EP4168531A1 - Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé - Google Patents

Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé

Info

Publication number
EP4168531A1
EP4168531A1 EP21740145.4A EP21740145A EP4168531A1 EP 4168531 A1 EP4168531 A1 EP 4168531A1 EP 21740145 A EP21740145 A EP 21740145A EP 4168531 A1 EP4168531 A1 EP 4168531A1
Authority
EP
European Patent Office
Prior art keywords
composition
lactose
weight
strain
sugars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740145.4A
Other languages
German (de)
English (en)
Inventor
Frédérique BIDARD-MICHELOT
Etienne JOURDIER
Vincent GRANDPERRET
Christa IVANOVA
Sabine PRIGENT
Céline Cohen
Antoine Margeot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4168531A1 publication Critical patent/EP4168531A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a process for the production of proteins using (i) a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, and (ii) an optimized inducer composition.
  • the strains of fungus belonging to the Trichoderma genus, in particular Trichoderma reesei, are today mainly used for the production of enzymes.
  • These enzymes for example cellulases, are in fact used to hydrolyze cellulosic or lignocellulosic biomass into simple sugars.
  • the enzymes produced by filamentous fungi are therefore useful in the production sectors of second-generation biofuels or even biobased products derived from sugars originating from (ligno) cellulosic biomass.
  • patent EP 448 430 B1 describes an optimized industrial production of cellulases by Trichoderma reesei. This production is carried out in a fed-batch protocol (feed without drawing off) using a feed solution containing lactose as inducing sugar in the production of proteins. This fermentation process comprises two stages: a first stage of growth of the fungus in the presence of an excess of carbon source and a second stage of production of enzymes thanks to the addition of an inducer in the medium with an optimized flow rate ( fed-batch mode). These steps are carried out in a liquid medium in bioreactors with stirring and in the presence of oxygen because the fungus is strictly aerobic. Another example of an optimized process for the production of cellulases is described in patent EP 2744899 B1.
  • Jourdier et al. have shown that it is possible to replace part of the lactose with other less expensive sugars such as glucose and / or purified xylose (see Jourdier et al. Biotechnology for Biofuels 2013, 6:79).
  • the authors notably analyzed the impact of glucose and / or xylose on the secretion of enzymes by a hyperproductive strain of Trichoderma reesei (strain CL847). This study thus makes it possible to conclude that in the industrial strain CL847 which comes from the hyperproductive model strain RutC30, the induction capacity is positively correlated with the lactose content present in the feed solution: the higher the lactose content, the better the induction.
  • International application PCT / FR2011 / 000350 also describes a process for the production of cellulolytic and / or hemicellulolytic enzymes using, during the production phase, a composition comprising from 40 to 65% by weight of glucose, from 21 to 25 wt% lactose and 10-39 wt% xylose in combination with a Trichoderma reesei fungus disabled for catabolic repression by glucose.
  • CEL1a and CEL1b are Essential for Cellulase Induction on Lactose in Trichoderma reesei, Eukaryotic Cell 13 (8), pp. 1001-1013 (2014)) described the invalidation of the cella gene in the parent strain Trichoderma reesei TU-6 (ATCC MYA-256).
  • the team of Xu et al. concludes in particular that the CEL1a protein is an intracellular ⁇ -glucosidase which is essential in induction by lactose.
  • the present invention is based on the unexpected results of the inventors who have demonstrated that it was possible to induce the production of proteins using an inducing composition containing less, if at all, lactose, namely a composition containing 0% by weight of lactose relative to the total content of sugars in said composition, or lactose at a content greater than 0% by weight and at most 30% by weight of the content total sugars in said composition, and being in particular between 5% by weight and 30% by weight of the total content of sugars in said composition, using a strain of the fungus Trichoderma, in particular Trichoderma reesei, in which the genome has been modified in order to invalidate the cella gene.
  • lactose the inducing composition comprising at least one other sugar (also called in the text “second sugar”); lactose is no longer used here at all;
  • the inventors have in particular shown that the invalidation of the cella gene in a strain of Trichoderma reesei made it possible to divide by 10 the quantity of lactose used in the production phase, or even to eliminate it completely, while maintaining an equivalent specific productivity by compared to a reference strain.
