EP4172235A1 - Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte - Google Patents

Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte

Info

Publication number
EP4172235A1
EP4172235A1 EP21733840.9A EP21733840A EP4172235A1 EP 4172235 A1 EP4172235 A1 EP 4172235A1 EP 21733840 A EP21733840 A EP 21733840A EP 4172235 A1 EP4172235 A1 EP 4172235A1
Authority
EP
European Patent Office
Prior art keywords
compounds
isocyanate
hydrocarbon compound
acid
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21733840.9A
Other languages
English (en)
French (fr)
Inventor
Tobias KALUSCHKE
Christian Renner
Olaf Jacobmeier
Sabrina KRONIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP4172235A1 publication Critical patent/EP4172235A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4213Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from terephthalic acid and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4219Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from aromatic dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/02Oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a process for the production of polyisocyanurate foams, in which (a) aromatic polyisocyanate, (b) compounds reactive toward isocyanate groups, containing at least one polyetherol (b1) and / or polyesterol (b2), the number average content of with isocyanate-reactive hydrogen atoms of component (b1) and (b2) is at least 1.7, (c) catalyst, (d) propellant, (e) flame retardant, (f) optionally auxiliaries and additives and (g) optionally compounds with aliphatic, hydrophobic groups that do not fall under the definition of the compounds (a) to (f), mixed to form a reaction mixture and allowed to cure to form the rigid polyisocyanurate foam, with blowing agent (d) at least one aliphatic, halogenated hydrocarbon compound (d1) being built up 2 to 5 carbon atoms, at least one hydrogen atom and at least one fluorine and / or chlorine atom and the compound (d1) at least one Ko contains
  • Rigid polyurethane foams or rigid polyisocyanurate foams are often used as insulating material for thermal insulation.
  • the foams are used in particular in composite elements with at least one cover layer.
  • isocyanate mostly polyurethane (PUR) or polyisocyanurate (PIR) foams, often referred to as sandwich elements, on continuously operating double belt systems is currently practiced on a large scale.
  • PUR polyurethane
  • PIR polyisocyanurate
  • chlorofluorocarbons were used in large quantities as physical blowing agents for the production of polyisocyanate-based rigid foams, particularly due to their very low thermal conductivity.
  • ODP ozone deplation potential
  • HCFCs hydrogenated chlorofluorocarbons
  • R141b hydrogenated chlorofluorocarbons
  • HFCs hydrogenated fluorocarbons
  • polyol components were developed that were obtained by incorporating hydrophobic compounds in polyol structures.
  • EP 2804886 describes the incorporation of fatty acid structures in polyester polyols.
  • pure fatty acids or fatty acid derivatives such as vegetable oils, can be used as starting materials in polyester or polyether polyol production.
  • the fatty acid derivatives are incorporated into the resulting polyester polyols by means of a transesterification reaction during the polycondensation.
  • hydro- phob ist of polyester polyols consists, for example, in the use of dimeric fatty acids as a building block for polyester synthesis (EP 3140333) or in the use of hydrophobic alkyl alcohols, such as nonylphenol, or fatty alcohols and their derivatives.
  • EP 2820059 describes the production of such polyetherols through the proportionate use of fatty acids or fatty acid derivatives in starter components which are used for alkoxylation.
  • hydrophobic compounds such as vegetable oils, fatty acids, fatty acid derivatives or fatty alcohols in polyol components.
  • EP 1023351 describes the additive use of hydrophobic compounds such as carboxylic acids (especially fatty acids), carboxylic acid esters (especially fatty acid esters) and alkyl alcohols (especially fatty alcohols) in polyol resin mixtures for the production of rigid foams containing polyurethane or polyisocyanurate.
  • EP 3294786 describes, for example, the use of alkoxylated vegetable oils in polyol resin mixtures for the production of rigid foams.
  • EP 0742241 describes the use of a hydrophobic compatibilizer, such as, for example, nonylphenol, to improve the processability of hydrocarbon-driven polyol components.
  • Non-flammable hydrofluoroolefins such as hydrofluoropropenes or hydrochlorofluoropropenes
  • HFO's hydrofluoroolefins
  • hydrofluoropropenes or hydrochlorofluoropropenes are suitable candidates to replace HFCs, as they have a very low ODP and GWP in addition to a low thermal conductivity.
  • Their use in reaction mixtures for the production of closed-cell polyurethane or polyisocyanurate Rigid foams are described in numerous patent publications. For example, the following documents may be mentioned: EP 2154223, EP 2739676, EP 2513023, US 20180264303, US9738768, US 2013/0149452, US 20150322225.
  • WO2019096763 describes a polyurethane foam sandwich element for thermal insulation and a method for producing the sandwich element.
  • the blowing agent for the production of the polyurethane foam comprises cis-l, l, l, 4,4,4-hexafluoro-2-butene (HF0-I336mzz-Z) and cyclopentane.
  • the polyurethane foam composite panel according to the present invention exhibits both good insulation performance and mechanical strength. Isocyanurate foams, in particular foams with an isocyanate index of greater than 220, are not disclosed.
  • Examples 1 and 2 from WO2018218102 describe rigid polyurethane foams produced using potassium octoate (Dabco® K15), a flame retardant (TMCP) and a mixture of HFO-1336mzz (Z) (cis-1, 1, 1,4,4, 4-hexafluoro-2-butene and cyclopentane in a molar ratio of 50:50 and 25:75 respectively
  • Stepanpol PS 2352 is used as the polyol, a hydrophobic polyesterol with a proportion of 7% by weight fatty acid and 2.5% Wt% nonylphenol.
  • polyisocyanurate foams are more flame-resistant than polyurethane foams.
  • WO2016184433 describes in sample 3 from example 2 the production of a polyurethane foam using potassium octoate, a flame retardant and a mixture of HCFO-1233zd and cyclopentane in a molar ratio of about 35:65.
  • the polyol used is the sugar-based polyetherol GR 835G from Sinopec with an OH number of 450 mg KOH / g. This results in an isocyanate index of 210.
  • the object of the invention was therefore to improve the property profile from the aforementioned properties and, in particular, to develop a new process which can be used for the manufacture of rigid polyisocyanurate foams and enables the production of optimized rigid foams with high flame resistance and significantly reduced thermal conductivity which, despite improved thermal insulation properties, have very good mechanical compressive strengths.
  • Another task was to develop such a process that is suitable for the production of polyisocyanurate sandwich elements, especially in a continuous production process, and which leads to sandwich elements with very low thermal conductivity, high compressive strength and high flame resistance, which results in excellent foam surface qualities, in particular towards the lower cover layer.
  • This object is achieved by a process for producing rigid polyisocyanurate foams in which (a) aromatic polyisocyanate, (b) isocyanate-reactive compounds containing at least one polyetherol (b1) and / or polyesterol (b2), the number average content being of isocyanate-reactive hydrogen atoms of components (b1) and (b2) is at least 1.7, (c) catalyst, (d) propellant, (e) flame retardant, (f) optionally auxiliaries and additives and (g) optionally compounds with aliphatic, hydrophobic groups that do not fall under the definition of the compounds (a) to (f), mixed to form a reaction mixture and allowed to cure to the polyisocyanate-based rigid foam, with blowing agent (d) at least one aliphatic, halogenated hydrocarbon compound ( d1), built up from 2 to 5 carbon atoms, at least one hydrogen atom and at least one fluorine and / or chlorine atom and the compound (d1) at least Contains at least one
  • a rigid polyisocyanurate foam is generally understood to be a foam which contains both urethane and isocyanurate groups.
  • the term rigid polyurethane foam should also include rigid polyisocyanurate foam, the production of polyisocyanurate foams being based on an isocyanate index of at least 180.
  • the isocyanate index is the ratio of isocyanate groups to isocyanate-reactive groups, multiplied by 100.
  • An isocyanate index of 100 corresponds to an equimolar ratio of the isocyanate groups used in component (a) to the isocyanate-reactive groups in components (b) to (G).
  • Rigid polyisocyanate foams according to the present invention have a compressive stress at 10% compression of greater than or equal to 80 kPa, preferably greater than or equal to 120 kPa, particularly preferably greater than or equal to 140 kPa. Furthermore, according to DIN ISO 4590, the isocyanate-based rigid foam according to the invention has a closed-cell content of greater than 80%, preferably greater than 90%. Further details on rigid polyisocyanurate foams according to the invention can be found in "Kunststoffhandbuch, Volume 7, Polyurethane", Carl Hanser Verlag, 3rd Edition 1993, Chapter 6, in particular Chapters 6.2.2 and 6.5.2.2.
  • components (b) to (g) contain 0 to a maximum of 4.0% by weight, that is to say 0 to 4% by weight, preferably from 0 to 3.5% by weight and in particular 0 , 1 to 3.0% by weight of aliphatic hydrophobic groups, based on the total weight of components (b) to (g).
  • a hydrophobic group is understood to mean an aliphatic hydrocarbon group with preferably more than 6, particularly preferably more than 8 and less than 100 and in particular at least 10 and at most 50 directly adjacent carbon atoms.
  • the neighboring carbon atoms can also be connected by carbon-carbon double bonds.
  • the carbon atoms of the hydrophobic group are directly connected to one another and are not interrupted, for example, by heteroatoms.
  • Hydrogen atoms of the hydrocarbons can be substituted, for example by halogen atoms, OH groups or carboxylic acid groups.
  • the hydrocarbons of the hydrophobic groups according to the invention are preferably not substituted.
  • hydrophobic groups can be part of one of the compounds (b) to (f) or as separate compounds (g) which contain hydrophobic groups th, can be used.
  • To calculate the proportion of hydrophobic groups only the weight of the hydrophobic group is used, including any substituents that differ from hydrogen, such as OH groups or halogen groups, who are not taken into account in the proportion calculation.
  • the polyisocyanates (a) are the aromatic polyvalent isocyanates known in the art. Such polyfunctional isocyanates are known and can be prepared using methods known per se. The polyfunctional isocyanates can in particular also be used as mixtures, so that component (a) in this case contains various polyfunctional isocyanates.
  • Polyisocyanate (a) is a polyfunctional isocyanate with two (hereinafter also referred to as diisocyanates) or more than two isocyanate groups per molecule.
  • the isocyanates (a) are selected from the group consisting of aromatic polyisocyanates such as 2,4- and 2,6-toluene diisocyanate and the corresponding isomers, 4,4'-, 2,4'- and 2, Mixtures of 2'-diphenylmethane diisocyanate and the corresponding isomers, mixtures of 4,4'- and 2,4'-diphenylmethane diisocyanates, polyphenylpolymethylene polyisocyanates, mixtures of 4,4'-, 2,4'- and 2,2'- Diphenylmethane diisocyanates and polyphenyl polyethylene polyisocyanates (crude MDI) and mixtures of crude MDI and toluene diisocyanates.
  • aromatic polyisocyanates such as 2,4- and 2,6-toluene diisocyanate and the corresponding isomers
  • MDI 2,2'-, 2,4'- or 4,4'-diphenylmethane diisocyanate
  • MDI 2,2'-, 2,4'- or 4,4'-diphenylmethane diisocyanate
  • NDI 1,5-naphthylene diisocyanate
  • TDI 2,6-toluene diisocyanate
  • PPDI p-phenylene diisocyanate
  • Modified polyisocyanates i.e. products which are obtained through the chemical reaction of organic polyisocyanates and contain at least two reactive isocyanate groups per molecule, are also frequently used. Particular mention is made of polyisocyanates containing ester, urea, biuret, allophanate, carbodiimide, isocyanurate, uretdione, carbamate and / or urethane groups, often together with unreacted polyisocyanates.
  • the polyisocyanates of component (a) particularly preferably contain 2, 2'-MDI or 2,4'-MDI or 4,4'-MDI or mixtures of at least two of these isocyanates (also called monomeric diphenylmethane or MMDI) or oligomeric MDI, the consists of higher-valued homologues of MDI, which have at least 3 aromatic nuclei and a functionality of at least 3, or mixtures of two or more of the above-mentioned diphenylmethandiiso- cyanate or crude MDI, which is obtained in the production of MDI, or preferably mixtures of at least one oligomer of MDI and at least one of the above-mentioned low molecular weight MDI derivatives 2,2'-MDI, 2,4'-MDI or 4, 4'-MDI (also known as polymeric MDI).
  • the isomers and homologues of MDI are obtained by distilling crude MDI.
  • polymeric MDI In addition to the diminuclear MDI (MMDI), polymeric MDI preferably contains one or more polynuclear condensation products of MDI with a functionality of more than 2, in particular 3 or 4 or 5.
  • Polymeric MDI is known and is often referred to as polyphenyl polymethylene polyisocyanate .
  • the mean (average) functionality of a polyisocyanate containing polymeric MDI can vary in the range from about 2.2 to about 4, in particular from 2.4 to 3.8 and especially from 2.6 to 3.0.
  • Such a mixture of polyfunctional isocyanates based on MDI with different functionalities is in particular the crude MDI obtained as an intermediate product in the production of MDI.
  • Polyfunctional isocyanates or mixtures of several polyfunctional isocyanates based on MDI are known and are commercially available from BASF Polyurethanes GmbH under the trade names Lupranat® M20, Lupranat® M50, or Lupranat® M70.
  • Component (a) preferably contains at least 70, particularly preferably at least 90 and in particular 100% by weight, based on the total weight of components (a), of one or more isocyanates selected from the group consisting of 2,2'-MDI, 2,4'-MDI, 4,4'-MDI and oligomers of MDI.
  • the content of oligomeric MDI is preferably at least 20 percent by weight, particularly preferably more than 30 to less than 80 percent by weight, based on the total weight of component (a).
  • the viscosity of the component (a) used can vary within a wide range.
  • Component (a) preferably has a viscosity of 100 to 3000 mPa * s, particularly preferably from 100 to 1000 mPa * s, particularly preferably from 100 to 800 mPa * s, particularly preferably from 200 to 700 mPa * s and especially preferably from 400 to 650 mPa * s at 25 ° C.
  • the viscosity of component (a) can vary within a wide range.
  • isocyanate-reactive compounds all compounds known in polyurethane chemistry with isocyanate-reactive groups can be used, preferably compounds having at least one hydroxyl group, -NH group, or Nhh group or carboxylic acid group, preferably with at least one NH2 or OH group and in particular at least one -OH group.
  • the functionality with respect to isocyanate groups can be in the range from 1 to 8, preferably from 2 to 8.
  • the compounds reactive toward isocyanate groups have polyether polyols (b1), polyester polyols (b2) or mixtures thereof, preferably polyester oils (b2) or mixtures of polyether polyols (b1) and polyester polyols (b2).
  • Polyetheroie (b1) and polyesteroie (b2) preferably have a number average molecular weight of 150 to 15,000 g / mol, more preferably 150 to 5,000 g / mol and particularly preferably 200 to 2,000 g / mol.
  • the compounds (b) preferably have a number average molecular weight of 62 to 15,000 g / mol.
  • the compounds (b) preferably have a number-average functionality of at least 1.7, particularly preferably at least 2.
  • the polyetheroie (b1) and / or polyesteroie (b2) have a number-average functionality of at least 1.7, more preferably of at least 2.0.
  • Polyetheroie (b1) are made, for example, from epoxides, such as propylene oxide and / or ethylene oxide, or from tetrahydrofuran with hydrogen-active starter compounds, such as aliphatic alcohols, phenols, amines, carboxylic acids, water or compounds based on natural materials, such as sucrose, sorbitol or mannitol, among Use of a catalyst.
  • NEN are basic catalysts or double metal cyanide catalysts, as described, for example, in PCT / EP2005 / 010124, EP 90444 or WO 05/090440.
  • Polyesteroie (b2) are produced, for example, from aliphatic or aromatic dicarboxylic acids and polyhydric alcohols, polythioether polyols, polyester amides, hydroxyl-containing polyacetals and / or hydroxyl-containing aliphatic polycarbonates, preferably in the presence of an esterification catalyst. Further possible polyols are given, for example, in "Kunststoffhandbuch, Volume 7, Polyurethane", Carl Hanser Verlag, 3rd Edition 1993, Chapter 3.1.
  • the isocyanate-reactive compounds (b) contain a polyether polyol (b1) and / or a polyester polyol (b2), preferably a polyester polyol (b2), optionally in combination with a polyether polyol (b1).
  • the proportion by weight of polyetherol (b1) is preferably from 0 to 30% by weight, particularly preferably from 0 to 20 and in particular from 1 to 15% by weight, and of polyesterol (b2) preferably from 70 to 100, particularly preferably from 80 to 100 and in particular 85 to 99% by weight, based in each case on the total weight of polyetherol (b1) and polyesterol (b2).
  • polyesterol preferably from 70 to 100, particularly preferably from 80 to 100 and in particular 85 to 99% by weight, based in each case on the total weight of polyetherol (b1) and polyesterol (b2).
  • the polyetherols (b1) are prepared by known processes, for example by anionic polymerization of alkylene oxides with the addition of at least one starter molecule which contains 1 to 8, preferably 2 to 6 reactive hydrogen atoms, or a starter molecule mixture which, averaged over all starters 1, Contains 5 to 8, preferably 2 to 6 reactive hydrogen atoms bonded in the presence of catalysts. If mixtures of starter molecules with different functionality are used, fractional functionalities can be obtained. Influences on the functionality, for example due to side reactions, are not taken into account in the nominal functionality.
  • the catalysts used can be alkali hydroxides, such as sodium or potassium hydroxide or alkali alcoholates, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate, or, in the case of cationic polymerization, Lewis acids such as antimony pentachloride, boron trifluoride etherate or fuller's earth.
  • Aminic alkoxylation catalysts such as dimethylethanolamine (DMEOA), imidazole and imidazole derivatives can also be used.
  • DMC catalysts double metal cyanide compounds, so-called DMC catalysts, can also be used as catalysts.
  • the alkylene oxides used are preferably one or more compounds having 2 to 4 carbon atoms in the alkylene radical, such as tetrahydrofuran, 1,2-propylene oxide, ethylene oxide, 1,2- or 2,3-butylene oxide, in each case alone or in the form of mixtures. Preference is given to using ethylene oxide and / or 1,2-propylene oxide, particularly preferably ethylene oxide.
  • the starter molecules are compounds containing hydroxyl groups or amine groups, for example ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, bisphenol-A, bisphenol-F, glycerol, trimethylolpropane, pentaerythritol, sugar derivatives such as sucrose, hexitol derivatives such as sorbitol, min methylamine, ethylamine, isopropylamine, butylamine, Benzyla, aniline, toluidine, toluenediamine (TDA), naphthylamine, ethylenediamine, methylene dianiline, 2,2 - diaminodiphenylmethane (2,2-MDA) 2,4'-diaminodiphenylmethane (2 , 4-MDA), 4,4 '- diaminodiphenylmethane (4,4'-MDA), diethylenetriamine, 4,
  • co-initiators are, for example, water, polyfunctional lower alcohols, for example glycerol, trimethylolpropane, pentaerythritol, diethylene glycol, ethylene glycol, propylene glycol and their ho- mologist.
  • co-initiators are, for example: organic fatty acids or monofunctional fatty alcohols, fatty acid monoesters or fatty acid methyl esters such as oleic acid, stearic acid, oleic acid methyl ester, stearic acid methyl ester or biodiesel, which serve to improve the propellant solubility in the production of rigid polyisocyanurate foams.
  • Preferred starter molecules for producing the polyether polyols (b1) are sorbitol, saccharose, ethylenediamine, TDA, trimethylolpropane, pentaerythritol, glycerol, biodiesel, nonylphenol, ethylene glycol and diethylene glycol. Further preferred starter molecules are all starters or starter mixtures with an average total functionality of ⁇ 3, particularly preferred glycerin, trimethylolpropane, biodiesel, nonylphenol, ethylene glycol, diethylene glycol, propylene glycol and bisphenol-A, in particular ethylene glycol, diethylene glycol and glycerin.
  • the polyether polyols used in the context of component (b1) preferably have an average functionality of 1.5 to 6 and in particular 2.0 to 4.0 and number average molecular weights of preferably 150 to 3000, particularly preferably 150 to 1500 and in particular from 250 to 800 g / mol.
  • the OH number of the polyether polyols of component (b1) is preferably from 1200 to 50, preferably from 600 to 100 and in particular from 300 to 150 mg KOH / g.
  • Suitable polyester polyols (b2) can be prepared from organic dicarboxylic acids with 2 to 12 carbon atoms, preferably aromatic, or mixtures of aromatic and aliphatic dicarboxylic acids and polyhydric alcohols, preferably diols, with 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used either individually or as a mixture.
  • the free dicarboxylic acids it is also possible to use the corresponding dicarboxylic acid derivatives, such as, for example, dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides.
  • the aromatic dicarboxylic acids or acid derivatives used are preferably phthalic acid, phthalic anhydride, terephthalic acid and / or isophthalic acid as a mixture or alone.
  • the aliphatic dicarboxylic acids used are preferably dicarboxylic acid mixtures of succinic, glutaric and adipic acid in proportions of, for example, 20 to 35:35 to 50:20 to 32 parts by weight, and in particular adipic acid.
  • polyesters (b2) it is particularly preferable to use exclusively those which, using exclusively aromatic shear dicarboxylic acid or its derivatives are obtained.
  • the aromatic dicarboxylic acid used is preferably at least one compound selected from the group consisting of terephthalic acid, dimethyl terephthalate (DMT), polyethylene terephthalate (PET), phthalic acid, phthalic anhydride (PSA) and isophthalic acid, particularly preferably at least one compound from the group consisting of terephthalic acid, dimethyl terephthalate (DMT), polyethylene terephthalate (PET) and phthalic anhydride (PSA) and in particular of phthalic acid and / or phthalic anhydride.
  • DMT dimethyl terephthalate
  • PET polyethylene terephthalate
  • PSA phthalic anhydride
  • isophthalic acid particularly preferably at least one compound from the group consisting of terephthalic acid, dimethyl terephthalate (DMT), polyethylene terephthalate (PET) and phthalic anhydride (PSA) and in particular of phthalic acid and / or phthalic anhydr
  • dihydric and polyhydric alcohols are: monoethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, polyopropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1, 10-decanediol, glycerine, trimethylolpropane and pentaerythritol, as well as alkoxylates of the same starters.
  • diols are: monoethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, polyopropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1, 10-decanediol, glycerine, trimethylolpropane
  • 1,3-propanediol, dipropylene glycol, and ethoxylates of the same starter for example ethoxylated glycerol, or mixtures of at least one of the diols mentioned.
  • Monoethylene glycol, diethylene glycol, glycerol and ethoxylates of the same starter, or mixtures of at least two of the diols mentioned, especially diethylene glycol, are used in particular.
  • polyester polyols made from lactones, e.g. e-caprolactone or hydroxycarboxylic acids, e.g. w-hydroxycaproic acid.
  • the aliphatic and aromatic polycarboxylic acids and / or derivatives and polyhydric alcohols can be catalyst-free or preferably in the presence of esterification catalysts, expediently in an atmosphere of inert gas such as nitrogen in the melt at temperatures from 150 to 280 ° C , preferably 180 to 260 ° C, optionally under reduced pressure up to the desired acid number, which is advantageously less than 10, preferably less than 2, are polycondensed.
  • the esterification catalysts are, for example, iron, cadmium, cobalt, lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts.
  • the polycondensation can, however, also be carried out in the liquid phase in the presence of diluents and / or entrainers, such as benzene, toluene, xylene or chlorobenzene, for azeotropic distillation of the water of condensation.
  • diluents and / or entrainers such as benzene, toluene, xylene or chlorobenzene
  • the organic polycarboxylic acids and / or derivatives and polyhydric alcohols are advantageously used in a molar ratio of 1: 1 to 2.2, preferably 1: 1.05 to 2.1 and particularly preferably 1: 1.1 polycondensed up to 2.0.
  • the polyester polyols (b2) obtained generally have a number average molecular weight of 200 to 3000, preferably 300 to 1000 and in particular 400 to 800.
  • the compounds also have, in addition to at least one hydrophobic group, at least one group which is reactive toward isocyanate groups, for example an acid group, an amino group or a hydroxyl group.
  • these constituents can be the polyether oil (b1) or the polyester oil (b2), but, alternatively or additionally, separate compounds can also be used which have both one or more isocyanate-reactive groups and one or more hydrophobic groups.
  • the hydrophobic groups are part of the polyether (b1) or polyester (b2), they can be built into the polyols (b1) or (b2) via known reactions such as esterification, transesterification or alkoxylation.
  • the starting compounds with hydrophobic groups that are incorporated into polyols (b1) or (b2) generally have at least one group that can be esterified, transesterified or alkoxylated, such as a carboxylic acid group, a carboxylic acid ester group, a carboxamide group, a Carboxylic acid anhydride group, a hydroxyl group, or a primary or secondary amino group.
  • Compounds with hydrophobic groups of component (b) which do not come under the definition of polyetheroie (b1) or polyesteroie (b2) are, for example, hydroxyl-functional hydrophobic substances such as alkyl alcohols, fatty alcohols or hydroxyl-functionalized oleochemical compounds.
  • alkyl alcohols and fatty alcohols examples include octyl, nonyl, decyl, undecyl, dodecyl, oleyl, cetyl, isodecyl, tridecyl, lauryl and mixed C12-C14 alcohols, 2-ethylhexanol, and alkyphenols with> 6 carbon atoms in the alkyl radical such as nonylphenol, oxo alcohols with> 6 carbon atoms, which can be obtained by hydroformylation of ⁇ -olefins and other reactions, Guerbet alcohols with> 6 carbon atoms, and mixtures of various alkyl and fatty alcohols.
  • hydroxy-functional compounds with hydrophobic groups are used, the following are preferably used: Castor oil, Vietnamese red oil, oils modified with hydroxyl groups such as grapeseed oil, black cumin oil, pumpkin seed oil, borage seed oil, soybean oil, wheat germ oil, rapeseed oil, sunflower oil, peanut oil, apricot kernel oil, macadamia kernel oil, almond kernel oil, macadamia kernel oil, almond oil avocado oil, sea buckthorn oil, sesame oil, hazelnut oil, evening primrose oil, wild rose oil, hemp oil, safflower oil, walnut oil, fatty acid esters modified with hydroxyl groups based on myristoleic acid, palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, gadoleic acid, e-arucidic acid, , Arachidonic acid, timno- donic acid, clupanodonic acid, cervonic acid or mixtures of at least two of these compounds.
  • Another group of hydroxy-functionalized oleochemical compounds can be obtained by ring opening of epoxidized fatty acid esters with simultaneous reaction with alcohols and, if necessary, subsequent further transesterification reactions.
  • the incorporation of hydroxyl groups in oils and fats is mainly carried out by epoxidation of the olefinic double bond contained in these products, followed by the reaction of the epoxy groups formed with a monohydric or polyhydric alcohol.
  • the epoxy ring becomes a hydroxyl group or, in the case of polyfunctional alcohols, a structure with a higher number of OH groups. Since oils and fats are mostly glycerol esters, parallel transesterification reactions take place in the above-mentioned reactions.
  • the compounds obtained in this way preferably have a molecular weight in the range between 500 and 1500 g / mol.
  • Compound (b) containing hydrophobic groups and containing amine groups are preferably understood to be the compounds which have between 7 and 40 carbon atoms.
  • Examples are the fatty alkanolamines such as decylamine, dodecylamine, tetradecylamine and hexadecylamine.
  • Fatty alkanolamides e.g. fatty acid diethanolamide, lauric acid diethanolamide and oleic acid monoethanolamide, for example, can be used as alkanolamides.
  • compounds (b) containing hydrophobic groups can also be understood as compounds which contain at least one carboxylic acid group, such as, for example, mono- or bifunctional carboxylic acids, e.g. with 7-40 carbon atoms per molecule.
  • carboxylic acid group such as, for example, mono- or bifunctional carboxylic acids, e.g. with 7-40 carbon atoms per molecule.
  • Dimer fatty acids or, preferably, fatty acids are caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, ricinoleic acid and mixtures thereof.
  • the acids can have both a biological and a petrochemical origin.
  • An example of a suitable petrochemical acid is, for example, 2-ethylhexanoic acid.
  • the hydroxy-functionalized oleochemical compound if present, is a polyesterol with a hydrophobic group (b2a).
  • the hydrophobic starting compounds used are preferably fatty acids, fatty acid derivatives or alkylphenol alkoxylates with> 8 carbon atoms in the alkyl group.
  • the polyester polyols (b2) preferably contain at least one polyesterol (b2a) which is obtainable by esterification of
  • (b2a4) 0 to 80 mol% of an alkoxylation product of at least one starter molecule with an average functionality of at least two, based in each case on the total amount of components (b2a1) to (b2a4), with components (b2a1) to (b2a4) being 100 Add mol%.
  • a polyester polyol of component (b2) preferably has a number-weighted average functionality of greater than or equal to 1.7, preferably greater than or equal to 1.8, particularly preferably greater than or equal to 2.0 and in particular greater than 2.2, which leads to a higher cross-linking density of the polyurethane produced therewith and thus to better mechanical properties of the polyurethane foam.
  • Component (b) can further contain chain extenders and / or crosslinking agents, for example to modify the mechanical properties, e.g. B. the hardness.
