde.
[0127] Avantageusement, comme visible en figure 9, le dispositif à métasurface 201 comprend, en plus de la source S et la source de commutation 8, visible en figure 8 et non représentée en figure 9 pour des raisons de clarté, un dispositif de reconfiguration optique DR de l’élément d’antenne 3 permettant de reconfigurer optiquement l’élément d’antenne 3.
[0128] Le dispositif de reconfiguration DR de l’antenne comprend avantageusement une source dite de reconfiguration SR apte émettre un faisceau optique à la longueur d’onde de reconfiguration 7r et un dispositif diffractif DIFF apte éclairer un ensemble d’au moins une zone, dite zone éclairée ZE, de la couche intermédiaire 213 de façon que la couche de intermédiaire 213 soit conductrice uniquement dans l’ensemble d’au moins une zone éclairée ZE, de sorte à connecter électriquement deux à deux les pastilles métalliques 4 de l’élément d’antenne séparées et reliées par une zone continue de la couche intermédiaire 213 située totalement dans une zone éclairée ZE de l’ensemble d’au moins une zone éclairée ZE pour former au moins un groupe G de pastilles conductrices 4 connectées électriquement entre-elles.
[0129] Il est à noter que, pour plus de clarté, seules les pastilles 4 connectées électriquement entre-elles sont représentées en figure 9. Les zones blanches séparant les groupes G de pastilles conductrices 4 connectées électriquement entre- elles comprennent des pastilles 4 conductrices isolées électriquement les unes des autres.
[0130] Avantageusement, le dispositif de reconfiguration DR comprend une unique source optique de reconfiguration SR. La source de reconfiguration SR est configurée pour émettre un faisceau optique à la longueur d’onde de reconfiguration lh
[0131] Le dispositif à métasurface 1 comprend en outre un dispositif optique diffractif DIFF permettant, à partir du faisceau optique émis par la source SR, par diffraction, d’éclairer l’ensemble d’au moins une zone éclairée ZE de la couche de connexion à la longueur d’onde de reconfiguration lh
[0132] Avantageusement, comme dans l’exemple de la figure 5, le dispositif diffractif DIFF permet d’éclairer, à la longueur d’onde de reconfiguration lG, un réseau de zones éclairées ZE continues (ou spots) de la couche 213, les zones éclairées ZE sont distantes les unes des autres et séparées par une zone non éclairée ZNE de la couche 213 de façon que la couche 213 soit conductrice uniquement dans les zones éclairées ZE. Les spots lumineux formés sur la couche 213 par le dispositif optique diffractif DIFF, c’est-à-dire les zones éclairées ZE, sont de forme arrondie dans l’exemple non limitatif de la figure 9 mais pourraient tout à fait présenter des formes différentes.
[0133] Les zones éclairées ZE de la couche 213 sont séparées par une zone non éclairée ZNE. Les zones éclairées ZE sont distantes les unes des autres. Cela permet de créer des groupes de pastilles conductrices connectées électriquement entre-elles, les groupes étant isolés électriquement les uns des autres.
[0134] Le réseau peut en variante comprendre un ensemble d’au moins zones éclairées délimitant un réseau de zones non éclairées. Les zones éclairées sont distantes les unes des autres. Cela permet de créer des groupes de pastilles conductrices connectées électriquement entre-elles, les groupes étant connectés électriquement entre-eux.
[0135] Le réseau peut en variante comprendre au moins une zone éclairée entourée complètement par une zone non éclairée et au moins une zone non éclairée entourée complètement par une zone éclairée.
[0136] un pas correspondant à un multiple du pas du réseau de pastilles conductrices 3.
[0137] Dans la réalisation particulière de la figure 9, chaque zone éclairée ZE comprend plusieurs intervalles 6 et/ou ouvertures 5, c’est-à-dire comprend un groupe de plus de 2 pastilles métalliques 4 de sorte que l’éclairement de la zone éclairée ZE assure la connexion électrique, entre-elles, de toutes les pastilles métalliques 4 de l’élément d’antenne 3 situées dans la zone éclairée ZE.
[0138] En variante, le dispositif diffractif DIFF est configuré pour que chaque zone éclairée comprenne un unique intervalle 6 ou une unique ouverture 5 permettant ainsi de connecter uniquement deux pastilles adjacentes entre elle. La solution de la figure 7 est toutefois plus aisée à mettre en oeuvre.