  • the inventors have in particular shown that the strain invalidated for cella, although it does not produce proteins when it is supplied with pure glucose or with pure lactose, correctly produces proteins when it is supplied with glucose / lactose mixtures, with an advantageous range for lactose contents in the feed solution of between 5% and 30% by weight of the accumulation of sugars, in particular for contents of between 10% and 20% by weight.
  • feed solutions having lactose contents comprising between 10 and 15% by weight of the accumulation of sugars give an equivalent induction as pure lactose in the parent strain (in which the gene cella has not been invalidated), with specific protein production rates of the order of 20 ⁇ 2 mg protein / g biomass / h.
  • the present invention is based on the use, during the step of producing proteins in the fed-batch phase, of a composition comprising a second sugar, and optionally at least lactose, the lactose content in said.
  • composition being equal to 0% by weight of the total content of sugars in said composition, or being greater than 0% by weight and at most 30% by weight of the total content of sugars in said composition.
  • the present invention thus relates to a process for the production of proteins by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, comprising at least two steps: - a first batch phase growth step in the presence of at least one carbonaceous growth substrate, and
  • a second step of producing proteins in the fed-batch phase in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30% by weight of the total content of sugars in said composition.
  • the present invention thus relates to a process for the production of proteins by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, comprising at least two steps:
  • a second step of producing proteins in the fed-batch phase in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 5 and 30% by weight of the total content of sugars in said composition.
  • the present invention also relates to the use of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30%, in particular between 5 and 30%, by weight of the total content of sugars in said composition for the production of proteins of interest by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated.
  • the present invention also relates to a process for the production of sugars from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30%, in particular between 5 and 30%, by weight of the total content of sugars in said composition.
  • the invention therefore relates to the use of a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, for the hydrolysis of cellulose or lignocellulose to sugar.
  • the present invention also relates to a process for the production of biobased products from cellulosic or lignocellulosic substrates, comprising a stage of production of cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, in presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30%, in particular 5 and 30%, by weight of the total content of sugars in said composition.
  • the invention therefore relates to the use of a strain of fungus belonging to the Trichoderma genus in which the cel1a gene is invalidated, for the production of bio-based products from cellulosic or lignocellulosic substrates.
  • the present invention also relates to a method of producing a biofuel / alcohol from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the gene cella is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30%, in particular between 5 and 30%, by weight of the total content of sugars in said composition.
  • the invention therefore relates to the use of a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, for the production of biofuel / alcohol from cellulosic or lignocellulosic substrates.
  • the present invention finally relates to a strain of fungus belonging to the species Trichoderma reesei, said strain being derived from the strain as deposited under the reference ATCC 56765 and said strain comprising an invalidation of the cella gene.
  • the present invention also relates more generally to a strain derived from the Rut-C30 strain, and said strain comprising an invalidation of the cella gene.
  • the invention thus relates to a process for the production of proteins by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, comprising at least two steps:
  • a second step of producing proteins in the fed-batch phase in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0 and 30% or between 5 and 30%, by weight of the total content of sugars in said composition.
  • the invention relates to a method of producing proteins by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, comprising at least two steps:
  • the expression "approximately between 0 and 30% by weight of the total content of sugars in said composition” means a lactose content greater than or equal to 0% and strictly less than 5% and / or a content between 5 and 30% by weight of the total content of sugars in said composition.
  • This also means a lactose content greater than or equal to 0.01% (preferably 0.1% or 1%) and strictly less than 5% and / or a content between 5 and 30% by weight of the total content of sugars in said composition.
  • composition used in the fed-batch step according to the invention can thus:
  • lactose but at a content of between 0.01% and 30% by weight of the total content of sugars in said composition.
  • composition used in the fed-batch step according to the invention can thus:
  • lactose but at a content of between 0.1% and 30% by weight of the total content of sugars in said composition.
  • composition used in the fed-batch step according to the invention can thus:
  • composition used in the fed-batch step according to the invention can thus comprise lactose and another (second) sugar or else comprise at least one sugar other than lactose, preferably at least two sugars.
  • the invention relates to a method of producing proteins by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, comprising at least two steps:
  • the lactose content in said composition representing between 0.01 and 30% by weight of the total content of sugars in said composition.
