EP4189013A1 - Composition silicone réticulable en élastomère comprenant un additif de tenue thermique - Google Patents

Composition silicone réticulable en élastomère comprenant un additif de tenue thermique

Info

Publication number
EP4189013A1
EP4189013A1 EP21759333.4A EP21759333A EP4189013A1 EP 4189013 A1 EP4189013 A1 EP 4189013A1 EP 21759333 A EP21759333 A EP 21759333A EP 4189013 A1 EP4189013 A1 EP 4189013A1
Authority
EP
European Patent Office
Prior art keywords
silicone
elastomer
composition
cerium
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21759333.4A
Other languages
German (de)
English (en)
Inventor
Gérald GUICHARD
Christian Maliverney
Arnaud Ponce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem Silicones France SAS
Original Assignee
Elkem Silicones France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Silicones France SAS filed Critical Elkem Silicones France SAS
Publication of EP4189013A1 publication Critical patent/EP4189013A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • Crosslinkable silicone elastomer composition comprising a heat resistance additive
  • the present invention relates to a crosslinkable silicone elastomer composition comprising a heat resistance additive.
  • the invention relates to a crosslinkable silicone elastomer composition comprising a heat resistance additive which is cerium (IV) neodecanoate.
  • silicone elastomers have a very high inertia to heat and to cold in continuous service from -50° C. to 200° C. In this temperature range, they retain almost all of their chemical, mechanical and dielectric properties.
  • silicone elastomers when silicone elastomers are used at a temperature above 200° C. for a long period, for example several days, their properties tend to degrade. It is therefore sometimes necessary to add suitable thermal resistance additives to their composition. This is all the more true when silicone elastomers are intended to be used in the production of envelopes or primary insulators used in the constitution of electric wires or cables protected against fire, which must withstand high temperatures. This is also true when silicone elastomers are intended for use in the production of automotive cables.
  • antioxidant compounds are mainly of two types, either non-metallic (based on sulphur, phosphorus, amine, etc.), or inorgano- or organometallic.
  • the antioxidants used do not always make it possible to obtain transparent silicone elastomers which can be easily colored. Moreover, it is sometimes necessary to formulate the antioxidants in a solvent in order to be able to add them to the crosslinked silicone composition in elastomer, which complicates the formulation of the silicone composition. The presence of antioxidants in the silicone composition can also slow down the crosslinking kinetics.
  • the present invention aims to satisfy at least one of the following objectives.
  • One of the essential objectives of the invention is to provide a crosslinkable silicone elastomer composition which makes it possible to obtain a thermally stable silicone elastomer.
  • One of the essential objectives of the invention is to provide a crosslinkable silicone elastomer composition which makes it possible to obtain a silicone elastomer having good mechanical properties and thermal resistance, for example being able to withstand several days at more 250°C.
  • One of the essential objectives of the invention is to provide a crosslinkable silicone elastomer composition which makes it possible to obtain a silicone elastomer which retains its elastomeric properties, even in the event of repeated and/or prolonged exposure to the heat.
  • One of the essential objectives of the invention is to provide a crosslinkable silicone elastomer composition which makes it possible to obtain a silicone elastomer which retains good elongation properties after heat treatment, for example which retains elongation at break greater than 150%, or 200%, after heat treatment.
  • One of the essential objectives of the invention is to provide a heat resistance additive that does not present solubility problems in silicone compositions, and which can be directly dispersed in silicone compositions, without using a solvent. .
  • Another essential objective of the invention is to provide a silicone composition that can be crosslinked into elastomer which makes it possible to obtain a silicone elastomer which is transparent, and consequently which can be easily colored by adding pigment.
  • Another essential object of the invention is to provide a silicone composition that can be crosslinked into elastomer which makes it possible to obtain a silicone elastomer which is transparent, even when the silicone composition comprises a large quantity of filler, for example more than 15% by weight.
  • Another essential objective of the invention is to provide a silicone composition that can be crosslinked into elastomer which makes it possible to obtain a silicone elastomer having good mechanical properties and thermal resistance, the crosslinking kinetics of which are not slowed down.
  • Another essential objective of the invention is to provide a crosslinkable silicone elastomer composition which can be used for the production of envelopes or primary insulators used in the constitution of electrical wires or cables.
  • Another essential objective of the invention is to provide a crosslinkable silicone elastomer composition which can be used for the production of automobile cables.
  • One of the essential objectives of the invention is to provide a crosslinkable silicone elastomer composition which is simple to formulate.
  • a crosslinkable silicone X elastomer composition comprising: - At least one heat resistance additive D, which is cerium (IV) neodecanoate.
  • thermo resistance additive D which is cerium (IV) neodecanoate makes it possible to improve the thermal resistance of the silicone elastomer, while keeping the transparency of the silicone elastomer, even when the silicone composition X comprises more than 15% by weight of filler E, or when the cerium content is high.
  • the elastomer obtained is thermally stable. It has acceptable elastomeric properties and does not become brittle after treatment for 3 days at 300°C, 7 days at 275°C or 21 days at 250°C. Hardness, resilience, breaking strength, elongation at break and the 100% modulus remained within entirely acceptable limits, that is to say within limits allowing the intended use of the elastomer.
  • the elastomer obtained is thermally stable even after a long-term heat treatment, for example 3000 hours at 200° C.
  • This long-term heat treatment corresponds to the tests carried out on automotive cables (cf. ISO 6722 standard). It is therefore possible to use the silicone composition X that can be crosslinked into an elastomer to produce automobile cables and in particular automobile cables for electric or hybrid vehicles.
  • cerium(IV) neodecanoate is liquid at room temperature, so it is easy to use and to mix. It is possible to add it to the silicone composition as it is, without solvent. The silicone composition is therefore easy to formulate.
  • the silicone composition X makes it possible to obtain a silicone elastomer having good mechanical properties, and the use of cerium(IV) neodecanoate does not impact the crosslinking kinetics.
  • the invention also relates to a silicone elastomer obtained by crosslinking composition X, preferably by heating to a temperature between 80° C. and 250° C.
  • the invention also relates to an electric wire or electric cable comprising at least one conductive element 1 surrounded by at least one primary insulating layer 2 characterized in that said primary insulating layer 2 comprises a silicone elastomer obtained by crosslinking of composition X .
  • the invention also relates to the use of a silicone composition X for the production of envelopes or primary insulators of single conductors used in the constitution of electrical wires or cables.
  • the invention also relates to the use of a silicone composition X for producing automobile cables, in particular automobile cables for electric or hybrid vehicles.
  • the invention also relates to a method for manufacturing an electric wire or electric cable comprising the following steps: i. forming around an electrical conductor 1 at least one primary insulating layer 2 which consists of a material obtained by crosslinking the silicone composition X, preferably by heating to a temperature between 80° C. and 250° C., ii. optionally, assembling at least two insulated electrical conductors as obtained in step i, and iii. optionally, extruding an outer sheath as defined above around the insulated electrical conductor(s) of step i or ii.
  • thermally stable silicone elastomer in the sense of the invention, is meant in particular a silicone elastomer which retains elastomeric properties and does not become hard or brittle when subjected to a temperature above 200° C., in particular between 250° C. and 300° C., maintained for several days, in particular 3 days. Quite preferably, they are elastomers thus resistant to a temperature above 250° C., in particular between 275° C. and 300° C., maintained for 3 days or more.
  • electrical wire is meant an electrotechnical component used to transport electricity, in order to transmit energy or information and which consists of an electrically conductive material, solid or multi-strand, surrounded by an insulating envelope.
  • the inside of an electrical wire is called the “core” of the wire.
  • conductor or “single conductor” is meant an element composed of a core and its insulating envelope.
  • electrical cable is meant an electrotechnical component used to transport electricity, in order to transmit energy or information and which is made up of several electrically separate and mechanically integral conductors, possibly with an external shield. .
  • An electric cable consists of one or more single conductor (s) (usually based on copper or aluminum); each of these single conductors is protected by an envelope or primary insulator made of one or more concentric layer(s) based on an insulator. Around this envelope or these envelopes (in the case of a cable with several single conductors) is (are) provided one or more filling element(s) and/or one or more reinforcing element(s) based in particular on glass fibers and/or mineral fibers. Then an outer sheath which may comprise one or more sheath(s) is most often present.
  • the filling element(s) and/or the reinforcing element(s), which is (are) arranged around the single conductors (each equipped with its primary insulator), constitute(s) a common envelope for all the single conductors.
  • crosslinkable silicone X elastomer composition according to the invention comprises:
  • At least one heat resistance additive D which is cerium (IV) neodecanoate.
  • Thermal resistance additive D The heat resistance additive D is cerium (IV) neodecanoate. Cerium is in oxidation state IV. Cerium (IV) neodecanoate has the following formula: CeC4oH76C>8,
  • cerium (IV) neodecanoate is as follows:
  • Neodecanoate is a mixture of isomers having the formula (C10H19O2) ' .
  • the neodecanoate is a mixture of constitutional isomers, including trial kylacetates (ie the carbon in the alpha position of the carbonyl is a quaternary carbon).
  • isomers of neodecanoate mention may be made of 2,2,3,5-tetramethylhexanoate, 2,4-dimethyl-2-isopropylpentanoate, 2,5-dimethyl-2-ethylhexanoate and 2,2-dimethyloctanoate.
  • Cerium(IV) neodecanoate is liquid at room temperature and is dispersible in silicones. It can therefore be used pure or formulated. When it is used pure, it is added as it is to the silicone composition X. When it is formulated, it can be added to a silicone oil or to a silicone gum before being added to the silicone composition X.
  • Cerium(IV) neodecanoate disperses well in silicones, it is directly compatible with silicones. It is therefore not necessary to use a solvent to incorporate it into the silicone composition.
  • the silicone composition X has a cerium (IV) content of between 50 and 3000 ppm by weight, preferably between 50 and 1000 ppm, and preferably between 50 and 500 ppm.
  • the silicone composition X has a cerium (IV) content of between 50 and 350 ppm, preferably between 60 and 300 ppm, preferably between 70 and 250 ppm, and even more preferably between 90 and 200 ppm.
  • a cerium content of between 50 and 350 ppm makes it possible in particular to obtain an elastomer which retains an elongation at break greater than 200%, after heat treatment for 7 days at 275° C.
  • Cerium (IV) neodecanoate makes it possible to obtain a thermally stable elastomer, which retains its elastomeric properties, and does not become hard or brittle when it is subjected to a temperature above 200° C., in particular between 250 ° C and 300° C, maintained for several days, in particular 3 days.
  • Cerium (IV) neodecanoate makes it possible to obtain a thermally stable elastomer after heat treatment for 3 days at 300°C, 7 days at 275°C, 21 days at 250°C, or 3000 hours at 200°C .
  • the elastomer obtained is transparent, even when the silicone composition X comprises a large amount of filler and/or a high cerium content. It is therefore possible to color it easily by adding pigments to the silicone composition X. Furthermore, it is also possible to have bright colors, since there is no alteration of the colors or of the transparency.
  • cerium(IV) neodecanoate has a free acid content of less than 5%, preferably less than 2.5%, and preferably less than 1.5%.
  • the free acid level corresponds to the level of uncomplexed free neodecanoic acid.
  • the crosslinkable elastomeric silicone X composition can be presented in a single or more packaging (single- or multi-component). It comprises, in addition to the heat resistance additive D, a main constituent formed of one or more organopolysiloxane constituent(s), an appropriate catalyst and optionally one or more compound(s), preferably chosen from fillers, crosslinking inhibitors, and pigments.
  • the silicone composition X can crosslink either at high temperature under the action of organic peroxides (EVC or HCR), or in the presence of a metal catalyst at room temperature, optionally in the presence of humidity (polyaddition RTV or polycondensation) or heat (EVC or polyaddition LSR).
  • EVC organic peroxides