  • the chain lengthening and / or crosslinking agents used are diols and / or triols, and also amino alcohols with molecular weights of less than 150 g / mol, preferably from 60 to 130 g / mol.
  • Aliphatic and cycloaliphatic triols such as glycerol, trimethylolpropane and 1,2,4- and 1,3,5-trihydroxy cy cl o h exa n are also suitable.
  • chain extenders, crosslinking agents or mixtures thereof are used to produce the rigid polyurethane foams, these are expediently used in an amount of 0 to 15% by weight, preferably 0 to 5% by weight, based on the total weight of the component ( b) used.
  • Component (b) preferably contains less than 10% by weight and particularly preferably less than 7% by weight and in particular less than 5% by weight of chain extenders and / or crosslinking agents.
  • Catalysts (c) for the production of the polyurethane foams are in particular compounds which greatly accelerate the reaction of the compounds of components (b) to (g) containing reactive hydrogen atoms, in particular hydroxyl groups, with the polyisocyanates (a).
  • Basic polyurethane catalysts for example tertiary amines, such as triethylamine, tributylamine, dimethylbenzylamine, dicyclohexylmethylamine, dimethylcyclohexylamine, N, N, N ', N'-tetramethyldiaminodiethyl ether, bis- (dimethylaminopropyl) -urea, N-methylmorpholine or N-methylmorpholine, are expediently used , N-cyclohexylmorpholine, N, N, N ', N'-tetramethylethylenediamine, N, N, N, N-tetramethylbutanediamine, N, N, N, N-tetramethylhexanediamine-1,6, pentamethyldiethylenetriamine, bis (2-dimethylaminoethyl ) ether, dimethylpiperazine, N-dimethylaminoethylpiperidine, 1,2-dimethylimidazo
  • metal salts such as iron (II) chloride, zinc chloride, lead octoate and tin salts such as tin dioctoate, tin diethylhexoate and dibutyltin dilaurate and mixtures of tertiary amines and organic tin salts are also suitable.
  • amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, alkali hydroxides such as sodium hydroxide and alkali alcoholates such as sodium methylate and potassium isopropoxide, alkali carboxylates and alkali salts of long-chain fatty acids with 8 to 20 carbon atoms and, where appropriate, pendant OH groups.
  • amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine
  • tetraalkylammonium hydroxides such as tetramethylammonium hydroxide
  • alkali hydroxides such as sodium hydroxide and alkali alcoholates such as sodium methylate and potassium isopropoxide
  • alkali carboxylates and alkali salts of long-chain fatty acids with 8 to 20 carbon atoms and, where appropriate, pendant OH groups.
  • Amines which can be incorporated can also be used as catalysts, i.e. preferably amines with an OH, NH or NH2 function, such as, for example, ethylenediamine, triethanolamine, diethanolamine, ethanolamine and dimethylethanolamine.
  • Catalysts that can be built in can be viewed both as compounds of component (c) and of component (b).
  • catalysts for the trimerization reaction of the excess NCO groups with one another are: Catalysts forming isocyanurate groups, for example ammonium ion or alkali metal salts, especially ammonium or alkali metal carboxylates, alone or in combination with tertiary amines.
  • isocyanurate leads to flame-retardant PIR foams, which are preferably used in technical rigid foam, for example in Bauwe sen as insulation panels or sandwich elements.
  • the catalyst (c) contains an amine catalyst with a tertiary amino group and an ammonium or alkali metal carboxylate catalyst.
  • the catalyst (c) contains at least one amine catalyst selected from the group consisting of pentamethyldiethylenetriamine and bis (2-dimethylaminoethyl) ether and at least one alkali metal carboxylate catalyst selected from the group consisting of potassium formate, potassium acetate and potassium-2 Ethyl hexanoate.
  • a propellant mixture is used as propellant (d) which contains at least one aliphatic, halogenated hydrocarbon compound (d1), built up from 2 to 5 carbon atoms, at least one hydrogen atom and at least one fluorine and / or chlorine atom and one hydrocarbon compound with 4 to 8 carbon atoms ( d2), and wherein the compound (d1) contains at least one carbon-carbon double bond.
  • Suitable compounds (d1) include trifluoropropenes and tetrafluoropropenes, such as (HFO-1234), pentafluoropropenes, such as (HFO-1225), chlorotrifluoropropenes, such as (HFO-1233), chlorodifluoropropenes, chlorotetrafluoropropenes and hexafluorobutenes, and mixtures of one or more of these components. Tetrafluoropropenes, pentafluoropropenes, chlorotrifluoropropene and hexafluorobutenes are preferred, the unsaturated, terminal carbon atom bearing at least one chlorine or fluorine substituent.
  • Examples are 1,3,3,3-tetrafluoropropene (HFO-1234ze); 1, 1,3,3-tetrafluoropropene; 1, 2,3,3,3-pentafluoropropene (HFO-1225ye); 1,1,1-trifluoropropene; 1, 1, 1,3,3-pentafluoropropene (HFO-1225zc); 1, 1, 2,3,3-pentafluoropropene (HFO-1225yc); 1-chloro-2,3,3,3-tetrafluoropropene (HFO-1224yd); 1, 1, 1,2,3-pentafluoropropene (HFO-1225yez); 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd); 1, 1,1,4,4,4-hexafluorobut-2-en (HFO-1336mzz) or mixtures of two or more of these components.
  • Preferred compounds (d1) are hydroolefins selected from the group consisting of trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)), cis-1-chloro-2,3,3 , 3-tetrafluoropropene (HCFO-1224yd), trans-1,1,1,4,4,4-hexafluorobut-2-en (HFO-1336mzz (E)), cis-1, 1,1, 4,4, 4-hexafluorobut-2-ene (HFO-1336mzz (Z)), or mixtures of one or more components thereof.
  • Trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)) which surprisingly leads to particularly trouble-free foam qualities on the lower outer layer in the continuous production process, is particularly preferred.
  • hydrocarbon compounds with 4 to 8 carbon atoms are connections such as heptane, hexane and iso-pentane, preferably technical mixtures such as n- and iso-pentane, n- and iso-butane and propane, cycloalkanes such as cyclopentane and / or cyclohexane, and in particular pentane isomers, such as n-pentane, iso-pentane and cyclopentane.
  • the hydrocarbon compound (d2) preferably contains at least 60 mol%, particularly preferably more than 70 mol% and in particular more than 80 mol% of cycloaliphatic hydrocarbon compounds.
  • blowing agents (d1) and (d2) in addition to the blowing agents (d1) and (d2), further physical blowing agents can be used.
  • Particularly suitable liquids are those which are inert to the isocyanates used and have boiling points below 100 ° C., preferably below 50 ° C., at atmospheric pressure, so that they evaporate under the influence of the exothermic polyaddition reaction.
  • ethers such as furan, dimethyl ether and diethyl ether, ketones such as acetone and methyl ethyl ketone, carboxylic acid alkyl esters such as methyl formate, dimethyl oxalate and ethyl acetate and halogenated hydrocarbons such as methylene chloride, dichloromonofluoromethane, difluoromethane, trifluoromethane, tetrafluoroethane, tetrafluoroethane, difluoroethane, trifluoromethane, 1, tetrafluoroethane -Dichloro-2,2,2-trifluoroethane, 2,2-dichloro-2-fluoroethane and heptafluoropropane.
  • ethers such as furan, dimethyl ether and diethyl ether
  • ketones such as acetone and methyl ethyl ketone
  • the proportion of physical blowing agent that does not fall under the definition of component (d1) or (d2) is preferably less than 30% by weight, particularly preferably less than 15% by weight, more preferably less than 5% by weight , in each case based on the total weight of the propellant components (d1) and (d2) and the other physical propellants. In particular, apart from the blowing agent components (d1) and (d2), no further physical blowing agent is used.
  • Blowing agents which are used to produce the polyurethane foams according to the invention also include chemical blowing agents. These react with isocyanate groups to form carbon dioxide and, in the case of formic acid, to carbon dioxide and carbon monoxide.
  • Organic blowing agents are also suitable as chemical blowing agents (d3)
  • Carboxylic acids such as formic acid, acetic acid, oxalic acid, and other compounds containing carboxyl groups with ⁇ 6 carbon atoms, as well as water.
  • the chemical blowing agents (d3) used are preferably water, formic acid / water mixtures or formic acid, particularly preferred chemical blowing agents are water or formic acid / water mixtures, in particular water / formic acid mixtures with a formic acid content of> 70% by weight.
  • propellant (d3) which leads to improved top layer adhesion and trouble-free foam surfaces underneath the lower top layer.
  • chemical blowing agents (d3) are used, they are preferably used in an amount of less than 2% by weight, based on the total weight of components (b) to (g), preferably in an amount of 0.5 to 1.5% by weight .
  • the molar proportion of halogenated hydrocarbon compounds (d1) is 20 and 60 mol%, preferably 25 to 55 mol% and particularly preferably 30 to 50 mol% and the molar proportion of hydrocarbon compound (d2) is between 40 and 80 mol% , preferably 45 and 75 mol% and particularly preferably 50 to 70 mol%, each based on the total content of the propellants (d1) and (d2).
  • the blowing agents (d) are preferably used in amounts such that the free foam density of the polyisocyanate-based rigid foams obtained according to the invention is between 10 and 100 g / L, preferably between 20 and 75 g / L and in particular between 30 and 50 g / L.
  • the flame retardants known from the prior art can generally be used as flame retardants (e).
  • Suitable flame retardants are, for example, brominated esters, brominated ethers (Ixol) or brominated alcohols such as dibromoneopentyl alcohol, tribromoneopentyl alcohol and PHT-4-diol, and also chlorinated phosphates such as tris (2-chloroethyl) phosphate, tris (2-chloropropyl) ) phosphate (TCPP), tris (1,3-dichloropropyl) phosphate, tricresyl phosphate, tris (2,3-dibromopropyl) phosphate, tetrakis (2-chloroethyl) ethylene diphosphate, dimethyl methane phosphonate, diethanolaminomethylphosphonic acid diethyl ester and commercially available halogenated diethyl ester Flame retardant polyols.
  • DEEP Diethyl ethane phosphonate
  • TEP triethyl phosphate
  • DMPP dimethyl propyl phosphonate
  • DPK diphenyl cresyl phosphate
  • inorganic or organic flame retardants such as red phosphorus, preparations containing red phosphorus, aluminum oxide hydrate, antimony trioxide, arsenic oxide, ammonium polyphosphate and calcium sulfate, expanded graphite or cyanuric acid derivatives such as melamine, or mixtures of at least two flame retardants such as Ammonium polyphosphates and melamine and optionally corn starch or ammonium polyphosphate, melamine, expandable graphite and optionally aromatic polyester can be used to make the rigid polyurethane foams flame-resistant.
  • inorganic or organic flame retardants such as red phosphorus, preparations containing red phosphorus, aluminum oxide hydrate, antimony trioxide, arsenic oxide, ammonium polyphosphate and calcium sulfate, expanded graphite or cyanuric acid derivatives such as melamine, or mixtures of at least two flame retardants such as Ammonium polyphosphates and melamine and optionally corn starch or ammonium polyphosphate,
  • Preferred flame retardants do not contain bromine.
  • Particularly preferred flame retardants consist of atoms selected from the group consisting of carbon, hydrogen, phosphorus, nitrogen, oxygen and chlorine, more specifically from the group consisting of carbon, hydrogen, phosphorus and chlorine.
  • Preferred flame retardants do not have any isocyanate-reactive groups.
  • the flame retardants are preferably liquid at room temperature.
  • TCPP, DEEP, TEP, DMPP and DPK and oligomers halogen-free flame retardants such as Fy rol ® PNX (by the company ICL) and Levagard ® 2000 (from Lanxess) and / or einbauba re flame retardants, phosphorus-based, as Veriquel ® R-100 (from ICL) and Leva gard ® 2100 (from Lanxess), in particular TCPP and TEP, even more preferably TEP, which in the continuous processing process results in undisturbed foam surfaces below the lower cover layer and in the event of fire for reduced release leads to corrosive fire gases.
  • the proportion of flame retardant (e) is 1 to 40% by weight, preferably 5 to 30% by weight, particularly preferably 8 to 25% by weight, based on the total weight of components (b) to ( G).
  • auxiliaries and / or additives (f) can optionally be added to the reaction mixture for producing the polyurethane foams according to the invention.
  • examples include surface-active substances, foam stabilizers, cell regulators, fillers, light stabilizers, dyes, pigments, hydrolysis inhibitors, fungistatic and bacteriostatic substances.
  • Suitable surface-active substances are, for example, compounds which serve to support the homogenization of the starting materials and are optionally also suitable for regulating the cell structure of the plastics.
  • Examples include emulsifiers such as the sodium salts of castor oil sulfates or of fatty acids and salts of fatty acids with amines, for example oleic diethylamine, stearic diethanolamine, ricinolate diethanolamine, salts of sulfonic acids, for example alkali or ammonium salts of dodecyl sulfonate, thylemethane or dinaphyl sulfate sulfate sulfate sulfate, or dinaphane sulfate sulfate sulfonate , such as siloxane oxalkylene copolymers and other organopolysiloxanes and dimethylpolysiloxanes.
  • emulsifiers such as the sodium salts of castor oil sulfates or of fatty acids and salts of fatty acids with amines, for example oleic diethylamine, stearic di
  • Oligomeric acrylates with polyoxyalkylene and fluoroalkane radicals as side groups are also suitable for improving the emulsifying effect, the cell structure and / or stabilizing the foam.
  • the surface-active substances are usually used in amounts of from 0.01 to 10 parts by weight, based on 100 parts by weight of component (b).
  • Customary foam stabilizers for example those based on silicone, such as siloxane-oxalkylene copolymers and other organopolysiloxanes, can be used as foam stabilizers.
  • Fillers are the usual organic and inorganic fillers, reinforcing agents, weighting agents, agents for improving the abrasion behavior in paints, coating agents, etc., which are known per se.
  • inorganic fillers such as silicate minerals, for example phyllosilicates such as antigorite, serpentine, horn blends, amphiboles, chrysotile and talc, metal oxides such as kaolin, aluminum oxides, titanium oxides and iron oxides, metal salts such as chalk, barite and inorganic pigments such as Cadmium sulfide and zinc sulfide, as well as glass, etc.
  • kaolin china clay
  • aluminum silicate and coprecipitates of barium sulfate and aluminum silicate as well as natural and synthetic fibrous minerals such as wollastonite, metal and especially glass fibers of various lengths, which can optionally be sized.
  • organic fillers are: carbon, melamine, rosin, cyclopentadienyl resins and graft polymers as well as cellulose fibers, polyamide, polyacrylonitrile, polyurethane, polyester fibers based on aromatic and / or aliphatic dicarboxylic acid esters and especially carbon fibers.
  • the inorganic and organic fillers can be used individually or as mixtures and are advantageously added to the reaction mixture in amounts of 0.5 to 50% by weight, preferably 1 to 40% by weight, based on the weight of components (a) to ( f), given, however, the content of mats, fleeces and fabrics made of natural and synthetic
  • the compounds (g) are preferably substances which are flowable at a temperature of 20 ° C. and an ambient pressure of 1 bar.
  • Examples of compounds (g) are carboxylic acid esters, such as lower alkanol esters of carboxylic acids, for example fatty acid ethyl esters or, preferably, fatty acid methyl esters, such as methyl caproate, methyl caprilate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, methyl inolenate and mixtures thereof, particularly preferred biodiesel.
  • carboxylic acid esters such as lower alkanol esters of carboxylic acids, for example fatty acid ethyl esters or, preferably, fatty acid methyl esters, such as methyl caproate, methyl caprilate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl
  • triglycerides particularly preferably fats and oils
  • hydrophobic groups for example triglycerides, such as rapeseed oil, olive oil, corn oil, palm oil, pumpkin seed oil, sunflower oil, wheat seed oil, soybean oil, coconut oil, teal oil, cottonseed oil , Grapeseed oil, apricot kernel oil, safflower oil, avocado oil, macadamius oil, pistachio oil, almond oil, linseed oil, sesame oil, hazelnut oil, peanut oil, walnut oil, primrose oil, sea buckthorn oil, safflower oil, borage seed oil, black caraway oil, wild rose oil, tallow, and mixtures thereof.
  • rapeseed oil olive oil, corn oil, palm oil, pumpkin seed oil, sunflower oil, wheat seed oil, soybean oil, coconut oil, teal oil, cottonseed oil , Grapeseed oil, apricot kernel oil, safflower oil, avocado oil, macadamius oil, pistachio
  • the polyurethane foams are produced by mixing components (a) to (e) and, if present (f) and (g), to form a reaction mixture. Premixes can also be made to reduce complexity. These comprise at least one isocyanate component (A) containing polyisocyanates (a) and a polyol component (B) containing isocyanate-reactive compounds (b). Isocyanate component (A) and polyol component (B) can all or some of the further components (c) to (g) be added in whole or in part, with components (c) to (g) in many cases being due to the high reactivity of the isocyanates Avoidance of side reactions are often added to the polyol component.
  • blowing agents (d1) in particular can also be added to the isocyanate component (A).
  • the physical blowing agents (d1) and (d2) are preferably fed to the reaction mixture in an extra stream and, particularly preferably, the remaining components (d) to (g) are added to the polyol component (B). Subsequently, the reaction mixture is allowed to react to form the polyurethane foam.
  • a reaction mixture denotes the mixture of the isocyanates (a) and the isocyanate-reactive compounds (b) with reaction conversions of less than 90%, based on the isocyanate groups.
  • the components are mixed to form the reaction mixture at an isocyanate index of 240 to 1000, preferably 240 to 800, more preferably 240 to 600, in particular preferably at 280 to 500 and in particular at 330 to 400.
  • the starting components are mixed at a temperature of 15 to 90.degree. C., preferably 20 to 60.degree. C., in particular 20 to 45.degree.
  • the reaction mixture can be mixed by mixing in high or low pressure metering machines.
  • the reaction mixture can, for example, be introduced into a mold to fully react.
  • This technology is used, for example, to produce discontinuous sandwich elements.
  • the rigid foams according to the invention are preferably produced on continuously operating double-belt systems.
  • the polyol and isocyanate components are dosed with a high pressure machine and mixed in a mixing head. Catalysts and / or propellants can be dosed into the polyol mixture beforehand using separate pumps.
  • the reaction mixture is continuously applied to the lower layer.
  • the lower layer with the reaction mixture and the upper cover layer enter the double belt in which the reaction mixture foams and hardens. After leaving the double belt, the end loose strand is cut into the desired dimensions. In this way, sandwich elements with metallic cover layers or with flexible cover layers can be produced.
  • cover layers which can be the same or different, flexible or rigid cover layers can be used, which are usually used in the double-belt process.
  • cover layers such as aluminum or steel, bitumen cover layers, paper, nonwovens, plastic sheets such as polystyrene, plastic films such as polyethylene films or wood cover layers.
  • the top layers can also be coated, for example with a conventional lacquer or an adhesion promoter. It is particularly preferred to use cover layers which are diffusion-tight with respect to the cell gas of the polyurethane foam.
  • the subject matter of the present invention is a polyisocyanate-based rigid foam obtainable by a process according to the invention and a polyurethane sandwich element containing such a polyisocyanate-based rigid foam according to the invention.
  • a polyisocyanate-based rigid foam according to the invention is characterized by excellent mechanical properties, in particular excellent compressive strength as well excellent low thermal conductivity.
  • sandwich elements in particular in the continuous double-belt process, sandwich elements with an excellent surface quality of the polyisocyanate-based rigid foam, in particular for the lower cover layer, are also obtained.
  • Polyesterol 1 Esterification product of terephthalic acid, oleic acid, diethylene glycol and ethoxylated glycerol with a hydroxyl number of 535 mg KOH / g, a hydroxyl number of 244 mg KOH / g and a weight fraction of oleic acid of 15% in the end product. This results in a proportion of hydrophobic groups in the total weight of the polyesterol 1 of approx. 13.3% by weight, based on the total weight of the polyesterol 1.
  • Polyesterol 2 esterification product of phthalic anhydride, diethylene glycol and monoethyl glycol, with a hydroxyl number of 240 mg KOH / g and a weight fraction of 0% oleic acid end product.
  • Polyesterol 3 Esterification product of phthalic anhydride, soybean oil and diethylene glycol with a hydroxyl number of 194 mg KOH / g and a weight fraction of 3.7% fatty acid in the end product. This results in a proportion of hydrophobic groups in the total weight of the polyesterol 3 of approx. 3.1% by weight, based on the total weight of the polyesterol 3.
  • Polyester polyol 4 Esterification product of phthalic anhydride, glycerol, oleic acid and diethylene glycol with a hydroxyl number of 195 mg KOH / g and a weight fraction of 3.7% oleic acid in the end product. This results in a proportion of hydrophobic groups in the total weight of the polyesterol 4 of approx. 3.3% by weight, based on the total weight of the polyesterol 4.
  • Polyester polyol 5 esterification product of phthalic anhydride, monoethylene glycol and diethylene glycol with a hydroxyl number of 215 mg KOH / g and a weight fraction of 15.8% oleic acid in the end product. This results in a proportion of hydrophobic groups in the total weight of the polyesterol 5 of approximately 14.0% by weight, based on the total weight of the polyesterol 5.
  • Polyetherol 1 polyethylene glycol with a hydroxyl number of 188 mg KOH / g
  • TCPP Tris (2-chloroisopropyl) phosphate with a chlorine content of 32.5% by weight and a phosphorus content of 9.5% by weight.
  • TEP triethyl phosphate with a phosphorus content of 17% by weight
  • Tegostab® B 8443 silicone-containing foam stabilizer from Evonik
  • Catalyst A trimerization catalyst consisting of 36.2% by weight of potassium formate dissolved in 63.7% by weight of monoethylene glycol
  • Catalyst B Catalyst consisting of 23.1% by weight bis (2-dimethylaminoethyl) ether and 76.9% by weight dipropylene glycol.
  • Amasil 85% formic acid solution 85% by weight in water
  • Pentane S 80/20 Mixture of 80% by weight of n-pentane and 20% by weight of isopentane
  • Cyclopentane 70 mixture of 70% by weight cyclopentane and 30% by weight isopentane
  • Cyclopentane 95 mixture of 95% by weight cyclopentane and 5% by weight isopentane
  • Solstice® LBA 1-chloro-3,3,3-trifluoropropene from Honeywell
  • Opteon TM 1100 (Z) -1, 1, 1,4,4,4-hexafluoro-2-butene from Chemours
  • Propellant mixture 1 Mixture of 55.88% by weight of cyclopentane 70 and 44.12% by weight of Solstice® LBA leads to a propellant mixture containing approx. 70 mol% of cyclopentane 70.
  • Propellant mixture 2 Mixture of 56.12% by weight of pentane S 80/20 and 43.88% by weight of Solstice® LBA leads to a propellant mixture containing approx. 70 mol% of pentane S 80/20.
  • Isocyanates
  • Lupranat® M50 polymeric methylenediphenyl diisocyanate (PMDI) from BASF, with a viscosity of approx. 550 mPa * s at 25 ° C.
  • the polyol components shown in Tables 1, 2 and 4 were prepared from the above-mentioned starting materials and implemented in the laboratory and on a high-pressure machine in a continuous double-belt process.
  • the polyol components shown in Table 1 were adjusted to identical setting times of 53 s ⁇ 2 s and cup foam densities of 44 kg / m 3 ⁇ 2 kg / m 3 by varying the physical blowing agents and catalyst B.
  • the amount of catalyst A was chosen so that the finished foams of all settings contained identical concentrations.
  • the polyol components adjusted in this way were reacted with Lupranat® M50 in such a mixing ratio that the index of all adjustments was 330 ⁇ 10. In this way, 80 g of the reaction mixture were reacted in a paper cup by intensively mixing the mixture for 8 seconds with a laboratory stirrer at 1400 revolutions / min.
  • the polyol components shown in Table 2 were adjusted to identical setting times of 53 s ⁇ 2 s and cup foam densities of 42 kg / m 3 ⁇ 2 kg / m 3 by varying the physical blowing agent and catalyst B.
  • the amount of catalyst A was chosen so that the finished foams of all settings contained identical concentrations.
  • the polyol components adjusted in this way were reacted with Lupranat® M50 in such a mixing ratio that the index of all adjustments was 330 ⁇ 10. In this way, 80 g of the reaction mixture were reacted in a paper cup by intensively mixing the mixture for 8 seconds with a laboratory stirrer at 1400 revolutions / min.
  • the polyol components shown in Table 3 were adjusted to identical setting times of 53 s ⁇ 2 s and cup foam densities of 42 kg / m 3 ⁇ 2 kg / m 3 by varying the physical blowing agent and catalyst B.
  • the amount of catalyst A was chosen so that the finished foams of all settings contained identical concentrations.
  • the polyol components adjusted in this way were made to react with Lupranat® M50 in such a mixing ratio that the index of all adjustments was 210 ⁇ 10. In this way, 80 g of the reaction mixture were reacted in a paper cup by intensively mixing the mixture for 8 seconds with a laboratory stirrer at 1400 revolutions / min.
  • the reaction mixtures, adjusted in this way to comparable densities and setting times, were then used to produce rigid foam blocks from which test specimens for thermal conductivity and compressive strength measurements were taken.
  • reaction mixture 450 g was converted into a paper cup by mixing the mixture intensively for 6 seconds with a laboratory stirrer at 1400 revolutions / min. The reaction mixture was then transferred into a box shape, open at the top, measuring 150 mm ⁇ 120 mm ⁇ 120 mm.
  • the test specimens for the thermal conductivity measurements with the dimensions 200 mm x 200 mm x 30 mm were always taken from the center of the foam block in the direction of the foam's rise.
  • the thermal conductivity was measured with a thermal conductivity meter l-meter EP500e from “Lambda Messtechnik GmbH Dresden” at an average temperature of 23 ° C.
  • the thermal conductivity values given in Tables 1 and 2 are mean values of a double determination of two test specimens from two different but identically produced foam blocks.
  • test specimens measuring 50 mm x 50 mm x 50 mm were taken from the same foam blocks to determine the compressive strength in accordance with DIN EN 826. The removal was always the same here as well.
  • 3 test specimens were rotated so that the test took place against the direction of rise of the foam (top).
  • 3 test specimens were rotated so that the test took place perpendicular to the rise direction of the foam (in the X direction).
  • 3 test specimens were rotated so that the test took place perpendicular to the rise direction of the foam (in the Y direction).
  • Foaming of the polyol component according to the invention from Example 13 at a reduced index of 210 leads to a significant increase in the thermal conductivity and a significant reduction in the compressive strength of the foam compared to the examples according to the invention.
  • the amount of catalyst B and the physical blowing agent was selected so that the gel time of the reaction mixture was exactly 28 seconds and the contact time of the reaction mixture with the upper belt was exactly 23 seconds and the foam had a total density of 38.0 ⁇ 1.5 g / l.
  • test specimens 2.0 m long and 1.25 m wide were taken, from which the test specimens required for the tests were always taken at identical points.
  • test bodies with the dimensions 100 mm ⁇ 100 mm ⁇ sandwich thickness were taken from the test specimens with the aid of a band saw.
  • the test specimens were removed from identical locations, distributed over the width of the element (left, center, right) and the compressive strength of the foam was determined in accordance with the sandwich standard DIN EN ISO 14509-A.2 according to EN 826.
  • test bodies After storage for 24 hours in a standard climate, further test bodies with the dimensions 200 mm ⁇ 200 mm ⁇ 30 mm were removed from the test specimens. The removal took place in the middle of the sandwich element thickness and width.
  • the thermal conductivity was measured with a thermal conductivity meter l-meter EP500e from Lambda Messtechnik GmbH Dresden at an average temperature of 23 ° C.
  • the thermal conductivity values given in Table 5 are mean values of a duplicate determination of two test specimens
  • the polyol components with a low proportion of hydrophobic groups in components (b) - (g) show a significantly improved thermal conductivity compared to the polyol components not according to the invention (Example 28 vs. Example 29).
  • the use of pentane S 80/20 leads to significantly poorer thermal conductivities and foam qualities on the underside of the various outer layers (Example 28).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyisocyanurathartschaumstoffen, bei dem man (a) aromatisches Polyisocyanat, (b) gegenüber Isocyanatgruppen reaktive Verbindungen, enthaltend mindestens ein Polyetherol (b1) und/oder Polyesterol (b2), wobei der zahlenmittlere Gehalt an mit Isocyanat reaktiven Wasserstoffatomen der Komponente (b1) und (b2) mindestens 1,7 beträgt, (c) Katalysator, (d) Treibmittel, (e) Flammschutzmittel (f) gegebenenfalls Hilfs- und Zusatzstoffe und (g) gegebenenfalls Verbindungen mit aliphatischen, hydrophoben Gruppen, die nicht unter die Definition der Verbindungen (a) bis (f) fallen, zu einer Reaktionsmischung vermischt und zum Polyisocyanurathartschaumstoff aushärten lässt, wobei Treibmittel (d) mindestens eine aliphatische, halogenierte Kohlenwasserstoffverbindung (d1), aufgebaut aus 2 bis 5 Kohlenstoffatomen, mindestens einem Wasserstoffatom und mindestens einem Fluor und/oder Chloratom und die Verbindung (d1) mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung enthält, und eine Kohlenwasserstoffverbindung mit 4 bis 8 Kohlenstoffatomen (d2) enthält und der molare Anteil von halogenierter Kohlenwasserstoffverbindung (d1) zwischen 20 und 60 mol% und der molare Anteil von Kohlenwasserstoffverbindung (d2) zwischen 40 und 80 mol-%, jeweils bezogen auf den Gesamtgehalt der Treibmittel (d1) und (d2), beträgt, und die Komponenten (b) bis (f) Verbindungen mit aliphatischen, hydrophoben Gruppen enthalten können und der Gehalt an aliphatischen, hydrophoben Gruppen, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g), maximal 4,0 Gew.-% beträgt und die Vermischung zur Reaktionsmischung bei einem Isocyanatindex von mindestens 240 erfolgt. Weiter betrifft die vorliegende Erfindung einen Polyisocyanurathartschaumstoff, erhältlich nach einem erfindungsgemäßen Verfahren.