  • the composition used in the fed-batch step according to the invention comprises:
  • a lactose content greater than or equal to 5.00% and less than or equal to 30.00% by weight of the total content of sugars in said composition.
  • the expression “strictly greater than 0.00%” means a value of at least 0.01%, in particular at least 0.1%, and preferably at least 1%, and the expression “strictly less than 5.00 % ”Refers to values up to 4.99%.
  • the lactose content in the composition used during the fed-batch step is between more than 0% and 5% by weight of the total content of sugars in said composition, or between more from 5% and less than 10% by weight of the total sugar content in said composition, or from 10% by weight to at most 20% by weight of the total sugar content in said composition.
  • the ceUa gene corresponds to the gene represented by SEQ ID NO: 1 or a gene having at least 80% identity with SEQ ID NO: 1.
  • the cella gene is also named TRIREDRAFT_120749 in the genome reference Trichoderma reesei (b3 ⁇ 4tps: //www.uniproi.ora/uniprot/GQRD31).
  • This gene encodes a CEL1a protein belonging to family 1 of glycoside hydrolases. More specifically, CEL1a is an intracellular b-glucosidase, also called bgl2 or bglll, (M. Saloheimo, J. Kuja-Panula, E. Ylôsmàki, et al. (2002) Enzymatic Properties and Intracellular Localization of the Novel Trichoderma reesei b-
  • Glucosidase BGLII (Cel1A). Applied and Environmental Microbiology, 68 (9) 4546-4553).
  • the CEL1a protein is represented by SEQ ID NO: 2.
  • the ceUa gene is the reference gene in Trichoderrma reesei.
  • a gene having at least 80% identity thus represents a variant of this gene or else an orthologous gene in another species of Trichoderma.
  • the expression “at least 80% identity with SEQ ID NO: 1” means all the values between 80% and 100%, in particular the values of 80%, 81%, 82%, 83% , 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100 %, preferably at least 90%, at least 95%, still more particularly at least 98%, at least 99%.
  • the percentage identity of a given sequence relative to SEQ ID NO: 1 means the percentage identity over the total length of the sequences. The percentage thus corresponds to the number of nucleotides (residues if any) identical between this given sequence and SEQ ID NO: 1 divided by the number of nucleotides (residues if any) in the longer of the two sequences.
  • the CEL1 A protein is encoded by an orthologous gene or a variant of the cel1 gene, said protein may be represented by a protein having at least 80% identity with SEQ ID NO: 2, in particular at least 90%, at least 95%, preferably at least 98% or at least 99%.
  • the fungus belongs to the species Trichoderma reesei.
  • the cella gene is preferably represented by SEQ ID NO: 1 or a sequence having at least 98% identity with SEQ ID NO: 1.
  • the cella gene is represented by SEQ ID NO: 1.
  • the parent strain of Trichoderma reesei can in particular be the strain QM6a (deposited under the number ATCC 13631), or a strain resulting from the natural isolate QM6a (in particular obtained by random or directed mutagenesis), such as the strain Rut-C30 (deposited under the number ATCC 56765), the strain deposited under the number CNCM 1-5221 (deposited on August 3, 2017 with the CNCM, National Collection of Cultures of Microorganisms of the Pasteur Institute, located 25 rue du Do Budapest Roux, F-75724 Paris cedex 15), the strain NG14 (deposited under the number ATCC 56767) or the strain QM9414 (deposited under the number ATCC 26921).
  • the strain QM6a deposited under the number ATCC 13631
  • a strain resulting from the natural isolate QM6a in particular obtained by random or directed mutagenesis
  • the strain Rut-C30 deposited under the number ATCC 56765
  • the strain deposited under the number CNCM 1-5221 deposited on August 3,
  • proteins are all the proteins which can be produced by a fungus, naturally or else by genetic modification (for example after transformation using an appropriate vector).
  • the proteins of interest according to the invention are enzymes, in particular cellulolytic enzymes such as cellulases or hemicellulases.
  • the enzymes are cellulases.
  • the term "cellulases” is understood more particularly to mean enzymes belonging to the family of glycoside hydrolases, for example chosen from endoglucanases, exoglucanases and glucosidases.