[0139] Lorsque le dispositif de reconfiguration est éteint l’élément d’antenne 4 est constitué des éléments des pastilles conductrices 4 isolées les unes des autres.
[0140] La solution de la figure 2 permet donc de modifier la loi de rayonnement de l’antenne en modifiant la fréquence et/ou l’orientation de l’onde rayonnée par l’élément d’antenne. La modification de l’orientation de l’onde rayonnée équivaut à un balayage spatial du faisceau rayonnée par l’antenne.
[0141] Dans la réalisation de la figure 9, le dispositif de reconfiguration DR est configuré pour éclairer la face arrière 21 du substrat 202.
[0142] La couche 212 est avantageusement en matériau photoconducteur transparent à la longueur d’onde de reconfiguration lG différente de la longueur d’onde de commutation lo et la couche intermédiaire 213 est dans un matériau transparent à la longueur d’onde de commutation lo.
[0143] On choisit avantageusement des matériaux transparents à des longueurs d’ondes respectives éloignées l’une de l’autre, par exemple un matériau transparent à 800 nm et présentant un coefficient d’absorption élevé à 1 ,5 micromètre et un autre matériau sensiblement transparent à 1 ,5 micromètre et présentant un coefficient d’absorption élevé à 800 nm.
[0144] On peut, par exemple choisir une couche de masse du type AsGa et un couche intermédiaire en matériau semi-conducteur bidimensionnel.
[0145] En variante, le dispositif de reconfiguration DR est configuré pour éclairer l’empilement EE en face avant. La couche 213 présente avantageusement une épaisseur telle que les faisceaux optiques éclairant la face avant 22 du substrat 20 à la longueur d’onde lG sont totalement absorbés par la couche 213 ce qui permet de réaliser la couche 212 en matériau absorbant à la longueur d’onde r.
[0146] Alors, l’épaisseur de la couche 213 est avantageusement choisie de façon à être supérieure à la profondeur de pénétration de la lumière à la longueur d’onde r.
[0147] La reconfiguration optique de l’élément d’antenne utilise la photoconductivité pour rendre conducteur le substrat au niveau des intervalles 6 entre les pastilles conductrices 4. Cette commande optique présente l’avantage d’être sans contact et de pouvoir être rapide. La vitesse de reconfiguration dépend principalement des
caractéristiques du matériau semi-conducteur utilisé et de la source laser utilisée. Elle peut varier de quelques ms à quelques ps.
[0148] Par ailleurs, la solution proposée présente l’avantage d’utiliser une unique source optique pour reconfigurer l’antenne en commandant collectivement de façon sélective les zones du substrat situées en regard des intervalles séparant les pastilles conductrices de façon à permettre de connecter sélectivement deux à deux les pastilles conductrices 4 adjacentes. Elle est relativement simple à réaliser puisqu’elle comprend une unique source optique pour reconfigurer l’antenne. Elle est plus fiable qu’une solution qui comprendrait une source optique par spot devant être crée sur la couche intermédiaire.
[0149] Cette commande optique assure une indépendance entre la fonction de reconfiguration de l’antenne et de rayonnement de l’antenne, l’émission de l’onde sphérique étant commandée électriquement).
[0150] En variante, le dispositif à métasurface de la figure 8 est dépourvu de la couche intermédiaire photoconductrice. Il est possible de reconfigurer le dispositif à métasurface par le dispositif de reconfiguration DR par un éclairage face avant lorsque la source de commutation 8 éclaire le substrat en face arrière en choisissant les longueurs d’ondes lG et lo et l’épaisseur de la couche conductrice 212 de sorte que la première couche photoconductrice 212 comprenne une portion isolante isolant électriquement les zones ZE éclairées rendues conductrices par le dispositif de reconfiguration DR et la zone conductrice 216 rendue conductrice par la source de commutation 8.
[0151] Il est à noter qu’il est possible d’ajouter au dispositif de la figure 4 ou de la figure 6 ou 7, une couche photoconductrice semi-conductrice entre la couche intermédiaire 9 et l’élément d’antenne 3 de façon que la couche photoconductrice semi-conductrice présente la même fonction que la couche 213 et un dispositif de reconfiguration DR comme celui de la figure 9 de façon à permettre de reconfigurer le dispositif à métasurface.