Description

Polyisocyanurathartschaumstoff mit hoher Druckfestigkeit, geringer Wärmeleitfähigkeit und ho her Oberflächengüte
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyisocyanuratschaum- stoffen, bei dem man (a) aromatisches Polyisocyanat, (b) gegenüber Isocyanatgruppen reaktive Verbindungen, enthaltend mindestens ein Polyetherol (b1) und/oder Polyesterol (b2), wobei der zahlenmittlere Gehalt an mit Isocyanat reaktiven Wasserstoffatomen der Komponente (b1) und (b2) mindestens 1,7 beträgt, (c) Katalysator, (d) Treibmittel, (e) Flammschutzmittel, (f) gegebe nenfalls Hilfs- und Zusatzstoffe und (g) gegebenenfalls Verbindungen mit aliphatischen, hydro phoben Gruppen, die nicht unter die Definition der Verbindungen (a) bis (f) fallen, zu einer Re aktionsmischung vermischt und zum Polyisocyanurathartschaumstoff aushärten lässt, wobei Treibmittel (d) mindestens eine aliphatische, halogenierte Kohlenwasserstoffverbindung (d1), aufgebaut aus 2 bis 5 Kohlenstoffatomen, mindestens einem Wasserstoffatom und mindestens einem Fluor und/oder Chloratom und die Verbindung (d1) mindestens eine Kohlenstoff- Kohlenstoff-Doppelbindung enthält, und eine Kohlenwasserstoffverbindung mit 4 bis 8 Kohlen stoffatomen (d2) enthält und der molare Anteil von halogenierter Kohlenwasserstoffverbindung (d1) zwischen 20 und 60 mol% und der molare Anteil von Kohlenwasserstoffverbindung (d2) zwischen 40 und 80 mol-%, jeweils bezogen auf den Gesamtgehalt der Treibmittel (d1) und (d2), beträgt, und die Komponenten (b) bis (f) Verbindungen mit aliphatischen, hydrophoben Gruppen enthalten können und der Gehalt an aliphatischen, hydrophoben Gruppen, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g), maximal 4,0 Gew.-% beträgt und die Vermischung zur Reaktionsmischung bei einem Isocyanatindex von mindestens 240 erfolgt. Weiter betrifft die vorliegende Erfindung einen Polyisocyanurathartschaumstoff, erhältlich nach einem erfindungsgemäßen Verfahren.
Polyurethan-Hartschaumstoffe oder Polyisocyanurat-Hartschaumstoffe werden häufig als Dämmmaterial zur Wärmeisolation verwendet. Dabei werden die Schaumstoffe insbesondere in Verbundelementen mit mindestens einer Deckschicht eingesetzt. Die Herstellung von Verbun delementen aus insbesondere metallischen Deckschichten und einem Kern aus Schaumstoffen auf Isocyanatbasis, zumeist Polyurethan-(PUR) oder Polyisocyanurat-(PIR) Schaumstoffen, häufig auch als Sandwichelemente bezeichnet, auf kontinuierlich arbeitenden Doppelbandanla gen wird gegenwärtig in großem Umfang praktiziert. Neben Sandwichelementen zur Kühl hausisolierung gewinnen Elemente zur Gestaltung von Fassaden verschiedenster Gebäude oder als Dachelemente immer mehr an Bedeutung.
Wesentliche Anforderungen an Polyurethan- oder Polyisocyanurat-Hartschaumstoffe sind eine niedrige Wärmeleitfähigkeit, gute mechanische Eigenschaften und ein hohes flammwidriges Verhalten. Die thermischen Isolationseigenschaften geschlossenzelliger Hartschaumstoffe hän gen von zahlreichen Faktoren ab, insbesondere von der durchschnittlichen Zellgröße und der Wärmeleitfähigkeit der Zellgase. Bei der Herstellung von Sandwichelementen kommt dazu, dass die Schaumoberflächen, insbesondere die Schaumunterseite, möglichst frei von Fehlstel len sein sollten.
Besonders aufgrund ihrer sehr niedrigen Wärmeleitfähigkeiten, wurden in der Vergangenheit Fluorchlorkohlenwasserstoffe (FCKW’s) in großen Mengen als physikalische Treibmittel zur Herstellung von Polyisocyanat-basierten Hartschaumstoffen verwendet. Ihre Ozon-zerstörende Wirkung (ODP: ozon deplation potential) innerhalb der Stratosphäre ist lange Zeit bekannt, weshalb der Einsatz von FCKW’s regulatorisch nicht mehr erlaubt ist. Zunächst schienen die hydrierten Fluorchlorkohlenwasserstoffe (HFCKWs), insbesondere das R141b, eine vielver sprechende Alternative für die FCKW’s zu sein, doch auch diese Substanzklasse weist eine Ozon-zerstörende Wirkung auf und ihr Einsatz wurde daher verboten. Alternative Treibmittel, mit einer ebenfalls geringen Wärmeleitfähigkeit, wie die hydrierten Fluorkohlenwasserstoffe (HFKWs), besitzen zwar nahezu keine Ozon-zerstörende Wirkung, sind aber meist starke Treibhausgase und weisen daher einen hohen GWP-Wert (GWP: green warming potential) auf, weshalb auch der Einsatz von HFKWs als physikalische Treibmittel zur Herstellung von Po lyurethan- oder Polyisocyanurat-Hartschaumstoffen nicht sinnvoll ist.
Aufgrund der oben beschriebenen Nachteile der FCKWs und HFKWs, werden heute häufig Kohlenwasserstoffe als physikalische Treibmittel zur Herstellung von Polyisocyanat-basierten Hartschaumstoffen eingesetzt. Eine zentrale Bedeutung besitzen hierbei Pentanisomere, wel che besonders häufig als physikalische Treibmittel bei der kontinuierlichen und diskontinuierli chen Herstellung von Hartschaumstoffverbundelementen eingesetzt werden. Für die kontinuier liche Herstellung von Polyurethan- oder Polyisocyanurat Sandwichelementen hat sich im Laufe der Zeit insbesondere aufgrund von wirtschaftlichen Gründen, die Verwendung von n-Pentan als physikalisches Treibmittel durchgesetzt.
Um eine verbesserte Verarbeitbarkeit der Polyurethan- oder Polyisocyanurat Reaktionsgemi sche in Kombination mit Kohlenwasserstoffen zu erreichen, wurden Polyolkomponenten entwi ckelt, die durch den Einbau von hydrophoben Verbindungen in Polyolstrukturen erhalten wer den. So beschreibt beispielsweise EP 2804886 den Einbau von Fettsäurestrukturen in Polyes terpolyole. Dazu können beispielsweise reine Fettsäuren oder Fettsäurederivate, wie z.B. Pflanzenöle als Edukte bei der Polyester- oder Polyetherpolyol Herstellung eingesetzt werden. Die Fettsäurederivate werden hierbei mittels einer Umesterungsreaktion während der Polykon densation, in die entstehenden Polyesterpolyole eingebaut. Eine weitere Möglichkeit zur hydro- phobierung von Polyesterpolyolen besteht beispielsweise in der Verwendung dimerer Fettsäu ren als Baustein zur Polyestersynthese (EP 3140333) oder in der Verwendung von hydropho ben Alkylalkoholen, wie z.B. Nonylphenol, oder Fettalkoholen und deren Derivate. EP 2820059 beschreibt die Herstellung solcher Polyetheroie durch den anteiligen Einsatz von Fettsäuren oder Fettsäurederivaten in Starterkomponenten, die zur Alkoxilierung verwendet werden. Neben dem Einbau von hydrophoben Strukturen in Polyole, kann eine verbesserte Verarbeitbarkeit von Kohlenwasserstoff-getriebenen Polyurethan- oder Polyisocyanurathaltigen Reaktionsgemischen auch durch den unmittelbaren Einsatz von hydrophoben Verbindungen wie z.B. Pflanzenölen, Fettsäuren, Fettsäurederivaten oder Fettalkoholen in Polyolkomponenten erreicht werden. So wird beispielsweise in EP 1023351 die additive Verwendung von hydrophoben Verbindungen wie z.B. Carbonsäuren (insbesondere Fettsäuren), Carbonsäureestern (insbesondere Fettsäu reestern) und Alkylalkoholen (insbesondere Fettalkoholen) in Polyolharzmischungen zur Her stellung von Polyurethan- oder Polyisocyanurat-haltigen Hartschaumstoffen beschrieben. EP 3294786 beschreibt beispielsweise die Verwendung von alkoxilierten Pflanzenölen in Polyol harzmischungen zur Herstellung von Hartschaumstoffen. EP 0742241 beschreibt die Verwen dung eines hydrophoben Kompatibilisierungsmittels, wie z.B. Nonylphenol, zur Verbesserung der Verarbeitbarkeit von Kohlenwasserstoffgetriebenen Polyolkomponenten.
Durch den Wechsel von n-Pentan auf das physikalische Treibmittel Cyclopentan, lassen sich aus Polyurethan- oder Polyisocyanurat Reaktionsgemischen zwar Hartschaumstoffe mit gerin geren Wärmeleitfähigkeiten hersteilen, allerdings bewirkt der Wechsel zum Cyclopentan auch eine starke Verschlechterung der mechanischen Schaumeigenschaften, insbesondere der Druckfestigkeit und der Dimensionsstabilitäten.
Der Wechsel von den nicht brennbaren FCKW’s und HFKWs zu den brennbaren Kohlenwas serstoffen erfordert eine signifikante Erhöhung der Flammschutzmittelanteile innerhalb der Re aktionskomponenten, um vergleichbar gute Brandfestigkeiten der Hartschaumstoffe zu errei chen. Aus ökotoxikologischen Gründen ist eine Erhöhung der Flammschutzmittelmengen nicht wünschenswert. Im direkten Vergleich mit den FCKWs und HFKWs besitzen die Kohlenwas serstoffe außerdem deutlich höhere Wärmeleitfähigkeitswerte, weshalb der alleinige Einsatz von Kohlenwasserstoffen als physikalische Treibmittel zur Herstellung von Hartschäumen mit verbesserten thermischen Isolationsverhalten, ebenfalls nicht sinnvoll ist.
Nicht brennbare Hydrofluorolefine (HFO’s), wie Hydrofluoropropene oder Hydrochlorofluoropro- pene sind geeignete Kandidaten um die HFKWs zu ersetzen, da sie neben einer geringen Wärmeleitfähigkeit nur ein sehr geringes ODP und GWP aufweisen. Ihre Verwendung in Reak tionsgemischen zur Herstellung von geschlossenzelligen Polyurethan- oder Polyisocyanurat- Hartschaumstoffen ist in zahlreichen Patentveröffentlichungen beschrieben. Beispielsweise sei en folgende Schriften genannt: EP 2154223, EP 2739676, EP 2513023, US 20180264303, US9738768, US 2013/0149452, US 20150322225.
Unter den Verbindungen der HFO Treibmittel, haben insbesondere die beiden Substanzen 1- Chlor-3,3,3-trifluorpropen [1233zd(E))] und 1,1,1,4,4,4-Hexafluor-2-buten [1336mzz(Z)] inner halb der letzten Jahre wichtige kommerzielle Bedeutung erlangt. Ein Nachteil dieser Treibmittel besteht darin, dass sie die Lagerstabilität von Polyolkomponenten stark herabsetzen können, wenn sie zusammen mit speziellen Amin-Katalysatoren und silikonhaltigen Schaumstabilisato ren gelagert werden. Bei der Herstellung kontinuierlicher Sandwichelemente lässt sich das Problem der Lagerstabilität umgehen, indem z.B. entweder die Aminkatalysatoren, die Schaumstabilisatoren oder die HFO Treibmittel als separate Komponenten zu der Reaktionsmi schung dosiert werden, weitere Möglichkeiten zur Verbesserung der Lagerstabilität ist der Ein satz spezieller Katalysatoren und spezieller Schaumstabilisatoren.
Neben dem Nachteil der Lagerstabilität konnte gezeigt werden, dass insbesondere der Einsatz von 1-Chlor-3,3,3-trifluorpropen eine Verschlechterung der Druckfestigkeiten des Schaums be wirkt, wie es auch beim Cyclopentan der Fall ist. Die Verwendung von zu großen Mengen an 1,1,1,4,4,4-Hexafluor-2-buten führt besonders im kontinuierlichen Doppelbandverfahren häufig zu einem Rückgang der Schaumqualitäten unterhalb der Deckschichten.
WO2019096763 beschreibt ein eine Polyurethanschaum-Sandwichelement zur Wärmedäm mung und ein Verfahren zur Herstellung des Sandwichelements. Das Treibmittel zur Herstel lung des Polyurethanschaums umfasst cis-l,l,l,4,4,4-Hexafluor-2-buten (HF0-I336mzz-Z) und Cyclopentan. Die Polyurethanschaum-Verbundplatte gemäß der vorliegenden Erfindung zeigt sowohl eine gute Dämmleistung als auch mechanische Festigkeit. Isocyanuratschaumstoffe, insbesondere Schaumstoffe bei einem Isocyanatindex von größer als 220 sind nicht offenbart.
Die Beispiele 1 und 2 aus W02018218102 beschreiben Polyurethanhartschaumstoffe herge stellt unter der Verwendung von Kaliumoctoat (Dabco® K15), einem Flammschutzmittel (TMCP) und einer Mischung aus HFO-1336mzz(Z)(cis-1, 1, 1,4,4,4-Hexafluoro-2-buten und Cyclopen tan in einem molaren Verhältnis von 50:50 bzw. 25:75. Als Polyol wird Stepanpol PS 2352 ein gesetzt, ein hydrophobes Polyesterol mit einem Anteil von 7 Gew.-% Fettsäure und 2,5 Gew.-% Nonylphenol.
Weiter ist bekannt, dass Polyisocyanuratschaumstoffe flammfester sind als Polyurethan schaumstoffe. WO2016184433 beschreibt in Probe 3 aus Beispiel 2 die Herstellung eines Polyurethan schaumstoffs unter der Verwendung von Kaliumoctoat, einem Flammschutzmittel und einer Mischung aus HCFO-1233zd und Cyclopentan in einem molaren Verhältnis von ca. 35:65. Als Polyol wird das zuckerbasierte Polyetherol GR 835G der Firma Sinopec mit einer OH-Zahl von 450 mg KOH/g eingesetzt. Dadurch ergibt sich ein Isocyanatindex von 210.
Aufgabe der Erfindung war es daher das Eigenschaftsprofil aus den vorgenannten Eigenschaf ten zu verbessern und insbesondere ein neues Verfahren zu entwickeln, welches für die Her stellung von Polyisocyanurat-Hartschaumstoffen genutzt werden kann und die Herstellung op timierter Hartschaumstoffe mit hoher Flammfestigkeit und signifikant reduzierter Wärmeleitfä higkeit ermöglicht, die trotz verbesserter thermischer Isolationseigenschaften, sehr gute me chanische Druckfestigkeiten aufweisen. Weiter war es Aufgabe, ein solches Verfahren zu ent wickeln, das für die Herstellung von Polyisocyanurat-Sandwichelementen, insbesondere im kontinuierlichen Herstellverfahren, geeignet ist und welches zu Sandwichelementen mit sehr geringen Wärmeleitfähigkeiten, einer hohen Druckfestigkeit sowie einer hohen Flammfestigkeit führt, welche exzellente Schaumoberflächenqualitäten, insbesondere zur unteren Deckschicht hin, besitzen.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Polyisocyanurathart- schaumstoffen, bei dem man (a) aromatisches Polyisocyanat, (b) gegenüber Isocyanatgruppen reaktive Verbindungen, enthaltend mindestens ein Polyetherol (b1) und/oder Polyesterol (b2), wobei der zahlenmittlere Gehalt an mit Isocyanat reaktiven Wasserstoffatomen der Komponen te (b1) und (b2) mindestens 1,7 beträgt, (c) Katalysator, (d) Treibmittel, (e) Flammschutzmittel, (f) gegebenenfalls Hilfs- und Zusatzstoffe und (g) gegebenenfalls Verbindungen mit aliphati schen, hydrophoben Gruppen, die nicht unter die Definition der Verbindungen (a) bis (f) fallen, zu einer Reaktionsmischung vermischt und zum Polyisocyanat-basierten Hartschaumstoff aus härten lässt, wobei Treibmittel (d) mindestens eine aliphatische, halogenierte Kohlenwasser stoffverbindung (d1), aufgebaut aus 2 bis 5 Kohlenstoffatomen, mindestens einem Wasserstoff atom und mindestens einem Fluor und/oder Chloratom und die Verbindung (d1) mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung enthält, und eine Kohlenwasserstoffverbindung mit 4 bis 8 Kohlenstoffatomen (d2) enthält und der molare Anteil von halogenierter Kohlenwasser stoffverbindung (d1) zwischen 20 und 60 mol% und der molare Anteil von Kohlenwasserstoff verbindung (d2) zwischen 40 und 80 mol-%, jeweils bezogen auf den Gesamtgehalt der Treib mittel (d1) und (d2), beträgt, und die Komponenten (b) bis (f) Verbindungen mit aliphatischen, hydrophoben Gruppen enthalten können und der Gehalt an aliphatischen, hydrophoben Grup pen, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g), maximal 4,0 Gew.-% be- trägt und die Vermischung zur Reaktionsmischung bei einem Isocyanatindex von mindestens 240 erfolgt. Weiter betrifft die vorliegende Erfindung einen Polyisocyanurat-Hartschaumstoff, erhältlich nach einem erfindungsgemäßen Verfahren.
Unter einem Polyisocyanurathartschaum wird in der Regel ein Schaum verstanden, der sowohl Urethan- als auch Isocyanuratgruppen enthält. Im Zusammenhang mit der Erfindung soll der Begriff Polyurethan-Hartschaum auch Polyisocyanurat-Hartschaum umfassen, wobei die Her stellung von Polyisocyanurat-Schaumstoffe auf einem Isocyanatindex von mindestens 180 ba siert. Dabei ist unter dem Isocyanatindex das Verhältnis an Isocyanatgruppen zu gegenüber Isocyanatreaktiven Gruppen zu verstehen, multipliziert mit 100. Ein Isocyanatindex von 100 entspricht dabei einem äquimolaren Verhältnis der eingesetzten Isocyanatgruppen der Kompo nente (a) zu den mit Isocyanat reaktiven Gruppen der Komponenten (b) bis (g).
Polyisocyaurathartschaumstoffe gemäß der vorliegenden Erfindung weisen eine Druckspan nung bei 10 % Stauchung von größer gleich 80 kPa, bevorzugt größer gleich 120 kPa, beson ders bevorzugt größer gleich 140 kPa auf. Weiterhin verfügt der erfindungsgemäße Isocyanat- basierte Hartschaumstoff nach DIN ISO 4590 über eine Geschlossenzelligkeit von größer 80%, bevorzugt größer 90 %. Weitere Details zu erfindungsgemäßen Polyisocyanurathartschaum- stoffen finden sich im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auf lage 1993, Kapitel 6, insbesondere Kapitel 6.2.2 und 6.5.2.2.
Dabei ist es erfindungswesentlich, dass die Komponenten (b) bis (g) 0 bis maximal 4,0 Gew.-%, das heißt 0 bis 4 Gew.-%, vorzugsweise von 0 bis 3,5 Gew.-% und insbesondere 0,1 bis 3,0 Gew.-% aliphatische hydrophobe Gruppen, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g), enthalten. Im Rahmen der vorliegenden Erfindung wird unter einer hydrophoben Gruppe eine aliphatische Kohlenwasserstoffgruppen mit vorzugsweise mehr als 6, besonders bevorzugt mehr als 8 und weniger als 100 und insbesondere mindestens 10 und höchstens 50 direkt benachbarten Kohlenstoffatomen verstanden. Dabei können die benachbarten Kohlen stoffatome neben Kohlenstoff-Kohlenstoff-Einfachbindungen auch durch Kohlenstoff- Kohlenstoff-Doppelbindungen verbunden sein. Dabei sind die C-Atome der hydrophoben Grup pe direkt miteinander verbunden und nicht beispielsweise durch Heteroatome unterbrochen. Wasserstoffatome der Kohlenwasserstoffe können dagegen substituiert sein, beispielsweise durch Halogenatome, OH-Gruppen oder Carbonsäuregruppen. Vorzugsweise sind die Kohlen wasserstoffe der erfindungsgemäßen hydrophoben Gruppen nicht substituiert.
Werden Verbindungen mit hydrophoben Gruppen eingesetzt, können diese Teil einer der Ver bindungen (b) bis (f) sein oder als separate Verbindungen (g), die hydrophobe Gruppen enthal- ten, eingesetzt werden. Zur Berechnung des Anteils der hydrophoben Gruppen wird ausschließ lich das Gewicht der hydrophoben Gruppe herangezogen, auch eventuell vorhandene Substi tuenten, die sich von Wasserstoff unterscheiden, wie OH-Gruppen oder Halogengruppen, wer den bei der Anteilsberechnung nicht berücksichtigt.
Die Polyisocyanate (a) sind die in der Technik bekannten aromatischen mehrwertigen Isocyana- te. Solche polyfunktionellen Isocyanate sind bekannt und können mit an sich bekannten Metho den hergestellt werden. Die polyfunktionellen Isocyanate können insbesondere auch als Gemi sche verwendet werden, so dass die Komponente (a) in diesem Fall verschiedene polyfunktio nelle Isocyanate enthält. Polyisocyanat (a) ist ein polyfunktionelles Isocyanat mit zwei (im Fol genden auch als Diisocyanate bezeichnet) oder mehr als zwei Isocyanatgruppen pro Molekül.
Insbesondere werden die Isocyanate (a) aus der Gruppe ausgewählt, die besteht aus aromati schen Polyisocyanaten, wie 2,4- und 2,6-Toluoldiisocyanat und den entsprechenden Isomeren gemischen, 4,4'-, 2,4'- und 2,2'-Diphenylmethandiisocyanat und die entsprechenden Isomeren gemischen, Gemische aus 4,4'- und 2,4'-Diphenylmethandiisocyanaten, Polyphenylpolymethyl- en-Polyisocyanate, Mischungen aus 4,4'-, 2,4'- und 2,2'-Diphenylmethandiisocyanaten und Po- lyphenylpolyethylen-Polyisocyanaten (Roh-MDI) und Mischungen aus Roh-MDI und Toluol- diisocyanaten.
Besonders geeignet sind 2,2'-, 2,4'- oder 4,4'-Diphenylmethandiisocyanat (MDI) sowie Mi schungen von zwei oder drei dieser Isomeren, 1,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluoldiisocyanat (TDI), 3,3'-Dimethyldiphenyldiisocyanat, 1,2-Diphenylethan-Diisocyanat und/oder p-Phenylen-Diisocyanat (PPDI).
Häufig werden auch modifizierte Polyisocyanate, d.h. Produkte, die durch die chemische Reak tion von organischen Polyisocyanaten erhalten werden und mindestens zwei reaktive Iso cyanatgruppen pro Molekül enthalten, verwendet. Besonders erwähnt werden Polyisocyanate, die Ester-, Harnstoff-, Biuret-, Allophanat-, Carbodiimid-, Isocyanurat-, Uretdion-, Carbamat- und/oder Urethangruppen enthalten, häufig auch zusammen mit nicht umgesetzten Polyisocya naten.
