EP1551078B1 - Antenne omnidirectionnelle configurable - Google Patents

Antenne omnidirectionnelle configurable Download PDF

Info

Publication number
EP1551078B1
EP1551078B1 EP04300001.7A EP04300001A EP1551078B1 EP 1551078 B1 EP1551078 B1 EP 1551078B1 EP 04300001 A EP04300001 A EP 04300001A EP 1551078 B1 EP1551078 B1 EP 1551078B1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna according
reflective elements
axis
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04300001.7A
Other languages
German (de)
English (en)
Other versions
EP1551078A1 (fr
Inventor
Philippe Ratajczak
Patrice Brachat
Pierre-Yves Garel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Priority to EP04300001.7A priority Critical patent/EP1551078B1/fr
Priority to US11/026,450 priority patent/US7123205B2/en
Publication of EP1551078A1 publication Critical patent/EP1551078A1/fr
Application granted granted Critical
Publication of EP1551078B1 publication Critical patent/EP1551078B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/446Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements

Definitions

  • the present invention relates to a configurable antenna for transmitting or sensing at least one electromagnetic radiation beam in an adjustable direction and angular width.
  • the invention finds a particularly advantageous application in the field of mobile telephony (GSM bands (Global System for Mobile Communication), DCS (Digital Cellular System), UMTS (Universal Mobile Communication System)), as well as in that of the broadcasting of broadband services such as Wireless Local Area Network (WLAN), WIFI, Local Multi-point Distribution System (LMDS) and even Ultra Wide Band (UWB).
  • GSM bands Global System for Mobile Communication
  • DCS Digital Cellular System
  • UMTS Universal Mobile Communication System
  • broadband services such as Wireless Local Area Network (WLAN), WIFI, Local Multi-point Distribution System (LMDS) and even Ultra Wide Band (UWB).
  • WLAN Wireless Local Area Network
  • WIFI Wireless Local Multi-point Distribution System
  • UWB Ultra Wide Band
  • cell coverage can be obtained from mono / multi-beam antennas whose radiation zones are made adjustable in direction and angular width by the use of active elements that control the antenna. feeding planar array antennas or focal array reflector antennas for angles of sight of ⁇ 30 to 40 °, or placed on a cylindrical surface to have the ability to point one or more beams through 360 °.
  • the complexity of the power grid is directly related to the possibilities and agility of the antenna. This complexity is growing even faster with the formation of multiple independent beams.
  • the management of all the beams must be done through radio frequency active elements of the amplifier type, phase shifter, delay line which work in the frequency bands of the antenna. The use of such elements drastically increases the cost of the antenna or limits the possibilities thereof if one wants to obtain a reasonable price (use in narrow band, ).
  • the power losses of these active printed network antennas are not negligible and may limit intrinsic performance.
  • the technical problem to be solved by the object of the present invention is to propose a configurable antenna intended to emit or pick up at least one electromagnetic radiation beam in an adjustable direction and angular width, which would make it possible to eliminate the limitations known antenna systems mentioned above, especially avoiding the use of radio-frequency components.
  • the document DE 32 37 136 discloses an antenna having an upper metal plate and a lower metal plate, partially conical and reflective elements in the form of bars extending between said plates.
  • the document AT 520 107 describes an antenna whose structure is that of a conical monopole.
  • the document US 4,700,197 describes an antenna whose structure is a monopole comprising a plurality of re-connectors mounted on a ground plane.
  • the document GB 1,021,727 discloses a system comprising an antenna formed of a central pole and a plurality of reflectors disposed around said pole.
  • said configurable antenna also comprises, associated with said omnidirectional antenna, discrete reflective reflectivity elements controllable, arranged on at least one circle centered around the given z axis .
  • the reflectivity of said discrete reflector elements is controlled by a DC voltage.
  • the configurable antenna according to the invention uses the modification of the electromagnetic radiation of an omnidirectional antenna, broadband or multi-band, by a system of deflectors controlled by simple direct voltage, unlike conventional active antennas where one pilot the radiation by radio-frequency components.
  • the combination of an omnidirectional type antenna to a system of discrete reflector elements transforms, according to the invention, the omnidirectional coverage of the antenna into a mono / multibeam coverage of variable widths.
  • the antenna of the invention can be configured to obtain a beam of radiation in a cell of larger or smaller size or to illuminate several cells in different angular sectors.
  • the coverage can therefore be changed without the need to change the antenna or its positioning.