  • glycoside hydrolases are in particular grouped together under the nomenclature “EC 3.2.1. ".
  • cellulase more particularly refers to an enzyme suitable for the hydrolysis of cellulose and allowing microorganisms (such as Trichoderma reesei) which produce them to use cellulose as a source of carbon, by hydrolyzing this polymer into simple sugars. (glucose).
  • microorganisms such as Trichoderma reesei
  • the production of cellulases by a strain according to the invention, in particular Trichoderma reesei can be determined by any techniques customary for a person skilled in the art, or alternatively by the techniques described in patents EP 448 430 B1 or EP 2744899 B1.
  • the lactose content representing approximately between 0 and 30% by weight of the total content of sugars means that during the fed-batch step, between 70 and 100% by weight of the sugars added by said composition are one or more sugars other than lactose.
  • the expression “the lactose content representing approximately between 5 and 30% by weight of the total content of sugars” means that during the fed-batch stage, between 70 and 95% by weight of the sugars provided by said composition are a sugar or sugars other than lactose.
  • the total content of sugars thus corresponds to 100% by weight of the content of sugars in the composition.
  • the method according to the invention is carried out in a stirred and aerated bioreactor. More particularly, the stirring speed is controlled, in particular in order to maintain a dissolved oxygen concentration greater than 40% of the saturation concentration.
  • the stirring speed is generally controlled between 400 and 1200 rpm.
  • the temperature is controlled during the first and the second step, in particular between 20 and 35 ° C. More particularly, the temperature is controlled at 27 ° C during the first step and at 25 ° C during the second step.
  • the pH is controlled. More particularly, the pH is controlled at 4.0, in particular by automatic addition of a 5N ammonia solution.
  • the first phase takes place until the carbonaceous growth substrate is used up.
  • This first stage generally lasts between about 18 and 48 hours, in particular for 24 to 36 hours.
  • the second phase takes place for approximately 70 to 240 hours, in particular 70 hours.
  • the first phase lasts between 18 and 48 hours, in particular for 24 to 36 hours, and the second phase takes place for approximately 70 to 240 hours, in particular 70 hours.
  • the method according to the invention allows to obtain a productivity of between 14 and 25 mg P rotéines / gbiomasse / h, in particular between 14 and 23 mgpro Téi nes / g bi omasse / h. According to one embodiment, the method according to the invention allows to obtain a productivity of between 15 and 20 mg pro teins / gbiomasse / h, in particular between 16 and 19 mg P rotéines / gbiomasse / h.
  • the induction ability of a solution of sugars on a stump is judged by measuring the specific rate of protein production (also called “specific productivity"), expressed in mg otéines r / gbiomasse / h, in a culture with supply of the solution of sugars at optimized flow rate.
  • specific productivity also called "specific productivity”
  • the proteins produced by Trichoderma reesei are mainly enzymes, including cellulases.
  • a correlation between total secreted proteins and cellulases can be made because in Trichoderma reesei, the main exoglucanases (CBHI, CBHII) and endoglucanases (EGI, EGII) can represent up to 90% of the total amount of secreted proteins (see for example Markov, AV, Gusakov, AV, Kondratyeva, EG, Okunev, ON, Bekkarevich, AO, and Sinitsyn, AP (2005). New Effective Method for Analysis of the Component Composition of Enzyme Complexes from Trichoderma reesei. Biochemistry (Moscow) 70, 657-663). Thus, the productivity of enzymes or of cellulases is therefore equivalent to the productivity of proteins.
  • a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated means that the genome of the strains used in the present invention has been modified so that the cella gene is no longer expressed (or the gene variant or the orthologous gene if applicable).
  • the CEL1a protein is not produced or else a non-functional CEL1a is produced (ie the protein is no longer biologically active).
  • the genome of the strain according to the invention is modified (or has been modified) so that the CEL1a protein is not synthesized or is synthesized in a non-functional form.
  • the CEL1a protein is not produced / synthesized.
  • the invalidation of a gene is well known to those skilled in the art.
  • the cella gene has been invalidated in the strain by mutagenesis or by homologous recombination, in particular using an invalidation cassette such as represented by SEQ ID NO: 3.