Die Polyisocyanate der Komponente (a) enthalten besonders bevorzugt 2, 2'-MDI oder 2,4'-MDI oder 4,4'-MDI oder Gemische aus mindestens zwei dieser Isocyanate (auch monomeres Diphenylmethan oder MMDI genannt) oder Oligomeres MDI, das aus höherwertigen Homologen des MDI besteht, die mindestens 3 aromatische Kerne und eine Funktionalität von mindestens 3 aufweisen, oder Mischungen von zwei oder mehr der oben genannten Diphenylmethandiiso- cyanate oder rohes MDI, das bei der Herstellung von MDI erhalten wird, oder vorzugsweise Mischungen aus mindestens einem Oligomer des MDI und mindestens einem der oben ge nannten niedermolekularen MDI-Derivate 2,2'-MDI, 2,4'-MDI oder 4,4'-MDI (auch als polymeres MDI bezeichnet). In der Regel werden die Isomere und Homologe des MDI durch Destillation von Roh-MDI gewonnen.
Polymeres MDI enthält neben dem di-nuklearen MDI (MMDI) vorzugsweise ein oder mehrere mehrkernige Kondensationsprodukte des MDI mit einer Funktionalität von mehr als 2, insbe sondere 3 oder 4 oder 5. Polymeres MDI ist bekannt und wird oft als Polyphenyl-Polymethylen- Polyisocyanat bezeichnet.
Die mittlere (durchschnittliche) Funktionalität eines Polyisocyanats, das polymeres MDI enthält, kann im Bereich von etwa 2,2 bis etwa 4, insbesondere von 2,4 bis 3,8 und vor allem von 2,6 bis 3,0 variieren. Ein solches Gemisch aus polyfunktionellen Isocyanaten auf MDI-Basis mit unterschiedlichen Funktionalitäten ist insbesondere das bei der Herstellung von MDI als Zwi schenprodukt erhaltene Roh-MDI.
Polyfunktionelle Isocyanate oder Mischungen aus mehreren polyfunktionellen Isocyanaten auf MDI-Basis sind bekannt und werden von der BASF Polyurethanes GmbH unter dem Handels namen Lupranat® M20, Lupranat® M50, oder Lupranat® M70 kommerziell angeboten.
Die Komponente (a) enthält vorzugsweise mindestens 70, besonders bevorzugt mindestens 90 und insbesondere 100 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (a), eines oder mehrerer Isocyanate, ausgewählt aus der Gruppe bestehend aus 2,2'-MDI, 2,4'-MDI, 4,4'- MDI und Oligomeren des MDI. Der Gehalt an oligomerem MDI beträgt vorzugsweise mindes tens 20 Gewichtsprozent, besonders bevorzugt mehr als 30 bis weniger als 80 Gewichtspro zent, bezogen auf das Gesamtgewicht der Komponente (a).
Die Viskosität der verwendeten Komponente (a) kann in einem weiten Bereich variieren. Die Komponente (a) hat vorzugsweise eine Viskosität von 100 bis 3000 mPa*s, besonders bevor zugt von 100 bis 1000 mPa*s, besonders bevorzugt von 100 bis 800 mPa*s, besonders bevor zugt von 200 bis 700 mPa*s und besonders bevorzugt von 400 bis 650 mPa*s bei 25 °C. Die Viskosität des Bestandteils (a) kann in einem weiten Bereich variieren.
Als gegenüber Isocyanatgruppen reaktive Verbindungen (b) können alle in der Polyurethan chemie bekannten Verbindungen mit gegenüber Isocyanat reaktiven Gruppen eingesetzt wer den, vorzugsweise Verbindungen mit mindestens einer Hydroxylgruppe, -NH-Gruppe, oder Nhh-Gruppe oder Carbonsäuregruppe, vorzugsweise mit mindestens einer NH2 oder OH- Gruppe und insbesondere mindestens einer -OH-Gruppe. Die Funktionalität gegenüber Iso- cyanatgruppen kann dabei im Bereich von 1 bis 8, vorzugsweise 2 bis 8, liegen. Die gegenüber Isocyanatgruppen reaktiven Verbindungen weisen Polyetherpolyole (b1), Polyesterpolyole (b2) oder Mischungen daraus, vorzugsweise Polyesteroie (b2) oder Mischungen aus Polyetheroien (b1) und Polyesteroien (b2) auf. Vorzugsweise weisen Polyetheroie (b1) und Polyesteroie (b2) ein zahlenmittleres Molekulargewicht von 150 bis 15.000 g/mol, bevorzugt 150 bis 5.000 g/mol und besonders bevorzugt 200 bis 2.000 g/mol auf. Neben Polyetheroien und Polyesteroien können beispielsweise auch in der Polyurethanchemie bekannte niedermolekulare Kettenver- längerungs- und/oder Vernetzungsmittel eingesetzt werden. Vorzugsweise weise die Verbin dungen (b) ein zahlenmittleres Molekulargewicht von 62 bis 15000 g/mol auf. Vorzugsweise weisen die Verbindungen (b) eine zahlenmittlere Funktionalität von mindestens 1,7, besonders bevorzugt mindestens 2, auf. Die Polyetheroie (b1) und/oder Polyesteroie (b2) weisen erfin dungsgemäß eine zahlenmittlere Funktionalität von mindestens 1,7, mehr bevorzugt von min destens 2,0 auf.
Polyetheroie (b1) werden beispielsweise hergestellt aus Epoxiden, wie Propylenoxid und/oder Ethylenoxid, oder aus Tetrahydrofuran mit wasserstoffaktiven Starterverbindungen, wie aliphati schen Alkoholen, Phenolen, Aminen, Carbonsäuren, Wasser oder Verbindungen auf Natur stoffbasis, wie Saccharose, Sorbit oder Mannit, unter Verwendung eines Katalysators. Zu nen nen sind hier basische Katalysatoren oder Doppelmetallcyanidkatalysatoren, wie beispielweise in PCT/EP2005/010124, EP 90444 oder WO 05/090440 beschrieben.
Polyesteroie (b2) werden z.B. hergestellt aus aliphatischen oder aromatischen Dicarbonsäuren und mehrwertigen Alkoholen, Polythioetherpolyolen, Polyesteramiden, hydroxylgruppenhaltigen Polyacetalen und/oder hydroxylgruppenhaltigen aliphatischen Polycarbonaten, vorzugsweise in Gegenwart eines Veresterungskatalysators. Weitere mögliche Polyole sind beispielsweise im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.1 angegeben.
Die gegenüber Isocyanatgruppen reaktiven Verbindungen (b) enthalten erfindungsgemäß ein Polyetherpolyol (b1) und/oder ein Polyesterpolyol (b2), vorzugsweise ein Polyesterpolyol (b2), gegebenenfalls in Kombination mit einem Polyetherpolyol (b1). Vorzugsweise beträgt dabei der Gewichtsanteil von Polyetherol (b1) 0 bis 30 Gew.-%, besonders bevorzugt 0 bis 20 und insbe sondere 1 bis 15 Gew.-% und von Polyesterol (b2) vorzugsweise 70 bis 100, besonders bevor zugt 80 bis 100 und insbesondere 85 bis 99 Gew.-%, jeweils bezogen auf das Gesamtgewicht an Polyetherol (b1) und Polyesterol (b2). Dabei sind im Rahmen der vorliegenden Offenbarung die Begriffe „Polyesterpolyol“ und „Polyesterol“ gleichbedeutend, ebenso die Begriffe „Po lyetherpolyol“ und „Polyetherol“.
Die Polyetheroie (b1) werden nach bekannten Verfahren, beispielsweise durch anionische Po lymerisation von Alkylenoxiden unter Zusatz mindestens eines Startermoleküls, das 1 bis 8, vorzugsweise 2 bis 6 reaktive Wasserstoffatome gebunden enthält, oder einer Startermolekül mischung, welche gemittelt über alle vorhandenen Starter 1,5 bis 8, vorzugsweise 2 bis 6 reak tive Wasserstoffatome gebunden enthält in Gegenwart von Katalysatoren erhalten. Werden Mischungen aus Startermolekülen mit unterschiedlicher Funktionalität eingesetzt, können ge- brochenzahlige Funktionalitäten erhalten werden. Einflüsse auf die Funktionalität, beispielswei se durch Nebenreaktionen, werden bei der nominalen Funktionalität nicht berücksichtigt. Als Katalysatoren können Alkalihydroxide, wie Natrium- oder Kaliumhydroxid oder Alkalialkoholate, wie Natriummethylat, Natrium- oder Kaliumethylat oder Kaliumisopropylat, oder bei kationischer Polymerisation Lewis-Säuren, wie Antimonpentachlorid, Bortrifluorid-Etherat oder Bleicherde eingesetzt werden. Auch aminische Alkoxylierungs-Katalysatoren, wie Dimethylethanolamin (DMEOA), Imidazol und Imidazolderivate können eingesetzt werden. Weiterhin können als Ka talysatoren auch Doppelmetallcyanidverbindungen, sogenannte DMC-Katalysatoren, eingesetzt werden.
Vorzugsweise werden als Alkylenoxide eine oder mehrere Verbindungen mit 2 bis 4 Kohlen stoffatomen im Alkylenrest, wie Tetrahydrofuran, 1,2-Propylenoxid, Ethylenoxid, 1,2- bzw. 2,3- Butylenoxid, jeweils alleine oder in Form von Mischungen eingesetzt. Vorzugsweise verwendet werden Ethylenoxid und/oder 1,2-Propylenoxid, besonders bevorzugt Ethylenoxid.
Als Startermoleküle kommen Hydroxylgruppen- oder Amingruppenhaltige Verbindungen, bei spielsweise Ethylenglycol, Diethylenglycol, Triethylenglycol, 1,2-Propandiol, 1,3-Propandiol, Bisphenol-A, Bisphenol-F, Glycerin, Trimethylolpropan, Pentaerythrit, Zuckerderivate, wie Sac charose, Hexitderivate, wie Sorbit, Methylamin, Ethylamin, Isopropylamin, Butylamin, Benzyla min, Anilin, Toluidin, Toluoldiamin (TDA), Naphthylamin, Ethylendiamin, Methylendianilin, 2,2 - Diaminodiphenylmethan (2,2-MDA) 2,4'-Diaminodiphenylmethan (2,4-MDA), 4,4'- Diaminodiphenylmethan (4,4-MDA), Diethylentriamin, 4,4'-Methylendianilin, 1,3, -Propandiamin, 1,6-Hexandiamin, Ethanolamin, Diethanolamin, Triethanolamin sowie andere zwei oder mehr wertige Alkohole oder ein oder mehrwertige Amine oder Wasser in Betracht. Da die hochfunkti onellen Verbindungen bei den üblichen Reaktionsbedingungen der Alkoxylierung oftmals in fes ter Form vorliegen, ist es allgemein üblich diese gemeinsam mit Ko-Initiatoren zu alkoxylieren. Als Ko-Initiatoren eignen sich z.B. Wasser, mehrfunktionelle niedere Alkohole, z.B. Glyzerin, Trimethylolpropan, Pentaerythrit, Diethylenglycol, Ethylenglycol, Propylenglycol und deren Ho- mologe. Als weitere Ko-Initiatoren kommen beispielsweise in Betracht: organische Fettsäuren oder monofunktionelle Fettalkohole, Fettsäuremonoester oder Fettsäuremethylester wie z.B. Ölsäure, Stearinsäure, Ölsäuremethylester, Stearinsäuremethylester oder Biodiesel, welche dazu dienen, die Treibmittellöslichkeit bei der Herstellung von Polyisocyanurathartschaumstof- fen zu verbessern.
Bevorzugte Startermoleküle zur Herstellung der Polyetherpolyole (b1) sind Sorbitol, Saccharo se, Ethylendiamin, TDA, Trimethylolpropan, Pentaerythrit, Glyzerin, Biodiesel, Nonylphenol, Ethylenglycol, und Diethylenglycol. Weiter bevorzugte Startermoleküle sind alle Starter oder Startermischungen mit einer mittleren Gesamtfunktionalität von < 3, besonders bevorzugte Gly cerin, Trimethylolpropan, Biodiesel, Nonylphenol, Ethylenglycol, Diethylenglycol, Propylenglycol und Bisphenol-A, insbesondere Ethylenglycol, Diethylenglycol und Glycerin.
Die im Rahmen von Komponente (b1) eingesetzten Polyetherpolyole weisen vorzugsweise eine mittlere Funktionalität von 1,5 bis 6 und insbesondere von 2,0 bis 4,0 und zahlenmittlere Mole kulargewichte von vorzugsweise 150 bis 3000, besonders bevorzugt von 150 bis 1500 und ins besondere von 250 bis 800 g/mol auf. Die OH Zahl der Polyetherpolyole der Komponente (b1) beträgt vorzugsweise von 1200 bis 50, vorzugsweise von 600 bis 100 und insbesondere von 300 bis 150 mg KOH/g.
Geeignete Polyesterpolyole (b2) können aus organischen Dicarbonsäuren mit 2 bis 12 Kohlen stoffatomen, vorzugsweise aromatischen, oder Gemischen aus aromatischen und aliphatischen Dicarbonsäuren und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoff atomen, vorzugsweise 2 bis 6 Kohlenstoffatomen, hergestellt werden.
Als Dicarbonsäuren kommen insbesondere in Betracht: Bernsteinsäure, Glutarsäure, Adipin säure, Korksäure, Azelainsäure, Sebazinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäu re, Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z.B. Dicarbonsäureester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride, eingesetzt werden. Als aromati sche Dicarbonsäuren oder Säurederivate werden vorzugsweise Phthalsäure, Phthalsäurean hydrid, Terephthalsäure und/oder Isophthalsäure im Gemisch oder allein verwendet. Als alipha tische Dicarbonsäuren werden vorzugsweise Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure in Mengenverhältnissen von beispielsweise 20 bis 35 : 35 bis 50 : 20 bis 32 Gew.-Teilen, und insbesondere Adipinsäure verwendet. Besonders bevorzugt werden als Poly esteroie (b2) ausschließlich solche eingesetzt, die unter Einsatz von ausschließlich aromati- scher Dicarbonsäure oder deren Derivate erhalten werden. Bevorzugt eingesetzt als aromati sche Dicarbonsäure wird dabei mindestens eine Verbindung, die aus der Gruppe bestehend aus Terephthalsäure, Dimethylterephthalat (DMT), Polyethylenterephthalat (PET), Phthalsäure, Phthalsäureanhydrid (PSA) und Isophthalsäure ausgewählt ist, besonders bevorzugt mindes tens eine Verbindung aus der Gruppe bestehend aus Terephthalsäure, Dimethylterephthalat (DMT), Polyethylenterephthalat (PET) und Phthalsäureanhydrid (PSA) und insbesondere aus Phthalsäure und/oder Phthalsäureanhydrid.
Beispiele für zwei- und mehrwertige Alkohole, insbesondere Diole sind: Monoethylenglycol, Diethylenglykol, Triethylenglycol, Polyethylenglycol, 1,2- bzw. 1,3-Propandiol, Dipropylenglykol, Polyopropylenglycol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1 ,10-Decandiol, Glycerin, Trimethylolpropan und Pentaerythritol, sowie Alkoxylate derselben Starter. Vorzugsweise ver wendet werden Monoethylenglycol, Diethylenglykol, Triethylenglycol, 1 ,2-bzw. 1,3-Propandiol, Dipropylenglycol, sowie Ethoxylate derselben Starter, beispielsweise ethoxyliertes Glycerin, oder Mischungen aus mindestens einem der genannten Diole. Insbesondere verwendet werden Monoethylenglycol, Diethylenglycol, Glycerin, sowie Ethoxylate derselben Starter, oder Mi schungen aus mindestens zwei der genannten Diole im speziellen Diethylenglyol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z.B. e-Caprolacton oder Hydroxycarbon- säuren, z.B. w-Hydroxycapronsäure.
Zur Herstellung der Polyesterpolyole (b2) können die aliphatischen und aromatischen Polycar bonsäuren und/oder -derivate und mehrwertigen Alkohole katalysatorfrei oder vorzugsweise in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inert gas wie Stickstoff in der Schmelze bei Temperaturen von 150 bis 280 °C, vorzugsweise 180 bis 260 °C gegebenenfalls unter vermindertem Druck bis zu der gewünschten Säurezahl, die vor teilhafterweise kleiner als 10, vorzugsweise kleiner als 2 ist, polykondensiert werden. Als Veresterungskatalysatoren kommen beispielsweise Eisen-, Cadmium-, Kobalt-, Blei-, Zink-, Antimon-, Magnesium-, Titan- und Zinnkatalysatoren in Form von Metallen, Metalloxiden oder Metallsalzen in Betracht. Die Polykondensation kann jedoch auch in flüssiger Phase in Gegen wart von Verdünnungs- und/oder Schleppmitteln, wie z.B. Benzol, Toluol, Xylol oder Chlorben zol, zur azeotropen Abdestillation des Kondensationswassers durchgeführt werden.
Zur Herstellung der Polyesterpolyole (b2) werden die organischen Polycarbonsäuren und/oder - derivate und mehrwertigen Alkohole vorteilhafterweise im Molverhältnis von 1 : 1 bis 2,2, vor zugsweise 1 : 1,05 bis 2,1 und besonders bevorzugt 1 : 1,1 bis 2,0 polykondensiert. Die erhaltenen Polyesterpolyole (b2) weisen im Allgemeinen ein zahlenmittleres Molekularge wicht von 200 bis 3000, vorzugsweise 300 bis 1000 und insbesondere 400 bis 800 auf.
Sind in der Komponente (b) Verbindungen mit hydrophoben Gruppen enthalten, weisen die Verbindungen, neben mindestens einer hydrophoben Gruppe, des Weiteren mindestens eine gegenüber Isocyanatgruppen reaktive Gruppe auf, beispielsweise eine Säuregruppe, eine Ami nogruppe oder eine Hydroxylgruppe. Dabei können diese Bestandteile der Polyetheroie (b1) oder der Polyesteroie (b2) sein, alternativ oder zusätzlich können aber auch separate Verbin dungen eingesetzt werden, die sowohl eine oder mehrere gegenüber Isocyanaten reaktive Gruppen als auch eine oder mehrere hydrophobe Gruppen aufweisen. Sind die hydrophoben Gruppen Bestandteil der Polyetheroie (b1) oder Polyesteroie (b2) können diese über bekannte Reaktionen, wie Veresterung, Umesterung oder Alkoxylierung in die Polyole (b1) oder (b2) ein gebaut werden. Dabei weisen die Ausgangsverbindungen mit hydrophoben Gruppen, die in Polyole (b1) oder (b2) eingebaut werden, im Allgemeinen wenigstens eine Gruppe auf, die verestert, umgeestert, oder alkoxyliert werden kann, wie etwa eine Carbonsäurgruppe, eine Carbonsäureestergruppe, eine Carbonsäureamidgruppe, eine Carbonsäureanhydridgruppe, eine Hydroxylgruppe, oder eine primäre oder sekundäre Aminogruppe.
Verbindungen mit hydrophoben Gruppen der Komponente (b), die nicht unter die Definition der Polyetheroie (b1) oder Polyesteroie (b2) fallen, sind beispielsweise hydroxylfunktionelle hydro phobe Substanzen wie Alkylalkohole, Fettalkohole oder hydroxylfunktionalisierte fettchemische Verbindungen. Beispiele für solche Alkylalkohole und Fettalkohole sind Octyl- Nonyl- Decyl- Undecyl, Dodecyl, Oleyl-, Cetyl-, Isodecyl-, Tridecyl-, Lauryl- und gemischte C12-C14-Alkohole, 2-Ethylhexanol, Alkyphenole mit > 6 Kohlenstoffatomen im Alkylrest, wie z.B. Nonylphenol, Oxoalkohole mit > 6 Kohlenstoffatomen, die durch Hydroformylierung von a-Olefinen und weite ren Umsetzungen erhalten werden können, Guerbetalkohole mit > 6 Kohlenstoffatomen, sowie Gemische verschiedener Alkyl- und Fettalkohole.
Falls hydroxyfunktionelle Verbindungen mit hydrophoben Gruppen eingesetzt werden, werden vorzugsweise eingesetzt: Rizinusöl, Türkischrotöl, mit Hydroxylgruppen modifizierte Öle wie Traubenkernöl, Schwarzkümmelöl, Kürbiskernöl, Borretschsamenöl, Sojaöl, Weizenkeimöl, Rapsöl, Sonnenblumenöl, Erdnussöl, Aprikosenkernöl, Pistazienkernöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sanddornöl, Sesamöl, Haselnussöl, Nachtkerzenöl, Wildrosenöl, Hanföl, Distelöl, Walnussöl, mit Hydroxylgruppen modifizierte Fettsäureester auf Basis von My- ristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, E- rucasäure, Nervonsäure, Linolsäure, Linolensäure, Stearidonsäure, Arachidonsäure, Timno- donsäure, Clupanodonsäure, Cervonsäure oder Mischungen aus mindestens zwei dieser Ver bindungen.
Eine weitere Gruppe von hydroxyfunktionalisierten fettchemischen Verbindungen kann durch Ringöffnung epoxidierter Fettsäureester bei gleichzeitiger Umsetzung mit Alkoholen und gege benenfalls folgenden weiteren Umesterungsreaktionen gewonnen werden. Der Einbau von Hyd roxylgruppen in Öle und Fette erfolgt in der Hauptsache durch Epoxydierung der in diesen Pro dukten enthaltenen olefinischen Doppelbindung gefolgt von der Umsetzung der gebildeten Epo xidgruppen mit einem ein- oder mehrwertigen Alkohol. Dabei wird aus dem Epoxidring eine Hydroxylgruppe oder bei mehrfunktionellen Alkoholen eine Struktur mit einer höheren Anzahl an OH-Gruppen. Da Öle und Fette meist Glyzerinester sind, laufen bei den oben genannten Reak tionen noch parallele Umesterungsreaktionen ab. Die so erhaltenen Verbindungen haben vor zugsweise ein Molekulargewicht im Bereich zwischen 500 und 1500 g/mol.
Als hydrophobe Gruppen enthaltende Verbindung (b), die Amingruppen enthalten, werden be vorzugt die Verbindungen verstanden, welche zwischen 7 und 40 Kohlenstoffatomen aufwei sen. Beispielsweise seien die Fettalkanolamine wie Decylamin, Dodecylamin, Tetradecylamin, Hexadecylamin genannt.
Als Alkanolamide können beispielsweise Fettalkanolamide, z.B. Fettssäurediethanolamid, Lau- rinsäurediethanolamid und Oleinsäuremonoethanolamid Verwendung finden.
Wie beschrieben können als hydrophobe Gruppen enthaltende Verbindungen (b) auch Verbin dungen verstanden werden, die mindestens eine Carbonsäuregruppe enthalten, wie beispiels weise mono- oder bifunktionelle Carbonsäuren z.B. mit 7 - 40 Kohlenstoffatomen je Molekül. Beispielsweise seien genannt: Dimere Fettsäuren oder bevorzugt Fettsäuren. Beispiele für Fettsäuren sind Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitin säure, Stearinsäure, Ölsäure, Linolsäure, Linolensäure, Ricinolsäure und deren Gemische. Die Säuren können dabei sowohl einen biologischen als auch einen petrochemischen Ursprung haben. Ein Beispiel für eine geeignete petrochemische Säure ist dabei z.B. 2-Ethylhexansäure.
Weiter bevorzugt ist, dass es sich bei der hydroxyfunktionalisierten fettchemischen Verbindung, falls vorhanden, um ein Polyesterol mit hydrophober Gruppe (b2a) handelt. Zur Herstellung der Polyesterpolyole (b2a) mit hydrophober Gruppe werden als hydrophobe Ausgangsverbindun gen bevorzugt Fettsäuren, Fettsäurederivate oder Alkylphenolalkoxylate mit > 8 Kohlenstoff atomen in der Alkylgruppe eingesetzt. Vorzugsweise enthalten die Polyesterpolyole (b2) mindestens ein Polyesterol (b2a), das erhält lich ist durch Veresterung von
(b2a1) 10 bis 80 Mol-% einer Dicarbonsäurezusammensetzung, enthaltend
(b2a11) 20 bis 100 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung, einer oder mehrerer aromatischer Dicarbonsäuren oder Derivate derselben,
(b2a12) 0 bis 80 Mol-%, bezogen auf die Dicarbonsäurezusammensetzung, einer oder mehrerer aliphatischer Dicarbonsäuren oder Derivate derselben,
(b2a2) 0 bis 30 Mol-% einer oder mehrerer Fettsäuren und/oder Fettsäurederivate,
(b2a3) 2 bis 70 Mol-% eines oder mehrerer aliphatischer oder cycloaliphatischer Diole mit 2 bis 18 C-Atomen oder Alkoxylate derselben,
(b2a4) 0 bis 80 Mol-% eines Alkoxylierungsprodukts mindestens eines Startermoleküls mit einer mittleren Funktionalität von mindestens zwei, jeweils bezogen auf die Gesamtmenge der Komponenten (b2a1) bis (b2a4), wobei sich die Komponenten (b2a1) bis (b2a4) zu 100 Mol-% addieren.
Vorzugsweise weist ein Polyesterpolyol der Komponente (b2) eine zahlengewichtete mittlere Funktionalität von größer oder gleich 1,7, bevorzugt von größer oder gleich 1,8, besonders be vorzugt von größer oder gleich 2,0 und insbesondere von größer als 2,2 auf, was zu einer höhe ren Vernetzungsdichte des damit hergestellten Polyurethans und damit zu besseren mechani schen Eigenschaften des Polyurethanschaums führt.
Weiter kann die Komponente (b) Kettenverlängerungs- und/oder Vernetzungsmittel enthalten, beispielsweise zur Modifizierung der mechanischen Eigenschaften, z. B. der Härte. Als Ketten verlängerungs- und/oder Vernetzungsmittel verwendet werden Diole und/oder Triole, sowie Aminoalkohole mit Molekulargewichten kleiner als 150 g/mol, vorzugsweise von 60 bis 130g/mol. In Betracht kommen beispielsweise aliphatische, cycloaliphatische und/oder aralipha- tische Diole mit 2 bis 8, vorzugsweise 2 bis 6 Kohlenstoffatomen, wie z. B. Ethylenglykol, 1,2- Propylenglycol, Diethylenglycol, Dipropylenglycol, 1,3-Propandiol, 1,4-Butandiol, 1,6-Hexandiol, o-, m-, p-Dihydroxycyclohexan, Bis-(2-hydroxy-ethyl)-hydrochinon. Ebenso in Betracht kommen aliphatische und cycloaliphatische Triole wie Glycerin, Trimethylolpropan und 1,2,4- und 1,3,5- Tri hy d roxy cy cl o h exa n .
Sofern zur Herstellung der Polyurethan-Hartschaumstoffe Kettenverlängerungsmittel, Vernet zungsmittel oder Mischungen davon Anwendung finden, werden diese zweckmäßigerweise in einer Menge von 0 bis 15 Gew.-%, vorzugsweise von 0 bis 5 Gew.-%, bezogen auf das Ge samtgewicht der Komponente (b) eingesetzt. Vorzugsweise enthält die Komponente (b) weniger als 10 Gew.-% und besonders bevorzugt weniger als 7 Gew.-% und insbesondere weniger als 5 Gew.-% Kettenverlängerungs- und/oder Vernetzungsmittel.
Als Katalysatoren (c) zur Herstellung der Polyurethanschaumstoffe werden insbesondere Ver bindungen verwendet, die die Reaktion der reaktiven Wasserstoffatome, insbesondere Hydro xylgruppen, enthaltenden Verbindungen der Komponenten (b) bis (g) mit den Polyisocyanaten (a) stark beschleunigen.
Zweckmäßigerweise verwendet werden basische Polyurethankatalysatoren, beispielsweise tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexylamin, N,N,N’,N’-Tetramethyldiaminodiethylether, Bis-(dimethylaminopropyl)- harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclohexylmorpholin, N,N,N’,N’-Tetramethyl- ethylendiamin, N,N,N,N-Tetramethylbutandiamin, N,N,N,N-Tetramethylhexandiamin-1,6, Pentamethyldiethylentriamin, Bis(2-dimethylaminoethyl)ether, Dimethylpiperazin, N-Dimethyl- aminoethylpiperidin, 1,2-Dimethylimidazol, 1-Azabicyclo-(2,2,0)-octan, 1,4.Diazabicyclo-(2,2,2)- octan (Dabco) und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N- Methyl- und N-Ethyldiethanolamin, Dimethylaminoethanol, 2-(N,N-Dimethylamino- ethoxy)ethanol, N,N’,N”-Tris-(dialkylaminoalkyl)hexahydrotriazine, z.B. N,N’,N”-Tris-(dimethyl- aminopropyl)-s-hexahydrotriazin, und Triethylendiamin. Geeignet sind jedoch auch Metallsalze, wie Eisen(ll)-chlorid, Zinkchlorid, Bleioctoat und Zinnsalze, wie Zinndioctoat, Zinndiethylhexoat und Dibutylzinndilaurat sowie Mischungen aus tertiären Aminen und organischen Zinnsalzen.
Als Katalysatoren kommen ferner in Betracht: Amidine, wie 2,3-Dimethyl-3,4,5,6-tetrahydro- pyrimidin, Tetraalkylammoniumhydroxide, wie Tetramethylammoniumhydroxid, Alkalihydroxide, wie Natriumhydroxid und Alkalialkoholate, wie Natriummethylat und Kaliumisopropylat, Alkali- carboxylate sowie Alkalisalze von langkettigen Fettsäuren mit 8 bis 20 C-Atomen und gegebe nenfalls seitenständigen OH-Gruppen.
Weiterhin kommen als Katalysatoren einbaubare Amine in Betracht, d.h. vorzugsweise Amine mit einer OH, NH oder NH2 Funktion, wie beispielsweise Ethylendiamin, Triethanolamin, Diet- hanolamin, Ethanolamin und Dimethylethanolamin. Einbaubare Katalysatoren können sowohl als Verbindungen der Komponente (c) als auch der Komponente (b) angesehen werden.
Vorzugsweise verwendet werden 0,001 bis 10 Gew.-teile Katalysator bzw. Katalysatorkombina tion, bezogen auf 100 Gewichtsteile der Komponente (b). Es besteht auch die Möglichkeit, die Reaktionen ohne Katalyse ablaufen zu lassen. In diesem Fall wird üblicherweise die katalyti sche Aktivität von mit Aminen gestarteten Polyolen ausgenutzt. Zusätzlich kommen als Katalysatoren für die Trimerisierungsreaktion der überschüssigen NCO- Gruppen untereinander in Betracht: Isocyanuratgruppen bildende Katalysatoren, beispielsweise Ammoniumionen- oder Alkalimetallsalze, speziell Ammonium- oder Alkalimetallcarboxylate, allein oder in Kombination mit tertiären Aminen. Die Isocyanurat-Bildung führt zu flammwidrigen PIR-Schaumstoffen, welche bevorzugt im technischen Hartschaum, beispielsweise im Bauwe sen als Dämmplatte oder Sandwichelemente, eingesetzt werden.
In einer bevorzugten Ausführungsform enthält der Katalysator (c) einen Aminkatalysator mit tertiärer Aminogruppe und einen Ammonium- oder Alkalimetallcarboxylatkatalysator. In einer besonders bevorzugten Ausführungsform enthält der Katalysator (c) mindestens einen Aminka talysator, ausgewählt aus der Gruppe, bestehend aus Pentamethyldiethylentriamin und Bis(2- dimethylaminoethyl)ether und mindestens einen Alkalimetallcarboxylatkatalysator, ausgewählt aus der Gruppe bestehend aus Kaliumformiat, Kaliumacetat und Kalium-2-Ethylhexanoat. Über raschenderweise führt der Einsatz dieser Katalysatoren bei der kontinuierlichen Herstellung von Sandwichelementen, beispielsweise im Doppelband, zu Sandwichelementen, die eine beson ders glatte Schaumoberfläche zur Deckschicht, insbesondere zur unteren Deckschicht, aufwei sen. Dies führt zu Sandwichelementen mit hervorragender Haftung des Schaumstoffs an der Deckschicht und zu fehlerfreien Oberflächen.
Als Treibmittel (d) wird erfindungsgemäß eine Treibmittelmischung eingesetzt, die mindestens eine aliphatische, halogenierte Kohlenwasserstoffverbindung (d1), aufgebaut aus 2 bis 5 Koh lenstoffatomen, mindestens einem Wasserstoffatom und mindestens einem Fluor und/oder Chloratom und eine Kohlenwasserstoffverbindung mit 4 bis 8 Kohlenstoffatomen (d2) enthält, und wobei die Verbindung (d1) mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung enthält.
Geeignete Verbindungen (d1) umfassen Trifluorpropene und Tetrafluorpropene, wie (HFO- 1234), Pentafluorpropene, wie (HFO-1225), Chlortrifluorpropene, wie (HFO-1233), Chlordifluor- propene, Chlorotetrafluorpropene und Hexafluorbutene, sowie Mischungen aus einer oder meh reren dieser Komponenten. Bevorzugt sind Tetrafluorpropene, Pentafluorpropene, Chlortrifluor propene und Hexafluorbutene, wobei das ungesättigte, terminale Kohlenstoffatom mindestens einen Chlor- oder Fluorsubstituenten trägt. Beispiele sind 1 ,3,3,3-Tetrafluorpropen (HFO- 1234ze); 1 ,1,3,3-Tetrafluorpropen; 1 ,2,3,3,3-Pentafluorpropen (HFO-1225ye); 1,1,1- Trifluorpropen; 1 ,1 ,1,3,3-Pentafluorpropen (HFO-1225zc); 1 ,1 ,2,3,3-Pentafluorpropen (HFO- 1225yc); 1-Chlor-2,3,3,3-tetrafluorpropen (HFO-1224yd); 1 ,1 ,1,2,3-Pentafluorpropen (HFO- 1225yez); 1-Chlor-3,3,3-trifluorpropen (HCFO-1233zd); 1 ,1,1,4,4,4-Hexafluorbut-2-en (HFO- 1336mzz) oder Mischungen zweier oder mehrerer dieser Komponenten. Bevorzugte Verbindungen (d1) sind Hydroolefine, ausgewählt aus der Gruppe, bestehend aus Trans-1-chlor-3,3,3-trifluor-propen (HCFO-1233zd(E)), cis-1-Chlor-2,3,3,3-tetrafluorpropen (HCFO-1224yd), trans-1,1,1,4,4,4-Hexafluorbut-2-en (HFO-1336mzz(E)), cis-1, 1,1, 4,4,4- Hexafluorbut-2-en (HFO-1336mzz(Z)), oder Mischungen einer oder mehrerer Komponenten davon. Besonders bevorzugt ist Trans-1-chlor-3,3,3-trifluor-propen (HCFO-1233zd(E)), welches im kontinuierlichen Herstellverfahren überraschenderweise zu besonders störungsfreien Schaumqualitäten an der unteren Deckschicht führt.
Beispiele für Kohlenwasserstoffverbindung mit 4 bis 8 Kohlenstoffatomen (d2) sind Verbindun gen, wie Heptan, Hexan, und iso-Pentan, vorzugsweise technische Gemische wie n- und iso- Pentan, n- und iso-Butan und Propan, Cycloalkane, wie Cyclopentan und/oder Cyclohexan, und insbesondere Pentanisomere, wie n-Pentan, iso-Pentan und Cyclopentan. Bevorzugt enthält die Kohlenwasserstoffverbindung (d2) mindestens 60 mol-%, besonders bevorzugt mehr als 70 mol-% und insbesondere mehr als 80 mol % cycloaliphatische Kohlenwasserstoffverbindungen.
Neben den Treibmitteln (d1) und (d2) können weitere physikalische Treibmittel eingesetzt wer den. Geeignet sind insbesondere Flüssigkeiten, welche gegenüber den eingesetzten Isocyana- ten inert sind und Siedepunkte unter 100 °C, vorzugsweise unter 50 °C, bei Atmosphärendruck aufweisen, so dass sie unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Beispiele sind Ether, wie Furan, Dimethylether und Diethylether, Ketone, wie Aceton und Me- thylethylketon, Carbonsäurealkylester, wie Methylformiat, Dimethyloxalat und Ethylacetat und halogenierte Kohlenwasserstoffe, wie Methylenchlorid, Dichlormonofluormethan, Difluormethan, Trifluormethan, Difluorethan, Tetrafluorethan, Chlordifluorethane, 1 , 1 -Dichlor-2,2,2-trifluorethan, 2,2-Dichlor-2-fluorethan und Heptafluorpropan. Auch Gemische dieser niedrigsiedenden Flüs sigkeiten untereinander und/oder mit anderen substituierten oder unsubstituierten Kohlenwas serstoffen können verwendet werden. Vorzugsweise beträgt der Anteil an physikalischen Treibmittel, das nicht unter die Definition der Komponente (d1) oder (d2) fällt weniger als 30 Gew.-%, besonders bevorzugt weniger als 15 Gew.-%, mehr bevorzugt weniger als 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Treibmittelkomponente (d1) und (d2) sowie der weiteren physikalischen Treibmittel. Insbesondere wird neben den Treibmittelkomponenten (d1) und (d2) kein weiteres physikalisches Treibmittel eingesetzt.
Zu Treibmitteln, welche zur Herstellung der erfindungsgemäßen Polyurethanschaumstoffe ver wendet werden, gehören darüber hinaus chemische Treibmittel. Diese reagieren mit Isocyanat- gruppen unter Bildung von Kohlenstoffdioxid und im Falle von Ameisensäure zu Kohlenstoffdi oxid und Kohlenstoffmonoxid. Als chemische Treibmittel (d3) geeignet sind ferner organische Carbonsäuren, wie z.B. Ameisensäure, Essigsäure, Oxalsäure, und weitere carboxylgruppen- haltige Verbindungen mit < 6 Kohlenstoffatomen, sowie Wasser.
Vorzugsweise werden neben den Verbindungen (d1) keine halogenierten Kohlenwasserstoffe als Treibmittel eingesetzt. Vorzugsweise werden als chemische Treibmittel (d3) Wasser, Amei- sensäure-Wasser-Mischungen oder Ameisensäure verwendet, besonders bevorzugte chemi sche Treibmittel sind Wasser oder Ameisensäure-Wasser-Mischungen, insbesondere Wasser- Ameisensäure-Mischungen mit einem Ameisensäuregehalt von > 70 Gew.% bezogen auf Treibmittel (d3), was zu verbesserten Deckschichthaftungen und störungsfreieren Schaumober flächen unterhalb der unteren Deckschicht führt.
Wenn chemische Treibmittel (d3) eingesetzt werden, werden diese vorzugsweise zu weniger als 2 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g) eingesetzt, vor zugsweise zu 0,5 bis 1 ,5 Gew.-%.
Erfindungsgemäß beträgt der molare Anteil von halogenierten Kohlenwasserstoffverbindungen (d1) 20 und 60 mol-%, vorzugsweise 25 bis 55 mol-% und besonders bevorzugt 30 bis 50 mol- % und der molare Anteil von Kohlenwasserstoffverbindung (d2) zwischen 40 und 80 mol-%, vorzugsweise 45 und 75 mol-% und besonders bevorzugt 50 bis 70 mol-%, jeweils bezogen auf den Gesamtgehalt der Treibmittel (d1) und (d2).
Die Treibmittel (d) werden vorzugsweise in solchen Mengen eingesetzt, dass die Freischaum dichte der erhaltenen erfindungsgemäßen Polyisocyanat-basierten Hartschaumstoffe zwischen 10 und 100 g/L, vorzugsweise zwischen 20 und 75 g/L und insbesondere zwischen 30 und 50 g/L liegt.
Als Flammschutzmittel (e) können im Allgemeinen die aus dem Stand der Technik bekannten Flammschutzmittel verwendet werden. Geeignete Flammschutzmittel sind beispielsweise bro- mierte Ester, bromierte Ether (Ixol) oder bromierte Alkohole wie Dibromneopentylakohol, Tri- bromneopentylalkohol und PHT-4-Diol, sowie chlorierte Phosphate wie Tris-(2-chlorethyl)- phosphat, Tris-(2-chlorpropyl)phosphat (TCPP), Tris(1,3-dichlorpropyl)phosphat, Trikresylphos- phat, Tris-(2,3-dibrompropyl)phosphat, Tetrakis-(2-chlorethyl)-ethylendiphosphat, Dimethylme- thanphosphonat, Diethanolaminomethylphosphonsäurediethylester sowie handelsübliche halo genhaltige Flammschutzpolyole. Als weitere Phosphate oder Phosphonate können Diethyl- ethanphosphonat (DEEP), Triethylphosphat (TEP), Dimethylpropylphosphonat (DMPP), Diphe- nylkresylphosphat (DPK) als flüssige Flammschutzmittel eingesetzt werden. Dabei werden Fa- lammschutzmittel mit gegenüber Isocyanat reaktiven Gruppen sowohl der Komponente der Flammschutzmittel (e) als auch der Komponente (b) zugerechnet.
Außer den bereits genannten Flammschutzmitteln können auch anorganische oder organische Flammschutzmittel, wie roter Phosphor, roten Phosphor enthaltende Zurichtungen, Alumini umoxidhydrat, Antimontrioxid, Arsenoxid, Ammoniumpolyphosphat und Calciumsulfat, Blähgra phit oder Cyanursäurederivate, wie z.B. Melamin, oder Mischungen aus mindestens zwei Flammschutzmitteln, wie z.B. Ammoniumpolyphosphaten und Melamin sowie gegebenenfalls Maisstärke oder Ammoniumpolyphosphat, Melamin, Blähgraphit und gegebenenfalls aromati sche Polyester zum Flammfestmachen der Polyurethan-Hartschaumstoffe verwendet werden.
Bevorzugte Flammschutzmittel beinhalten kein Brom. Besonders bevorzugte Flammschutzmittel bestehen aus Atomen ausgewählt aus der Gruppe bestehend aus Kohlenstoff, Wasserstoff, Phosphor, Stickstoff, Sauerstoff und Chlor, spezieller aus der Gruppe bestehend aus Kohlen stoff, Wasserstoff, Phosphor und Chlor.
Bevorzugte Flammschutzmittel weisen keine mit Isocyanatgruppen reaktive Gruppen auf. Vor zugsweise sind die Flammschutzmittel bei Raumtemperatur flüssig. Besonders bevorzugt sind TCPP, DEEP, TEP, DMPP und DPK sowie Oligomere halogenfreie Flammschutzmittel, wie Fy- rol® PNX (von der Firma ICL) und Levagard® 2000 (von der Firma Lanxess) und/oder einbauba re Flammschutzmittel auf Phosphorbasis, wie Veriquel® R-100 (von der Firma ICL) und Leva gard® 2100 (von der Firma Lanxess) , insbesondere TCPP und TEP, noch mehr bevorzugt TEP, welches im kontinuierlichen Verarbeitungsprozess zu störungsfreieren Schaumoberflächen un terhalb der unteren Deckschicht und im Brandfall zur verringerten Freisetzung ätzender Brand gase führt.
Im Allgemeinen beträgt der Anteil des Flammschutzmittels (e), 1 bis 40 Gew.-%, bevorzugt 5 bis 30 Gew.-%, besonders bevorzugt 8 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Kom ponenten (b) bis (g).
Der Reaktionsmischung zur Herstellung der erfindungsgemäßen Polyurethanschaumstoffe können gegebenenfalls noch weitere Hilfsmittel und/oder Zusatzstoffe (f) zugesetzt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Lichtstabilisatoren, Farbstoffe, Pigmente, Hydrolyseschutzmittel, fungistatische und bakteriostatisch wirkende Substanzen. Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unter stützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur der Kunststoffe zu regulieren. Genannt seien beispielsweise Emulgatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaph- thylmethandisulfonsäure und Ricinolsäure, Schaumstabilisatoren, wie Siloxanoxalkylen- Mischpolymerisate und andere Organopolysiloxane und Dimethylpolysiloxane. Zur Verbesse rung der Emulgierwirkung, der Zellstruktur und/oder Stabilisierung des Schaumes eignen sich ferner Oligomere Acrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 10 Gew.-teile, bezogen auf 100 Gew.-Teile der Komponente (b), angewandt.
Als Schaumstabilisatoren können übliche Schaumstabilisatoren, beispielsweise solche auf Sili konbasis, wie Siloxanoxalkylen-Mischpolymerisate und anderen Organopolysiloxane verwendet werden.
Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, übli chen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Beschichtungsmittel usw. zu verste hen. Im Einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Minera lien, beispielsweise Schichtsilikate wie Antigorit, Serpentin, Hornblenden, Amphibole, Chrysotil und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide und Eisenoxide, Metallsalze, wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid und Zinksulfid, sowie Glas u.a.. Vorzugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzi- pitate aus Bariumsulfat und Aluminiumsilikat sowie natürliche und synthetische faserförmige Mineralien wie Wollastonit, Metall- und insbesondere Glasfasern verschiedener Länge, die ge gebenenfalls geschlichtet sein können. Als organische Füllstoffe kommen beispielsweise in Be tracht: Kohle, Melamin, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbonsäureestern und insbesondere Kohlenstoff fasern.
Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische verwendet werden und werden der Reaktionsmischung vorteilhafterweise in Mengen von 0,5 bis 50 Gew.- %, vorzugsweise 1 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten (a) bis (f), zu gegeben, wobei jedoch der Gehalt an Matten, Vliesen und Geweben aus natürlichen und syn- thetischen Fasern Werte bis 80 Gew.-%, bezogen auf das Gewicht der Komponenten (a) bis (f), erreichen kann.
Die Verbindungen (g) sind vorzugsweise bei einer Temperatur von 20 °C und einem Umge bungsdruck von 1 bar fließfähige Substanzen. Beispiele für Verbindungen (g) sind Carbonsäu reester, wie niedere Alkanolester von Carbonsäuren eingesetzt, beispielsweise Fettsäureethyl ester oder bevorzugt Fettsäuremethylester, wie z.B. Methylcaproat, Methylcaprilat, Methyl caprat, Methyllaurat, Methylmyristat, Methylpalmitat, Methyloleat, Methylstearat, Methyllinoleat, Methylinolenat und deren Gemische, besonders bevorzugt Biodiesel.