  • said discrete reflector elements are linear elements each consisting of discontinuous metal bars interconnected by electrical conductivity components controllable by a DC voltage.
  • These elements were developed by the Institut d'Electronique Fondamentale of the University of Paris Sud-Orsay ( "Numerical and Experimental Demonstration of an Electronically Controllable PBG in the Frequency Range 0 to 20 Ghz" A. de Lustrac, T. Brillat, F.Gadot and E.
  • the working frequencies are below the forbidden bands and the meta-material is used as a simple metal reflector controlled.
  • controllable electrical conductivity components are diodes or micro-mechanical switches known by the acronym MEMS for "MicroElectroMechanical System", these two types of components being controllable by a DC voltage .
  • said omnidirectional antenna is constituted by a biconical antenna.
  • Biconical antennas are omnidirectional antennas whose properties and characteristics have been described in chapter 8 "The Biconical Antenna and its lmpedance" from JD Kraus Antennas, McGraw-Hill, Electrical and Electronical Engineering Series, 1950 .
  • said omnidirectional antenna is constituted by a plurality of networked biconical antennas.
  • said biconical antenna has asymmetrical cones or that said biconical antennas are networked with a variable phase shift.
  • the discrete reflector elements have a variable reflectivity as a function of the frequency of the electromagnetic radiation. This makes it possible, by inclusion of defects in the meta-material constituted by said discrete elements, to obtain beams of radiation of different coverage according to the frequency band: GSM, UMTS, ....
  • the invention also contemplates that the antenna of the invention comprises second discrete reflector elements arranged orthogonally to said discrete reflector elements. This double structure, which can be controlled separately in horizontal and vertical polarization, offers the possibility of making polarizations at ⁇ 45 °.
  • the figure 1 is a perspective view of a configurable antenna according to the invention.
  • the figure 2 is a sectional view along the z-axis of the antenna of the figure 1 .
  • the figure 3a represents a polarized reflective element.
  • the figure 3b represents the reflective element of the figure 3a unpolarized.
  • the figure 4a is a top view of a distribution of non-polarized reflector elements.
  • the figure 4b represents the distribution of the figure 4a in a single-beam polarization configuration of the reflector elements.
  • the figure 4c represents the distribution of the figure 4a in a multi-beam polarization configuration of the reflector elements.
  • the figure 5 is a sectional view along the z-axis of two antennas according to the invention mounted in a network.
  • a configurable antenna 10 comprising a omnidirectional antenna 11 broadband or multi-band which, in the example illustrated in these figures, is of the biconical type.
  • the omnidirectional antenna 11 consists of two substantially conical surfaces 111 and 112 arranged head to tail about a common axis z which is also that of the antenna 10.
  • the antenna 11 is able to emit or pick up a beam of electromagnetic radiation omnidirectionally, ie isotropically about the z axis, which constitutes an axis of revolution for the antenna 11.
  • the omnidirectional antenna 11 is associated with a system of discrete reflective elements 20 of controllable reflectivity arranged according to at least one circle centered around the z axis. As indicated by figure 1 and more precisely the Figures 4a to 4c said reflective elements 20 are distributed in four concentric circles 31, 32, 33, 34.
  • the reflector elements 20 are linear elements each constituted by discontinuous metal bars 21 interconnected by components 22 of controllable electrical conductivity. As can be seen on the Figures 3a and 3b said components 22 are diodes controlled by a DC voltage.
  • the system formed by a regular set of discrete linear elements 20 of this type produces a meta-material, called electromagnetic bandgap, whose properties have been recalled above with reference to the publication of A. de Lustrac et al.
  • the Figures 3a and 3b illustrate how the linear elements 20 operate when applied to the configurable antenna 10.
  • the diodes 22 are biased by a DC voltage and, because of their very low electrical resistance, realize the equivalent of a single bar of greater length than each individual bar 21.
  • This bar, then referenced 20 ', is a reflector from the electromagnetic point of view. It will be understood that the spatial distribution of the linear elements 20 'of shorted bars 21 forms a reflector which makes it possible to distribute the radiation at will in the space.
  • the diodes are not polarized and therefore have a very high impedance. There is no electrical connection between the bars and the equivalent bar 20 "is transparent to the electromagnetic waves.Practically, it is advantageous for the length of an elementary bar 21 to remain less than one-fifth of the smaller wavelength to limit the disturbance of these bars 21.