  • the present invention thus relates to the use of a variant strain of the Trichoderma fungus, in which the cella gene has been invalidated.
  • the term "variant strain” means a strain genetically modified from a parent strain.
  • the term “parent strain” thus means a strain from which the variant strain is derived or derived, and in which the cella gene has not been invalidated.
  • the strain according to the invention thus corresponds to a variant strain derived from a parent strain, said variant strain comprising at least one genetic modification corresponding to the invalidation of the cella gene relative to the parent strain.
  • the “carbonaceous growth substrate” is preferably chosen from lactose, glucose, xylose, liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation) of the monomeric sugars of the enzymatic hydrolysates of biomass.
  • cellulosic a crude extract of water-soluble pentoses originating from the pretreatment of a cellulosic biomass, an enzymatic hydrolyzate of lignocellulose (that is to say before fermentation), and / or a hydrolyzate of starchy biomass.
  • the substrate is chosen from glucose, xylose, liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation of the monomeric sugars of the enzymatic hydrolysates of cellulosic biomass, a crude extract of water-soluble pentoses originating from the pretreatment of a cellulosic biomass, an enzymatic hydrolyzate of lignocellulose (that is to say before fermentation), and / or a hydrolyzate of starchy biomass
  • the substrate is glucose.
  • the concentration of carbonaceous growth substrate is in particular between 10 and 80 g / L, in particular between 15 and 40 g / L.
  • composition used in the second protein production step of the process according to the invention can also be called “feed solution” or "sugar feed solution”.
  • this composition comprises at least two sugars: lactose and another sugar.
  • this composition comprises at least three different sugars: lactose and two other sugars.
  • said composition used in the second protein production step of the process comprises at least one sugar except lactose, preferably at least two sugars except lactose.
  • Lactose is an inducing substrate, that is to say it allows the expression of proteins, in particular cellulases, in the culture medium.
  • said second sugar is not an inducing sugar but is nevertheless a carbonaceous substrate.
  • the sugar concentration of the composition used during the fed-batch step is in particular between 200 and 600 g / L, in particular between 200 and 500 g / L or between 250 g / L and 500 g / L.
  • the second sugar (or the "at least one sugar except lactose") is provided via a solution of glucose and / or xylose (preferably purified), a starchy biomass hydrolyzate, a enzymatic hydrolyzate of lignocellulosic biomass, a crude extract of water-soluble pentoses originating from the pretreatment of a cellulosic biomass and / or the liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation) of the monomeric sugars of the enzymatic hydrolysates of cellulosic biomass.
  • the present invention thus makes it possible to use industrial sugar solutions, on condition that they are optionally supplemented with lactose, to induce the production of proteins.
  • the composition comprising at least lactose and a second sugar can thus also be called an inducing composition.
  • the composition / feed solution used in the fed-batch step thus corresponds to a solution of glucose and / or xylose (preferably purified), a hydrolyzate of starchy biomass, an enzymatic hydrolyzate.
  • lignocellulosic biomass a crude extract of water-soluble pentoses originating from the pretreatment of a cellulosic biomass and / or the liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation) of the monomeric sugars of the enzymatic hydrolysates of cellulosic biomass, in which lactose is added so that the lactose content in said composition represents approximately between 0 and 30%, in particular 5 and 30%, by weight of the total content of sugars.
  • said second sugar or said “at least one sugar other than lactose” is chosen from glucose, xylose, liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation) monomeric sugars from enzymatic hydrolysates of cellulosic biomass, a crude extract of water-soluble pentoses from the pretreatment of cellulosic biomass, an enzymatic hydrolyzate of lignocellulose, and / or a hydrolyzate of starchy biomass, preferably glucose, xylose and / or a crude extract of hydrolubic pentoses.
  • a starchy biomass hydrolyzate mainly contains glucose.
  • an enzymatic hydrolyzate of lignocellulosic biomass mainly contains glucose and xylose.
  • a crude extract of water-soluble pentoses from the pretreatment of cellulosic biomass mainly contains xylose.
  • the cellulosic biomass used can for example be wheat straw, corn straw, corn cobs, sugar cane bagasse, miscanthus, poplar, birch, and any other product or by-product. agricultural and forestry industries.