Bevorzugt können außerdem Triglyceride, besonders bevorzugt Fette und Öle, als Verbindun gen mit hydrophoben Gruppen (g) eingesetzt werden, beispielsweise Triglyceride, wie Rapsöl, Olivenöl, Maisöl, Palmöl, Kürbiskernöl, Sonnenblumenöl, Weizensamenöl, Sojabohnenöl, Ko kosnussöl, T allöl, Baumwollsamenöl, Weintraubenkernöl, Aprikosenkernöl, Distelöl, Avocadoöl, Macadamiusöl, Pistazienöl, Mandelöl, Leinöl, Sesamöl, Haselnussöl, Erdnussöl, Walnussöl, Primelöl, Sanddornöl, Distelöl, Borretschsamenöl, schwarzem Kümmelöl, Wildrosenöl, Talg, sowie Mischungen davon.
Erfindungsgemäß erfolgt die Herstellung der Polyurethanschaumstoffe durch Vermischen der Komponenten (a) bis (e) und, falls vorhanden (f) und (g), zu einer Reaktionsmischung. Zur Ver ringerung der Komplexität können auch Vormischungen hergestellt werden. Diese umfassen zumindest eine Isocyanatkomponente (A), enthaltend Polyisocyanate (a) und eine Polyolkom ponente (B), enthaltend gegenüber Isocyanat reaktive Verbindungen (b). Isocyanatkomponente (A) und Polyolkomponente (B) können alle oder ein Teil der weiteren Komponenten (c) bis (g) ganz oder teilweise zugegeben werden, wobei aufgrund der hohen Reaktivität der Isocyanate in vielen Fällen die Komponenten (c) bis (g) zur Vermeidung von Nebenreaktionen häufig zur Po lyolkomponente zugegeben werden. Insbesondere Treibmittel (d1) können aber auch der Iso cyanatkomponente (A) beigemischt werden. Vorzugsweise werden die physikalischen Treibmit tel (d1) und (d2) in einem extra Strom der Reaktionsmischung zugeführt und besonders bevor zugt die verbleibenden Komponenten (d) bis (g) der Polyolkomponente (B) zugegeben. An schließend erfolgt ein ausreagieren lassen der Reaktionsmischung zum Polyurethanschaum stoff. Dabei wird im Rahmen der vorliegenden Erfindung unter einer Reaktionsmischung die Mischung der Isocyanate (a) und der gegenüber Isocyanat reaktiven Verbindungen (b) bei Re aktionsumsätzen kleiner 90 %, bezogen auf die Isocyanatgruppen, bezeichnet.
Dabei erfolgt die Vermischung der Komponenten zur Reaktionsmischung bei einem Isocyanat- index von 240 bis 1000, vorzugsweise bei 240 bis 800, bevorzugt bei 240 bis 600, besonders bevorzugt bei 280 bis 500 und insbesondere bei 330 bis 400. Dabei werden die Ausgangskom ponenten bei einer Temperatur von 15 bis 90 °C, vorzugsweise 20 bis 60 °C, insbesondere 20 bis 45 °C, gemischt. Das Reaktionsgemisch kann durch Mischen in Hoch- oder Niederdruck- Dosiermaschinen vermischt werden.
Die Reaktionsmischung kann zum Ausreagieren beispielsweise in eine Form eingebracht wer den. Nach dieser Technologie werden z.B. diskontinuierliche Sandwichelemente hergestellt.
Die erfindungsgemäßen Hartschäume werden vorzugsweise auf kontinuierlich arbeitenden Doppelbandanlagen hergestellt. Dabei werden die Polyol- und Isocyanatkomponenten mit einer Hochdruckmaschine dosiert und in einem Mischkopf gemischt. Katalysatoren und/oder Treib mittel können zuvor mit separaten Pumpen in die Polyolmischung dosiert werden. Das Reakti onsgemisch wird kontinuierlich auf die untere Schicht aufgetragen. Die untere Schicht mit dem Reaktionsgemisch und die obere Deckschicht treten in das Doppelband ein, in dem das Reakti onsgemisch aufschäumt und aushärtet. Nach dem Verlassen des Doppelbandes wird der End losstrang in die gewünschten Abmessungen geschnitten. Auf diese Weise lassen sich Sandwi chelemente mit metallischen Deckschichten oder mit flexiblen Deckschichten hersteilen.
Als untere und obere Deckschichten, die gleich oder unterschiedlich sein können, können fle xible oder starre Deckschichten verwendet werden, die üblicherweise im Doppelbandverfahren eingesetzt werden. Dazu gehören Metalldeckschichten wie Aluminium oder Stahl, Bitumen deckschichten, Papier, Vliesstoffe, Kunststoffplatten wie Polystyrol, Kunststofffolien wie Po lyethylenfolien oder Holzdeckschichten. Die Deckschichten können auch beschichtet werden, zum Beispiel mit einem herkömmlichen Lack oder einem Haftvermittler. Besonders bevorzugt werden Deckschichten eingesetzt, die diffusionsdicht gegenüber dem Zellgas des Polyurethan schaumstoffs sind.
Solche Verfahren sind bekannt und beispielsweise beschrieben im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 6.2.2 oder EP 2234732.
Schließlich ist Gegenstand der vorliegenden Erfindung ein Polyisocyanat-basierter Hart schaumstoff, erhältlich nach einem erfindungsgemäßen Verfahren und ein Polyurethan- Sandwichelement, enthaltend einen solchen erfindungsgemäßen Polyisocyanat-basierten Hart schaumstoff.
Ein erfindungsgemäßer Polyisocyanat-basierter Hartschaumstoff zeichnet sich durch hervorra gende mechanische Eigenschaften, insbesondere eine hervorragende Druckfestigkeit sowie hervorragend niedrige Wärmeleitfähigkeiten aus. Bei der Herstellung von Sandwichelementen, insbesondere im kontinuierlichen Doppelbandverfahren werden darüber hinaus Sandwichele mente mit einer hervorragenden Oberflächengüte des Polyisocyanat-basierten Hartschaum stoffs, insbesondere zur unteren Deckschicht, erhalten.
Im Folgenden soll die Erfindung anhand von Beispielen verdeutlicht werden:
Zur Herstellung der in Tabelle 1 , 2 und 4 dargestellten Reaktionsmischungen, wurden die nach folgenden Einsatzstoffe verwendet:
Polyole:
Polyesterol 1 : Veresterungsprodukt aus Terephtalsäure, Ölsäure, Diethylenglycol und ethoxy- lierten Glycerin der Hydroxylzahl 535 mg KOH/g, mit einer Hydroxylzahl von 244 mg KOH/g und einem Gewichtsanteil an Ölsäure von 15 % im Endprodukt. Daraus ergibt sich ein Anteil an hyd rophoben Gruppen am Gesamtgewicht des Polyesterols 1 von ca. 13,3 Gew.-%, bezogen auf das Gesamtgewicht des Polyesterols 1.
Polyesterol 2: Veresterungsprodukt aus Phtalsäureanhydrid, Diethylenglycol und Monoethyl- englycol, mit einer Hydroxylzahl von 240 mg KOH/g und einem Gewichtsanteil von 0 % Ölsäure Endprodukt.
Polyesterol 3: Veresterungsprodukt aus Phtalsäureanhydrid, Sojaöl, und Diethylenglycol mit einer Hydroxylzahl von 194 mg KOH/g und einem Gewichtsanteil von 3,7 % Fettsäure im End produkt. Daraus ergibt sich ein Anteil an hydrophoben Gruppen am Gesamtgewicht des Polyes terols 3 von ca. 3,1 Gew.-%, bezogen auf das Gesamtgewicht des Polyesterols 3.
Polyesterpolyol 4: Veresterungsprodukt aus Phtalsäureanhydrid, Glycerin, Ölsäure und Diethyl englycol mit einer Hydroxylzahl von 195 mg KOH/g und einem Gewichtsanteil von 3,7 % Ölsäu re im Endprodukt. Daraus ergibt sich ein Anteil an hydrophoben Gruppen am Gesamtgewicht des Polyesterols 4 von ca. 3,3 Gew.-%, bezogen auf das Gesamtgewicht des Polyesterols 4.
Polyesterpolyol 5: Veresterungsprodukt aus Phtalsäureanhydrid, Monoethylenglycol und Diethy lenglycol mit einer Hydroxylzahl von 215 mg KOH/g und einem Gewichtsanteil von 15,8 % Öl säure im Endprodukt. Daraus ergibt sich ein Anteil an hydrophoben Gruppen am Gesamtge wicht des Polyesterols 5 von ca. 14,0 Gew.-%, bezogen auf das Gesamtgewicht des Polyes terols 5. Polyetherol 1 : Polyethylenglycol mit einer Hydroxylzahl von 188 mg KOH/g
Flammschutzmittel:
TCPP: Tris(2-chlorisopropyl)phosphat mit einem Chlorgehalt von 32,5 Gew.% und einem Phos phorgehalt von 9,5 Gew.%.
TEP: Triethylphosphat mit einem Phosphorgehalt von 17 Gew.%
Schaumstabilisatoren:
Tegostab® B 8443: Silikonhaltiger Schaumstabilisator der Firma Evonik
Katalysatoren:
Katalysator A: Trimerisierungskatalysator bestehend aus 36,2 Gew.-% Kaliumformiat gelöst in 63,7 Gew.-% Monoethylenglycol
Katalysator B: Katalysator bestehend aus 23,1 Gew.-% Bis(2-dimethylaminoethyl)ether und 76,9 Gew.-% Dipropylenglycol.
Chemische Treibmittel:
Amasil 85 %: Ameisensäurelösung 85 Gew.% in Wasser
Physikalische Treibmittel:
Pentan S 80/20: Mischung aus 80 Gew.% n-Pentan und 20 Gew.% Isopentan
Cyclopentan 70: Mischung aus 70 Gew.% Cyclopentan und 30 Gew.% Isopentan
Cyclopentan 95: Mischung aus 95 Gew.% Cyclopentan und 5 Gew.% Isopentan
Solstice® LBA: 1-Chlor-3,3,3-trifluorpropen der Firma Honeywell
Opteon™ 1100: (Z)-1 ,1 ,1,4,4,4-Hexafluor-2-buten der Firma Chemours
Treibmittelmischung 1 : Mischung aus 55,88 Gew.% Cyclopentan 70 und 44,12 Gew.% Sol stice® LBA führt zu einer Treibmittelmischung, enthaltend ca. 70 mol % Cyclopentan 70.
Treibmittelmischung 2: Mischung aus 56,12 Gew.% Pentan S 80/20 und 43,88 Gew.% Sol stice® LBA führt zu einer Treibmittelmischung, enthaltend ca. 70 mol % Pentan S 80/20. Isocyanate:
Lupranat® M50: polymeres Methylendiphenyldiisocyanat (PMDI) der Firma BASF, mit einer Viskosität von ca. 550 mPa*s bei 25 °C.
Aus den oben genannten Einsatzstoffen wurden die in den Tabelle 1, 2 und 4 aufgezeigten Po lyolkomponenten hergestellt und im Labor sowie auf einer Hochdruckmaschine im kontinuierli chen Doppelbandverfahren umgesetzt.
Laborverschäumung zum Einstellen identischer Dichten und Abbindezeiten (Gelzeiten):
Die in Tabelle 1 dargestellten Polyolkomponenten wurden durch Variation der physikalischen Treibmittel und Katalysator B auf identische Abbindezeiten von 53 s ± 2 s und Becherschaum dichten von 44 kg/m3 ± 2 kg/m3 eingestellt. Die Menge an Katalysator A wurde so gewählt, dass die fertigen Schäume aller Einstellungen identische Konzentrationen enthielten. Die so einge stellten Polyolkomponenten wurden mit Lupranat® M50 in einem solchen Mischungsverhältnis zur Reaktion gebracht, dass die Kennzahl aller Einstellungen 330 ± 10 betrug. Auf diese Weise wurde 80 g Reaktionsgemisch in einem Pappbecher umgesetzt, indem die Mischung für 8 Se kunden intensiv mit einem Labor Rührer bei 1400 Umdrehungen/min vermischt wurde.
Die in Tabelle 2 dargestellten Polyolkomponenten wurden durch Variation der physikalischen Treibmittel und Katalysator B auf identische Abbindezeiten von 53 s ± 2 s und Becherschaum dichten von 42 kg/m3 ± 2 kg/m3 eingestellt. Die Menge an Katalysator A wurde so gewählt, dass die fertigen Schäume aller Einstellungen identische Konzentrationen enthielten. Die so einge stellten Polyolkomponenten wurden mit Lupranat® M50 in einem solchen Mischungsverhältnis zur Reaktion gebracht, dass die Kennzahl aller Einstellungen 330 ± 10 betrug. Auf diese Weise wurde 80 g Reaktionsgemisch in einem Pappbecher umgesetzt, indem die Mischung für 8 Se kunden intensiv mit einem Labor Rührer bei 1400 Umdrehungen/min vermischt wurde.
Die in Tabelle 3 dargestellten Polyolkomponenten wurden durch Variation der physikalischen Treibmittel und Katalysator B auf identische Abbindezeiten von 53 s ± 2 s und Becherschaum dichten von 42 kg/m3 ± 2 kg/m3 eingestellt. Die Menge an Katalysator A wurde so gewählt, dass die fertigen Schäume aller Einstellungen identische Konzentrationen enthielten. Die so einge stellten Polyolkomponenten wurden mit Lupranat® M50 in einem solchen Mischungsverhältnis zur Reaktion gebracht, dass die Kennzahl aller Einstellungen 210 ± 10 betrug. Auf diese Weise wurde 80 g Reaktionsgemisch in einem Pappbecher umgesetzt, indem die Mischung für 8 Se kunden intensiv mit einem Labor Rührer bei 1400 Umdrehungen/min vermischt wurde. Die so auf vergleichbare Dichten und Abbindezeiten eingestellten Reaktionsmischungen wur den anschließend verwendet, um Hartschaum blocke herzustellen, aus denen Prüfkörper für Wärmeleitfähigkeits- und Druckfestigkeitsmessungen entnommen wurden.
Zur Herstellung der Schaumblöcke für die Wärmeleitfähigkeitsmessungen wurde 450 g Reakti onsgemisch in einem Pappbecher umgesetzt, indem die Mischung für 6 Sekunden intensiv mit einem Labor Rührer bei 1400 Umdrehungen/min vermischt wurde. Anschließend wurde die Re aktionsmischung in eine oben geöffnete Kastenform mit den Maßen 150 mm x 120 mm x 120 mm überführt. Die Entnahme der Prüfkörper für die Wärmeleitfähigkeitsmessungen mit den Maßen 200 mm x 200 mm x 30 mm erfolgte stets mittig aus Schaumblock in Steigrichtung des Schaums.
Gemessen wurde die Wärmeleitfähigkeit mit einem Wärmeleitfähigkeitsmessgerät l-Meter EP500e der Firma “Lambda Messtechnik GmbH Dresden“ bei einer Mitteltemperatur von 23 °C. Die in Tabelle 1 und 2 angegebenen Wärmeleitfähigkeitswerte sind Mittelwerte einer Doppelbe stimmung von zwei Prüfkörpern aus zwei unterschiedlichen aber identisch hergestellten Schaumblöcken.
Aus denselben Schaumblöcken wurden zusätzlich 9 Prüfkörper mit den Maßen 50 mm x 50 mm x 50 mm zur Bestimmung der Druckfestigkeit nach DIN EN 826 entnommen. Die Entnahme erfolgte auch hier immer gleich. Von den 9 Prüfkörpern wurden 3 Prüfkörper so gedreht, dass die Prüfung entgegen der Steigrichtung des Schaums stattfand (Top). Von den 9 Prüfkörpern wurden 3 Prüfkörper so gedreht, dass die Prüfung senkrecht zur Steigrichtung des Schaums stattfand (in X-Richtung). Von den 9 Prüfkörpern wurden 3 Prüfkörper so gedreht, dass die Prü fung senkrecht zur Steigrichtung des Schaums stattfand (in Y-Richtung).
Die gemessenen 9 Druckfestigkeiten wurden anschließend gemittelt und als Werte (Druckfes tigkeit 3D) in Tabelle 1 und 2 angegeben.
Tabelle 1: Laborversuche mit Cydopentan 70 / Solstice® LBA Mischungen
E: Erfindungsgemäß, X: Verwendet
Tabelle 2: Laborversuche mit Pentan S 80/20 / Solstice® LBA Mischungen
E: Erfindungsgemäß, X: Verwendet
Tabelle 3: Laborversuche mit Pentan S 80/20 / Solstice® LBA Mischungen bei Kennzahl 210
X; Verwendet
Aufgrund der geringeren Wärmeleitfähigkeit des Treibmittels Solstice® LBA im Vergleich zum Cyclopentan 70 und Pentan S 80/20, ist es nicht überraschend, dass auch die im Labor mit der Treibmittelmischung 1 und 2 hergestellten Schäume eine geringere Wärmeleitfähigkeit aufwei sen. Überraschenderweise zeigt sich jedoch, dass durch den Einsatz von Polyolkomponenten, welche einen geringeren Gehalt an hydrophoben Gruppen in den Komponenten (b) - (g) aufweisen, eine deutlich reduzierte Wärmeleitfähigkeit und eine deutlich verbesserte Druckfestigkeit der Laborschäume erzielt wird.
Eine Verschäumung der erfindungsgemäßen Polyolkomponente aus Beispiel 13 bei einer reduzierten Kennzahl von 210 (Beispiel 19), führt im Vergleich zu den erfindungsgemäßen Beispielen, zu einer signifikanten Erhöhung der Wärmeleitfähigkeit, sowie einer signifikanten Reduzierung der Druckfestigkeit des Schaums.
Kontinuierlich Herstellung von Sandwichelementen mittels des Doppelbandverfahrens:
Zusätzlich zu den Laborverschäumungen wurden 80 mm dicke Verbundelemente im Doppelbandverfahren hergestellt. Zur Herstellung wurden die nachfolgend aufgeführten, auf 20 ± 1 °C temperierten Polyolkomponenten mit Lupranat® M50, welches ebenfalls auf 20 ± 1 °C temperiert wurde, umgesetzt. Die Menge an Lupranat® M50 wurde stets so gewählt, dass alle hergestellten Hartschaumstoffe einen Isocyanatindex von 345 ± 10 aufwiesen. Zur Herstellung der Verbundelemente diente als untere Deckschicht sowohl eine auf 35 ± 2 °C beheizte, 0.05 mm dicke Aluminiumfolie, als auch ein auf 40 ± 2 °C beheiztes, 0.5 mm dickes, beidseitig beschichtetes Aluminiumblech. Beide Deckschichten sind Industriestandards und werden auch im herkömmlichen kontinuierlichen Herstellprozess von Sandwichelementen ein gesetzt. Die Temperatur des Doppelbandes betrug stets 60 ± 1 °C.
Zur Herstellung der 80 mm dicken Verbundelemente wurde die Menge an Katalysator B und des physikalischen Treibmittels so ausgewählt, dass die Gelzeit der Reaktionsmischung exakt 28 Sekunden sowie die Kontaktzeit der Reaktionsmischung mit dem Oberband exakt 23 Se kunden betrug und der Schaum eine Gesamtdichte von 38,0 ± 1,5 g/l aufwies.
Zur Bestimmung der Wärmeleitfähigkeiten, Druckfestigkeiten und Schaumoberflächen wurden nach erfolgreicher Einstellung der Schäumparameter, Probekörper der Länge 2,0 m und der Breite 1 ,25 m entnommen, aus denen die für die Prüfungen notwendigen Probekörper stets an identischen Stellen entnommen wurden.
Bestimmung der Druckfestigkeit der Sandwichschäume:
Nach Lagerung für 24 Stunden bei Normklima wurden aus den Probekörpern weitere Prüfkör per mit den Abmessungen 100 mm x 100 mm x Sandwichdicke mit Hilfe einer Bandsäge ent nommen. Die Prüfkörper wurden an identischen Stellen, verteilt über die Breite des Elements (Links, Mitte, Rechts) entnommen und die Druckfestigkeit des Schaums entsprechend der Sandwichnorm DIN EN ISO 14509-A.2 nach EN 826 bestimmt.
Bestimmung der Wärmeleitfähigkeiten der Sandwichschäume:
Nach Lagerung für 24 Stunden bei Normklima wurden aus den Probekörpern weitere Prüfkör per mit den Abmessungen 200 mm x 200 mm x 30 mm entnommen. Die Entnahme erfolgte mittig zur Sandwichelementdicke und zur Sandwichelementbreite.
Gemessen wurde die Wärmeleitfähigkeit mit einem Wärmeleitfähigkeitsmessgerät l-Meter EP500e der Firma Lambda Messtechnik GmbH Dresden bei einer Mitteltemperatur von 23 °C. Die in Tabelle 5 angegebenen Wärmeleitfähigkeitswerte sind Mittelwerte einer Doppelbestim mung von zwei Prüfkörpern
Beurteilung der Schaumoberfläche nach Abriss der unteren Deckschichten:
Nach mechanischer Entfernung der Aluminiumfolie und der Aluminiumbleche, auf welche das flüssige Reaktionsgemisch im Doppelbandverfahren direkt appliziert wird (untere Deckschicht) wurden die Schaumoberflächen visuell beurteilt und bewertet, wobei Note 1 die beste Schaum oberfläche und Note 5 die schlechteste Schaumoberfläche darstellt:
Tabelle 4: Optische Beurteilung der Schaumqualität
Tabelle 5: Doppelbandversuche
E: Erfindungsgemäß
Bei Verwendung gleicher Mengen der identischen Treibmittelmischung zeigt sich, dass beim Einsatz der erfindungsgemäßen Polyolkomponenten mit einem geringen Anteil an hydrophoben Gruppen in Komponenten (b) - (g) (Beispiel 20, 26 und 30) auch im Doppelbandverfahren eine deutlich reduzierte Wärmeleitfähigkeit und erhöhte Druckfestigkeit der hergestellten Schäume, gegenüber Polyolkomponenten mit einem erhöhten Anteil an hydrophoben Gruppen in Kompo nenten (b) - (g) (Beispiel 27) erreicht wird. Überraschenderweise zeigen die Polyolkomponen ten mit einem geringen Anteil an hydrophoben Gruppen in Komponenten (b) - (g) jedoch keine kontinuierliche Verbesserung der Wärmeleitfähigkeit mit zunehmend höheren Anteilen an halo genierten Olefinen, gegenüber Cyclopentan 95. Es ergibt sich ein Minimum der Wärmeleitfähig keiten, wenn der molare Anteil der halogenierten Olefine zum molaren Anteil an Cyclopentan 95 zwischen 20 und 55 mol % liegt. Eine weitere Erhöhung des molaren Anteils der halogenierten Olefine deutlich über 70 mol%, bevorzugt 65 mol-%, mehr bevorzugt 60 mol-% und insbesonde re 55 mol %, führt in Kombination mit den erfindungsgemäßen Polyolkomponenten überra schenderweise zu einer Erhöhung der Wärmeleitfähigkeiten, der hergestellten Schäume. Zu sätzlich zeigt sich, dass ein höherer Anteil beider halogenierten Olefine über 70 mol%, eine Verschlechterung der Schaumqualitäten an der Unterseite bewirkt (Beispiel 22, 23 und 25). Auch in Kombination mit Pentan S80/20 zeigen die Polyolkomponenten mit einem geringen Anteil an hydrophoben Gruppen in Komponenten (b) - (g) eine deutlich verbesserte Wärmeleit fähigkeit gegenüber den nicht erfindungsgemäßen Polyolkomponenten (Beispiel 28 vs. Beispiel 29). Im Vergleich mit den nicht erfindungsgemäßen Reaktionsmischungen führt die Verwen dung von Pentan S 80/20 jedoch zu signifikant schlechteren Wärmeleitfähigkeiten und Schaumqualitäten an der Unterseite der verschiedenen Deckschichten (Beispiel 28).

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyisocyanurathartschaumstoff, bei dem man a) aromatisches Polyisocyanat, b) gegenüber Isocyanatgruppen reaktive Verbindungen, enthaltend mindestens ein Po- lyetherol (b1) und/oder Polyesterol (b2), wobei der zahlenmittlere Gehalt an mit Iso- cyanat reaktiven Wasserstoffatomen der Komponente (b1) und (b2) mindestens 1,7 beträgt, c) Katalysator, d) Treibmittel, e) Flammschutzmittel f) gegebenenfalls Hilfs- und Zusatzstoffe und g) gegebenenfalls Verbindungen mit aliphatischen hydrophoben Gruppen, die nicht un ter die Definition der Verbindungen (a) bis (f) fallen zu einer Reaktionsmischung vermischt und zum Polyisocyanurathartschaumstoff aus härten lässt, wobei
Treibmittel (d) mindestens eine aliphatische, halogenierte Kohlenwasserstoffverbindung (d1), aufgebaut aus 2 bis 5 Kohlenstoffatomen, mindestens einem Wasserstoffatom und mindestens einem Fluor und/oder Chloratom und die Verbindung (d1) mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung enthält, und eine Kohlenwasserstoffverbindung mit 4 bis 8 Kohlenstoffatomen (d2) enthält und der molare Anteil von halogenierter Koh lenwasserstoffverbindung (d1) 20 und 60 mol% und der molare Anteil von Kohlenwas serstoffverbindung (d2) zwischen 40 und 80 mol-%, jeweils bezogen auf den Gesamt gehalt der Treibmittel (d1) und (d2), beträgt, und die Komponenten (b) bis (f) Verbindungen mit aliphatischen, hydrophoben Gruppen enthalten können und der Gehalt an aliphatischen, hydrophoben Gruppen, bezogen auf das Gesamtgewicht der Komponenten (b) bis (g), 0 bis 4,0 Gew.-% beträgt und die Vermischung zur Reaktionsmischung bei einem Isocyanatindex von mindestens 240 erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kohlenwasserstoffverbin dung (d2) mindestens 60 mol-% cycloaliphatische Kohlenwasserstoffverbindungen, be zogen auf das Gesamtgewicht der Kohlenwasserstoffverbindung (d2), enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kohlenwasser stoffverbindung (d2) ausgewählt ist aus Isomeren des Pentans.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die haloge nierte Kohlenwasserstoffverbindung (d1) 1-Chlor-3,3,3-trifluorpropen ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Treib mittel Ameisensäure umfasst.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kataly sator (c) mindestens einen Aminkatalysator mit tertiärer Amingruppe und mindestens ei nen Ammonium- oder Alkalimetallcarboxylatkatalysator enthält.
7. Verfahren nach einem der Anspruch 6, dadurch gekennzeichnet, dass der mindestens ei ne Aminkatalysator mit tertiärer Amingruppe ausgewählt ist aus der Gruppe, bestehend aus Pentamethyldiethylentriamin und Bis(2-dimethylaminoethyl)ether und der mindes tens eine Alkalimetallcarboxylatkatalysator ausgewählt ist aus der Gruppe, bestehend aus Kaliumformiat, Kaliumacetat und Kalium-2-Ethylhexanoat.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Verbin dungen mit mindestens einem mit Isocyanatgruppen reaktiven Wasserstoffatom (b) 0 bis 30 Gew.-% Polyetherol (b1) und 70 bis 100 Gew.-% Polyesterol (b2), jeweils bezogen auf das Gesamtgewicht von Polyetherol (b1) und Polyesterol (b2) enthalten.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Po lyetherpolyol (b1) das Umsetzungsprodukt eines 2 bis 4-funktionellen Startermoleküls mit Alkylenoxid, enthaltend Ethylenoxid, ist und eine Hydroxylzahl von 150 bis 300 mg KOH/g aufweist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Poly esterpolyol (b2) unter Einsatz von aromatischer Dicarbonsäure oder deren Derivate er halten wurde.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als Flammschutzmittel (e) ausschließlich halogenfreie Flammschutzmittel eingesetzt wer den.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Reak tionsmischung auf eine sich kontinuierlich bewegende Deckschicht aufgebracht wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Auftragung der Reakti- onsmischung auf eine sich kontinuierlich bewegende Deckschicht in einer Doppel bandanlage zur Herstellung von Sandwichelementen erfolgt.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass bei der Herstellung der Reaktionsmischung Vormischungen eingesetzt werden, die eine Iso- cyanatkomponente (A), enthaltend aromatisches Polyisocyanat (a), und eine Polyol komponente (B), enthaltend gegenüber Isocyanat reaktive Verbindungen (b), umfassen, und alle oder ein Teil der weiteren Komponenten (c) bis (g) ganz oder teilweise einer der Komponenten (A) oder (B) zugegeben werden.
15. . Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass physika lische Treibmittel (d1) und (d2) in einem extra Strom der Reaktionsmischung zugeführt werden.
16. Polyisocyanurathartschaumstoff, erhältlich nach einem Verfahren gemäß einem der An- Sprüche 1 bis 15.
EP21733840.9A 2020-06-25 2021-06-23 Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte Pending EP4172235A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20182326 2020-06-25
PCT/EP2021/067249 WO2021260069A1 (de) 2020-06-25 2021-06-23 Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte

Publications (1)

Publication Number Publication Date
EP4172235A1 true EP4172235A1 (de) 2023-05-03

Family

ID=71170320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21733840.9A Pending EP4172235A1 (de) 2020-06-25 2021-06-23 Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte

Country Status (10)

Country Link
US (1) US20230250278A1 (de)
EP (1) EP4172235A1 (de)
JP (1) JP2023532875A (de)
KR (1) KR20230029846A (de)
CN (1) CN115702184A (de)
AU (1) AU2021295848A1 (de)
BR (1) BR112022026388A2 (de)
CA (1) CA3188780A1 (de)
MX (1) MX2023000155A (de)
WO (1) WO2021260069A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4446353A1 (de) * 2023-04-14 2024-10-16 Covestro Deutschland AG Polyurethanschaumstoff mit verbesserter dimensionsstabilität

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU551979B2 (en) 1982-03-31 1986-05-15 Shell Internationale Research Maatschappij B.V. Epoxy polymerisation catalysts
US5470501A (en) 1995-05-08 1995-11-28 Basf Corporation Processability of hydrocarbon blown, polyisocyanate based foams through use of a compatibilizing agent
US5922779A (en) 1997-10-10 1999-07-13 Stepan Company Polyol blends for producing hydrocarbon-blown polyurethane and polyisocyanurate foams
US5817860A (en) * 1998-03-20 1998-10-06 Essex Specialty Products, Inc. Polyurethane prepolymer compositions, foams made therefrom and methods of making each thereof
DE10227072A1 (de) * 2002-06-17 2003-12-24 Basf Ag Polyurethanschaumstoffe, enthaltend modifizierte Polyorganosiloxane
US20050176830A1 (en) * 2004-02-09 2005-08-11 Jinhuang Wu Pentane-blown foams
DE102004013408A1 (de) 2004-03-18 2005-10-06 Basf Ag Polyetheralkohole und Verfahren zur Herstellung von Polyetheralkoholen zur Polyurethansynthese
TW201815923A (zh) 2005-06-24 2018-05-01 美商哈尼威爾國際公司 含有經氟取代之烯烴之發泡劑及組合物,及發泡方法
US20170369668A1 (en) * 2007-03-29 2017-12-28 Arkema Inc. Blowing Agent Composition of Hydrochlorofluoroolefin
US9738768B2 (en) 2007-03-29 2017-08-22 Arkema Inc. Blowing agent composition of hydrochlorofluoroolefin
PL2234732T3 (pl) 2007-12-17 2016-01-29 Basf Se Sposób i urządzenie do wytwarzania elementów kompozytowych w oparciu o tworzywa piankowe na bazie izocyjanianów
CA2941024C (en) * 2007-12-19 2018-12-04 E. I. Du Pont De Nemours And Company Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyisocyanate-based foams
BRPI0912437A2 (pt) * 2008-08-13 2016-01-05 Du Pont composição formadora de espuma, poliuretano de célula fechada ou espuma de polímero poliisocianurato preparada pela reação de uma quantidade eficaz da composição formadora de espuma e processo para a produção de um poliuretano de célula fechada ou espuma de polímero poliisocianurato
US20110144216A1 (en) 2009-12-16 2011-06-16 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
MX354274B (es) 2011-08-01 2018-02-21 Basf Se Sistemas de espuma rígida soplados con hidrofluoroolefina/agua.
EP2785777A1 (de) * 2011-12-02 2014-10-08 E. I. Du Pont de Nemours and Company Schaumstoffexpansionsmittelzusammensetzungen mit z-1,1,1,4,4,4-hexafluor-2-buten sowie ihre verwendung bei der herstellung von polyurethan- und polyisocyanuratpolymerschaumstoffen
WO2013082963A1 (en) 2011-12-09 2013-06-13 Honeywell International Inc. Foams and articles made from foams containing hcfo or hfo blowing agents
CN104080827B (zh) 2012-01-18 2016-04-27 巴斯夫欧洲公司 制备硬质聚氨酯泡沫的方法
EP2634201A1 (de) 2012-03-01 2013-09-04 Basf Se Polyurethan-Hartschaumstoffe
EP3033394B1 (de) * 2013-08-13 2018-08-15 Enerlab 2000 Inc. Verfahren zur herstellung von polyurethanprodukten auf ligninbasis
MX2016003162A (es) * 2013-09-19 2016-07-05 Dow Global Technologies Llc Proceso asistido con vacio para producir espumas rigidas de poliuretano de celula cerrada utilizando agentes de soplado mixtos.
US20150210818A1 (en) * 2014-01-27 2015-07-30 E I Du Pont De Nemours And Company Cryogenic insulation foam
EP3115401B8 (de) * 2014-03-05 2021-03-31 Hisense Ronshen (Guangdong) Refrigerator Co., Ltd Polyurethanhartschaumstoff mit niedriger thermischer leitfähigkeit mit c-pentan als haupttreibmittel sowie herstellungsverfahren und anwendungen davon
JP6550125B2 (ja) 2014-05-05 2019-07-24 レジネート マテリアルズ グループ、インコーポレイテッド 熱可塑性ポリエステルとダイマー脂肪酸からのポリエステルポリオール
MX2017014405A (es) 2015-05-15 2018-07-06 Stepan Co Aceites vegetales etoxilados en formulaciones de espuma de atomizacion de baja densidad.
CN105440302A (zh) 2015-05-21 2016-03-30 霍尼韦尔国际公司 聚氨酯或聚异氰脲酸酯复合板以及其连续生产线生产方法
CN105968302B (zh) * 2016-05-27 2018-09-04 江苏长顺高分子材料研究院有限公司 用于超低温lng储罐储保冷用聚氨酯喷涂组合料及其制备方法
US11505670B2 (en) * 2016-11-17 2022-11-22 Covestro Llc Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
ES2982187T3 (es) 2017-03-20 2024-10-15 The Chemours Company Fc Llc Composiciones y usos de trans-1,1,1,4,4,4-hexafluoro-2-buteno
WO2018218102A1 (en) 2017-05-26 2018-11-29 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane
WO2019096763A1 (en) 2017-11-17 2019-05-23 Covestro Deutschland Ag Polyurethane foam composite panel
JP7555268B2 (ja) * 2018-05-04 2024-09-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 断熱性能が改善された発泡体
US11267945B2 (en) * 2020-01-31 2022-03-08 Ddp Specialty Electronic Materials Us, Llc Flame-retardant polyurethane foam
CA3167790A1 (en) * 2020-02-04 2021-08-12 The Chemours Company Fc, Llc Nucleating agents for pir foams

Also Published As

Publication number Publication date
JP2023532875A (ja) 2023-08-01
CA3188780A1 (en) 2021-12-30
MX2023000155A (es) 2023-02-16
KR20230029846A (ko) 2023-03-03
WO2021260069A1 (de) 2021-12-30
CN115702184A (zh) 2023-02-14
BR112022026388A2 (pt) 2023-01-17
US20230250278A1 (en) 2023-08-10
AU2021295848A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
EP2804886B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP2828309B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2800769B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2900719B1 (de) Polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
EP3105274B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2820057B1 (de) Polyetheresterpolyole und ihre verwendung zur herstellung von polyurethan-hartschaumstoffen
EP2855551B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2820059B1 (de) Polyurethan-hartschaumstoffe
EP2678367B1 (de) Polyesterpolyole auf basis aromatischer dicarbonsäuren und daraus hergestellte polyurethanhartschäume
EP3036267B1 (de) Verbesserte polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
EP3619250B1 (de) Polyurethanhartschaumstoffe mit verbessertem brandverhalten
EP3837296B1 (de) Umweltfreundliche getriebene polyurethansprühschaumsysteme
EP2855557B1 (de) Polyesterole zur herstellung von polyurethan-hartschaumstoffen
EP4172235A1 (de) Polyisocyanurathartschaumstoff mit hoher druckfestigkeit, geringer wärmeleitfähigkeit und hoher oberflächengüte
EP3997161A1 (de) Verfahren zur herstellung von flammwidrigen pur-/pir-hartschäumen
EP2956246B1 (de) Verfahren zur herstellung von verbundelementen
WO2015150304A1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP4419574A1 (de) Verfahren zur herstellung von verbesserten polyisocyanurat-hartschaumstoffen auf basis von aromatischen polyesterpolyolen und ethylenoxid basierten polyetherpolyolen
WO2023001687A1 (de) Polyurethanhartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen und vernetzenden polyesterpolyolen
WO2014048785A1 (de) Verfahren zur herstellung von verbundprofilen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20230125