[0152] Il existe de nombreux dispositifs optiques diffractifs DIFF permettant d’éclairer un réseau de zones éclairées comme, par exemple, les éléments optiques diffractifs ou DOE, en référence à l’expression anglo-saxonne « Diffractive Optical Eléments »
ou dispositifs optiques basés sur une matrice de micro-miroirs ou DMD, en référence à l’expression anglo-saxonne « digital micromirror device ».
[0153] De tels dispositifs optiques diffractifs DIFF permettent de générer, par diffraction, un réseau monodimensionnel ou bidimensionnel de zones éclairées ou de zones non éclairées. Le réseau peut être régulier ou irrégulier.
[0154] Le dispositif optique diffractif DIFF peut être configuré pour être apte à éclairer, à partir du faisceau rayonné par la source, un unique ensemble de zones éclairées de la couche conductrices comme, par exemple, un dispositif optique diffractif DIFF basé sur un élément d’optique diffractif DOE situé à une distance fixe de la source SR et de la couche 213.
[0155] Le dispositif optique diffractif DIFF peut être configuré pour permettre de d’éclairer, à partir du faisceau rayonné par la source, SR alternativement, différents réseaux de zones éclairées de la couche 213, chaque réseau de zones éclairées étant différent des autres ensembles de zones éclairées.
[0156] C’est, par exemple, le cas d’un dispositif optique diffractif DIFF comprenant une matrice de micro-miroirs ou DMD, un dispositif de commande et un ensemble d’actionneurs permettant, sur commande de l’actionneur, de déplacer individuellement chacun des miroirs entre une première position dans laquelle il réfléchit la lumière vers une lentille de diffusion et une deuxième position dans laquelle il réfléchit la lumière vers une surface absorbante de façon que la matrice de micro-miroirs éclaire, à partir du faisceau rayonné par la source de reconfiguration SR, un réseau de groupes de pastilles conductrices 4 connectées entre elles pris parmi un ensemble de réseaux prédéterminés.
[0157] Le dispositif de commande comprend, par exemple, une mémoire stockant un ensemble de réseaux de groupes de pastilles conductrices 4 connectées entre elles pris parmi un ensemble de réseaux prédéterminés et, associant à chacun de ces réseaux, la position prise parmi la première position et la deuxième position, devant être occupé par chacun des micro-miroirs pour que la matrice de micro-miroirs éclaire le réseau considéré à partir du faisceau rayonné par la source de reconfiguration.
[0158] Les zones continues éclairées ZE ou les zones non éclairées peuvent différer, par exemple, par leur forme et/ou leur taille et/ou leur orientation dans un repère lié à
l’élément d’antenne. Chacun des réseaux de groupes de pastilles connectées électriquement entre elles peut être monodimensionnel ou bidimensionnel, périodique ou apériodique.
[0159] D’autres types de dispositifs de reconfiguration des dispositifs à métasurface sont bien entendu envisageables. Il est, par exemple, possible de disposer comme décrit dans la demande de brevet WO2019219708 A1 des interrupteurs dans les intervalles 6.
[0160] Chaque interrupteur est configuré pour permettre de connecter électriquement entre elles deux pastilles 4 adjacentes séparées par un intervalle 6.
[0161] Ces interrupteurs peuvent être du type commandé électriquement, comme par exemple des microsystèmes électromécanique ou MEMS en référence à l’expression anglo-saxonne « micro-electro-mechanical Systems » ou du type comprenant un matériau à changement de phase.
[0162] Toutefois, le contrôle des interrupteurs unitaires pose un problème complexe de distribution de signaux électriques de contrôle qui entraîne des perturbations électromagnétiques, induites par les fils d’alimentation, sur le diagramme de rayonnement du dispositif à métasurface.
[0163] Les longueurs d’onde de commutation et/ou de reconfiguration sont, par exemple, situées dans le domaine infrarouge. Elles sont, par exemple, comprises entre 800 nm et 1500 nm ce qui permet d’utilise des matériaux semi-conducteurs conventionnels tels que le silicium et l’arséniure de gallium (AsGa). Les longueurs d’onde de commutation et de reconfiguration peuvent être situées dans tout le domaine optique. Elles peuvent, par exemple, être situées dans le domaine ultra violet ou le visible. On peut par exemple utiliser des matériaux semi-conducteurs bidimensionnels ou le nitrure de gallium (GaN).