  • the crude extract of water-soluble pentoses is prepared by pretreatment of wheat straw or corn straw.
  • a steam explosion pretreatment process is described for example in application WO 2019/120994 A1.
  • a pretreatment and extraction process making it possible to prepare a crude extract of water-soluble pentoses is described for example in patent application EP 3587583 A1.
  • the liquid residues obtained after ethanolic fermentation (optionally obtained after ethanolic fermentation then distillation) of the monomeric sugars of the enzymatic hydrolysates of cellulosic biomass mainly contain non-fermentable sugars (arabinose, mannose, galactose) and residues of fermentable sugars ( glucose and xylose).
  • the second sugar is chosen from glucose and / or xylose, preferably glucose.
  • said composition comprises only lactose and glucose as sugar, OR only lactose and xylose OR only lactose, glucose and xylose.
  • said composition used during the fed-batch production step comprises glucose, lactose and a crude extract of water-soluble pentoses (in particular originating from the pretreatment of a cellulosic biomass such as corn straw or wheat straw).
  • said composition used during the fed-batch production step comprises glucose, a crude extract of water-soluble pentoses (in particular originating from the pretreatment of a cellulosic biomass such as corn straw or wheat straw. ) and is lactose-free.
  • the percentages of lactose, glucose and / or xylose, and / or the crude extract of water-soluble pentoses in the composition are calculated relative to the total content by weight of sugars in said composition .
  • the total sugar content is that used during the fed-batch mode.
  • the content of each sugar in the composition / solution is for example measured by high performance liquid chromatography (HPLC), optionally after concentration by evaporation.
  • HPLC high performance liquid chromatography
  • purified lactose or glucose powder is dissolved, or a concentrated solution of glucose is mixed.
  • the new contents of each sugar are then remeasured by HPLC in the final mixture.
  • the composition during the fed-batch step is added / supplied continuously, in a limiting flow.
  • concentration of sugars in the culture medium is controlled so as to maintain a residual concentration of sugars in the culture medium close to zero.
  • the sugar concentration in the culture medium is less than 1 g / L during this phase, in particular less than 0.5 g / L, more particularly less than 0.1 g / L. This thus promotes the induction and production of proteins.
  • the calculation of the optimized flow rate of said composition must be done not in relation to the lactose concentration of the solution but by cumulating the concentration of all the sugars present in the solution.
  • the mass flow rate in gsucres / h
  • the volume flow rate of the feed solution in L / h
  • said composition in the production step is supplied at a flow rate of between 0.8 and 8 rnLsoiution / Lmiiieu / h, preferably between 1 and 3 rnLsoiution / Lmiiieu / h.
  • mLsoiution here represents the volume of said composition (feed solution for the fed-batch mode)
  • Lmmeu here represents the volume of the bioreactor / fermenter.
  • the expression “approximately between 0 and 30% by weight of the total content of sugars in said composition” or “approximately between 5 and 30% by weight of the total content of sugars in said composition” represents all values between 0 and 30, that is, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30. More specifically, the term “approximately” means that values very slightly less than 5 (for example included between 4.5 and 5) are in the range 5-30%. This also means that values very slightly above 30 (eg between 30 and 30.5) are in the range 5-30%.
  • said composition comprises, relative to the total content of sugars in said composition:
  • said composition comprises, relative to the total content of sugars in said composition:
  • the lactose content in said composition represents approximately between 10 and 20% by weight, in particular between 10 and 20% by weight, of the total content of the sugars in said composition.
  • said composition comprises:
  • lactose approximately between 10-20% by weight of lactose, and more particularly
  • the lactose content in said composition represents approximately between 10 and 15% by weight, in particular between 10 and 15% by weight, of the total content of the sugars in said composition.
  • said composition comprises:
  • lactose approximately between 10-15% by weight of lactose, and more particularly
  • said composition comprises:
  • the sugar content in said composition consists of 100% of crude extract of water-soluble pentoses and of glucose.
  • the substrates are sterilized.
  • the carbonaceous growth substrate is introduced into the bioreactor before sterilization.
  • the carbonaceous growth substrate is sterilized separately and then introduced into the bioreactor after sterilization.