  • RTV, LSR, EVC or HCR are well known to those skilled in the art: RTV is the abbreviation for “Room Temperature Vulcanizing”; LSR stands for “Liquid Silicone Rubber”; HCR is the abbreviation of "Heat Cured Rubber” and EVC is the abbreviation of "Hot Vulcanizable Elastomer”.
  • the various ingredients can be intimately mixed using devices well known in the silicone elastomer industry, the order of incorporation possibly being arbitrary.
  • the crosslinkable silicone composition X into elastomer is a crosslinking composition:
  • the elastomeric crosslinkable silicone X composition further comprises:
  • At least one organopolysiloxane A comprising, per molecule, at least 2 alkenyl groups having from 2 to 6 carbon atoms;
  • At least one organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions;
  • the silicone composition X crosslinkable into elastomer comprises:
  • At least one organopolysiloxane A comprising, per molecule, at least 2 alkenyl groups having from 2 to 6 carbon atoms;
  • At least one organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions;
  • At least one heat resistance additive D which is cerium neodecanoate (IV).
  • said silicone composition X having a cerium (IV) content of between 50 and 3000 ppm by weight.
  • organopolysiloxane A is chosen from organopolysiloxane compounds comprising units of formula (I):
  • the radicals Z which are identical or different, represent a linear or branched alkenyl radical, having from 2 to 6 carbon atoms;
  • the radicals Z represent a vinyl radical.
  • U can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms.
  • U can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
  • Said organopolysiloxanes A can be oils with a dynamic viscosity of the order of 10 to 1,000,000 mPa.s at 25° C., generally of the order of 10 to 70,000 mPa.s at 25°C, or rubbers with a dynamic viscosity greater than 1,000,000 mPa.s at 25°C. Silicone oils and gums are polymers with a linear structure.
  • organopolysiloxanes A can have a linear, branched or cyclic structure. Their degree of polymerization is preferably between 2 and 5000.
  • the organopolysiloxane A has a linear structure.
  • these essentially consist of "D" siloxyl units chosen from the group consisting of the Z2S1O2/2, ZUS1O2/2 and U2S1O2/2 siloxyl units, and of "M" siloxyl units chosen from the group consisting of the siloxyl units ZU2SiOi/2, Z2USiOi/2 and Z3S1O1/2.
  • Z and U symbols are as described above.
  • terminal “M” units mention may be made of the trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
  • D units mention may be made of the dimethylsiloxy, methylphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy, diphenylsiloxy or methyldecadienylsiloxy groups.
  • linear organopolysiloxanes which may be unsaturated compounds A according to the invention are:
  • the cyclic organopolysiloxanes which can also be unsaturated compounds A according to the invention are, for example, those consisting of "D" siloxyl units of the following formulas: Z2S1O2/2, U2S1O2/2 or ZUS1O2/2, which can be of the type dialkylsiloxy, alkylarylsiloxy, alkylvinylsiloxy, alkylsiloxy.
  • Said cyclic organopolysiloxanes have a viscosity of the order of 10 to 5000 mPa.s at 25°C.
  • the organopolysiloxane compound A has a mass content of Si-vinyl unit of between 0.001 and 30%, preferably between 0.01 and 10%.
  • silicone resins comprising at least one vinyl radical.
  • they can be chosen from the group consisting of the following silicone resins:
  • the organopolysiloxane A can be a mixture of several oils or resins meeting the definition of organopolysiloxane A.
  • the organopolysiloxane A does not comprise any resin.
  • the elastomeric crosslinkable silicone composition X comprises between 55 and 85% by weight of organopolysiloxane A, preferably between 60 and 80%, relative to the total weight of the silicone composition X.
  • the organopolysiloxane A carrying alkenyl groups advantageously has a viscosity at 25° C. at most equal to 50,000 mPa.s and preferably between 200 and 10,000 mPa.s.
  • the organopolysiloxane A bearing alkenyl groups advantageously has a viscosity at 25° C. of greater than 1000 mPa.s, preferably lying in the range from greater than 5,000 mPa.s to 300,000 mPa. s.
  • the organopolysiloxane A bearing alkenyl groups advantageously has a viscosity at 25° C. greater than 300,000 mPa.s and, preferably, between 1 million mPa.s and 30 million mPa.s or even more.
  • the silicone composition X that can be crosslinked to elastomer comprises at least one organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions.
  • the silicone composition X that can be crosslinked to elastomer comprises an organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl functions Si—H, and a crosslinking catalyst C which is chosen from polyaddition catalysts.
  • Compound B is an organohydrogenpolysiloxane compound comprising per molecule at least two and preferably at least three hydrogenosilyl (Si—H) functions.
  • the organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least one unit of formula (III):
  • U can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms.
  • U can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
  • organopolysiloxanes B can have a linear, branched or cyclic structure.
  • the degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000.
  • the linear organopolysiloxanes can be oils with a dynamic viscosity of the order of 1 to 100000 mPa.s at 25°C and more generally of the order of 10 to 5000 mPa.s at 25°C.
  • organopolysiloxanes which may be compounds B according to the invention comprising at least one hydrogen atom bonded to a silicon atom are:
  • organohydrogenpolysiloxane compounds B [0088] [Chem 2]
  • - 0 ⁇ a ⁇ 150 preferably 0 ⁇ a ⁇ 100, and more particularly 0 ⁇ a ⁇ 20, and - 1 ⁇ b ⁇ 90, preferably 10 ⁇ b ⁇ 80 and more particularly 30 ⁇ b ⁇ 70,
  • the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si—H functions of between 0.2 and 91%.
  • the organohydrogenpolysiloxane compound B may have a mass content of hydrogenosilyl Si—H functions greater than or equal to 5%, preferably greater than or equal to 10%.
  • the mass content of hydrogenosilyl Si—H functions is between 5 and 40%, or between 10 and 30%.
  • the organohydrogenpolysiloxane B is a resin having a branched structure.
  • the organohydrogenpolysiloxane B can be chosen from the group consisting of the following silicone resins:
  • the organohydrogenpolysiloxane resin B is an M'Q or MD'Q resin as described above. Even more preferentially, the organohydrogenpolysiloxane resin B is an M'Q resin.
  • the organohydrogenpolysiloxane B can be a mixture of several oils or resins meeting the definition of organohydrogenpolysiloxane B.
  • the organohydrogenpolysiloxane B is not a resin.
  • the elastomer-crosslinkable silicone composition X may comprise between 0 and 10% by weight of organohydrogenpolysiloxane B, preferably between 0.5 and 10%, relative to the total weight of the silicone composition X.
  • the molar ratio of the hydrogenosilyl Si-H functions of the compounds B to the alkene functions of the compounds A is between 0.02 and 5, preferably between 0.1 and 4, and more preferably between 0, 5 and 3.
  • the elastomeric crosslinkable silicone composition X comprises a crosslinking catalyst C.
  • the elastomeric crosslinkable silicone composition X may comprise between 0.1 and 2% by weight of crosslinking catalyst C, relative to the total weight of the silicone composition X.
  • the crosslinking catalyst C is an organic peroxide.
  • the organic peroxide can be any of those which act as vulcanizing agents towards the compositions forming silicone elastomers. It may thus be any of the peroxides or per esters which are known to be used with silicone elastomers, for example di-tert-butyl peroxide, benzoyl peroxide, tert-butyl peracetate, tert-butyl peroxide, dicumyl, 2,5-dimethylhexane 2,5-diperbenzoate and bis(t-butylperoxy)-2,5-dimethyl-2,5 hexane, monochlorobenzoyl peroxide, 2-4-dichlorobenzoyl peroxide, bis peroxide (2,4-dichlorobenzoyl), tert-butyl peracetate, 2,5-dimethyl-2,5-cli(tert-butylperoxy) hexane, 2,2-bis (t- butylperoxy)-p-
  • the organic peroxide is chosen from benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butyl peracetate, dicumyl peroxide, and mixtures thereof.
  • the organic peroxide is chosen from the group consisting of 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, dicumyl peroxide, bis(2,4-dichlorobenzoyl)peroxide ), and mixtures thereof.
  • the amount of organic peroxide is between 0.05 and 10 parts by weight, preferably between 0.5 and 2 parts by weight, per 100 parts. by weight of the silicone composition X.
  • the choice of peroxide will depend in practice on the process used to harden the elastomer (vulcanization process).
  • the peroxide used is then preferably monochlorobenzoyl peroxide and/or 2,4-dichlorobenzoyl peroxide.
  • the vulcanization process operates in the presence of pressure (for example, steam tube), the peroxide used is then preferably bis(t-butylperoxy)-2,5-dimethyl-2,5-hexane.
  • catalyst C is a hydrosilylation reaction catalyst.
  • the silicone composition X crosslinkable into elastomer comprises at least one organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions, and preferably at least 3 hydrogenosilyl Si—H functions.
  • Hydrosilylation reaction catalysts are well known.
  • platinum and rhodium compounds are used. It is possible, in particular, to use the complexes of platinum and of an organic product described in patents US-A-3,159,601, US-A-3,159,602, US-A-3,220,972 and European patents EP-A- 0,057,459, EP A 0,188,978 and EP-A-0,190,530, the complexes of platinum and vinyl organosiloxanes described in patents US-A-3,419,593, US-A-3,715,334, US-A -3,377,432 and US-A-3,814,730.
  • the generally preferred catalyst is platinum.
  • the quantity by weight of catalyst C calculated by weight of platinum metal, is generally between 2 and 400 ppm, preferably between 5 and 200 ppm based on the total weight of the organopolysiloxane A.
  • catalyst C can be a platinum catalyst, for example a Karstedt catalyst.
  • the crosslinkable silicone composition X comprises a filler E.
  • the filler E makes it possible to improve the mechanical properties of the silicone elastomer article obtained at the end of the crosslinking, while retaining good elastomeric properties.
  • the filler E makes it possible to improve the modulus at break of the silicone elastomer article obtained, while maintaining a high elongation at break.
  • the silicone composition X comprises between 15 and 35% by weight of filler E.
  • the silicone composition X comprises between 20 and 30% by weight of filler E.
  • the optionally provided filler E is preferably mineral.
  • the filler E can be a very finely divided product whose mean particle diameter is less than 0.1 ⁇ m.
  • the filler E may in particular be siliceous.
  • siliceous materials they can play the role of reinforcing or semi-reinforcing filler.
  • the reinforcing siliceous fillers are chosen from colloidal silicas, combustion and precipitation silica powders or mixtures thereof. These powders have an average particle size generally less than 0.1 ⁇ m (micrometers) and a BET specific surface greater than 30 m 2 /g, preferably between 30 and 350 m 2 /g.
  • siliceous fillers such as diatomaceous earth or crushed quartz can also be used. These silicas can be incorporated as such or after having been treated with organosilicon compounds usually used for this purpose.
  • organosilicon compounds usually used for this purpose.
  • these compounds are methylpolysiloxanes such as hexamethyldisiloxane, octanethylcydotetrasiloxane, methylpolysilazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, tetramethyldivinyldisilazane, chlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane, dimethylvinylchlorosilane, alkoxysilanes such as dimethyldichlorosilane, methylvinyldichlorosilane, dimethylvinylchloro
  • non-siliceous mineral materials can act as a semi-reinforcing mineral filler or filler.
  • these non-siliceous fillers which can be used alone or as a mixture are calcium carbonate, optionally surface-treated with an organic acid or with an ester of an organic acid, calcined clay, titanium oxide of the rutile type, oxides of iron, zinc, chromium, zirconium, magnesium, different forms of alumina (hydrated or not), boron nitride, lithopone, barium metaborate, barium sulphate and microbeads of glass.
  • These fillers are coarser with generally an average particle diameter greater than 0.1 ⁇ m and a specific surface generally less than 30 m 2 /g. These fillers may have been surface-modified by treatment with the various organosilicon compounds usually employed for this purpose.
  • the filler E is silica, and even more preferably combustion silica.
  • the silica has a BET specific surface of between 75 and 410 m 2 /g.
  • the crosslinkable silicone X elastomer composition comprises:
  • organopolysiloxane A comprising, per molecule, at least 2 alkenyl groups having from 2 to 6 carbon atoms
  • organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions
  • At least one thermal resistance additive D which is cerium neodecanoate (IV).
  • the silicone composition X that can be crosslinked into elastomer may also comprise a crosslinking inhibitor F. This is generally used to give the ready-to-use composition a certain pot life. ). These crosslinking inhibitors are present in particular when the silicone composition X precursor of silicone coating(s) is an organopolysiloxane which can be crosslinked by polyaddition or dehydrogenation and when the catalyst C used is based on platinum.
  • the crosslinking inhibitor F is preferably chosen from acetylenic alcohols (ethynylcyclohexanol: ECH), diallylmaleates, triallylisocyanurates, dialkylmaleates (diethylmaleates or dialkylalcinyldicarboxylates) (diethylacetylene dicarboxylate) or even from organopolysiloxanes, advantageously cyclic and substituted with au least one alkenyl, tetramethylvinylcyclotetrasiloxane being particularly preferred, or alkylated maleates.
  • Acetylenic alcohols are useful retarders according to the invention. Mention may be made, by way of examples: - ethynyl-1-cyclohexanol 1;
  • the elastomeric crosslinkable silicone composition X may also comprise a pigment G.
  • the pigment G may be an organic pigment or an inorganic pigment (mineral pigment).