[0164] Dans la réalisation de la figure 4, le dispositif à métasurface comprend une source d’émission d’ondes électromagnétiques S de sorte que le dispositif à métasurface est apte à rayonner une onde électromagnétique. De façon plus générale, applicable à tous les exemples et modes de réalisation, le dispositif à métasurface comprend un dispositif d’émission et/ou de réception apte à émettre et/ou à recevoir une onde électromagnétique, le dispositif d’émission et/ou réception étant configuré et disposé de façon que l’onde électromagnétique qu’il émet ou reçoit
soit apte à se propager sous forme d’une onde de surface sur la surface avant du substrat. Dans le cas d’un dispositif de réception, l’élément d’antenne est apte à réfléchir ou transformer une onde se déplaçant selon une direction comprenant une composante non nulle selon l’axe x pour la transformer en une onde se propageant sur la surface avant du substrat et étant reçue par le dispositif de réception pouvant comprendre un câble coaxial tel que représenté en figure 4. Le dispositif comprend alors des moyens de traitement du signal reçu par le câble coaxial. Le dispositif d’émission et/ou de réception est destiné à fonctionner à une certaine longueur d’onde.
Claims
1. Dispositif à métasurface comprenant
- un substrat (2) ayant une surface arrière (21) et une surface avant (22),
- un dispositif d’émission et/ou de réception apte à émettre et/ou à recevoir une onde électromagnétique, le dispositif d’émission et/ou réception étant configuré et disposé de façon que l’onde soit apte à se propager sous forme d’une onde de surface sur la surface avant (22) du substrat (2),
- un élément d’antenne (3) comprenant un réseau bidimensionnel (2) de pastilles conductrices disposées sur la surface avant du substrat et distantes les unes des autres et présentant des dimensions inférieures à la longueur d’onde de fonctionnement du dispositif d’émission et/ou de réception,
- le substrat (2) comprenant une structure de masse (7) apte à être dans un état isolant dans lequel la structure de masse empêche la propagation de l’onde de surface sur la surface avant de substrat, depuis le dispositif d’émission et/ou de réception jusqu’aux pastilles conductrices, ou inversement, et dans un état conducteur dans lequel la structure de masse a la fonction de plan de masse permettant la propagation de l’onde de surface sur la surface avant du substrat, depuis le dispositif d’émission réception jusqu’aux pastilles conductrices, ou inversement, la structure de masse étant apte à passer de l’état isolant à l’état conducteur par éclairement de la structure de masse à une longueur d’onde dite de commutation.
2. Dispositif à métasurface selon la revendication précédente, comprenant une source de commutation (8) apte passer d’un état dans lequel elle n’éclaire pas la structure de masse (7), de sorte que la structure de masse (7) soit dans l’état isolant, à un état dans lequel elle éclaire la structure de masse (7) de façon que la structure de masse a la fonction de plan de masse.
3. Dispositif à métasurface selon la revendication 2, dans lequel le substrat (2) comprend une couche de masse (7) et une couche intermédiaire (9) isolant le plan de masse des pastilles conductrices, lorsque la structure de masse (7) a la fonction de plan de masse, la structure de masse (7) comprenant une partie centrale photoconductrice (PC) et une partie périphérique conductrice (PF) entourant la partie centrale photoconductrice (PC), la partie centrale photoconductrice (PC) étant dans un état isolant, lorsqu’elle n’est pas éclairée, dans lequel elle empêche la
propagation de l’onde de surface depuis le dispositif d’émission et/ou de réception jusqu’aux pastilles conductrices (4), ou inversement, la partie centrale photoconductrice (PC) étant apte à être dans un état conducteur, lorsqu’elle est éclairée à la longueur d’onde de commutation, dans lequel la partie centrale photoconductrice (PC) est conductrice de sorte que la structure de masse a la fonction de plan de masse.
4. Dispositif à métasurface selon la revendication 3, dans lequel la structure de masse (7) étant une couche de masse, la couche intermédiaire (9) étant interposée entre les pastilles conductrices (4) et la couche de masse (7).