  • the composition of sugars used during the fed-batch step is sterilized separately and then introduced into the bioreactor after sterilization.
  • the invention relates to the use of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0% and 30% or between 5% and 30%. %, by weight of the total content of sugars in said composition, for the production of proteins of interest by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated.
  • the invention in a second aspect, relates to the use of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing 0% by weight of lactose of the total content of sugars in said. composition, or lactose in a content greater than 0% by weight and at most 30% by weight of the total content of sugars in said composition, and being in particular between 5% by weight and 30% by weight of the total content of sugars in said composition said composition, for the production of proteins of interest by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated.
  • the invention in a third aspect, relates to a process for the production of sugars from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0% and 30% or between 5% and 30%, by weight of the total content of sugars in said composition.
  • the invention in a third aspect, relates to a process for the production of sugars from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing 0% by weight of lactose of the total content of sugars in said composition, or lactose in content greater than 0% by weight and at most 30% by weight of the total content of sugars in said composition, and being in particular between 5% by weight and 30% by weight of the total content of sugars in said composition.
  • the invention relates to the use of a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, for the hydrolysis of cellulose or lignocellulose to sugar.
  • the invention in a fourth aspect, relates to a process for the production of biobased products from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0% and 30% or between 5% and 30%, by weight of the total content of sugars in said composition.
  • the invention relates to a process for the production of biobased products from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition being 0% by weight of lactose of the total content of sugars in said composition, or lactose with a content greater than 0% by weight and at most 30% by weight of the total content of sugars in said composition, and being in particular between 5% by weight and 30% by weight of the total content of sugars in said composition.
  • the invention relates to the use of a strain of fungus belonging to the genus Trichoderma in which the cella gene is invalidated, for the production of bio-based products from cellulosic or lignocellulosic substrates.
  • biobased products is understood more particularly of molecules of interest to the chemical industry, such as for example organic acids such as acetic, propionic, acrylic, butyric, succinic or malic acid. , fumaric, citric, itaconic, or hydroxy acids such as glycolic, hydroxypropionic, or lactic acid, as well as other types of bio-based products such as solvents and alcohols, for example ethanol, acetone, isopropanol, butanol.
  • organic acids such as acetic, propionic, acrylic, butyric, succinic or malic acid.
  • fumaric, citric, itaconic or hydroxy acids
  • glycolic, hydroxypropionic, or lactic acid as well as other types of bio-based products
  • solvents and alcohols for example ethanol, acetone, isopropanol, butanol.
  • the invention relates to a process for producing a biofuel / alcohol, in particular ethanol, from cellulosic or substrate substrates.
  • lignocellulosics comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0% and 30% or between 5% and 30%, by weight of the total content of sugars in said composition.
  • the invention relates to a process for producing a biofuel / alcohol, in particular ethanol, from cellulosic or lignocellulosic substrates, comprising a step of producing cellulolytic enzymes by a strain of fungus belonging to the Trichoderma genus in which the ceUa gene is invalidated, in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition comprising 0% by weight of lactose of the total content of sugars in said composition, or lactose in a content greater than 0% by weight and at most 30% by weight of the total content of sugars in said composition, and being in particular between 5% by weight and 30% by weight of the total content of sugars in said composition.
  • the invention relates to the use of a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated, for the production of biofuel / alcohol from cellulosic or lignocellulosic substrates .
  • biofuel is understood more particularly to mean a second generation biofuel, that is to say derived from non-food resources.
  • biofuel can also be defined as being any product resulting from the transformation of biomass and which can be used for energy purposes.
  • biogas products which can be incorporated (optionally after subsequent processing) into a fuel or be a fuel in its own right, such as alcohols ( ethanol, butanol and / or isopropanol depending on the type of fermentation organism used), solvents (acetone), acids (butyric), lipids and their derivatives (short or long chain fatty acids, acid esters fatty), as well as hydrogen.
  • the biofuel according to the invention is an alcohol, for example ethanol, butanol, isopropanol, 1,2-propane diol, 1,3-propane diol, 1, 4-butane diol. , and / or 2,3-butanediol. More preferably, the biofuel according to the invention is ethanol. In another embodiment, the biofuel is biogas.