  • the silicone composition X that can be crosslinked into elastomer can also comprise a plasticizer H.
  • the plasticizers H are generally organosilicon in nature and are introduced into the silicone composition in a proportion of 0 to 20 parts per 100 parts of organopolysiloxane A. They make it possible to prevent the compositions from hardening during storage.
  • the plasticizers mention may be made of silanes containing hydrolysable groups, or hydroxylated or alkoxylated diorganopolysiloxane oils of low molecular weight. Such compositions are for example described in French patent 1,111,969.
  • the crosslinkable silicone X elastomer composition consists of:
  • At least one organopolysiloxane A comprising, per molecule, at least 2 alkenyl groups having from 2 to 6 carbon atoms;
  • At least one organopolysiloxane B comprising, per molecule, at least 2 hydrogenosilyl Si—H functions;
  • At least one heat resistance additive D which is cerium neodecanoate (IV);
  • At least one pigment G At least one pigment G
  • At least one plasticizer H At least one plasticizer H.
  • the crosslinkable silicone X elastomer composition does not comprise an adhesion promoter.
  • the crosslinkable silicone composition X to elastomer does not comprise a silicone resin, in particular, no silicone resin comprising at least one alkenyl radical.
  • the crosslinkable silicone composition X into elastomer is crosslinkable in the presence of a metal catalyst at room temperature, in the presence of humidity (polycondensation RTV).
  • the elastomeric crosslinkable silicone X composition further comprises:
  • the organopolysiloxane A' can be linear or branched, it carries hydroxyl groups or hydrolysable groups chosen from the group consisting of alkoxy, alkoxy-alkylene-oxy, amino, amido, acylamino, aminoxy, iminoxy, ketiminoxy, acyloxy and enoxy, and preferably alkoxy, which crosslink at ambient temperature by polycondensation reactions, under the action of humidity.
  • hydrolyzable and condensable groups Z of alkoxy type mention may be made of groups having from 1 to 8 carbon atoms such as methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy , sec-butoxy, tert-butoxy, 2-methoxyethoxy, hexyloxy or octyloxy.
  • hydrolyzable and condensable groups Z of the alkoxy-alkylene-oxy type mention may be made of the methoxy-ethylene-oxy group.
  • hydrolyzable and condensable groups Z of amino type mention may be made of methylamino, dimethylamino, ethylamino, diethylamino, n-butylamino, sec-butylamino or cyclohexylamino groups.
  • hydrolyzable and condensable groups Z of the amido type mention may be made of the N-methyl-acetamido group.
  • hydrolyzable and condensable groups Z of acylamino type mention may be made of the benzoyl-amino group.
  • hydrolyzable and condensable groups Z of the aminoxy type mention may be made of the dimethylaminoxy, diethylaminoxy, dioctylaminoxy or diphenylaminoxy groups.
  • hydrolyzable and condensable groups Z of the iminoxy and in particular ketiminoxy type mention may be made of the groups derived from the following oximes: acetophenone-oxime, acetone-oxime, benzophenone-oxime, methyl-ethyl-ketoxime, di-isopropylketoxime or methyl isobutyl ketoxime.
  • hydrolysable and condensable groups Z of acyloxy type mention may be made of the acetoxy group.
  • hydrolyzable and condensable groups Z of the enoxy type mention may be made of the 2-propenoxy group.
  • the organopolysiloxane A' may be a linear polydiorganosiloxane having at least two hydroxyl or alkoxy groups per molecule and whose dynamic viscosity at 25° C. is between 50 mPa.s and 50 x 10 6 mPa.s, of preferably between 50 mPa.s and 10 6 mPa.s in the case of silicone oils, or greater than 10 6 mPa.s in the case of silicone gums.
  • the identical or different organic groups generally present in the structure of the organopolysiloxane A′ are the methyl, ethyl, phenyl or trifluoropropyl radicals.
  • at least 80% by number of said organic groups are methyl groups bonded directly to silicon atoms.
  • more especially preferred are a, co-bis (dimethylhydroxysilyl) polydimethylsiloxanes and a, co-bis (dimethylalkoxysilyl) polydimethylsiloxanes
  • the elastomeric crosslinkable silicone composition X comprises between 40 and 90% by weight of organopolysiloxane A′, preferably between 50 and 80%, relative to the total weight of the silicone composition X.
  • the catalyst C' is a catalyst for polycondensation reactions.
  • Polycondensation catalysts are widely known to those skilled in the art.
  • catalyst C′ may, inter alia, be chosen from compounds based on tin or titanium widely known to those skilled in the art or from organic catalysts such as the guanidines described in patent applications EP2268743 and EP2367867 or from metal complexes, for example based on Zn, Mo, Mg, etc. described in patent applications EP2222626, EP2222756, EP2222773, EP2935489, EP2935490 and WO2015/082837.
  • the elastomer-crosslinkable silicone composition X may comprise between 0.1 and 2% by weight of catalyst C′, relative to the total weight of the silicone composition X.
  • the crosslinking agent B′ is preferably an organosilicon compound bearing per molecule more than two hydrolysable groups bonded to the silicon atoms. Such crosslinking agents are well known to those skilled in the art and are commercially available.
  • the crosslinking agent B' is preferably a silicon compound, each molecule of which comprises at least three hydrolysable and condensable groups chosen from the group consisting of: alkoxy, alkoxy-alkylene-oxy, amino, amido, acylamino, aminoxy , iminoxy, ketiminoxy, acyloxy and enoxy, and preferably alkoxy. These groups are as defined previously.
  • the elastomeric crosslinkable silicone composition X may comprise between 1 and 20% by weight of crosslinking organosilicon compound B′, preferably between 2 and 15%, relative to the total weight of the silicone composition X.
  • the filler E and the pigment G are as defined previously.
  • the crosslinkable silicone composition X into elastomer comprises between 10 and 40% by weight of filler E, preferably between 15 and 35%, relative to the total weight of the silicone composition X.
  • the silicone composition X that can be crosslinked into elastomer comprises:
  • At least one heat resistance additive D which is cerium neodecanoate (IV).
  • said silicone composition X having a cerium (IV) content of between 50 and 3000 ppm by mass.
  • Silicone elastomer also relates to a silicone elastomer obtained by crosslinking composition X, at ambient temperature, optionally in the presence of humidity, or by heating.
  • the heating is preferably carried out at a temperature between 80°C and 250°C.
  • the duration of the heating varies according to the temperature and, possibly, according to the pressure exerted. According to one embodiment, the heating is carried out as follows:
  • the silicone composition X makes it possible to obtain an elastomer which is thermally stable after heat treatment for 3 days at 300° C., 7 days at 275° C. or 21 days at 250° C.
  • the elastomer obtained therefore has a very good thermal stability, which makes it possible to use it for the production of envelopes or primary insulators of single conductors used in the constitution of electrical wires or cables.
  • the invention therefore also relates to an electric wire or electric cable comprising at least one conductive element 1 surrounded by at least one primary insulating layer 2 characterized in that said primary insulating layer 2 comprises a silicone elastomer obtained by crosslinking the composition silicone X.
  • the invention also relates to the use of a silicone composition X for producing automobile cables, in particular automobile cables for electric or hybrid vehicles.
  • the invention also relates to the use of a silicone composition X for the production of envelopes or primary insulators of single conductors used in the constitution of electrical wires or cables.
  • the invention also relates to a method for manufacturing an electric wire or electric cable comprising the following steps: i. forming around an electrical conductor 1 at least one primary insulating layer 2 which consists of a material obtained by crosslinking the silicone composition X, preferably by heating to a temperature between 80° C. and 250° C., ii. optionally, assembling at least two insulated electrical conductors as obtained in step i, and iii. optionally, extruding an outer sheath as defined above around the insulated electrical conductor(s) of step i or ii.
  • the formation around the electrical conductor 1 of at least one primary insulating layer 2 can be carried out by depositing the silicone composition X around the electrical conductor 1 according to the usual methods, in particular by extrusion processes.
  • the deposit thus obtained is then crosslinked, preferably by heating, to lead to the formation of the primary insulator in silicone elastomer.
  • the duration of the heating obviously varies with the temperature of the material and the possible working pressure. It is generally of the order of a few seconds to several minutes between 100 and 120°C and a few seconds between 180 and 200°C. It is possible to deposit several layers together using a tandem extrusion equipped for example with a crosshead or a co-extrusion.
  • the electrical wire or cable according to the invention may further comprise an outer sheath surrounding the insulated electrical conductor or conductors.
  • This outer sheath is well known to those skilled in the art. It can burn completely locally and turn into residual ash under the effect of the high temperatures of a fire without being a fire propagator.
  • the material that makes up the outer sheath can be, for example, a polymer matrix based on polyolefin and at least one hydrated flame-retardant mineral filler chosen in particular from metal hydroxides such as, for example, magnesium dihydroxide or aluminum trihydroxide.
  • the outer sheath is conventionally obtained by extrusion.
  • the electric wire or electric cable according to the invention is characterized in that the primary insulating layer 2 is formed by depositing around the conductive element 1 of said silicone composition X by a technique of extrusion and by heating means so as to obtain a material temperature ranging from 80° C. to 250° C. until said silicone composition X has hardened.
  • Cerium(IV) neodecanoate is synthesized according to the procedure described in EP0575189.
  • Cerium(IV) neodecanoate is a liquid. It can be used pure (additive 1) or formulated (additives 2 and 3).
  • Additive 1 The cerium content in Additive 1 is 16.6% by weight.
  • Additive 2 cerium (IV) neodecanoate formulated in a mixer
  • 56.6% by weight of a poly(dimethyl)(methylvinyl)siloxane gum, having 720 ppm of vinyl groups and a viscosity of 20 million mPa.s at 25° C. are mixed with 5.6% by weight of fumed silica treated with octamethylcyclotetrasiloxane, having a BET specific surface of 235 m 2 /g, then 37.8% by weight of neodecanoate of cerium (IV) is added.
  • the mixture is mixed for 10 minutes at room temperature.
  • Additive 3 cerium (IV) neodecanoate formulated on a cylinder
  • 56.6% by weight of a poly(dimethyl)(methylvinyl)siloxane gum, having 720 ppm of vinyl groups and a viscosity of 20 million mPa.s at 25° C. are mixed with 5.6% by weight of fumed silica treated with octamethylcyclotetrasiloxane, having a BET specific surface of 235 m 2 /g, then 37.8% by weight of cerium (IV) neodecanoate is added.
  • the mixture is mixed for 10 minutes at room temperature.
  • Additives 2 and 3 have a cerium content by weight of 0.063% relative to the total weight of the additive. [0162] Addendum 4
  • Additive 4 is an additive based on T1O2 and Fe 2 O3 in a silicone gum.
  • the iron content is between 0.7 and 2.1% by weight.
  • the T1O2 content is more than 94% by weight.
  • Addendum 5 is cerium oxide purchased from Sigma Aldrich [0166] Additive 6
  • Additive 6 is cerium (III) octoate purchased from Sigma Aldrich [0168] Additive 7
  • Additive 7 is an antioxidant based on iron (III) ethyl-2-hexanoate in a silicone gum.
  • the iron content is 0.78% by weight.
  • composition HCR 1 [0170] Composition HCR 1:
  • composition HCR 2 Base A [0172]
  • a mixer is loaded with
  • Part A of this LSR composition is mixed for 1 minute at 1000 revolutions per minute in the speed mixer.
  • the Pt level is 10 ppm.
  • Part B of this LSR composition is mixed for 1 minute at 1000 revolutions per minute in the speed mixer.
  • Test plates (150mm ⁇ 150mm ⁇ 2mm) were produced in a 4-cavity mold under pressure for 8 minutes at 115°C. After a post-curing step of 4 h at 200° C. in a ventilated oven, the slabs underwent thermo-oxidative aging in ventilated ovens under different conditions of duration and temperature, detailed in the examples below.
  • the mechanical properties in this case the Shore A hardness (IS0868, DIN53505), the breaking strength (IS037, DIN53504-51), the elongation at break (IS037, DIN53504-51), and the Tear resistance (ASTM D624 A) were measured on all the plates thus aged and compared with the mechanical properties measured on the initial plates post-annealed for 4 hours at 200°C.
  • cerium (IV) neodecanoate (example 1) makes it possible to obtain good mechanical properties and better thermal resistance than cerium oxide (additive 5), cerium (III) octoate (additive 6) and iron (III) ethyl-2-hexanoate (additive 7), (Comp. Ex. 2-4). Furthermore, the mechanical properties obtained with cerium(IV) neodecanoate are comparable to those obtained for T1O2 (additive 4, ex. comp. 1). However, with cerium(IV) neodecanoate, the plate obtained is transparent, unlike the plate obtained with Ti0 2 (additive 4, ex. comp. 1).
  • compositions according to the invention therefore make it possible to obtain a transparent silicone elastomer having good mechanical properties and good thermal resistance.
  • the cerium(IV) neodecanoate was tested pure and formulated. The results are shown in Table 3.
  • results show that it is possible to use pure or formulated cerium(IV) neodecanoate because the results obtained are comparable. These results also show that the elastomer obtained retains its good mechanical properties, and in particular elastomeric properties, even after thermal aging for 21 days at 250° C.
  • Cerium(IV) neodecanoate was also tested in an LSR composition. The results are shown in Table 4.

Abstract

La présente invention concerne une composition silicone réticulable en élastomère comprenant un additif de tenue thermique. En particulier, l'invention concerne une composition silicone réticulable en élastomère comprenant un additif de tenue thermique qui est du néodécanoate de cérium (IV).

Description

Composition silicone réticulable en élastomère comprenant un additif de tenue thermique
Domaine technique
[0001] La présente invention concerne une composition silicone réticulable en élastomère comprenant un additif de tenue thermique. En particulier, l’invention concerne une composition silicone réticulable en élastomère comprenant un additif de tenue thermique qui est du néodécanoate de cérium (IV).
Arrière-plan technologique
[0002] Il est bien connu que les élastomères silicones présentent une très grande inertie à la chaleur et au froid en service continu de -50°C à 200°C. Ils conservent, dans cette plage de températures la quasi-totalité de leurs propriétés chimiques, mécaniques et diélectriques.
[0003] Cependant, lorsque les élastomères silicones sont utilisés à une température supérieure à 200°C pendant une longue période, par exemple plusieurs jours, leurs propriétés ont tendance à se dégrader. Il est donc parfois nécessaire d’ajouter dans leur composition des additifs de tenue thermique adaptés. Cela est d’autant plus vrai lorsque les élastomères silicones sont destinés à être utilisés dans la réalisation des enveloppes ou isolants primaires entrant dans la constitution de fils ou câbles électriques protégés contre l’incendie, qui doivent résister à des températures élevées. Cela est également vrai lorsque les élastomères silicones sont destinés à être utilisés dans la réalisation des câbles automobiles.
[0004] Il est par exemple connu d’utiliser des composés antioxydants afin de stopper cette dégradation thermique. Ces antioxydants sont principalement de deux natures, soit non-métalliques (à base de soufre, phosphore, amine...), soit inorgano- ou organométalliques.
[0005] Le brevet US 8084529 décrit des compositions silicones contenant de 0,001 à 10% en masse d’une poudre d’oxyde de cérium. L’ajout d’oxyde de cérium permet d’améliorer la stabilité thermique de l’élastomère obtenu après réticulation. [0006] Le brevet britannique GB-A-1 251 305 propose d'incorporer au moins 3 % en poids de dioxide de titane fumé à la composition élastomérique de base et rapporte une amélioration du comportement (compression et résistance à la réversion) de l'élastomère durci à des températures de 232 et 315° C maintenues pendant 16 et 24 heures respectivement.
[0007] Néanmoins, les antioxydants utilisés ne permettent pas toujours d’obtenir des élastomères silicones transparents et qui puissent être facilement colorés. De plus, il est parfois nécessaire de formuler les antioxydants dans un solvant afin de pouvoir les ajouter à la composition silicone réticulée en élastomère, ce qui complique la formulation de la composition silicone. La présence d’antioxydants dans la composition silicone peut également ralentir la cinétique de réticulation.
[0008] Dans ce contexte, la présente invention vise à satisfaire au moins l’un des objectifs suivants.
[0009] L'un des objectifs essentiels de l'invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone thermiquement stable.
[0010] L'un des objectifs essentiels de l'invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone ayant de bonnes propriétés mécaniques et de tenue thermique, par exemple pouvant résister plusieurs jours à plus de 250°C.
[0011] L'un des objectifs essentiels de l'invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone qui conserve ses propriétés élastomériques, même en cas d'expositions répétées et/ou prolongées à la chaleur.
[0012] L'un des objectifs essentiels de l'invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone qui conserve de bonnes propriétés d’allongement après traitement thermique, par exemple qui conserve un allongement à la rupture supérieur à 150%, ou 200%, après traitement thermique. [0013] L'un des objectifs essentiels de l'invention est la fourniture d’un additif de tenue thermique ne présentant pas des problèmes de solubilité dans les compositions silicones, et qui puisse être directement dispersé dans les compositions silicones, sans utiliser de solvant.
[0014] Un autre objectif essentiel de l’invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone qui soit transparent, et par conséquent qui puisse être facilement coloré par ajout de pigment.
[0015] Un autre objectif essentiel de l’invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone qui soit transparent, même lorsque la composition silicone comprend une quantité de charge importante, par exemple plus de 15 % en poids.
[0016] Un autre objectif essentiel de l’invention est la fourniture d’une composition silicone réticulable en élastomère qui permette d’obtenir un élastomère silicone ayant de bonnes propriétés mécaniques et de tenue thermique, dont la cinétique de réticulation ne soit pas ralentie.
[0017] Un autre objectif essentiel de l’invention est la fourniture d’une composition silicone réticulable en élastomère qui soit utilisable pour la réalisation des enveloppes ou isolants primaires entrant dans la constitution de fils ou câbles électriques.
[0018] Un autre objectif essentiel de l’invention est la fourniture d’une composition silicone réticulable en élastomère qui soit utilisable pour la réalisation des câbles automobiles.
[0019] L'un des objectifs essentiels de l'invention est la fourniture d’une composition silicone réticulable en élastomère qui soit simple à formuler.
Brève description de l’invention
[0020] Ces objectifs, parmi d’autres, sont atteints par la présente invention qui concerne en premier lieu une composition silicone X réticulable en élastomère comprenant : - Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) .
[0021] Le fait d’utiliser un additif de tenue thermique D qui est du néodécanoate de cérium (IV) permet d’améliorer la tenue thermique de l’élastomère silicone, tout en gardant la transparence de l’élastomère silicone, même lorsque la composition silicone X comprend plus de 15% en poids de charge E, ou lorsque la teneur en cérium est élevée.
[0022] En effet, de manière tout à fait remarquable, l’élastomère obtenu est thermiquement stable. Il possède des propriétés élastomériques acceptables et ne devient pas cassant après un traitement de 3 jours à 300° C, 7 jours à 275° C ou 21 jours à 250° C. Dureté, résilience, résistance à la rupture, allongement à la rupture et le module à 100% sont restés dans des limites tout à fait acceptables, c'est-à-dire dans des limites permettant l'usage prévu de l'élastomère.
[0023] De plus, l’élastomère obtenu est thermiquement stable même après un traitement thermique de longue durée, par exemple 3000 heures à 200°C. Ce traitement thermique de longue durée correspond aux tests effectués sur les câbles automobiles (cf. norme ISO 6722). Il est donc possible d’utiliser la composition silicone X réticulable en élastomère pour réaliser des câbles automobiles et notamment, des câbles automobiles pour véhicules électriques ou hybrides.
[0024] Par ailleurs, le néodécanoate de cérium (IV) est liquide à température ambiante, il est donc facile à utiliser et à mélanger. Il est possible de l’ajouter à la composition silicone tel quel, sans solvant. La composition silicone est donc facile à formuler.
[0025] De plus, la composition silicone X permet d’obtenir un élastomère silicone ayant de bonnes propriétés mécaniques, et l’emploi du néodécanoate de cérium (IV) n’impacte pas la cinétique de réticulation.
[0026] L’invention concerne également un élastomère silicone obtenu par réticulation de la composition X, de préférence par chauffage à une température comprise entre 80°C et 250°C. [0027] L’invention concerne également un fil électrique ou câble électrique comprenant au moins un élément conducteur 1 entouré par au moins une couche isolante primaire 2 caractérisé en ce que ladite couche isolante primaire 2 comprend un élastomère silicone obtenu par réticulation de la composition X.
[0028] L’invention concerne également l’utilisation d’une composition silicone X pour la réalisation des enveloppes ou isolants primaires des mono conducteurs entrant dans la constitution des fils ou câbles électriques.
[0029] L’invention concerne également l’utilisation d’une composition silicone X pour la réalisation des câbles automobiles, notamment des câbles automobiles pour véhicules électriques ou hybrides.
[0030] L’invention concerne également un procédé de fabrication d’un fil électrique ou câble électrique comprenant les étapes suivantes : i. former autour d'un conducteur électrique 1 au moins une couche isolante primaire 2 qui est constituée d'un matériau obtenu par réticulation de la composition silicone X, de préférence par chauffage à une température comprise entre 80°C et 250°C, ii. optionnellement, assembler au moins deux conducteurs électriques isolés tels qu'obtenus à l'étape i, et iii. optionnellement, extruder une gaine extérieure telle que définie ci-avant autour du ou des conducteurs électriques isolés de l'étape i ou ii.
Définitions
[0031] Par « élastomère silicone thermiquement stable » dans le sens de l'invention, on entend notamment un élastomère silicone qui conserve des propriétés élastomériques et ne devient ni dur ni cassant lorsqu'il est soumis à une température supérieure à 200° C, notamment comprise entre 250° C et 300° C, maintenue pendant plusieurs jours, notamment 3 jours. De manière tout à fait préférée, il s'agit d'élastomères résistant ainsi à une température supérieure à 250° C, notamment comprise entre 275° C et 300° C, maintenue pendant 3 jours ou plus.
[0032] Par « fil électrique » on entend un composant électrotechnique servant au transport de l'électricité, afin de transmettre de l'énergie ou de l'information et qui est constitué d'un matériau conduisant l'électricité, monobrin ou multibrin, entouré d'une enveloppe isolante. L'intérieur d'un fil électrique est appelée « âme » du fil.
[0033] Par « conducteur » ou « mono conducteur » on entend un élément composé d'une âme et de son enveloppe isolante.
[0034] Par « câble électrique » on entend un composant électrotechnique servant au transport de l'électricité, afin de transmettre de l'énergie ou de l'information et qui est constitué de plusieurs conducteurs électriquement distincts et mécaniquement solidaires avec éventuellement un blindage extérieur.
[0035] Un câble électrique est constitué d'un ou plusieurs mono conducteur(s) (en général à base de cuivre ou d'aluminium) ; chacun de ces mono conducteurs est protégé par une enveloppe ou isolant primaire fait d'une ou plusieurs couche(s) concentrique(s) à base d'un isolant. Autour de cette enveloppe ou de ces enveloppes (dans le cas d'un câble à plusieurs mono conducteurs) est (sont) prévu(s) un ou plusieurs élément(s) de remplissage et/ou un ou plusieurs élément(s) de renfort à base notamment de fibres de verre et/ou de fibres minérales. Ensuite une gaine extérieure pouvant comprendre une ou plusieurs gaine(s) est le plus souvent présente. Dans le cas d'un câble électrique à plusieurs mono conducteurs, le (ou les) élément(s) de remplissage et/ou le (ou les) élément(s) de renfort, qui est (sont) disposé(s) autour des mono conducteurs (équipés chacun de son isolant primaire), constitue(nt) une enveloppe commune à l'ensemble des mono conducteurs.
[0036] Dans la présente demande, toutes les parties, tous les % et les ppm sont exprimés en poids, sauf mention contraire.
Description détaillée
[0037] La composition silicone X réticulable en élastomère selon l’invention comprend :
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) .
[0038] Additif de tenue thermique D [0039] L’additif de tenue thermique D est du néodécanoate de cérium (IV). Le cérium est au degré d’oxydation IV. Le néodécanoate de cérium (IV) a la formule suivante : CeC4oH76C>8,
[0040] Une des formules développées possibles du néodécanoate de cérium (IV) est la suivante :
[0041] [Chem. 1]
[0042] Le néodécanoate est un mélange d’isomères de constitution de formule (C10H19O2)'. De préférence, le néodécanoate est un mélange d’isomères de constitution, dont des trial kylacétates (c’est-à-dire que le carbone en position alpha du carbonyle est un carbone quaternaire). Parmi les isomères du néodécanoate, on peut citer 2,2,3,5-tétramethylhexanoate, 2,4-diméthyl-2-isopropylpentanoate, 2,5- diméthyl-2-éthylhexanoate et 2,2-diméthyloctanoate.
[0043] Le néodécanoate de cérium (IV) est liquide à température ambiante et est dispersible dans les silicones. Il peut donc être utilisé pur ou formulé. Lorsqu’il est utilisé pur, il est ajouté tel quel dans la composition silicone X. Lorsqu’il est formulé, il peut être ajouté à une huile silicone ou à une gomme silicone avant d’être ajouté à la composition silicone X.
[0044] Le néodécanoate de cérium (IV) se disperse bien dans les silicones, il est directement compatible avec les silicones. Il n’est donc pas nécessaire d’utiliser un solvant pour l’incorporer à la composition silicone.
[0045] Selon un mode de réalisation, la composition silicone X a une teneur en cérium (IV) comprise entre 50 et 3000 ppm massique, de préférence entre 50 et 1000 ppm, et préférentiellement entre 50 et 500 ppm. [0046] De préférence, la composition silicone X a une teneur en cérium (IV) comprise entre 50 et 350 ppm, de préférence entre 60 et 300 ppm, préférentiellement entre 70 et 250 ppm, et encore plus préférentiellement entre 90 et 200 ppm. [0047] Une teneur en cérium comprise entre 50 et 350 ppm permet notamment d’obtenir un élastomère qui conserve un allongement à la rupture supérieur à 200%, après traitement thermique de 7 jours à 275°C.
[0048] Le néodécanoate de cérium (IV) permet d’obtenir un élastomère thermiquement stable, qui conserve ses propriétés élastomériques, et ne devient ni dur ni cassant lorsqu'il est soumis à une température supérieure à 200° C, notamment comprise entre 250° C et 300° C, maintenue pendant plusieurs jours, notamment 3 jours. En particulier, Le néodécanoate de cérium (IV) permet d’obtenir un élastomère thermiquement stable après traitement thermique de 3 jours à 300°C, 7 jours à 275°C, 21 jours à 250°C, ou 3000 heures à 200°C.
[0049] De plus, l’élastomère obtenu est transparent, même lorsque la composition silicone X comprend une grande quantité de charge et/ou une teneur en cérium élevée. Il est donc possible de le colorer facilement en ajoutant des pigments à la composition silicone X. Par ailleurs, il est également possible d’avoir des couleurs vives, car il n’y a pas d’altération des couleurs ou de la transparence.
[0050] Avantageusement, le néodécanoate de cérium (IV) a un taux d’acide libre inférieur à 5%, de préférence inférieur à 2,5%, et préférentiellement inférieur à 1 ,5%. Le taux d’acide libre correspond au taux d’acide néodécanoique libre non complexé.
[0051] Composition silicone X réticulable en élastomère
[0052] La composition silicone X réticulable en élastomère peut être présentée en un seul ou plusieurs emballage(s) (mono- ou multicomposants). Elle comprend, outre l’additif de tenue thermique D, un constituant principal formé d’un ou plusieurs constituant(s) organopolysiloxane(s), un catalyseur approprié et éventuellement un ou plusieurs composé(s), de préférence choisi parmi les charges, les inhibiteurs de réticulation, et les pigments.
[0053] La composition silicone X peut réticuler soit à température élevée sous l'action de péroxydes organiques (EVC ou HCR), soit en présence d'un catalyseur métallique à température ambiante, éventuellement en présence d’humidité (RTV de polyaddition ou de polycondensation) ou à la chaleur (EVC ou LSR de polyaddition). [0054] Les expressions RTV, LSR, EVC ou HCR sont bien connues de l'homme de métier : RTV est l'abréviation de "Room Température Vulcanizing" ; LSR est l'abréviation de "Liquid Silicone Rubber" ; HCR est l'abréviation de "Heat Cured Rubber" et EVC est l'abréviation de "Elastomère Vulcanisable à Chaud".
[0055] Pour la préparation de la composition silicone X selon l'invention, les divers ingrédients peuvent être intimement mélangés au moyen des dispositifs bien connus dans l'industrie des élastomères silicones, l'ordre d'incorporation pouvant être quelconque.
[0056] Selon un premier mode de réalisation, la composition silicone X réticulable en élastomère est une composition réticulant :
- sous l'action de péroxydes organiques ou
- par des réactions de polyaddition, en présence d’un catalyseur de polyaddition, à température ambiante ou en présence de chauffage.
[0057] Dans ce cas, la composition silicone X réticulable en élastomère comprend, en outre :
- Au moins un organopolysiloxane A comprenant, par molécule, au moins 2 groupes alcényles ayant de 2 à 6 atomes de carbone ;
- Eventuellement, au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H ;
- Au moins un catalyseur de réticulation C ; et
- Au moins une charge E.
[0058] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend :
- Au moins un organopolysiloxane A comprenant, par molécule, au moins 2 groupes alcényles ayant de 2 à 6 atomes de carbone ;
- Eventuellement, au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H ;
- Au moins un catalyseur de réticulation C ;
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) ; et
- Au moins une charge E, ladite composition silicone X ayant une teneur en cérium (IV) comprise entre 50 et 3000 ppm massique.
[0059] Orqanopolvsiloxane A
[0060] Avantageusement, l’organopolysiloxane A est choisi parmi les composés organopolysiloxanes comportant des motifs de formule (I) :
ZaUbSiO(4-(a+b))/2 (I) dans laquelle : les radicaux Z, identiques ou différents, représentent un radical alcényle linéaire ou ramifié, ayant de 2 à 6 atomes de carbone ; les radicaux U, identiques ou différents, représentent un radical monovalent ayant de 1 à 12 atomes de carbone, a = 1 , 2 ou 3, b = 0, 1 ou 2 et a+b =1 , 2 ou 3 ; et comportant éventuellement d’autres motifs de formule (II) :
UcSiO(4-c)/2 (II) dans laquelle U a la même signification que ci-dessus, et c = 0, 1 , 2, ou 3.
[0061] Préférentiellement, les radicaux Z représentent un radical vinyle.
[0062] Il est entendu dans la formule (I) et dans la formule (II) ci-dessus que, si plusieurs groupes U sont présents, ils peuvent être identiques ou différents les uns des autres. Dans la formule (I), le symbole a peut préférentiellement être égal à 1. Selon un mode de réalisation, dans la formule (I), a=1 ou 2, b = 1 ou 2, et a+b = 2 ou 3. Selon un mode de réalisation, dans la formule (II), c= 2 ou 3.
[0063] Dans la formule (I) et dans la formule (II), U peut représenter un radical monovalent choisi dans le groupe constitué par les groupes alkyles ayant 1 à 8 atomes de carbone, éventuellement substitué par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone. U peut avantageusement être choisi dans le groupe constitué par le méthyle, l’éthyle, le propyle, le 3,3,3-trifluoropropyle, le xylyle, le tolyle et le phényle.
[0064] Lesdits organopolysiloxanes A peuvent être des huiles de viscosité dynamique de l’ordre de 10 à 1 000000 mPa.s à 25°C, généralement de l’ordre de 10 à 70 000 mPa.s à 25°C, ou des gommes de viscosité dynamique supérieure à 1 000 000 mPa.s à 25°C. Les huiles et gommes silicones sont des polymères de structure linéaire.
[0065] Toutes les viscosités dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite “Newtonienne”, c’est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un viscosimètre Brookfield à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse.
[0066] Ces organopolysiloxanes A peuvent présenter une structure linéaire, ramifiée ou cyclique. Leur degré de polymérisation est, de préférence, compris entre 2 et 5000.
[0067] De préférence, l’organopolysiloxane A présente une structure linéaire. Lorsqu’il s’agit de polymères linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles « D » choisis parmi le groupe constitué par les motifs siloxyles Z2S1O2/2, ZUS1O2/2 et U2S1O2/2, et de motifs siloxyles « M » choisis parmi le groupe constitué par les motifs siloxyles ZU2SiOi/2, Z2USiOi/2 et Z3S1O1/2. Les symboles Z et U sont tels que décrits ci-dessus.
[0068] A titre d’exemples de motifs « M » terminaux, on peut citer les groupes triméthylsiloxy, diméthylphénylsiloxy, diméthylvinylsiloxy ou diméthylhexènylsiloxy.
[0069] A titre d’exemples de motifs « D », on peut citer les groupes diméthylsiloxy, méthylphénylsiloxy, méthylvinylsiloxy, méthylbutènylsiloxy, méthylhexènylsiloxy, méthyldécènylsiloxy, diphénylsiloxy, ou méthyldécadiènylsiloxy.
[0070] Des exemples d’organopolysiloxanes linéaires pouvant être des composés insaturés A selon l’invention sont :
- un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles ;
- un poly(diméthylsiloxane-co-méthylphénylsiloxane) à extrémités diméthyl vinylsilyles ;
- un poly(diméthylsiloxane-co-diphénylsiloxane) à extrémités diméthylvinylsilyles ;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités diméthyl vinylsilyles ; - un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités triméthylsilyles ; et
- un poly(méthylvinylsiloxane) cycliques.
[0071] Les organopolysiloxanes cycliques pouvant être également des composés insaturés A selon l’invention sont par exemple, ceux constitués de motifs siloxyles «D» de formules suivantes : Z2S1O2/2, U2S1O2/2 ou ZUS1O2/2, qui peuvent être du type dialkylsiloxy, alkylarylsiloxy, alkylvinylsiloxy, alkylsiloxy. Lesdits organopolysiloxanes cycliques présentent une viscosité de l’ordre de 10 à 5000 mPa.s à 25°C.
[0072] De préférence, le composé organopolysiloxane A a une teneur massique en motif Si-vinyle comprise entre 0,001 et 30%, de préférence entre 0,01 et 10%.
[0073] Comme autres exemples de composés insaturés A on peut citer les résines silicones comprenant au moins un radical vinyle. Par exemple elles peuvent être choisies parmi le groupe constitué par les résines silicones suivantes :
- MDViQ où les groupes vinyles sont inclus dans les motifs D,
- MDViTQ où les groupes vinyles sont inclus dans les motifs D,
- MMViQ où les groupes vinyles sont inclus dans une partie des motifs M,
- MMViTQ où les groupes vinyles sont inclus dans une partie des motifs M,
- MMViDDViQ où les groupes vinyles sont inclus dans une partie des motifs M et D,
- et leurs mélanges, avec :
- MVi = motif siloxyle de formule (R)2(vinyle)SiOi/2
- DVi = motif siloxyle de formule (R)(vinyle)Si02/2
- T = motif siloxyle de formule (R)Si03/2
- Q = motif siloxyle de formule S1O4/2
- M = motif siloxyle de formule (R)3SiOi/2
- D = motif siloxyle de formule (R)2Si02/2 et les groupements R, identiques ou différents, sont des groupes hydrocarbonés monovalents choisis parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus tels que les groupes méthyle, éthyle, propyle et 3,3,3-trifluoropropyle et les groupes aryle tels que xylyle, tolyle et phényle. De préférence, les groupements R sont des méthyles. [0074] Bien entendu, selon les variantes, l’organopolysiloxane A peut être un mélange de plusieurs huiles ou résines répondant à la définition de l’organopolysiloxane A. Avantageusement, l’organopolysiloxane A ne comprend pas de résine.
[0075] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend entre 55 et 85% en poids d’organopolysiloxane A, de préférence entre 60 et 80%, par rapport au poids total de la composition silicone X.
[0076] Dans le cas des compositions silicone X réticulant par des réactions de polyaddition à température ambiante (RTV de polyaddition), l’organopolysiloxane A porteur de groupements alcényles présente avantageusement une viscosité à 25°C au plus égale à 50 000 mPa.s et, de préférence, comprise entre 200 et 10 000 mPa.s. Dans le cas des compositions silicone X réticulant par des réactions de polyaddition à chaud (LSR de polyaddition), l’organopolysiloxane A porteur de groupements alcényles présente avantageusement une viscosité à 25°C supérieure à 1 000 mPa.s, se situant de préférence dans l'intervalle allant d'une valeur supérieure à 5 000 mPa.s à 300 000 mPa. s. Dans le cas des compositions X réticulant par des réactions de polyaddition à chaud (EVC de polyaddition), l’organopolysiloxane A porteur de groupements alcényles présente avantageusement une viscosité à 25°C supérieure à 300 000 mPa.s et, de préférence comprise entre 1 million de mPa.s et 30 millions de mPa.s voire même davantage.
[0077] Orqanopolvsiloxane B
[0078] Dans certains cas, la composition silicone X réticulable en élastomère comprend au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H . Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H, et un catalyseur de réticulation C qui est choisi parmi les catalyseurs de polyaddition.
[0079] Le composé B est un composé organohydrogénopolysiloxane comprenant par molécule au moins deux et, de préférence, au moins trois fonctions hydrogénosilyles (Si-H). [0080] L’organohydrogénopolysiloxane B peut avantageusement être un organopolysiloxane comprenant au moins un motif de formule (III) :
HdUeSiO(4-(d+e))/2 (III) dans laquelle : les radicaux U, identiques ou différents, représentent un radical hydrocarboné ayant de 1 à 12 atomes de carbone, d =1 ou 2, e =0, 1 ou 2 et d+e =1 , 2 ou 3 ; et éventuellement d’autres motifs de formule (IV) :
UfSiO(4-f)/2 (IV) dans laquelle U a la même signification que ci-dessus, et f = 0,1 , 2, ou 3.
[0081] Il est entendu dans la formule (III) et dans la formule (IV) ci-dessus que, si plusieurs groupes U sont présents, ils peuvent être identiques ou différents les uns des autres. Dans la formule (III), le symbole d peut préférentiellement être égal à 1 . De plus, dans la formule (III) et dans la formule (IV), U peut représenter un radical monovalent choisi dans le groupe constitué par les groupes alkyles ayant 1 à 8 atomes de carbone, éventuellement substitué par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone. U peut avantageusement être choisi dans le groupe constitué par le méthyle, l’éthyle, le propyle, le 3,3,3-trifluoropropyle, le xylyle, le tolyle et le phényle.
[0082] Ces organopolysiloxanes B peuvent présenter une structure linéaire, ramifiée, ou cyclique. Le degré de polymérisation est de préférence supérieur ou égal à 2. Généralement, il est inférieur à 5000.
[0083] Lorsqu’il s’agit de polymères linéaires, ceux-ci sont essentiellement constitués :
- de motifs siloxyles « D » choisis parmi les motifs de formules suivantes U2SÎ02/2 ou UHSÎ02/2, et
- de motifs siloxyles « M » choisis parmi les motifs de formules suivantes U3SiOi/2 ou U2HSiOi/2. [0084] Les organopolysiloxanes linéaires peuvent être des huiles de viscosité dynamique de l’ordre de 1 à 100000 mPa.s à 25°C et plus généralement de l’ordre de 10 à 5000 mPa.s à 25°C.
[0085] Des exemples d’organopolysiloxanes pouvant être des composés B selon l’invention comprenant au moins un atome d’hydrogène lié à un atome de silicium sont :
- un poly(diméthylsiloxane) à extrémités hydrogénodiméthylsilyles;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités triméthyl- silyles; - un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités hydro génodiméthylsilyles ;
- un poly(méthylhydrogénosiloxane) à extrémités triméthylsilyles ; et
- un poly(méthylhydrogénosiloxane) cycliques.
[0086] Lorsqu’il s’agit d’organopolysiloxanes cycliques, ceux-ci sont constitués de motifs siloxyles « D » de formules suivantes U2Si02/2et UHSÎ02/2, qui peuvent être du type dialkylsiloxy ou alkylarylsiloxy ou de motifs UHSÎ02/2 uniquement. Ils présentent alors une viscosité de l’ordre de 1 à 5000 mPa.s.
[0087] Conviennent particulièrement à l’invention à titre de composés organohydrogénopolysiloxanes B les composés suivants : [0088] [Chem 2]
SI S2 S 3
[0089]
[0090] avec a, b, c, d et e définis ci-dessous :
- dans le polymère de formule S1 :
- 0 < a < 150, de préférence 0 < a < 100, et plus particulièrement 0 < a < 20, et - 1 < b < 90 de préférence 10 < b < 80 et plus particulièrement 30 < b < 70,
- dans le polymère de formule S2 : 0 < c < 15 - dans le polymère de formule S3 : 5 < d < 200, de préférence 20 < d < 100, et 2 < e < 90, de préférence 10 < e < 70.
[0091] De préférence, le composé organohydrogénopolysiloxane B a une teneur massique en fonctions hydrogénosilyle Si-H comprise entre 0,2 et 91 %. Le composé organohydrogénopolysiloxane B peut avoir une teneur massique en fonctions hydrogénosilyle Si-H supérieure ou égale à 5%, de préférence supérieur ou égale à 10%. Par exemple, le teneur massique en fonctions hydrogénosilyle Si-H est comprise entre 5 et 40%, ou entre 10 et 30%.
[0092] Selon un mode de réalisation, l’organohydrogénopolysiloxane B est une résine présentant une structure ramifiée. L’organohydrogénopolysiloxane B peut être choisi parmi le groupe constitué par les résines silicones suivantes :
- M’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes M,
- MM’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M,
- MD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes D,
- MDD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des groupes D,
- MM’TQ où les atomes d’hydrogène sont inclus dans une partie des motifs M,
- MM’DD’Q où les atomes d’hydrogène sont inclus dans une partie des motifs M et D,
- et leurs mélanges, avec :
- M, D, T et Q tels que définis précédemment
- M’= motif siloxyle de formule R2HS1O1/2
- D’= motif siloxyle de formule RHS1O2/2, et les groupements R, identiques ou différents, sont des groupes hydrocarbonés monovalents choisis parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus tels que les groupes méthyle, éthyle, propyle et 3,3,3-trifluoropropyle. De préférence, les groupements R sont des méthyles. [0093] De préférence la résine organohydrogénopolysiloxane B est une résine M’Q ou MD’Q telles que décrites ci-dessus. Encore plus préférentiellement, la résine organohydrogénopolysiloxane B est une résine M’Q.
[0094] Bien entendu, selon les variantes, l’organohydrogénopolysiloxane B peut être un mélange de plusieurs huiles ou résines répondant à la définition de l’organohydrogénopolysiloxane B. Avantageusement, l’organohydrogénopolysiloxane B n’est pas une résine.
[0095] La composition silicone X réticulable en élastomère peut comprendre entre 0 et 10% en poids d’organohydrogénopolysiloxane B, de préférence entre 0,5 et 10%, par rapport au poids total de la composition silicone X.
[0096] Avantageusement, le ratio molaire des fonctions hydrogénosilyles Si-H des composés B sur les fonctions alcènes des composés A est compris entre 0,02 et 5, de préférence entre 0,1 et 4, et de façon plus préférée entre 0,5 et 3.
[0097] Catalyseur de réticulation C
[0098] La composition silicone X réticulable en élastomère comprend un catalyseur de réticulation C.