5. Dispositif à métasurface selon la revendication 3, dans lequel la couche intermédiaire est en un matériau semi-conducteur photoconducteur apte à être dans un état conducteur lorsqu’il est éclairé à la longueur d’onde de commutation, la couche intermédiaire étant interposée entre les pastilles conductrices (4) et la partie périphérique conductrice, la partie centrale photoconductrice comprenant une partie centrale d’une face arrière de la couche intermédiaire, la face arrière de la couche intermédiaire étant en contact physique direct avec la partie périphérique conductrice.
6. Dispositif à métasurface selon l’une quelconque des revendications 3 à 5, comprenant plusieurs sources de commutation, la structure de masse (7) comprenant plusieurs parties centrales photoconductrices et un commutateur (COM) permettant d’éclairer de façon sélective une seule des parties centrales photoconductrice prise parmi les parties centrales photoconductrices et/ou permettant d’éclairer simultanément de façon sélective plusieurs parties centrales photoconductrices.
7. Dispositif à métasurface selon l’une quelconque des revendications 1 à 2, dans lequel la structure de masse est une première couche photoconductrice (212) réalisée dans un unique matériau semi-conducteur photoconducteur, le matériau photoconducteur étant isolant lorsqu’il n’est pas éclairé et conducteur lorsqu’il est éclairé à la longueur d’onde de commutation.
8. Dispositif à métasurface selon la revendication précédente, dans lequel le matériau semi-conducteur photoconducteur formant la première couche photoconductrice (212) est choisi de façon que la première couche photoconductrice (212) présente une profondeur de pénétration inférieure à l’épaisseur de la couche
première photoconductrice (212) à la longueur d’onde de commutation de sorte que lorsque la totalité d’une face arrière de la première couche photoconductrice (212) est éclairée à la longueur d’onde de commutation par la source de commutation (8), la première couche photoconductrice (212) comprend :
- une portion conductrice (215) formant le plan de masse et s’étendant depuis la face arrière (225) de la couche semi-conductrice (212) sur une épaisseur inférieure à l’épaisseur de la première couche semi-conductrice (212) et,
- une portion isolante (216) s’étendant sur le reste de l’épaisseur de la couche semi- conductrice de sorte que la portion conductrice (215) soit isolée des pastilles conductrices (4) par la portion isolante (216).
9. Dispositif à métasurface selon l’une quelconque des revendications précédentes, comprenant une couche intermédiaire semi-conductrice (213), le dispositif à métasurface comprenant un dispositif de reconfiguration optique (DR) comprenant une source dite de reconfiguration (SR) émettant un faisceau optique et un dispositif optique diffractif (DIFF) apte éclairer un ensemble d’au moins une zone, dite zone éclairée, de la couche intermédiaire (213) de façon que la couche de intermédiaire (213) soit conductrice uniquement dans l’ensemble d’au moins une zone éclairée (ZE), de sorte à connecter électriquement deux à deux les pastilles métalliques de l’élément d’antenne séparées et reliées par une zone continue de la couche intermédiaire semi-conductrice (213) située totalement dans une zone éclairée (ZE) de l’ensemble d’au moins une zone éclairée (ZE) pour former au moins un groupe (G) de pastilles conductrices (4) connectées électriquement entre elles.
10. Dispositif à métasurface selon la revendication précédente, dans lequel la couche intermédiaire est interposée entre la couche de masse et les pastilles conductrices (4) ou dans lequel la couche intermédiaire est la couche de masse.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2008095A FR3113199B1 (fr) | 2020-07-30 | 2020-07-30 | Dispositif a metasurface |
PCT/EP2021/070288 WO2022023125A1 (fr) | 2020-07-30 | 2021-07-20 | Dispositif a metasurface |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4189772A1 true EP4189772A1 (fr) | 2023-06-07 |
Family
ID=73643019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21759241.9A Pending EP4189772A1 (fr) | 2020-07-30 | 2021-07-20 | Dispositif a metasurface |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230275356A1 (fr) |
EP (1) | EP4189772A1 (fr) |