  • the advantage of using this controlled reflective element system is mainly due to the fact that the diodes are biased with a DC voltage. There is therefore no complex RF component type amplifier or phase shifter. Only the diode 22 must be chosen so as to have the lowest internal resistance to the frequencies envisaged when it is polarized, this in order to obtain a better short-circuit.
  • the configurable reflector system associated with the omnidirectional antenna 11 is constituted by a plurality of concentric circles of axis z on which the reflector elements 20 are regularly distributed in a linear step ⁇ constant.
  • the angular distribution of the elements 20 is variable as a function of the radius of the circle considered in order to obtain a linear pitch ⁇ constant for all the circles 31, 32, 33, 34.
  • the number of concentric circles of reflective elements 20 is set so as to have a sufficient attenuation in the short-circuit zone since the metal bar 20 'is a localized element and the superposition of concentric layers makes it possible to best simulate a cylinder reflective metal. Likewise, the radial spacing between each concentric circle must be small enough that the repetition of the circles generates a cylindrical reflective portion
  • the desired electromagnetic radiation beam distribution may be achieved, for example an omnidirectional distribution ( figure 4a ), a single beam distribution ( figure 4b ) of variable width or multi-beam distribution ( figure 4c ) with a variable width for each beam.
  • each linear element 20 passes through the upper metal cones 111 and lower 112 without electrical contact, passing through insulating passages 40. It is then very easy thanks to the coaxial feed of the biconical antenna 11 to bring a DC voltage on the upper cone 111 in order to be able to independently bias each linear element 20 by a control box 50 placed on the upper cone 111, the elements 20 being grounded on the lower cone 112 ( figure 2 ), or under the lower cone 112, the elements 20 being connected directly to the upper cone 111 for connection to the positive voltage.
  • FIG. 5 a configurable antenna 10 'constituted by an omnidirectional antenna 11' comprising two biconical antennas 11a and 11b.
  • the configuration of linear reflective elements 20 in short-circuit or open circuit is the same for all of the two biconical antennas 11a and 11b, in order to generate the cover (s) in azimuth.
  • the integration of the linear elements 20 controlled is done in the same way as for a simple biconical antenna.
  • the bias voltage of the diodes is applied to the central core of the coaxial cable 200 and is recovered on the last cone 111b of the network.
  • the elements 20 pass through the cones without electrical contact and are connected to ground on the lower cone 112a.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • La présente invention concerne une antenne configurable, destinée à émettre ou capter au moins un faisceau de rayonnement électromagnétique dans une direction et une largeur angulaire ajustables.
  • L'invention trouve une application particulièrement avantageuse dans le domaine de la téléphonie mobile (bandes GSM (Global System for Mobile Communication), DCS (Digital Cellular System), UMTS (Universal Mobile Communication System)), ainsi que dans celui de la diffusion de services haut-débit du type WLAN (Wireless Local Area Network), WIFI, LMDS (Local Multi-point Distribution System) et même UWB (Ultra Wide Band).
  • Le développement des systèmes de télécommunication répondant aux problèmes de la communication en situation de mobilité a amené les opérateurs et les industriels à développer et utiliser des stations de base de plus en plus complexes. A l'heure actuelle, suite aux contraintes liées au nombre de sites en exploitation, il est de plus en plus difficile d'installer indéfiniment de nouvelles antennes. Il devient donc nécessaire de faire appel à des antennes large bande susceptibles de remplacer plusieurs antennes mono-bande ou de mettre en oeuvre la même antenne pour couvrir plusieurs zones distinctes.
  • En matière de téléphonie mobile, la couverture par cellules peut être obtenue à partir d'antennes mono/multi-faisceaux dont les zones de rayonnement sont rendues ajustables en direction et en largeur angulaire grâce à l'utilisation d'éléments actifs qui commandent l'alimentation d'antennes réseaux planaires ou antennes réflecteurs à réseau focal pour des angles de visée de ± 30 à 40°, ou placées sur une surface cylindrique pour avoir la possibilité de pointer un ou plusieurs faisceaux sur 360°. La complexité du réseau d'alimentation est directement liée aux possibilités et à l'agilité de l'antenne. Cette complexité s'accroît encore plus rapidement avec la formation de faisceaux multiples Indépendants. La gestion de l'ensemble des faisceaux doit se faire au travers d'éléments actifs radio-fréquence du type amplificateur, déphaseur, ligne à retard qui travaillent dans les bandes de fréquence de l'antenne. L'utilisation de tels éléments augmente de façon drastique le coût de l'antenne ou limite les possibilités de celle-ci si l'on veut obtenir un prix raisonnable (utilisation en bande étroite,...). De plus, les pertes liées à l'alimentation de ces antennes-réseaux imprimées actives ne sont pas négligeables et peuvent limiter les performances intrinsèques.
  • Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer une antenne configurable, destinée à émettre ou capter au moins un faisceau de rayonnement électromagnétique dans une direction et une largeur angulaire ajustables, qui permettrait d'éliminer les limitations des systèmes d'antennes connus mentionnées plus haut en évitant notamment l'emploi de composants radio-fréquence.
  • Le document DE 32 37 136 décrit une antenne comportant une plaque métallique supérieure et une plaque métallique inférieure, partiellement de forme conique et des éléments réflecteurs sous la forme de barreaux s'étendant entre lesdites plaques.
  • Le document AU 520 107 décrit une antenne dont la structure est celle d'un monopôle conique.
  • Le document US 4 700 197 décrit une antenne dont la structure est un monopôle comportant une pluralité de rélfecteurs montés sur une plan de masse.
  • Le document US 3 375 519 décrit un antenne comprenant une plaque supérieure et une plaque inférieure et des tubes chargés de gaz s'étendant entre les deux plaques.
  • . Le document GB 1 021 727 décrit un système comprenant une antenne formée d'un poteau central et de plusieurs réflecteurs disposés autour dudit poteau.
  • La solution au problème technique posé consiste, selon la présente invention, en ce que ladite antenne configurable comprend également, associés à ladite antenne omnidirectionnelle, des éléments réflecteurs discrets de réflectivité commandable, disposés sur au moins un cercle centré autour de l'axe z donné.
  • Avantageusement, la réflectivité desdits éléments réflecteurs discrets est commandée par une tension de courant continu.
  • Ainsi, l'antenne configurable conforme à l'invention utilise la modification du rayonnement électromagnétique d'une antenne omnidirectionnelle, large bande ou multi-bande, par un système de déflecteurs pilotés par simple tension continue, contrairement aux antennes actives classiques où l'on pilote le rayonnement par des composants radio-fréquence. En d'autres termes, l'association d'une antenne du type omnidirectionnel à un système d'éléments réflecteurs discrets transforme, selon l'invention, la couverture omnidirectionnelle de l'antenne en une couverture mono/multifaisceaux de largeurs variables.
  • On comprend qu'en fonction de la couverture souhaitée, l'antenne de l'invention peut être configurée pour obtenir un faisceau de rayonnement dans une cellule de taille plus ou moins grande ou pour illuminer plusieurs cellules dans des secteurs angulaires différents. La couverture peut donc être modifiée sans qu'il soit nécessaire de changer l'antenne ou son positionnement.
  • Selon un mode de réalisation particulier de l'invention, lesdits éléments réflecteurs discrets sont des éléments linéaires constitués, chacun, par des barreaux métalliques discontinus reliés entre eux par des composants de conductivité électrique commandable par une tension continue. Ces éléments ont été développés par l'Institut d'Electronique Fondamentale de l'Université de Paris Sud-Orsay (« Numerical and Experimental Demonstration of an Electronically Controllable PBG in the Frequency Range 0 to 20 Ghz » A. de Lustrac, T. Brillat, F.Gadot and E. Akmansoy, Actes du Congrès Antennas and Propagation 2000, 9-14 april 2000, Davos, Switzerland) dans le but de réaliser un méta-matériau à bandes interdites électromagnétiques basé sur le principe des bandes interdites photoniques, la répartition spatiale des éléments selon un réseau bi-périodique créant l'équivalent d'un « cristal ». L'effet de ce pseudo-cristal sur la propagation des ondes électromagnétiques est modifié par la présence de défauts placés à l'intérieur, ce qui permet d'obtenir pour certaines bandes de fréquence une transmission au travers de ce pseudo-cristal qui, s'il avait été parfait, aurait réfléchi l'ensemble des fréquences.
  • Pour l'application à l'invention, les fréquences de travail se trouvent en-dessous des bandes interdites et le méta-matériau est utilisé comme simple réflecteur métallique commandé.
  • De manière pratique, l'invention prévoit que lesdits composants de conductivité électrique commandable sont des diodes ou des interrupteurs micro-mécaniques connus sous l'acronyme anglo-saxon MEMS pour « MicroElectroMechanical System », ces deux types de composants étant commandables par une tension continue.
  • Conformément à l'invention, ladite antenne omnidirectionnelle est constituée par une antenne biconique.
  • Les antennes biconiques sont des antennes omnidirectionnelles dont les propriétés et les caractéristiques ont été décrites au chapitre 8 « The Biconical Antenna and its lmpedance » de l'ouvrage de J.D. Kraus « Antennas », McGraw-Hill, Electrical and Electronical Engineering Series, 1950.
  • Comme on le verra en détail plus loin, il est possible d'accroître la directivité de l'antenne, objet de l'invention, du fait que ladite antenne omnidirectionnelle est constituée par une pluralité d'antennes biconiques mises en réseau.
  • De manière à pouvoir conformer le faisceau de rayonnement en élévation, c'est-à-dire dans le plan passant par l'axe z, notamment pour obtenir un faisceau centré sur une autre direction que 90° par rapport à l'axe z, il est prévu par l'invention que ladite antenne biconique présente des cônes dissymétriques ou que lesdites antennes biconiques sont mises en réseau avec un déphasage variable.
  • Enfin, dans des applications plus spécifiquement dédiées à la téléphonie mobile, il y a avantage à ce que, selon, l'invention, les éléments réflecteurs discrets présentent une réflectivité variable en fonction de la fréquence du rayonnement électromagnétique. Ceci permet par inclusion de défauts dans le méta-matériau constitué par lesdits éléments discrets d'obtenir des faisceaux de rayonnement de couverture différente selon la bande de fréquence : GSM, UMTS,.... De même, l'invention envisage également que l'antenne de l'invention comporte des deuxièmes éléments réflecteurs discrets disposés orthogonalement auxdits éléments réflecteurs discrets. Cette double structure commandable séparément en polarisation horizontale et verticale offre la possibilité de réaliser des polarisations à ± 45°.
  • La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • La figure 1 est une vue en perspective d'une antenne configurable conforme à l'invention.
  • La figure 2 est une vue en coupe selon l'axe z de l'antenne de la figure 1.
  • La figure 3a représente un élément réflecteur polarisé.
  • La figure 3b représente l'élément réflecteur de la figure 3a non polarisé.
  • La figure 4a est une vue de dessus d'une répartition d'éléments réflecteurs non polarisés.
  • La figure 4b représente la répartition de la figure 4a dans une configuration de polarisation mono-faisceau des éléments réflecteurs.
  • La figure 4c représente la répartition de la figure 4a dans une configuration de polarisation multi-faisceaux des éléments réflecteurs.
  • La figure 5 est une vue en coupe selon l'axe z de deux antennes selon l'invention montées en réseau.
  • Sur les figures 1 et 2 est représentée une antenne configurable 10 comprenant une antenne omnidirectionnelle 11 large bande ou multi-bande qui, dans l'exemple illustré sur ces figures, est du type biconique. Conformément au principe général des antennes biconiques exposé dans l'ouvrage précédemment cité de J.D. Kraus, l'antenne omnidirectionnelle 11 est constituée de deux surfaces 111 et 112 sensiblement coniques disposées tête-bêche autour d'un axe z commun qui est aussi celui de l'antenne 10. L'antenne 11 est apte à émettre ou capter un faisceau de rayonnement électromagnétique de manière omnidirectionnelle, c'est à dire isotrope autour de l'axe z, lequel constitue un axe de révolution pour l'antenne 11. Dans le cas où les deux cônes 111 et 112 sont symétriques, comme représenté sur les figures 1 et 2, le maximum de directivité est obtenu pour une direction D de rayonnement faisant un angle θ de 90°avec l'axe z, c'est-à-dire dans le plan xy.
  • De manière à configurer l'antenne 10 en une antenne mono/multi-faisceaux à direction et largeur angulaire de faisceau(x) ajustables, l'antenne omnidirectionnelle 11 est associée à un système d'éléments réflecteurs discrets 20 de réflectivité commandable, disposés selon au moins un cercle centré autour de l'axe z. Comme l'indiquent la figure 1 et plus précisément les figures 4a à 4c, lesdits éléments réflecteurs 20 sont répartis selon quatre cercles concentriques 31, 32, 33, 34.
  • Dans l'exemple de réalisation proposé sur les figures 3a et 3b, les éléments réflecteurs 20 sont des éléments linéaires constitués, chacun, par des barreaux métalliques discontinus 21 reliés entre eux par des composants 22 de conductivité électrique commandable. Comme on peut le voir sur les figures 3a et 3b, lesdits composants 22 sont des diodes commandées par une tension de courant continu. Le système formé par un ensemble régulier d'éléments linéaires discrets 20 de ce type réalise un méta-matériau, dit à bandes interdites électromagnétiques, dont les propriétés ont été rappelées plus haut en référence à la publication de A. de Lustrac et al.
  • Les figures 3a et 3b illustrent la manière dont les éléments linéaires 20 fonctionnent lorsqu'ils sont appliqués à l'antenne configurable 10.
  • Sur la figure 3a, les diodes 22 sont polarisées par une tension continue et, du fait de leur très faible résistance électrique, réalisent l'équivalent d'une seule barre de longueur plus importante que chaque barreau individuel 21. Cette barre, référencée alors 20', est un réflecteur du point de vue électromagnétique. On comprend que la distribution spatiale des éléments linéaires 20' de barreaux 21 court-circuités forme un réflecteur qui permet de répartir à volonté le rayonnement dans l'espace.
  • Sur la figure 3b, les diodes ne sont pas polarisées et présentent donc une impédance très élevée. Il n'y a pas de connexion électrique entre les barreaux et la barre 20" équivalente est transparente pour les ondes électromagnétiques. De manière pratique, il y a avantage à ce que la longueur d'un barreau élémentaire 21 reste inférieure au cinquième de la plus petite longueur d'onde afin de limiter la perturbation de ces barreaux 21.
  • L'avantage de l'utilisation de ce système à éléments réflecteurs commandés est principalement dû au fait que l'on polarise les diodes avec une tension continue. Il n'y a donc aucun composant RF complexe type amplificateur ou déphaseur. Seule la diode 22 doit être choisie de façon à avoir la plus faible résistance interne aux fréquences envisagées lorsqu'elle est polarisée, ceci afin d'obtenir un meilleur court-circuit.
  • Bien entendu, d'autres composants 22 de conductivité électrique commandable par une tension continue peuvent être envisagés tels que les commutateurs micromécaniques MEMS mentionnés plus haut.
  • Pour l'application à l'invention, le système réflecteur configurable associé à l'antenne omnidirectionnelle 11 est constitué d'une pluralité de cercles concentriques d'axe z sur lesquels sont répartis régulièrement les éléments réflecteurs 20 selon un pas linéaire δ constant.
  • Comme l'indique la figure 4a, la répartition angulaire des éléments 20 est variable en fonction du rayon du cercle considéré afin d'obtenir un pas linéaire δ constant pour tous les cercles 31, 32, 33, 34.
  • Le nombre de cercles concentriques d'éléments réflecteurs 20 est fixé afin d'avoir une atténuation suffisante dans la zone en court-circuit puisque la barre métallique 20' est un élément localisé et que la superposition de couches concentriques permet de simuler au mieux un cylindre métallique réflecteur. De même, l'espacement radial entre chaque cercle concentrique doit être assez faible pour que la répétition des cercles génère une portion réflectrice cylindrique
  • Il faut ainsi faire un compromis entre le nombre de cercles, l'espacement entre cercles et l'encombrement total de l'antenne 10 afin d'obtenir une dimension maximale compatible avec l'application souhaitée.
  • Selon que les éléments linéaires 20 sont polarisés ou non, on peut réaliser la répartition de faisceau de rayonnement électromagnétique voulue, par exemple une répartition omnidirectionnelle (figure 4a), une répartition mono-faisceau (figure 4b) de largeur variable ou une répartition multi-faisceaux (figure 4c) avec une largeur variable pour chaque faisceau.
  • Signalons qu'il est possible d'adapter au mieux l'antenne 10 à l'espace libre en jouant sur la configuration de polarisation des éléments linéaires du premier cercle concentrique 31. Par exemple, pour obtenir un angle d'ouverture effective de 60°, il sera nécessaire de laisser les éléments 20" du premier cercle 31 en circuit ouvert sur un angle plus grand.
  • On peut voir sur la figure 2 que chaque élément linéaire 20 traverse les cônes métalliques supérieur 111 et inférieur 112 sans contact électrique, en passant à travers des passages isolants 40. Il est alors très facile grâce à l'alimentation coaxiale de l'antenne biconique 11 d'amener une tension continue sur le cône supérieur 111 afin de pouvoir polariser indépendamment chaque élément linéaire 20 par un boîtier 50 de commande placé soit sur le cône supérieur 111, les éléments 20 étant mises à la masse sur le cône inférieur 112 (figure 2), soit sous le cône inférieur 112, les éléments 20 étant reliés directement au cône supérieur 111 pour la connexion à la tension positive.
  • C'est la nécessité de réaliser la liaison mécanique entre les éléments linéaires 20 et les cônes de l'antenne biconique 11, ainsi que les passages isolants 40, qui explique que les surfaces 111 et 112 ne soient pas rigoureusement coniques mais affectent une forme pseudo-conique adaptée à cette exigence.
  • La mise en réseau verticale d'antennes 10 conformes à l'invention illustrées sur les figures précédentes offre un grand intérêt pour accroître la directivité verticale de la structure rayonnante. Sur la figure 5 est représentée une antenne configurable 10' constituée par une antenne omnidirectionnelle 11' comprenant deux antennes biconiques 11 a et 11 b. La configuration des éléments réflecteurs linéaires 20 en court-circuit ou en circuit ouvert est la même pour l'ensemble des deux antennes biconiques 11a et 11b, afin de générer la(les) couverture(s) en azimut. L'alimentation des deux demi-antennes est du type série, et l'espacement entre les deux antennes biconiques 11a et 11b sert à remettre en phase leur alimentation respective pour obtenir un rayonnement optimal suivant θ=90°, comme expliqué plus haut, pour l'application spécifique à la téléphonie mobile par exemple, et à adapter au fur et à mesure la mise en série des antennes 11a et 11b.
  • L'intégration des éléments linéaires 20 commandés se fait de la même façon que pour une antenne biconique simple. La tension de polarisation des diodes est appliquée à l'âme centrale du câble coaxial 200 et est récupérée sur le dernier cône 111 b du réseau. Les éléments 20 traversent les cônes sans contact électrique et sont reliés à la masse sur le cône inférieur 112a.
  • Si l'on veut réaliser un faisceau de rayonnement dans une autre direction que celle définie par θ=90°, on peut appliquer un déphasage variable entre les différentes antennes biconiques mises en réseau dans une antenne configurable multiple. Le même résultat peut être obtenu avec une antenne configurable multiple mettant en réseau des antennes biconiques dissymétriques.
  • Il faut également signaler qu'avec des éléments réflecteurs 20 à réflectivité variable avec la fréquence il est possible de générer des faisceaux dans certaines directions de l'espace pour une bande de fréquence donnée et dans d'autres directions pour d'autres bandes fréquentielles.
  • Enfin, on peut noter la possibilité d'obtenir une double polarisation verticale et horizontale en intégrant au système de d'éléments réflecteurs 20 verticaux une autre structure d'éléments réflecteurs orthogonaux pour piloter le rayonnement horizontal et pouvoir ainsi réaliser un rayonnement à ± 45°.

Claims (11)

  1. Antenne omnidirectionnelle (10, 10', 10") configurable destinée à émettre ou capter au moins un faisceau de rayonnement électromagnétique dans une direction et une largeur angulaire ajustables autour d'un axe z donné comprenant:
    un cône métallique supérieur (111) et un cône métallique inférieur (112) disposés tête-bêche autour de l'axe z commun;
    - un système d'éléments réflecteurs discrets (20) de réflectivité commandable s'étendant verticalement entre lesdits cônes métalliques (111, 112) disposés selon un cercle (31, 32, 33, 34) centré sur l'axe z de ladite antenne;
    caractérisée en ce que :
    c haque éléments réflecteur (20) est constitué d'une pluralité barreaux métalliques (21) discontinus reliés entre eux par des composants (22) de conductivité électrique commandable, lesdits éléments réflecteurs traversant les deux cônes métalliques (111, 112), formant une antenne biconique, sans contact électrique avec lesdits cônes métalliques.
  2. Antenne selon la revendication 1, caractérisée en ce que la réflectivité desdits éléments réflecteurs discrets (20) est commandée par une tension continue.
  3. Antenne selon la revendication 2, caractérisée en ce que lesdits composants de conductivité commandable sont des diodes.
  4. Antenne selon la revendication 2, caractérisée en ce que lesdits composants de conductivité commandable sont des interrupteurs
    micromécaniques.
  5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que lesdits éléments réflecteurs discrets (20) sont répartis à pas linéaire (δ) constant sur la pluralité de cercles concentriques (31, 32, 33, 34) d'axe z.
  6. Antenne selon la revendication 5, caractérisée en ce que ledit pas linéaire constant (δ) est identique pour tous lesdits cercles concentriques.
  7. Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la longueur des éléments réflecteurs et inférieure au cinquième de la plus petite longueur d'onde du rayonnement électromagnétique.
  8. Antenne selon l'une des revendications précédentes, caractérisée en ce que les cônes inférieur (112) et supérieur (111) sont dissymétriques.
  9. Antenne selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite antenne comprend une pluralité d'antennes biconiques (11a, 11b, 11c) mises en réseau.
  10. Antenne selon la revendication 9, caractérisée en ce que lesdites antennes biconiques (11a, 11b, 11c) sont mises en réseau avec un déphasage variable.
  11. Antenne selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'elle comporte une structure d'éléments réflecteurs discrets disposés orthogonalement au système d'éléments réflecteurs verticaux.
EP04300001.7A 2004-01-02 2004-01-02 Antenne omnidirectionnelle configurable Expired - Lifetime EP1551078B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04300001.7A EP1551078B1 (fr) 2004-01-02 2004-01-02 Antenne omnidirectionnelle configurable
US11/026,450 US7123205B2 (en) 2004-01-02 2004-12-30 Configurable omnidirectional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04300001.7A EP1551078B1 (fr) 2004-01-02 2004-01-02 Antenne omnidirectionnelle configurable

Publications (2)

Publication Number Publication Date
EP1551078A1 EP1551078A1 (fr) 2005-07-06
EP1551078B1 true EP1551078B1 (fr) 2014-04-02

Family

ID=34560279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04300001.7A Expired - Lifetime EP1551078B1 (fr) 2004-01-02 2004-01-02 Antenne omnidirectionnelle configurable

Country Status (2)

Country Link
US (1) US7123205B2 (fr)
EP (1) EP1551078B1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863109B1 (fr) * 2003-11-27 2006-05-19 Centre Nat Rech Scient Antenne a diagramme de rayonnement d'emission/reception configurable et orientable, station de base correspondante
FR2895574A1 (fr) * 2005-12-22 2007-06-29 France Telecom Reflecteur bipolarisation configurable
US7847659B2 (en) * 2006-12-22 2010-12-07 Alcatel-Lucent Usa Inc. Coaxial metamaterial structure
US7724180B2 (en) 2007-05-04 2010-05-25 Toyota Motor Corporation Radar system with an active lens for adjustable field of view
JP5337432B2 (ja) * 2007-11-30 2013-11-06 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム
US7965250B2 (en) * 2008-10-02 2011-06-21 Toyota Motor Engineering & Manufacturing North America, Inc. Microwave lens
RU2535177C1 (ru) * 2013-07-16 2014-12-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Коническая ультракоротковолновая антенна
EP3285332B1 (fr) * 2016-08-19 2019-04-03 Swisscom AG Système d'antenne
GB201620123D0 (en) * 2016-11-28 2017-01-11 Plasma Antennas Ltd A frequency scanned
KR102644455B1 (ko) 2019-09-18 2024-03-06 후아웨이 테크놀러지 컴퍼니 리미티드 수동 소자가 있는 스마트 안테나에 의한 빔 다이버시티
WO2021052576A1 (fr) 2019-09-18 2021-03-25 Huawei Technologies Co., Ltd. Diversité de faisceau par antenne intelligente sans éléments passifs
US11444373B1 (en) * 2021-09-10 2022-09-13 The United States Of America As Represented By The Secretary Of The Navy Buoy antenna
CN114050405B (zh) * 2021-12-31 2022-04-26 陕西海积信息科技有限公司 线阵车载天线和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375519A (en) 1960-05-19 1968-03-26 Litton Ind Of Maryland Inc Scanning reflector
FR1380255A (fr) 1963-11-25 1964-11-27 Granger Associates Système d'antenne orientable à réflecteurs
AU520107B2 (en) 1976-06-21 1982-01-14 Gould Inc. Antenna bearing system
DE3237136A1 (de) 1982-10-07 1984-04-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Antenne mit elektronisch schwenkbarem richtdiagramm
CA1239223A (fr) 1984-07-02 1988-07-12 Robert Milne Antenne reseau adaptative
US5134420A (en) * 1990-05-07 1992-07-28 Hughes Aircraft Company Bicone antenna with hemispherical beam
US6268834B1 (en) * 2000-05-17 2001-07-31 The United States Of America As Represented By The Secretary Of The Navy Inductively shorted bicone antenna
US6667721B1 (en) * 2002-10-09 2003-12-23 The United States Of America As Represented By The Secretary Of The Navy Compact broad band antenna

Also Published As

Publication number Publication date
US20050168391A1 (en) 2005-08-04
EP1551078A1 (fr) 2005-07-06
US7123205B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
EP3125362B1 (fr) Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
EP2175523B1 (fr) Réseau réflecteur et antenne comportant un tel réseau réflecteur
EP1551078B1 (fr) Antenne omnidirectionnelle configurable
EP2795724B1 (fr) Antenne élémentaire et antenne réseau mono ou bidimensionnelle correspondante
EP1702388A1 (fr) Antenne configurable et orientable, station de base correspondante
EP2571098B1 (fr) Cellule déphaseuse rayonnante reconfigurable basée sur des résonances fentes et microrubans complémentaires
EP2664030B1 (fr) Antenne directive imprimee de type fente et systeme mettant en reseau plusieurs antennes directives imprimees de type fente
EP2654126A1 (fr) Antenne mobile directive à commutation de polarisation par déplacement de panneaux rayonnants
WO2011134666A1 (fr) Element rayonnant compact a cavites resonantes
FR2969832A1 (fr) Cellule rayonnante a deux etats de phase pour reseau transmetteur
EP0886889A1 (fr) Antenne reseau imprimee large bande
CA2148796C (fr) Antenne fil-plaque monopolaire
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP2079131A1 (fr) Perfectionnement aux antennes planaires comportant au moins un élément rayonnant de type fente à rayonnnement longitudinal
FR2975537A1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP3011639A1 (fr) Source pour antenne parabolique
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
EP2764577B1 (fr) Source multi-faisceaux
EP4189772A1 (fr) Dispositif a metasurface
EP2595245B1 (fr) Antenne mobile directive à commutation de polarisation
FR2895574A1 (fr) Reflecteur bipolarisation configurable
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé
EP4350890A1 (fr) Commutateur a base d'un materiau a changement de phase
FR2981514A1 (fr) Systeme antennaire a une ou plusieurs spirale(s) et reconfigurable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051223

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071031

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130628

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 660627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004044733

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 660627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004044733

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004044733

Country of ref document: DE

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221221

Year of fee payment: 20

Ref country code: FR

Payment date: 20221220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004044733

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240101

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240101