[0099] La composition silicone X réticulable en élastomère peut comprendre entre 0,1 et 2% en poids de catalyseur de réticulation C, par rapport au poids total de la composition silicone X.
[0100] Selon un premier mode de réalisation, le catalyseur de réticulation C est un peroxyde organique.
[0101] Le peroxyde organique peut être n'importe lequel de ceux qui agissent comme agents vulcanisant envers les compositions formatrices d'élastomères de silicones. Il peut ainsi s'agir de l'un quelconque des peroxydes ou per esters qu'il est connu d'employer avec les élastomères de silicone, par exemple le peroxyde de ditertiobutyle, le péroxyde de benzoyle, le peracétate de tertiobutyle, le péroxyde de dicumyle, le 2,5-diperbenzoate de 2,5-dimethylhexane et le bis(t-butylpéroxy)-2,5 diméthyl-2,5 hexane, le péroxyde de monochlorobenzoyle, le péroxyde de 2-4 dichlorobenzoyle, le péroxyde de bis(2,4-dichlorobenzoyle), le peracétate de tertiobutyle, le 2,5-diméthy1-2,5-cli(tert- butylpéroxy) hexane, le 2,2-bis (t- butylpéroxy)-p-diisopropylbenzene, le perbenzoate de t-butyle, le carbonate de péroxy t-butyle et d'isopropyle, et le bis(t-butylperoxy)-1 ,1 triméthyl-3,3,5 cyclohexane.
[0102] Selon un mode de réalisation, le péroxyde organique est choisi parmi le péroxyde de benzoyle, le péroxyde de 2,4-dichlorobenzoyl, le peracétate de tertiobutyle, le péroxyde de dicumyle, et leurs mélanges.
[0103] De préférence, le péroxyde organique est choisi parmi le groupe constitué par le 2,5-diméthyl-2,5-di(tert-butylpéroxy) hexane, le péroxyde de dicumyle, le peroxyde de bis(2,4-dichlorobenzoyle), et leurs mélanges.
[0104] En général, lorsque le péroxyde organique est présent dans la composition silicone X, la quantité de péroxyde organique est comprise entre 0,05 et 10 parties en poids, de préférence entre 0,5 et 2 parties en poids, pour 100 parties en poids de la composition silicone X.
[0105] Lors de la fabrication de câbles ou de fils électriques par extrusion, le choix du peroxyde dépendra en pratique du procédé employé pour durcir l'élastomère (procédé de vulcanisation). Quand le procédé de vulcanisation fonctionne en absence de pression (par exemple, four à air chaud et/ou rayonnement (infrarouge), le peroxyde utilisé est alors de préférence le peroxyde de monochlorobenzoyle et/ou le peroxyde de 2,4- dichlorobenzoyle. Quand le procédé de vulcanisation fonctionne en présence de pression (par exemple, tube vapeur), le peroxyde utilisé est alors de préférence le bis(t-butylpéroxy)-2,5 diméthyl-2,5 hexane.
[0106] Selon un deuxième mode de réalisation, le catalyseur C est un catalyseur de réaction d’hydrosilylation. Dans ce cas, la composition silicone X réticulable en élastomère comprend au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H, et de préférence, au moins 3 fonctions hydrogénosilyles Si-H.
[0107] Les catalyseurs de réaction d’hydrosilylation sont bien connus. On utilise, de préférence, les composés du platine et du rhodium. On peut, en particulier, utiliser les complexes du platine et d'un produit organique décrit dans les brevets US-A-3 159 601 , US A 3 159 602, US-A-3 220 972 et les brevets européens EP-A- 0.057.459, EP A 0.188.978 et EP-A-0.190.530, les complexes du platine et d'organosiloxanes vinylés décrits dans les brevets US-A-3 419 593, US-A-3 715 334, US-A-3 377432 et US A 3 814 730. Le catalyseur généralement préféré est le platine. Dans ce cas, la quantité pondérale de catalyseur C, calculée en poids de platine-métal, est généralement comprise entre 2 et 400 ppm, de préférence entre 5 et 200 ppm basée sur le poids total de l’organopolysiloxane A. Dans ce cas, le catalyseur C peut être un catalyseur au platine, par exemple un catalyseur de Karstedt.
G0108Ί Charge E
[0109] La composition silicone réticulable X comprend une charge E. La charge E permet d’améliorer les propriétés mécaniques de l’article en élastomère silicone obtenu à l’issue de la réticulation, tout en conservant de bonnes propriétés élastomères. En particulier, la charge E permet d’améliorer le module à la rupture de l’article en élastomère silicone obtenu, tout en conservant une élongation à la rupture élevée.
[0110] Selon un mode de réalisation, la composition silicone X comprend entre 15 et 35 % en poids de charge E. Avantageusement, la composition silicone X comprend entre 20 et 30 % en poids de charge E.
[0111] La charge E éventuellement prévue est de préférence minérale. La charge E peut être un produit très finement divisé dont le diamètre particulaire moyen est inférieur à 0,1 pm. La charge E peut être notamment siliceuse. S’agissant des matières siliceuses, elles peuvent jouer le rôle de charge renforçante ou semi- renforçante. Les charges siliceuses renforçantes sont choisies parmi les silices colloïdales, les poudres de silice de combustion et de précipitation ou leurs mélanges. Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 pm (micromètres) et une surface spécifique BET supérieure à 30 m2/g, de préférence comprise entre 30 et 350 m2/g. Les charges siliceuses semi- renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées. Ces silices peuvent être incorporées telles quelles ou après avoir été traitées par des composés organosiliciques habituellement utilisés pour cet usage. Parmi ces composés figurent les méthylpolysiloxanes tels que l'hexaméthyldisiloxane, l'octannéthylcydotétrasiloxane, des méthylpolysilazanes tels que l'hexaméthyldisilazane, l'hexaméthylcyclotrisilazane, le tétraméthyldivinyldisilazane, des chlorosilanes tels que le diméthyldichlorosilane, le triméthylchlorosilane, le méthylvinyldichlorosilane, le diméthylvinylchlorosilane, des alcoxysilanes tels que le diméthyldiméthoxysilane, le diméthylvinyléthoxysilane, le triméthylméthoxysilane, et leurs mélanges. En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi- renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le carbonate de calcium, éventuellement traité en surface par un acide organique ou par un ester d'un acide organique, l'argile calcinée, l'oxyde de titane du type rutile, les oxydes de fer, de zinc, de chrome, de zirconium, de magnésium, les différentes formes d'alumine (hydratée ou non), le nitrure de bore, le lithopone, le métaborate de baryum, le sulfate de baryum et les microbilles de verre. Ces charges sont plus grossières avec généralement un diamètre particulaire moyen supérieur à 0,1 pm et une surface spécifique généralement inférieure à 30 m2/g. Ces charges peuvent avoir été modifiées en surface par traitement avec les divers composés organosiliciques habituellement employés pour cet usage.
[0112] De préférence, la charge E est de la silice, et encore plus préférentiellement de la silice de combustion. Avantageusement, la silice a une surface spécifique BET comprise entre 75 et 410 m2/g.
[0113] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend :
- entre 55 et 85% en poids, de préférence entre 60 et 80% en poids, d’au moins un organopolysiloxane A comprenant, par molécule, au moins 2 groupes alcényles ayant de 2 à 6 atomes de carbone ;
- entre 0 et 10% en poids, de préférence entre 0,5 et 10%, d’au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H ;
- entre 0,1 et 2% en poids d’au moins un catalyseur de réticulation C ;
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) ; et
- entre 15 et 35% en poids d’au moins une charge E, ladite composition silicone X ayant une teneur en cérium (IV) comprise entre 50 et 3000 ppm massique. G01141 Autres additifs
[0115] La composition silicone X réticulable en élastomère peut également comprendre un inhibiteur de réticulation F. Celui-ci est en général utilisé pour conférer à la composition prête à l’emploi, une certaine durée de vie en pot (« pot- life »). Ces inhibiteurs de réticulation sont notamment présents lorsque la composition silicone X précurseur de revêtement(s) silicone est un organopolysiloxane réticulable par polyaddition ou déshydrogénation et que le catalyseur C mis en œuvre est à base de platine. L’inhibiteur de réticulation F est de préférence choisi parmi les alcools acétyléniques (éthynylcyclohexanol : ECH), les diallylmaléates, les triallylisocyanurates, les dialkylmaléates (diéthylmaléates ou dialkylalcinyledicarboxylates) (diéthyleacéthylène dicarboxylate) ou bien encore parmi les organopolysiloxanes, avantageusement cycliques et substitués par au moins un alcényle, le tétraméthylvinylcyclotétrasiloxane étant particulièrement préféré, ou les maléates alkylés. Les alcools acétyléniques sont des retardateurs utiles selon l’invention. On peut citer à titre d'exemples : - l'éthynyl-1-cyclohexanol 1 ;
- le méthyl-3 dodécyne-1 ol-3 ;
- le triméthyl-3,7,11 dodécyne-1 ol-3 ;
- le diphényl-1,1 propyne-2 ol-1 ;
- l'éthyl-3 éthyl-6 nonyne-1 ol-3 ; et - le méthyl-3 pentadécyne-1 ol-3.
[0116] La composition silicone X réticulable en élastomère peut également comprendre un pigment G. Le pigment G peut être un pigment organique ou un pigment inorganique (pigment minéral).
[0117] La composition silicone X réticulable en élastomère peut également comprendre un plastifiant H. Les plastifiants H sont en général de nature organosilicique et sont introduits dans la composition silicone à raison de 0 à 20 parties pour 100 parties d’organopolysiloxane A. Ils permettent d'éviter le durcissement des compositions lors du stockage. Parmi les plastifiants on peut citer les silanes à groupements hydrolysables, ou des huiles diorganopolysiloxaniques hydroxylées ou alcoxylées de faible poids moléculaire. De telles compositions sont par exemple décrites dans le brevet français 1 111 969.
[0118] Selon un mode de réalisation particulier, la composition silicone X réticulable en élastomère est constituée de :
- Au moins un organopolysiloxane A comprenant, par molécule, au moins 2 groupes alcényles ayant de 2 à 6 atomes de carbone ;
- Eventuellement, au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H ;
- Au moins un catalyseur de réticulation C ;
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) ;
- Au moins une charge E ;
- Eventuellement au moins un inhibiteur de réticulation F,
- Eventuellement, au moins un pigment G ;et
- Eventuellement au moins un plastifiant H.
[0119] Selon un mode de réalisation particulier, la composition silicone X réticulable en élastomère ne comprend pas de promoteur d’adhésion.
[0120] Selon un mode de réalisation particulier, la composition silicone X réticulable en élastomère ne comprend pas de résine silicone, en particulier, pas de résine silicone comprenant au moins un radical alcényle.
[0121] Selon un deuxième mode de réalisation, la composition silicone X réticulable en élastomère est réticulable en présence d'un catalyseur métallique à température ambiante, en présence d’humidité (RTV de polycondensation).
[0122] Dans ce deuxième mode de réalisation, la composition silicone X réticulable en élastomère comprend en outre:
- Au moins un organopolysiloxane A’ réticulable par polycondensation ;
- Au moins un composé organosilicique réticulant B’ ;
- Au moins un catalyseur C’ ; - Au moins une charge E ; et
- Eventuellement un pigment G.
[0123] L’organopolysiloxane A’ peut être linéaire ou ramifié, il est porteur de groupements hydroxyles ou de groupements hydrolysables choisis parmi le groupe constitué par alcoxy, alcoxy-alkylène-oxy, amino, amido, acylamino, aminoxy, iminoxy, cétiminoxy, acyloxy et énoxy, et de préférence alcoxy, qui réticulent à température ambiante par des réactions de polycondensation, sous l'action de l'humidité.
[0124] Comme exemple de groupements hydrolysables et condensables Z de type alcoxy, on peut citer les groupes ayant de 1 à 8 atomes de carbone comme les groupes méthoxy, éthoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, 2-méthoxyéthoxy, hexyloxy ou octyloxy.
[0125] Comme exemple de groupements hydrolysables et condensables Z de type alcoxy-alkylène-oxy, on peut citer le groupement méthoxy-éthylène-oxy. [0126] Comme exemple de groupements hydrolysables et condensables Z de type amino, on peut citer les groupements méthylamino, diméthylamino, éthylamino, diéthylamino, n-butylamino, sec-butylamino ou cyclohexylamino.
[0127] Comme exemple de groupements hydrolysables et condensables Z de type amido, on peut citer le groupement N-méthyl-acétamido. [0128] Comme exemple de groupements hydrolysables et condensables Z de type acylamino, on peut citer le groupement benzoyl-amino.
[0129] Comme exemple de groupements hydrolysables et condensables Z de type aminoxy, on peut citer les groupements diméthylaminoxy, diéthylaminoxy, dioctylaminoxy ou diphénylaminoxy. [0130] Comme exemple de groupements hydrolysables et condensables Z de type iminoxy et en particulier cétiminoxy, on peut citer les groupements dérivés des oximes suivantes : acétophénone-oxime, acétone-oxime, benzophénone-oxime, méthyl-éthyl-cétoxime, di-isopropylcétoxyme ou méthylisobutyl-cétoxime. [0131] Comme exemple de groupements hydrolysables et condensables Z de type acyloxy, on peut citer le groupement acétoxy.
[0132] Comme exemple de groupements hydrolysables et condensables Z de type énoxy, on peut citer le groupement 2-propénoxy.
[0133] L’organopolysiloxane A’ peut-être un polydiorganosiloxane linéaire présentant au moins deux groupements hydroxyles ou alkoxy par molécule et dont la viscosité dynamique à 25°C est comprise entre 50 mPa.s et 50 x 106 mPa.s, de préférence entre 50 mPa.s et 106 mPa.s lorsqu’il s’agit d’huiles silicones, ou supérieure à 106 mPa.s lorsqu’il s’agit de gommes silicones.
[0134] Les groupes organiques identiques ou différents généralement présents dans la structure de l’organopolysiloxane A’ sont les radicaux méthyles, éthyles, phényles ou trifluoropropyles. De préférence, au moins 80 % en nombre desdits groupes organiques sont des groupes méthyles liés directement aux atomes de silicium. Dans le cadre de la présente invention, on préfère plus spécialement les a, co-bis (diméthylhydroxysilyl) polydiméthylsiloxanes et les a, co-bis (diméthylalkoxysilyl) polydiméthylsiloxanes
[0135] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend entre 40 et 90% en poids d’organopolysiloxane A’, de préférence entre 50 et 80%, par rapport au poids total de la composition silicone X.
[0136] Le catalyseur C’ est un catalyseur des réactions de polycondensation. Les catalyseurs de polycondensation sont largement connus de l’homme du métier. Sans vouloir se limiter, le catalyseur C’ pourra, entre autres, être choisi parmi les composés à base d’étain ou titane largement connus de l’homme du métier ou parmi les catalyseurs organiques comme les guanidines décrites dans les demandes de brevet EP2268743 et EP2367867 ou parmi les complexes métalliques par exemple à base de Zn, Mo, Mg, etc. décrits dans les demandes de brevet EP2222626, EP2222756, EP2222773, EP2935489, EP2935490 et WO2015/082837.
[0137] La composition silicone X réticulable en élastomère peut comprendre entre 0,1 et 2% en poids de catalyseur C’, par rapport au poids total de la composition silicone X. [0138] L’agent de réticulation B’ est de préférence un composé organosilicié portant par molécule plus de deux groupes hydrolysables liés aux atomes de silicium. De tels agents de réticulation sont bien connus de l’homme du métier et sont disponibles dans le commerce.
[0139] L’agent de réticulation B’ est de préférence un composé de silicium dont chaque molécule comprend au moins trois groupements hydrolysables et condensables choisis parmi le groupe constitué par : alcoxy, alcoxy-alkylène-oxy, amino, amido, acylamino, aminoxy, iminoxy, cétiminoxy, acyloxy et énoxy, et de préférence alcoxy Ces groupements sont tels que définis précédemment.
[0140] La composition silicone X réticulable en élastomère peut comprendre entre 1 et 20% en poids de composé organosilicique réticulant B’, de préférence entre 2 et 15%, par rapport au poids total de la composition silicone X.
[0141] La charge E et le pigment G sont tels que définis précédemment.
[0142] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend entre 10 et 40% en poids de charge E, de préférence entre 15 et 35%, par rapport au poids total de la composition silicone X.
[0143] Selon un mode de réalisation, la composition silicone X réticulable en élastomère comprend :
- entre 40 et 90% en poids, de préférence entre 50 et 80%, d’au moins un organopolysiloxane A’ réticulable par polycondensation;
- entre 1 et 20% en poids, de préférence entre 2 et 15%, d’au moins un composé organosilicique réticulant B’ ;
- entre 0,1 et 2% en poids d’au moins un catalyseur C’ ;
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) ; et
- entre 10 et 40% en poids, de préférence entre 15 et 35%, d’au moins une charge
E, ladite composition silicone X ayant une teneur en cérium (IV) comprise entre 50 et 3000 ppm massique.
[0144] Elastomère silicone [0145] L’invention concerne également un élastomère silicone obtenu par réticulation de la composition X, à température ambiante, éventuellement en présence d’humidité, ou par chauffage. Le chauffage est de préférence effectué à une température comprise entre 80°C et 250°C. La durée du chauffage varie selon la température et, éventuellement, selon la pression exercée. Selon un mode de réalisation, le chauffage est effectué de la façon suivante :
- quelques secondes à quelques minutes entre 100 et 120°C, et
- quelques secondes entre 180 et 200°C.
[0146] La composition silicone X permet d’obtenir un élastomère qui est thermiquement stable après traitement thermique de 3 jours à 300°C, 7 jours à 275°C ou 21 jours à 250°C. L’élastomère obtenu a donc une très bonne stabilité thermique, ce qui permet de l’utiliser pour la réalisation des enveloppes ou isolants primaires des mono conducteurs entrant dans la constitution des fils ou câbles électriques.
[0147] L’invention concerne donc également un fil électrique ou câble électrique comprenant au moins un élément conducteur 1 entouré par au moins une couche isolante primaire 2 caractérisé en ce que ladite couche isolante primaire 2 comprend un élastomère silicone obtenu par réticulation de la composition silicone X.
[0148] L’invention concerne également l’utilisation d’une composition silicone X pour la réalisation des câbles automobiles, notamment des câbles automobiles pour véhicules électriques ou hybrides.
[0149] L’invention concerne également l’utilisation d’une composition silicone X pour la réalisation des enveloppes ou isolants primaires des mono conducteurs entrant dans la constitution des fils ou câbles électriques.
[0150] L’invention concerne également un procédé de fabrication d’un fil électrique ou câble électrique comprenant les étapes suivantes : i. former autour d'un conducteur électrique 1 au moins une couche isolante primaire 2 qui est constituée d'un matériau obtenu par réticulation de la composition silicone X, de préférence par chauffage à une température comprise entre 80°C et 250°C, ii. optionnellement, assembler au moins deux conducteurs électriques isolés tels qu'obtenus à l'étape i, et iii. optionnellement, extruder une gaine extérieure telle que définie ci-avant autour du ou des conducteurs électriques isolés de l'étape i ou ii.
[0151] Dans le cadre de ce procédé, la formation autour du conducteur électrique 1 d’au moins une couche isolante primaire 2 peut s'effectuer par dépôt de la composition silicone X autour du conducteur électrique 1 selon les procédés usuels, notamment par des procédés d'extrusion. Le dépôt ainsi obtenu est ensuite réticulé, de préférence par chauffage, pour conduire à la formation de l'isolant primaire en élastomère silicone. La durée du chauffage varie évidemment avec la température de la matière et la pression éventuelle de travail. Elle est généralement de l'ordre de quelques secondes à plusieurs minutes entre 100 et 120 °C et de quelques secondes entre 180 et 200 °C. Il est possible de déposer plusieurs couches conjointement à l'aide d'une extrusion en tandem équipée par exemple d'une tête d'équerre ou d'une co-extrusion.
[0152] Le fil ou câble électrique selon l'invention peut comprendre en outre une gaine extérieure entourant le ou les conducteurs électriques isolés. Cette gaine extérieure est bien connue de l'homme du métier. Elle peut brûler complètement localement et se transformer en cendres résiduelles sous l'effet des températures élevées d'un incendie sans pour autant être propagateur de l'incendie. Le matériau qui compose la gaine extérieure peut être par exemple une matrice polymère à base de polyoléfine et au moins une charge minérale ignifugeante hydratée choisie notamment parmi les hydroxydes métalliques tels que par exemple le dihydroxyde de magnésium ou le trihydroxyde d'aluminium. La gaine extérieure est classiquement obtenue par extrusion.
[0153] Selon un mode de réalisation préféré, le fil électrique ou câble électrique selon l'invention est caractérisé en ce que la couche isolante primaire 2 est formée par dépôt autour de l'élément conducteur 1 de ladite composition silicone X par une technique d'extrusion et par des moyens de chauffage de manière à obtenir une température matière allant de 80°C à 250°C jusqu'au durcissement de ladite composition silicone X.
[0154] Les exemples suivants sont donnés à titre illustratif et ils ne peuvent pas être considérés comme une limite de la portée de l'invention. Exemples
[0155] Additifs de tenue thermique [0156] Néodécanoate de cérium
[0157] Le néodécanoate de cérium (IV) est synthétisé selon le mode opératoire décrit dans EP0575189.
Le néodécanoate de cérium (IV) est un liquide. Il peut être utilisé pur (additif 1) ou formulé (additifs 2 et 3).
[0158] Additif 1 : Le taux de cérium dans l’additif 1 est de 16.6% en poids.
[0159] Additif 2 : néodécanoate de cérium (IV) formulé au malaxeur Dans un malaxeur, 56,6 % en poids d’une gomme poly(diméthyl)(méthylvinyl)siloxane, ayant 720 ppm de groupes vinyle et une viscosité de 20 millions mPa.s à 25°C, sont mélangés à 5,6% en poids de silice de combustion traitée avec de l’octaméthylcyclotétrasiloxane, ayant une surface spécifique BET de 235 m2/g, puis 37,8% en poids de néodécanoate de cérium (IV) est ajouté. Le mélange est mélangé 10 minutes à température ambiante.
[0160] Additif 3 : néodécanoate de cérium (IV) formulé sur cylindre Dans un dispositif utilisant 2 cylindres, 56,6 % en poids d’une gomme poly(diméthyl)(méthylvinyl)siloxane, ayant 720 ppm de groupes vinyle et une viscosité de 20 millions mPa.s à 25°C, sont mélangés à 5,6% en poids de silice de combustion traitée avec de l’octaméthylcyclotétrasiloxane, ayant une surface spécifique BET de 235 m2/g, puis 37,8% en poids de néodécanoate de cérium (IV) est ajouté. Le mélange est mélangé 10 minutes à température ambiante.
[0161] Les additifs 2 et 3 ont un taux de cérium en poids de 0,063% par rapport au poids total de l’additif. [0162] Additif 4
[0163] L’additif 4 est un additif à base de T1O2 et de Fe203dans une gomme silicone. La teneur en fer est comprise entre 0,7 et 2,1 % en poids. La teneur en T1O2 est supérieure à 94% en poids.
[0164] Additif 5 [0165] L’additif 5 est de l’oxyde de cérium acheté chez Sigma Aldrich [0166] Additif 6
[0167] L’additif 6 est de l’octoate de de cérium (III) acheté chez Sigma Aldrich [0168] Additif 7
[0169] L’additif 7 est un antioxydant à base d’ethyl-2-hexanoate de fer (III) dans une gomme silicone. La teneur en fer est de 0,78% en poids.
[0170] Composition HCR 1 :
[0171] Base A :
- 67,8% en poids d’un mélange d’organopolysiloxanes vinylés, ayant une viscosité de 20 millions mPa.s à 25°C et un taux de vinyle compris entre 100 et 800 ppm,
- 1,8% en poids d’une huile polydiméthyle siloxane ayant 2 motifs hydroxyle, et
- 30,4% en poids d’une silice de combustion traitée avec de l’octaméthylcyclotétrasiloxane, ayant une surface spécifique BET de 235 m2/g.
A 100 parties de cette base A est ensuite ajouté 1,25 % de 2,4-dichlorobenzoyl peroxyde commercialisé sous la référence PERKADOX PD-50S-PS d’Akzo Nobel, et un additif de tenue thermique.
[0172] Composition HCR 2 Base A :
- 68,0% d’un mélange d’organopolysiloxanes vinylés, ayant une viscosité de 20 millions mPa.s à 25°C et un taux de vinyle compris entre 100 et 800 ppm,
- 1,70% en poids d’une huile polydiméthyle siloxane ayant 2 motifs hydroxyle ;et
- 30,30% en poids d’une silice de combustion traitée avec de l’octaméthylcyclotétrasiloxane, ayant une surface spécifique BET de 235 m2/g.
A 100 parties de cette base A est ensuite ajouté 1,25 % en poids de 2,4- dichlorobenzoyl peroxyde commercialisé sous la référence PERKADOX PD-50S- PS d’Akzo Nobel, et un additif de tenue thermique.
Composition LSR:
Un mélangeur est chargé avec
- 29 parties d’une huile diméthylpolysiloxane bloquée à chaque extrémité par des unités Me2ViSiOi/2, ayant une viscosité de 60000 mPa.s, - 29 parties d’une huile diméthylpolysiloxane bloquée à chaque extrémité par des unités Me2ViSiOi/2, ayant une viscosité de 100000 mPa.s,
- 26 parties de silice de combustion ayant une surface spécifique BET de 300 m2/g et 7 parties d’hexaméthyldisilazane. le mélange est chauffé à 70°C sous agitation pendant 1 heure, puis dévolatilisé, refroidi et stocké comme Base 1 .
A 45 parties de cette Base 1 est ensuite ajouté, dans un mélangeur à vitesse :
- du platine est introduit sous la forme d’un complexe organométallique à 10% en poids de platine métal, connu sous le nom de catalyseur de Karstedt dilué dans une huile vinylée,
- 3 parties d’une huile diméthylpolysiloxane ayant des groupes vinyles dans la chaîne et en bout de chaîne, et ayant une viscosité de 1000 mPa.s,
- 2 parties d’une huile diméthylpolysiloxane ayant des groupes vinyles dans la chaîne et en bout de chaîne, et ayant une viscosité de 400 mPa.s.
La partie A de cette composition LSR est mixée pendant 1 minutes à 1000 tours par minute dans le mélangeur à vitesse. Le taux de Pt est de 10 ppm.
A 45 parties de cette Base 1 est ensuite ajouté , dans un mélangeur à vitesse :
- 1 ,3 parties d’une résine organohydrogénopolysiloxane M’Q comprenant des groupes Si-H,
- 0,5 parties d’un organohydrogénopolysiloxane linéaire comprenant des groupes Si-H dans la chaîne et en bout de chaîne et comprenant environ 20% en poids de groupes Si-H,
- 1 ,5 parties d’une huile diméthylpolysiloxane comprenant des groupes vinyles dans la chaîne et en bout de chaîne, et ayant une viscosité de 400 mPa.s,
- 1 ,6 parties d’une huile diméthylpolysiloxane ayant des groupes vinyles dans la chaîne et en bout de chaîne, et ayant une viscosité de 1000 mPa.s,
- 0,08 parties d’éthynyl-1-cyclohexanol 1 en tant qu’inhibiteur de réaction.
La partie B de cette composition LSR est mixée pendant 1 minute à 1000 tours par minute dans le mélangeur à vitesse.
La même quantité d’additif de tenue thermique est ensuite ajoutée aux parties A et B, en utilisant un mélangeur à vitesse. Les parties A et B sont ensuite mélangées dans un ratio 1 :1 . [0173] Propriétés mécaniques des élastomères obtenus après réticulation des compositions silicones
[0174] Des plaques de test (150mmX150mmX2mm) ont été réalisées, dans un moule 4 empreintes, sous pression, 8 minutes à 115°C. [0175] Après une étape de post-cuisson 4h à 200°C en étuve ventilée, les plaques ont subi un vieillissement thermo-oxydatif en étuves ventilées dans différentes conditions de durée et de température, détaillées dans les exemples ci-dessous.
[0176] Les propriétés mécaniques, en l’occurrence la Dureté Shore A (IS0868, DIN53505), la résistance à la rupture (IS037, DIN53504-51), l’allongement à la rupture (IS037, DIN53504-51), et la résistance à la déchirure (ASTM D624 A) ont été mesurées sur l’ensemble des plaques ainsi vieillies et comparées aux propriétés mécaniques mesurées sur les plaques initiales post-recuites 4h à 200°C.
[0177] Différents additifs de tenue thermique ont été testés. Les résultats sont présentés dans le tableau 1. [0178] [Tableau 1]
[0179] Ces résultats montrent que le néodécanoate de cérium (IV) (exemple 1 ) permet d’obtenir de bonnes propriétés mécaniques et une meilleure tenue thermique que l’oxyde de cérium (additif 5), l’octoate de cérium (III) (additif 6) et que l’éthyl-2-hexanoate de fer (lll) (additif 7), (Ex. comp. 2-4). Par ailleurs, les propriétés mécaniques obtenues avec le néodécanoate de cérium (IV) sont comparables à celles obtenues pour T1O2 (additif 4, ex. comp. 1 ). Cependant, avec le néodécanoate de cérium (IV), la plaque obtenue est transparente, contrairement à la plaque obtenue avec Ti02(additif 4, ex. comp. 1 ).
[0180] Les compositions selon l’invention permettent donc d’obtenir un élastomère silicone transparent ayant de bonnes propriétés mécaniques et une bonne tenue thermique.
[0181] Différentes concentrations de néodécanoate de cérium (IV) ont été testées. Les résultats sont présentés dans le tableau 2. [0182] [Tableau 2] [0183] Ces résultats montrent que les bonnes propriétés mécaniques et la bonne tenue thermique sont obtenues sur une grande plage de concentration de néodécanoate de cérium (IV).
[0184] Le néodécanoate de cérium (IV) a été testé pur et formulé. Les résultats sont présentés dans le tableau 3.
[0185] [Tableau 3]
[0186] Les résultats montrent qu’il est possible d’utiliser le néodécanoate de cérium (IV) pur ou formulé car les résultats obtenus sont comparables. [0187] Ces résultats montrent également que l’élastomère obtenu conserve ses bonnes propriétés mécaniques, et notamment élastomériques, même après un vieillissement thermique de 21 jours à 250°C.
[0188] Le néodécanoate de cérium (IV) a également été testé dans une composition LSR. Les résultats sont présentés dans le tableau 4.
[0189] [Tableau 4]
[0190] Ces résultats montrent qu’il est également possible d’augmenter la tenue thermique des compositions LSR, réticulables par polyaddition, en utilisant le néodécanoate de cérium (IV). De plus, les propriétés mécaniques obtenues avec le néodécanoate de cérium (IV) sont bonnes. En effet, après 3 jours de vieillissement à 250°C ou à 275°C, l’allongement à la rupture est plus important dans le cas du néodécanoate de cérium (IV) (exemples 10-12) que sans additif de tenue thermique ou avec l’éthyl-2-hexanoate de fer (III) (additif 7) (ex. comp. 5-6). Des essais ont également montré qu’au dessus de 300 ppm, la cinétique de réticulation est impactée pour les compositions LSR, et la vitesse de réticulation baisse. [0191] Le néodécanoate de cérium (IV) a également été testé dans des conditions dans lesquelles sont testés les câbles automobiles. Les résultats sont présentés dans le tableau 5.
[0192] [Tableau 5]
[0193] Ces résultats montrent que l’élastomère obtenu conserve ses bonnes propriétés mécaniques, et notamment élastomériques, même après un vieillissement thermique de 3000 heures à 200°C, ce qui correspond aux normes selon lesquelles les câbles automobiles sont testés (cf. ISO 6722-1).

Claims

Revendications
[Revendication 1] Composition silicone X réticulable en élastomère comprenant :
- Au moins un additif de tenue thermique D, qui est du néodécanoate de cérium (IV) ladite composition silicone X ayant une teneur en cérium (IV) comprise entre 50 et 3000 ppm massique.
[Revendication 2] Composition selon la revendication 1 caractérisée en ce qu’elle comprend en outre :
- Au moins un organopolysiloxane A comprenant, par molécule, au moins 2 groupes alcényles ayant de 2 à 6 atomes de carbone ;
- Eventuellement, au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H ;
- Au moins un catalyseur de réticulation C ; et
- Au moins une charge E.
[Revendication 3] Composition selon la revendication 1 ou 2 caractérisée en ce qu’elle a une teneur en cérium (IV) comprise entre 50 et 350 ppm, de préférence entre 60 et 300 ppm, préférentiellement entre 70 et 250 ppm, et encore plus préférentiellement entre 90 et 200 ppm.
[Revendication 4] Composition selon l’une des revendications 1 à 3 caractérisée en ce qu’elle comprend entre 15 et 35 % en poids de charge E, de préférence de la silice.
[Revendication 5] Composition selon l’une des revendications 1 à 4 caractérisée en ce que le catalyseur de réticulation C est un peroxyde organique.
[Revendication 6] Composition selon l’une des revendications 1 à 4 caractérisée en ce qu’elle comprend au moins un organopolysiloxane B comprenant, par molécule, au moins 2 fonctions hydrogénosilyles Si-H, et en ce que le catalyseur de réticulation C est choisi parmi les catalyseurs de polyaddition.
[Revendication 7] Elastomère silicone obtenu par réticulation de la composition silicone X réticulable en élastomère selon l’une des revendications précédentes, de préférence par chauffage à une température comprise entre 80°C et 250°C.
[Revendication 8] Fil électrique ou câble électrique comprenant au moins un élément conducteur 1 entouré par au moins une couche isolante primaire 2 caractérisé en ce que ladite couche isolante primaire 2 comprend un élastomère silicone selon la revendication 7.
[Revendication 9] Utilisation d’une composition silicone X réticulable en élastomère selon l’une quelconque des revendications 1 à 6 pour la réalisation des enveloppes ou isolants primaires des mono conducteurs entrant dans la constitution des fils ou câbles électriques.
[Revendication 10] Utilisation d’une composition silicone X réticulable en élastomère selon l’une quelconque des revendications 1 à 6 pour la réalisation des câbles automobiles, notamment des câbles automobiles pour véhicules électriques ou hybrides.
[Revendication 11] Procédé de fabrication d’un fil électrique ou câble électrique selon la revendication 8 , caractérisé en ce qu'il comprend les étapes suivantes : i. former autour d'un conducteur électrique 1 au moins une couche isolante primaire 2 qui est constituée d'un matériau obtenu par réticulation de la composition silicone X réticulable en élastomère selon l’une des revendications 1 à 6, de préférence par chauffage à une température comprise entre 80°C et 250°C, ii. optionnellement, assembler au moins deux conducteurs électriques isolés tels qu'obtenus à l'étape i, et iii. optionnellement, extruder une gaine extérieure telle que définie ci-avant autour du ou des conducteurs électriques isolés de l'étape i ou ii.
EP21759333.4A 2020-07-29 2021-07-29 Composition silicone réticulable en élastomère comprenant un additif de tenue thermique Pending EP4189013A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008042 2020-07-29
PCT/FR2021/051416 WO2022023675A1 (fr) 2020-07-29 2021-07-29 Composition silicone réticulable en élastomère comprenant un additif de tenue thermique

Publications (1)

Publication Number Publication Date
EP4189013A1 true EP4189013A1 (fr) 2023-06-07

Family

ID=73013681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21759333.4A Pending EP4189013A1 (fr) 2020-07-29 2021-07-29 Composition silicone réticulable en élastomère comprenant un additif de tenue thermique

Country Status (7)

Country Link
US (1) US20230295428A1 (fr)
EP (1) EP4189013A1 (fr)
JP (1) JP2023536479A (fr)
KR (1) KR20230043964A (fr)
CN (1) CN116235257A (fr)
BR (1) BR112023001572A2 (fr)
WO (1) WO2022023675A1 (fr)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1111969A (fr) 1953-11-12 1956-03-07 Bayer Ag Fabrication de caoutchouc silicone
US3159602A (en) 1962-06-07 1964-12-01 Olin Mathieson Preparation of polymeric phosphates
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
NL133821C (fr) 1964-07-31
NL131800C (fr) 1965-05-17
US3647741A (en) 1968-12-18 1972-03-07 Stauffer Wacker Silicone Corp Stabilized heat curable silicone elastomers
US3663282A (en) * 1970-07-01 1972-05-16 Gen Electric Coating compositions for alkali surfaces
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US4394317A (en) 1981-02-02 1983-07-19 Sws Silicones Corporation Platinum-styrene complexes which promote hydrosilation reactions
ATE14211T1 (de) * 1982-04-12 1985-07-15 Rhone Poulenc Spec Chim Verfahren zur herstellung von ceriumcarboxylaten.
FR2575085B1 (fr) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-triene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
FR2575086B1 (fr) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-alcenylcyclohexene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
EP0575189B1 (fr) 1992-06-17 1997-03-12 Rhone-Poulenc Chemicals Limited Composés de cérium IV organiques et leur préparation et utilisation
FR2899905B1 (fr) * 2006-04-12 2008-07-18 Rhodia Recherches & Tech Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
EP2105467B1 (fr) * 2006-12-28 2012-02-22 Dow Corning Toray Co., Ltd. Composition de caoutchouc de silicone thermodurcissable
FR2925514A1 (fr) 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
JP2011506738A (ja) 2007-12-20 2011-03-03 ブルースター・シリコーン・フランス・エスアエス エラストマーを得るための室温加硫可能なオルガノポリシロキサン組成物および新規なオルガノポリシロキサン重縮合触媒
FR2925516A1 (fr) 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2929286A1 (fr) 2008-03-28 2009-10-02 Bluestar Silicones France Soc Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d'organopolysiloxanes
AU2009319079B2 (en) 2008-11-25 2015-04-09 Bluestar Silicones France Compounds with guanidine structure and uses thereof as organopolysiloxane polycondensation catalysts
EP2935489B1 (fr) 2012-12-20 2018-11-28 ELKEM SILICONES France SAS Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes
US9512294B2 (en) 2012-12-20 2016-12-06 Bluestar Silicones France Sas Organopolysiloxane composition suitable for vulcanisation into an elastomer at room temperature and new organopolysiloxane polycondensation catalysts
FR3014106B1 (fr) 2013-12-03 2017-03-10 Bluestar Silicones France Composition silicone durcissable en presence d'eau ou d'humidite de l'air

Also Published As

Publication number Publication date
WO2022023675A1 (fr) 2022-02-03
US20230295428A1 (en) 2023-09-21
CN116235257A (zh) 2023-06-06
BR112023001572A2 (pt) 2023-02-23
JP2023536479A (ja) 2023-08-25
KR20230043964A (ko) 2023-03-31

Similar Documents

Publication Publication Date Title
EP2004741B1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
EP0149382B1 (fr) Compositions élastomériques organopolysiloxaniques vulcanisables à chaud à caractéristiques physiques améliorées
EP3013893A1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
FR2500842A1 (fr) Composition de caoutchouc de silicone pour l&#39;enrobage d&#39;elements photovoltaiques
EP2099848B1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
EP1266948A2 (fr) Compositions de silicone thermodurcissable à un composant
EP0146422A1 (fr) Agent inhibiteur cétonique pour catalyseur d&#39;un métal du groupe du platine et compositions organopolysiloxaniques le contenant
EP4189013A1 (fr) Composition silicone réticulable en élastomère comprenant un additif de tenue thermique
EP1141108B1 (fr) Procede de preparation d&#39;une suspension de silice dans une matrice silicone reticulable par polycondensation pour former des elastomeres
EP1238014B1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
EP0239509B1 (fr) Compositions silicones vulcanisables à chaud à extrudabilité améliorée
EP1238007B1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cables electriques
WO2004064081A1 (fr) Compositions polyorganosiloxanes vulcanisables a chaud utilisables notamment pour la fabrication de fils ou cable electriques
FR2773165A1 (fr) Stabilisation des moules en elastomere silicone
EP3625299B1 (fr) Composition silicone reticulant par polyaddition utile pour le surmoulage de pieces
EP2081943B1 (fr) Composition silicone elastomere reticulant a chaud, thermiquement stable
WO2008080829A1 (fr) Elastomere silicone renforce
CA1087338A (fr) Composition organopolysiloxaniques transformables en elastomeres sans agent de vulcanisation
WO2021260279A1 (fr) Compositions silicones thermoconductrices
WO2008080836A1 (fr) Article élastomère silicone vulcanisé ayant une bonne tenue aux huiles et une bonne tenue thermique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)