FR (1) | FR3113199B1 (fr) |
WO (1) | WO2022023125A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114843790A (zh) * | 2022-05-17 | 2022-08-02 | 兰灵信息科技(石家庄)有限公司 | 一种多维度可调控数字编码超表面 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175332B1 (en) * | 1997-09-16 | 2001-01-16 | The United States Of America As Represented By The Secretary Of The Air Force | Diffractive beam forming and scanning antenna array |
US8223423B2 (en) * | 2008-08-28 | 2012-07-17 | Lockheed Martin Corp. | Dynamic reflectarray technology for electro-optical sensors |
US9711852B2 (en) * | 2014-06-20 | 2017-07-18 | The Invention Science Fund I Llc | Modulation patterns for surface scattering antennas |
US10186771B2 (en) * | 2015-10-12 | 2019-01-22 | Raytheon Company | Optically-activated array utilizing photonic integrated circuits (pics) |
WO2018143627A1 (fr) * | 2017-01-31 | 2018-08-09 | Samsung Electronics Co., Ltd. | Dispositif d'émission/réception de signal haute fréquence |
EP3570375A1 (fr) * | 2018-05-14 | 2019-11-20 | Paris Sciences et Lettres - Quartier Latin | Ensemble d'antenne reconfigurable d'une métasurface de métasurfaces |
US10468767B1 (en) * | 2019-02-20 | 2019-11-05 | Pivotal Commware, Inc. | Switchable patch antenna |
US11705634B2 (en) * | 2020-05-19 | 2023-07-18 | Kymeta Corporation | Single-layer wide angle impedance matching (WAIM) |
FR3113198B1 (fr) * | 2020-07-30 | 2024-07-26 | Paris Sciences Lettres Quartier Latin | Dispositif a metasurface |
GB2624105A (en) * | 2022-09-28 | 2024-05-08 | Novocomms Ltd | Meta-surface reconfigurable antenna array |
-
2020
- 2020-07-30 FR FR2008095A patent/FR3113199B1/fr active Active
-
2021
- 2021-07-20 US US18/017,852 patent/US20230275356A1/en active Pending
- 2021-07-20 EP EP21759241.9A patent/EP4189772A1/fr active Pending
- 2021-07-20 WO PCT/EP2021/070288 patent/WO2022023125A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20230275356A1 (en) | 2023-08-31 |
WO2022023125A1 (fr) | 2022-02-03 |
FR3113199A1 (fr) | 2022-02-04 |
FR3113199B1 (fr) | 2024-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11112491B2 (en) | Optical scanner and detector | |
US10739256B1 (en) | Spectroscopy system with beat component | |
CN108700790A (zh) | 光偏转器及激光雷达装置 | |
CA2148796C (fr) | Antenne fil-plaque monopolaire | |
FR2767970A1 (fr) | Structure rayonnante | |
WO2022023126A1 (fr) | Dispositif a metasurface | |
EP3011639A1 (fr) | Source pour antenne parabolique | |
EP1430566B1 (fr) | Antenne a large bande ou multi-bandes | |
EP4189772A1 (fr) | Dispositif a metasurface | |
EP1798809B1 (fr) | Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes | |
EP0519772B1 (fr) | Antenne hyperfréquence à balayage optoélectronique | |
EP1305846B1 (fr) | Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique | |
FR2954858A1 (fr) | Antenne rayonnant un signal dans une direction de l'espace dependant de la frequence de ce signal | |
FR2831734A1 (fr) | Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement | |
EP0595726A1 (fr) | Déphaseur d'ondes électromagnétiques et application à une antenne à balayage électronique | |
FR3068523A1 (fr) | Antenne a reseau transmetteur comportant un mecanisme de reorientation de la direction du faisceau | |
WO2009013248A1 (fr) | Syteme antennaire dont le diagramme de rayonnement est reconfigurable parmi des diagrammes de rayonnement sectoriels et directifs, et dispositif emetteur et/ou recepteur correspondant | |
FR2705169A1 (fr) | Antenne réseau bidimensionnel, à modules émetteurs-récepteurs répartis sur la surface de l'antenne, et à balayage électronique. | |
EP4350890A1 (fr) | Commutateur a base d'un materiau a changement de phase | |
EP4010932B1 (fr) | Dispositif optoélectronique planaire de génération d'un signal hyperfréquence | |
WO2023218008A1 (fr) | Antenne faible profil à balayage electronique bidimensionnel | |
FR2697680A1 (fr) | Antenne radar à balayage électronique, notamment applicable à un radar anticollision pour automobile. | |
FR2522888A1 (fr) | Antenne a double reflecteur a transformateur de polarisation incorpore | |
EP0928042A1 (fr) | Dispositif large bande de détection, notamment de radars | |
FR2914112A1 (fr) | Guide d'onde multi-faisceaux a fentes rayonnantes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |