EP2764577B1 - Source multi-faisceaux - Google Patents

Source multi-faisceaux Download PDF

Info

Publication number
EP2764577B1
EP2764577B1 EP12768843.0A EP12768843A EP2764577B1 EP 2764577 B1 EP2764577 B1 EP 2764577B1 EP 12768843 A EP12768843 A EP 12768843A EP 2764577 B1 EP2764577 B1 EP 2764577B1
Authority
EP
European Patent Office
Prior art keywords
source
central
elementary
multibeam
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12768843.0A
Other languages
German (de)
English (en)
Other versions
EP2764577A1 (fr
Inventor
Maxime ROMIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2764577A1 publication Critical patent/EP2764577A1/fr
Application granted granted Critical
Publication of EP2764577B1 publication Critical patent/EP2764577B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device

Definitions

  • Multi-beam antennas for spot coverage of a given geographical area are used in satellite communications.
  • the main objective of this technology is to reduce the cost of bit transmission by making the best use of the frequency band allocated to a given application.
  • the distribution of the signals is such that two adjacent cells do not have signals having the same characteristics, that is to say signals with the same frequency and the same polarization.
  • the identical signals are reused in non-adjacent cells to increase the capacity of the system.
  • a multi-beam type of "multiple sources beam” comprises a multi-beam source placed near the focus of a focusing system composed of one or more reflectors.
  • the multi-beam source has several elementary sources arranged in subnetworks.
  • a sub-network makes it possible to form a beam having a given frequency and a given polarization.
  • the allocated frequency band is divided into two sub-frequency bands F 1 and F 2 , and two linear orthogonal polarizations (horizontal H and vertical V) or circular polarizations (right PCG or left PCD). are used.
  • sub-networks of a fourfold reuse scheme are defined as follows: F1 + H (or PCG); F1 + V (or PCD); F2 + H (or PCG); F2 + V (or PCD).
  • the elementary sources contributing to the formation of a beam are seven in number and called septets.
  • the septets used for two adjacent beams have overlapping areas.
  • the figure 1 illustrates such a scheme of reuse of frequency and polarization.
  • the subnets are associated so that two adjacent subnetworks have elementary sources in common. On the figure 1 several subnets of seven elementary sources are associated (septets). Each subnet is hexagonal.
  • the interleaving of sub-networks makes it possible to enlarge the surface used for the formation of a beam and thus to improve its radio characteristics.
  • the multi-beam source includes a beam forming network (in English, "Beam Forming Network” (BFN)).
  • BFN Beam Forming Network
  • the BFN has N access corresponding to the number of beams.
  • a signal supplying an access is distributed with a predetermined phase and amplitude weighting on all the sources of one of the sub-networks.
  • the aim of the BFN is to distribute the signals from the accesses to the elementary sources of each subnetwork knowing that adjacent subnetworks have overlaps.
  • a BFN is known consisting of several 2: 2 couplers feeding sub-networks of which some elementary sources are shared with other subnets.
  • N. Ratkorn, M. Schneider, R. Gehring, H. Wolf "MEDUSA - A Multiple Feeds per Beam Multi Spot Beam Antenna Project", 30th ESA Antenna Workshop, Noordwijk, Netherlands, 27-30 May 2008 .
  • This structure of BFN therefore comprises a succession of 2: 2 couplers interconnected by an entanglement of waveguides.
  • the routing of the waveguides is made difficult by the fact that the elementary antenna array is two-dimensional and that the adjacent sub-networks have overlaps.
  • the solution obtained is constraining in terms of fabrication and possible calibration of the elements located in the heart of the BFN.
  • An object of the invention is to have a multi-beam source for performing the interleaving of subnets in a simple manner.
  • the invention relates to a multi-beam antenna comprising a focusing system and a multi-beam source according to the first aspect of the invention arranged near the focus of said focusing system.
  • a multi-beam source comprises a plurality of elementary sources arranged for example in a triangular mesh and which are associated in sub-networks each comprising elementary sources S11, S12, S13, S14, S15, S16 arranged around a central elemental source. S1.
  • subnets are associated such that two adjacent subnetworks have elementary sources in common (as shown in FIG. figure 1 ).
  • each subnet is hexagonal in shape (see figure 1 ).
  • a polarizer 100 (double lines on the Figures 2c , 4 ) is arranged either at each input of the distribution stage or at each output of the distribution stage.
  • the multi-beam source comprises a phase-shifting stage 30 which makes it possible to adjust the phase of the signals originating from the distribution stage 20 (see FIG. figure 2b ).
  • the source comprises a radiating stage 40 typically composed of horns connected after the phase shifter stage and corresponding to each elementary source (see FIG. figure 5 ).
  • the distribution stage 20 consists of several waveguides.
  • the figure 3a illustrates in perspective and in section the arrangement of five waveguides 1, 11, 14, 15, 16 of a septet.
  • a central waveguide 1 corresponds to the central elemental source S1 and six peripheral guides are coupled radially to the central waveguide 1.
  • the accesses of the peripheral guides may be terminated either by short-circuits or by appropriate loads designed to absorb the residual power likely to propagate in the opposite direction.
  • a sub-network is in fact a 1: 7 coupler consisting of a central waveguide 1 corresponding to the central elemental source S1 and six peripheral guides S11, S12, S13, S14, S15, S16 which correspond to the peripheral guides.
  • the waveguides are circular, oval, hexagonal or square.
  • the peripheral guides are connected to the central guide by means of coupling slots 110.
  • the peripheral guides and the central guide are coupled to one another via six rows of coupling slots 110.
  • the figure 3b illustrates a front view of a septet.
  • the coupling slots are typically rectangular in shape and are connected on the one hand to the central waveguide and on the other hand to one of the peripheral guides of the sub-network.
  • the width of the coupling slots is between the half wavelength ⁇ and the diameter of the peripheral waveguide.
  • the coupling slots may include isolation devices allowing the propagation of energy from the central guide to the peripheral guide while prohibiting propagation in the opposite direction. Insulation devices can be made by means of ferrites, for example.
  • certain waveguides are connected by coupling slots 110 to the central waveguides of the adjacent sub-networks, the waveguides corresponding to the elementary sources common to several sub-networks are connected to one another.
  • the couplers 1: 7 are interlaced, that is to say that the peripheral guides (elementary sources S11, S12, S13, S14, S15, S16) participate simultaneously in several adjacent subnetworks, the Peripheral guides are connected in parallel through rows of coupling slots to three adjacent central guides.
  • the coupling slots are spaced by a pitch less than ⁇ g (central guide) / 2 where ⁇ g (central guide) is the guided wavelength in the central waveguide calculated in the frequency band to be coupled.
  • the number of coupling slots is chosen such that the coupling area is between four and eight times ⁇ g (central guide) .
  • the spacing between the slots and the number of slots must be optimized to ensure good coupling.
  • the number of coupling slots is a function of the difference in power radiated by the central elemental source and that radiated by the elementary sources of the corresponding subarray, the apodization typically varying between 0 and 10 dB.
  • the structure is symmetrical, which makes it possible to minimize the generation of higher order modes that can propagate, as a function of the diameter of the waveguides and the frequency.
  • the unconnected coupling slots 113 of the sub-networks located at the periphery are terminated by short-circuits (reflecting the incident field in the slot) or adapted charges (absorbing the incident field in the slot) to optimize the functioning of these subnetworks.
  • the adapted charges composed of lossy material have the function of canceling the reflection of the energy propagated in the unconnected coupling slots, which can degrade the radio performance of sub-networks located at the periphery.
  • FIG 5 On the figure 5 is shown a sectional view along the axis BB of the figure 4 .
  • the coupling is provided here by five rectangular coupling slots 111.
  • the phase-shifter stage 30 consists, for an elementary source, in a variable-section waveguide for modulating the guided wavelength and thus the output phase.
  • the figure 6 illustrates this principle with two waveguides of identical length for obtaining differentiated output phases.
  • the phase shifter stage can be made by stacking machined metal layers.
  • a multibeam source formed by a stack of layers of material.
  • the material used is identical for all the layers in order to promote a homogeneous mechanical and thermoelastic behavior. Materials such as aluminum or invar can be used.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

    DOMAINE TECHNIQUE GENERAL
  • L'invention concerne le domaine des télécommunications par satellite. Elle concerne plus particulièrement une source multi-faisceaux pour une antenne multi-faisceaux.
  • ETAT DE LA TECHNIQUE
  • Les antennes multi-faisceaux pour la couverture par spots d'une zone géographique donnée sont utilisées dans les communications par satellite.
  • L'objectif principal de cette technologie est la baisse du coût de transmission par bit en utilisant au mieux la bande de fréquence allouée à une application donnée.
  • Les techniques actuelles font appel à des systèmes antennaires multi-faisceaux fonctionnant en diversité de fréquence et diversité de polarisation.
  • Ces techniques sont similaires à celles utilisées pour des réseaux de communications terrestres dits « cellulaires ».
  • Avec cette technique, la répartition des signaux est telle que deux cellules adjacentes n'ont pas de signaux ayant les mêmes caractéristiques, c'est-à-dire des signaux avec la même fréquence et la même polarisation. En revanche, les signaux identiques sont réutilisés dans des cellules non adjacentes afin d'accroître la capacité du système.
  • De manière connue, une antenne multi-faisceaux de type « multiples sources par faisceaux » comporte une source multi-faisceaux placée à proximité du foyer d'un système focalisant composé de un ou plusieurs réflecteurs. La source multi-faisceaux comporte plusieurs sources élémentaires arrangées en sous-réseaux.
  • Un sous-réseau permet de former un faisceau ayant une fréquence donnée et une polarisation donnée.
  • De façon usuelle, pour les transmissions par satellite, la bande de fréquence allouée est divisée en deux sous bandes de fréquences F1 et F2, et deux polarisations orthogonales linéaires (horizontale H et verticale V) ou circulaires (droite PCG ou gauche PCD) sont utilisées.
  • Ainsi les sous-réseaux d'un schéma de réutilisation par quatre (schéma quatre couleurs) sont définies comme suit : F1 + H (ou PCG) ; F1 + V (ou PCD) ; F2 + H (ou PCG) ; F2 + V (ou PCD).
  • Les sources élémentaires contribuant à la formation d'un faisceau sont au nombre de sept et appelées septets. Les septets utilisés pour deux faisceaux adjacents présentent des zones de recouvrement.
  • La figure 1 illustre un tel schéma de réutilisation de fréquence et de polarisation.
  • Les sous-réseaux sont associés de telle sorte que deux sous-réseaux adjacents comportent des sources élémentaires en commun. Sur la figure 1 plusieurs sous-réseaux de sept sources élémentaires sont associés (septets). Chaque sous-réseau est de forme hexagonale.
  • L'entrelacement de sous-réseaux permet d'agrandir la surface utilisée pour la formation d'un faisceau et donc d'améliorer ses caractéristiques radioélectriques.
  • Pour former les faisceaux, la source multi-faisceaux comporte un réseau de formation de faisceaux (en anglais, « Beam Forming Network », (BFN)).
  • De manière classique le BFN comporte N accès correspondant au nombre de faisceaux. Un signal alimentant un accès est distribué avec une pondération de phase et d'amplitude prédéterminée sur l'ensemble des sources d'un des sous-réseaux. Le BFN a pour but de répartir les signaux issus des accès vers les sources élémentaires de chaque sous-réseau sachant que des sous-réseaux adjacents possèdent des recouvrements.
  • On connaît un BFN constitué de plusieurs coupleurs 2 :2 alimentant des sous-réseaux dont certaines sources élémentaires sont partagées avec d'autres sous-réseaux. On peut se référer à cet effet au document N. Ratkorn, M. Schneider, R. Gehring, H. Wolf, "MEDUSA - A Multiple Feeds per Beam Multi Spot Beam Antenna Project", 30th ESA Antenna Workshop, Noordwijk, Netherlands, 27-30 May 2008. Le brevet US-A1-4,710,776 et l'article R. Gehring et al., "Trade-off for overlapping feed array configurations", 29th ESA Antenna Workshop on Multiple Beams and Reconfigurable Antennas, 18-20 avril 2007, ESTEC, Noordwijk (NL), sont également connus.
  • Cette structure de BFN comporte donc une succession de coupleurs 2:2 reliés entre eux par un enchevêtrement de guides d'ondes. Le routage des guides d'onde est rendu difficile par le fait que le réseau d'antennes élémentaires est bi-dimensionnel et que les sous-réseaux adjacents présentent des recouvrements. En conséquence la solution obtenue est contraignante en termes de fabrication et de calibration éventuelle des éléments situés au coeur du BFN.
  • PRESENTATION DE L'INVENTION
  • Un objectif de l'invention est d'avoir une source multi-faisceaux permettant de réaliser l'entrelacement de sous-réseaux de manière simple.
  • A cet effet, l'invention concerne une source multi-faisceaux pour antenne multi-faisceaux, la source comportant une pluralité de sources élémentaires identiques telles que :
    • les sources élémentaires sont associées en sous-réseaux identiques autour d'une source élémentaire centrale, chaque sous-réseau étant destiné à former un faisceau et que
    • deux sous-réseaux adjacents comportent au moins une source élémentaire en commun ;
    la source comprenant
    • un étage d'alimentation et de polarisation pour alimenter en puissance et polariser le champ électromagnétique aux accès des sources élémentaires centrales ; et
    • un étage de répartition de la puissance issue des sources élémentaires centrales vers les sources élémentaires du sous-réseau correspondant et celles communes à plusieurs sous-réseaux selon une loi d'amplitude déterminée ;
    dans laquelle l'étage de répartition est constitué d'une pluralité de guides d'ondes parallèles orientés selon un axe de rayonnement de ladite source, chaque guide d'onde correspondant à chaque source élémentaire et sont arrangés les uns par rapport aux autres tels que pour un sous-réseau, un guide d'onde central correspond à la source élémentaire centrale et des guides d'ondes périphériques sont connectés radialement au guide d'onde central et tels que les guides d'ondes correspondant aux sources élémentaires communes à plusieurs sous-réseaux sont connectés entre eux ; et dans laquelle
    • les guides d'ondes sont connectés au moyen de fentes de couplages disposées radialement autour du guide d'onde de manière à coupler le mode fondamental du guide central et le mode fondamental du guide périphérique, le mode fondamental étant défini comme le premier mode propagatif.
  • En outre, l'invention concerne une antenne multi-faisceaux comprenant un système focalisant ainsi qu'une source multi-faisceaux selon le premier aspect de l'invention disposée à proximité du foyer dudit système focalisant.
  • L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
    • les fentes de couplage sont espacées de moins de la moitié de la longueur d'onde guidée dans le guide d'onde central à la fréquence de fonctionnement, de préférence d'un quart de la longueur d'onde guidée du guide d'onde central à la fréquence de fonctionnement ;
    • le nombre de fentes de couplage est fonction de la différence de puissance rayonnée par la source élémentaire centrale et celle rayonnée par les sources élémentaires du sous-réseau correspondant, l'apodisation variant typiquement entre 0 et 10dB ;
    • les fentes de couplage non-connectées des réseaux situés en périphérie sont terminées par des charges adaptées ou des parois métalliques disposées à leur extrémité ;
    • l'étage d'accès comporte un polariseur adapté pour fonctionner en polarisation circulaire ou linéaire correspondant à chaque source élémentaire centrale ;
    • elle comprend un étage déphaseur disposé à la suite de l'étage de répartition pour contrôler la phase des signaux issus des guides d'ondes ;
    • l'étage de répartition et l'étage déphaseur sont formés, pour une source élémentaire, par un unique guide d'onde à section variable ;
    • les guides d'ondes correspondant à chaque source élémentaire et les connexions entre les guides sont formés par un empilement de couches de matériau, typiquement de l'aluminium ou de l'invar ;
    • chaque sous-réseau est constitué de sept sources, une source élémentaire centrale six sources élémentaires disposées autour de la source élémentaire centrale ;
    • l'étage de répartition comprend une pluralité de coupleurs directionnels 1:7 constitués d'un guide central et de six guides périphériques disposés autour du guide d'onde central.
  • Les avantages de l'invention sont multiples.
  • Grâce à l'utilisation de fentes de couplages pluri-directionnelles le couplage des sources d'un sous-réseau est facilité. L'utilisation d'une succession de coupleurs 2:2 est donc évitée.
  • PRESENTATION DES FIGURES
  • D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés sur lesquels outre la figure 1 déjà discutée :
    • les figures 2a, 2b et 2c illustrent schématiquement la structure d'une source multi-faisceaux selon l'invention ;
    • les figures 3a et 3b illustrent respectivement une vue de profil en coupe et de face d'un septet de la source selon l'invention ;
    • la figure 4 illustre une vue de face d'une source selon un mode de réalisation de l'invention ;
    • la figure 5 illustre une vue en coupe de la figure 4 ;
    • la figure 6 illustre une vue de deux guides d'ondes de la source selon l'invention.
  • Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • La description qui suit est effectuée en relation avec les figures 2a à 6.
  • Une source multi-faisceaux comporte une pluralité de sources élémentaires agencées par exemple selon une maille triangulaire et qui sont associées en sous-réseaux comportant chacun des sources élémentaires S11, S12, S13, S14, S15, S16 disposées autour d'une source élémentaire centrale S1.
  • Un sous-réseau comporte par exemple sept sources élémentaires, on parle alors de septets. Dans ce cas là le sous-réseau comporte six sources élémentaires S11, S12, S13, S14, S15, S16 disposées autour d'une source élémentaire centrale S1.
  • Comme on l'a mentionné, pour obtenir l'entrelacement des sous-réseaux les sous-réseaux sont associés tels que deux sous-réseaux adjacents comportent des sources élémentaires en commun (comme illustré sur la figure 1).
  • Comme cela est illustré sur la figure 4, sept sous-réseaux sont associés dont certains ont des sources élémentaires en commun. Chaque sous-réseau est de forme hexagonale (voir la figure 1).
  • La source multi-faisceaux est constituée de plusieurs étages (voir la figure 2a) dont :
    • un étage 10 d'alimentation et de polarisation pour alimenter en puissance et polariser le champ électromagnétique aux accès des sources élémentaires centrales S1-S7 ; et
    • un étage de répartition 20 pour répartir la puissance entre la source élémentaire centrale S1-S7 et les sources élémentaires du sous-réseau ainsi qu'entre les sources communes à plusieurs sous-réseaux.
  • Pour assurer la polarisation du champ rayonné, un polariseur 100 (double traits sur les figures 2c, 4) est disposé soit à chaque entrée de l'étage de répartition soit à chaque sortie de l'étage de répartition.
  • De manière complémentaire la source multi-faisceaux comprend un étage déphaseur 30 qui permet de régler la phase les signaux provenant de l'étage de répartition 20 (voir la figure 2b).
  • Enfin, la source comporte un étage 40 rayonnant typiquement composé de cornets connectés à la suite de l'étage 30 déphaseur et correspondants à chaque source élémentaire (voir la figure 5).
  • L'étage de répartition 20 est constitué de plusieurs guides d'ondes. La figure 3a illustre en perspective et en coupe l'agencement de cinq guides d'ondes 1, 11, 14, 15, 16 d'un septet.
  • Pour un sous-réseau : un guide d'onde central 1 correspond à la source élémentaire centrale S1 et six guides périphériques sont couplés radialement au guide d'onde central 1. Les accès des guides périphériques peuvent être terminés soit par des court-circuits, soit par des charges adaptées destinées à absorber la puissance résiduelle susceptible de se propager dans la direction inverse.
  • En d'autres termes, un sous-réseau est en fait un coupleur 1:7 constitué d'un guide d'onde central 1 correspondant à la source élémentaire centrale S1 et six guides périphériques S11, S12, S13, S14, S15, S16 qui correspondent aux guides périphériques.
  • Les guides d'ondes sont à section circulaire, ovale, hexagonale ou carrée.
  • La connexion des guides périphériques au guide central est effectuée par l'intermédiaire de fentes 110 de couplage. En particulier, dans le cas du coupleur 1 :7 les guides périphériques et le guide central sont couplés entre eux par l'intermédiaire de six rangées de fentes 110 de couplage.
  • La figure 3b illustre une vue de face d'un septet.
  • Les fentes de couplage sont typiquement de forme rectangulaire et sont connectées d'une part au guide d'onde central et d'autre part à l'un des guides périphériques du sous-réseau. La largeur des fentes de couplage est comprise entre la demi-longueur d'onde λ et le diamètre du guide d'onde périphérique. Les fentes de couplage peuvent inclure des dispositifs d'isolation autorisant la propagation de l'énergie du guide central vers le guide périphérique tout en interdisant la propagation dans le sens inverse. Les dispositifs d'isolation peuvent être réalisés au moyen de ferrites par exemple.
  • Dans le cas d'une source comprenant plusieurs sous-réseaux certaines sources sont partagées. Dans ce cas les guides d'ondes correspondant aux sources élémentaires sont couplés de la même manière (voir la figure 4).
  • Les sous-réseaux étant entrelacés, certains guides d'ondes sont connectés par des fentes 110 de couplage aux guides d'ondes centraux de sous-réseaux adjacents, les guides d'ondes correspondant aux sources élémentaires communes à plusieurs sous-réseaux sont connectés entre eux.
  • En d'autres termes, les coupleurs 1:7 sont entrelacés, c'est-à-dire que les guides périphériques (sources élémentaires S11, S12, S13, S14, S15, S16) participent simultanément à plusieurs sous-réseaux adjacents, les guides périphériques sont connectés en parallèle par l'intermédiaire de rangées de fentes de couplage à trois guides centraux adjacents.
  • Les fentes de couplage sont espacées d'un pas inférieur à λg(guide central)/2 où λg(guide central) est la longueur d'onde guidée dans le guide d'onde central calculée dans la bande de fréquence à coupler.
  • Le nombre de fentes de couplage est choisi de sorte que la zone de couplage soit comprise entre quatre et huit fois λg(guide central). L'espacement entre les fentes et le nombre de fentes doivent être optimisé afin d'assurer un bon couplage.
  • De manière préférée, le nombre de fentes de couplage est fonction de la différence de puissance rayonnée par la source élémentaire centrale et celle rayonnée par les sources élémentaires du sous-réseau correspondant, l'apodisation variant typiquement entre 0 et 10dB.
  • Pour chaque sous-réseau, la structure est symétrique ce qui permet de minimiser la génération de modes d'ordre supérieur susceptibles de se propager, en fonction du diamètre des guides d'ondes et de la fréquence.
  • De manière avantageuse les fentes de couplage non-connectées 113 des sous-réseaux situés en périphérie sont terminées par des courts-circuits (réfléchissant le champ incident dans la fente) ou des charges adaptées (absorbant le champ incident dans la fente) pour optimiser le fonctionnement de ces sous-réseaux. Les charges adaptées composées de matériau à pertes ont pour fonction d'annuler la réflexion de l'énergie propagée dans les fentes de couplage non-connectées, susceptibles de dégrader les performances radioélectriques des sous-réseaux situés en périphérie.
  • Sur la figure 5 est représenté une vue en coupe selon l'axe BB de la figure 4. Le couplage est assuré ici par cinq fentes 111 de couplage rectangulaires.
  • L'étage déphaseur 30 consiste, pour une source élémentaire, en un guide d'onde à section variable permettant de moduler la longueur d'onde guidée et donc la phase de sortie. La figure 6 illustre ce principe avec deux guides d'ondes de longueur identique permettant d'obtenir des phases de sorties différenciée.
  • Comme l'étage répartiteur, l'étage déphaseur peut être réalisé par empilement de couches métalliques usinées.
  • De cette façon il est possible d'avoir une source multifaisceaux formée par un empilement de couches de matériau. De manière préférentielle, le matériau utilisé est identique pour l'ensemble des couches dans le but de favoriser un comportement mécanique et thermoélastique homogène. Des matériaux tels que l'aluminium ou l'invar peuvent être utilisés.

Claims (11)

  1. Source multi-faisceaux pour antenne multi-faisceaux, la source comportant une pluralité de sources élémentaires identiques telles que :
    - les sources élémentaires (S1, S11-S16) sont associées en sous-réseaux identiques autour d'une source élémentaire centrale (S1-S7), chaque sous-réseau étant destiné à former un faisceau ; et que
    - deux sous-réseaux adjacents comportent au moins une source élémentaire en commun ;
    la source comprenant
    - un étage (10) d'alimentation et de polarisation pour alimenter en puissance et polariser le champ électromagnétique aux accès des sources élémentaires centrales (S1-S7) ; et
    - un étage (20) de répartition de la puissance issue des sources élémentaires centrales vers les sources élémentaires du sous-réseau correspondant et celles communes à plusieurs sous-réseaux selon une loi d'amplitude déterminée ;
    dans laquelle l'étage (20) de répartition est constitué d'une pluralité de guides d'ondes (1, 11-16) parallèles orientés selon un axe de rayonnement de ladite source , chaque guide d'onde (1, 11-16) correspondant à chaque source élémentaire et sont arrangés les uns par rapport aux autres tels que pour un sous-réseau, un guide d'onde central (1) correspond à la source élémentaire centrale et des guides d'ondes périphériques sont connectés radialement au guide d'onde central et tels que les guides d'ondes correspondant aux sources élémentaires communes à plusieurs sous-réseaux sont connectés entre eux ;
    et dans laquelle les guides d'ondes sont connectés au moyen de fentes (110) de couplages disposées radialement autour du guide d'onde de manière à coupler le mode fondamental du guide central et le mode fondamental du guide périphérique, le mode fondamental étant défini comme le premier mode propagatif.
  2. Source multi-faisceaux selon la revendication 1, dans laquelle les fentes (110) de couplage sont espacées de moins de la moitié de la longueur d'onde guidée dans le guide d'onde central à la fréquence de fonctionnement, de préférence d'un quart de la longueur d'onde guidée du guide d'onde central à la fréquence de fonctionnement.
  3. Source multi-faisceaux selon l'une des revendications 1 à 2, dans laquelle le nombre de fentes de couplage (110) est fonction de la différence de puissance rayonnée par la source élémentaire centrale et celle rayonnée par les sources élémentaires du sous-réseau correspondant, l'apodisation variant typiquement entre 0 et 10dB.
  4. Source multi-faisceaux selon l'une des revendications 1 à 3, dans laquelle les fentes de couplage non-connectées (113) des réseaux situés en périphérie sont terminées par des charges adaptées ou des parois métalliques disposées à leur extrémité.
  5. Source multi-faisceaux selon l'une des revendications précédentes, dans laquelle l'étage (10) d'accès comporte un polariseur adapté pour fonctionner en polarisation circulaire ou linéaire correspondant à chaque source élémentaire centrale.
  6. Source multi-faisceaux selon l'une des revendications précédentes, comprenant un étage déphaseur (30) disposé à la suite de l'étage de répartition (20) pour contrôler la phase des signaux issus des guides d'ondes.
  7. Source multi-faisceaux selon la revendication précédente, dans laquelle l'étage de répartition (20) et l'étage déphaseur (30) sont formés, pour une source élémentaire, par un unique guide d'onde à section variable.
  8. Source multi-faisceaux selon la revendication précédente, dans laquelle les guides d'ondes correspondant à chaque source élémentaire et les connexions entre les guides sont formés par un empilement de couches de matériau, typiquement de l'aluminium ou de l'invar.
  9. Source multi-faisceaux selon l'une des revendications précédentes, dans laquelle chaque sous-réseau est constitué de sept sources, une source élémentaire centrale et six sources élémentaires disposées autour de la source élémentaire centrale.
  10. Source multi-faisceaux selon la revendication 10, dans laquelle l'étage de répartition comprend une pluralité de coupleurs directionnels 1:7 constitués d'un guide central et de six guides périphériques disposés autour du guide d'onde central.
  11. Antenne multi-faisceaux comprenant un système focalisant composé de un ou plusieurs réflecteurs ainsi qu'une source multi-faisceaux selon l'une des revendications précédentes disposée à proximité du foyer dudit système focalisant.
EP12768843.0A 2011-10-05 2012-10-05 Source multi-faisceaux Active EP2764577B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158993A FR2981207B1 (fr) 2011-10-05 2011-10-05 Source multi-faisceaux
PCT/EP2012/069699 WO2013050517A1 (fr) 2011-10-05 2012-10-05 Source multi-faisceaux

Publications (2)

Publication Number Publication Date
EP2764577A1 EP2764577A1 (fr) 2014-08-13
EP2764577B1 true EP2764577B1 (fr) 2018-08-29

Family

ID=46970324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12768843.0A Active EP2764577B1 (fr) 2011-10-05 2012-10-05 Source multi-faisceaux

Country Status (4)

Country Link
US (1) US9876284B2 (fr)
EP (1) EP2764577B1 (fr)
FR (1) FR2981207B1 (fr)
WO (1) WO2013050517A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965231B1 (fr) * 2016-02-26 2023-05-17 Mitsubishi Electric Corporation Appareil d'antenne
EP3531509B1 (fr) * 2016-12-08 2021-01-20 Mitsubishi Electric Corporation Dispositif d'antenne
FR3067535B1 (fr) 2017-06-09 2023-03-03 Airbus Defence & Space Sas Satellite de telecommunications, procede de formation de faisceaux et procede de fabrication d’une charge utile de satellite

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090203A (en) * 1975-09-29 1978-05-16 Trw Inc. Low sidelobe antenna system employing plural spaced feeds with amplitude control
FR2560446B1 (fr) * 1984-01-05 1986-05-30 Europ Agence Spatiale Repartiteur de puissance pour antenne a faisceaux multiples a elements sources partages
US8289132B2 (en) 1997-10-27 2012-10-16 Direct Source International, Inc. Locking system for electronic equipment
US6606077B2 (en) * 1999-11-18 2003-08-12 Automotive Systems Laboratory, Inc. Multi-beam antenna
US7994996B2 (en) * 1999-11-18 2011-08-09 TK Holding Inc., Electronics Multi-beam antenna
US8041437B2 (en) 2008-04-15 2011-10-18 International Business Machines Corporation System and method for virtual control of laboratory equipment
US9625602B2 (en) 2009-11-09 2017-04-18 SeeScan, Inc. Smart personal communication devices as user interfaces
US20130113648A1 (en) 2011-09-30 2013-05-09 L-3 Communications Cyterra Corporation Sensor head

Also Published As

Publication number Publication date
WO2013050517A1 (fr) 2013-04-11
EP2764577A1 (fr) 2014-08-13
US20140333498A1 (en) 2014-11-13
US9876284B2 (en) 2018-01-23
FR2981207A1 (fr) 2013-04-12
FR2981207B1 (fr) 2014-03-07

Similar Documents

Publication Publication Date Title
EP2194602B1 (fr) Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP2175523B1 (fr) Réseau réflecteur et antenne comportant un tel réseau réflecteur
EP2807702B1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
EP2415120B1 (fr) Antenne multicouche a plans paralleles, de type pillbox, et systeme d'antenne correspondant
EP1955405B1 (fr) Antenne reseau a maillage irregulier et eventuelle redondance froide
EP2688142B1 (fr) Antenne d'émission et de réception multifaisceaux à plusieurs sources par faisceau, système d'antennes et système de télécommunication par satellite comportant une telle antenne
EP2532046A1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
WO2011095425A1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP3011639B1 (fr) Source pour antenne parabolique
FR3034262A1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP2434578B1 (fr) Système antennaire a deux grilles de spots a mailles complémentaires imbriquées
EP2764577B1 (fr) Source multi-faisceaux
EP3664214B1 (fr) Eléments rayonnants à accès multiples
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
FR2952759A1 (fr) Antenne a reflecteurs et reseau focal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20180228BHEP

Ipc: H01Q 21/00 20060101ALI20180228BHEP

Ipc: H01P 5/02 20060101ALI20180228BHEP

Ipc: H01P 5/18 20060101ALI20180228BHEP

Ipc: H01Q 19/17 20060101AFI20180228BHEP

Ipc: H01Q 19/10 20060101ALI20180228BHEP

Ipc: H01P 5/12 20060101ALI20180228BHEP

Ipc: H01Q 15/24 20060101ALI20180228BHEP

Ipc: H01Q 21/06 20060101ALI20180228BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1036254

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012050421

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1036254

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012050421

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230915

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230915

Year of fee payment: 12