  • said process for producing a biofuel or alcohol from cellulosic or lignocellulosic substrates comprises the following steps:
  • a stage of production of cellulolytic enzymes by a strain of fungus belonging to the genus Trichoderma in which the ceUa gene is invalidated in the presence of a composition comprising at least lactose and a second sugar, the lactose content in said composition representing approximately between 0% and 30% or between 5% and 30%, by weight of the total content of sugars in said composition,
  • step iii) a step of enzymatic hydrolysis of the pretreated substrate, in the presence of the cellulolytic enzymes obtained in step ii) and of an appropriate substrate, in order to obtain a hydrolyzate
  • said process for producing a biofuel or alcohol from cellulosic or lignocellulosic substrates comprises the following steps:
  • step iii) a step of enzymatic hydrolysis of the pretreated substrate, in the presence of the cellulolytic enzymes obtained in step ii) and of an appropriate substrate, in order to obtain a hydrolyzate
  • said process for producing a biofuel or alcohol from cellulosic or lignocellulosic substrates comprises the following steps:
  • step iii) a step of enzymatic hydrolysis of the pretreated substrate, in the presence of the cellulolytic enzymes obtained in step ii) and of an appropriate substrate, in order to obtain a hydrolyzate
  • the step of pretreatment of a cellulosic or lignocellulosic substrate is a step of suspending said cellulosic or lignocellulosic substrate in the aqueous phase.
  • the hydrolyzate obtained in step iii) is a hydrolyzate containing glucose.
  • the alcoholic fermentation step of the hydrolyzate obtained is a fermentation step, in the presence of a fermenting organism, of the glucose obtained from the hydrolyzate so as to produce a fermentation must .
  • a fermentation organism is, for example, a yeast.
  • the separation step is a separation of the biofuel or alcohol and the fermentation must, in particular by distillation.
  • the pretreated cellulosic or lignocellulosic substrate to be hydrolyzed is suspended in the aqueous phase at a rate of 6 to 40% of dry matter, preferably 20 to 30%.
  • the pH is adjusted between 4 and 5.5, preferably between 4.8 and 5.2 and the temperature between 40 ° C and 60 ° C, preferably between 45 ° C and 50 ° C.
  • the hydrolysis reaction is started by adding enzymes acting on the pretreated substrate.
  • the usual amount of enzymes used is 10 to 30 mg of protein per gram of pretreated substrate or less.
  • the reaction generally lasts 15 to 48 hours.
  • the reaction is monitored by assaying the sugars released, in particular glucose.
  • the sugar solution is separated from the non-hydrolyzed solid fraction, essentially consisting of lignin, by filtration or centrifugation and then treated in a fermentation unit.
  • the enzymes and the fermenting organism are added simultaneously and then incubated at a temperature between 30 ° C and 35 °. C to produce a fermentation must.
  • the cellulose present in the pretreated substrate is converted into glucose, and at the same time, in the same reactor, the fermenting organism (for example a yeast) converts the glucose into the final product according to an SSF process ( Simultaneous Saccharification and Fermentation) known to those skilled in the art.
  • SSF process Simultaneous Saccharification and Fermentation
  • the good progress of the operation may require the addition of a greater or lesser quantity of exogenous cellulolytic mixture.
  • the invention in a sixth aspect, relates to a strain of fungus belonging to the species Trichoderma reesei, said strain being derived from the strain as deposited under the reference ATCC 56765 (Rut-C30) and said strain comprising an invalidation of the cella gene.
  • the invention thus also relates to a RutC30 strain, the genome of which has been modified in order to invalidate the ceUa gene.
  • the invention also relates to a strain derived from the RutC30 strain, the genome of which has been modified in order to invalidate the ceUa gene.
  • This variant strain of RutC30 is therefore a strain in which the CEL1a protein is not produced, or else a non-functional CEL1a protein is produced.
  • such a strain is obtained by a process for the genetic modification of a strain of Rut-C30 fungus, comprising a step of invalidating the ceUa gene.
  • This step of invalidation of the ceUa gene is carried out in particular by mutagenesis, by homologous recombination or more preferably using an invalidation cassette represented by SEQ ID NO: 3.
  • Mutagenesis is a technique commonly used in genetic engineering. It aims to intentionally introduce mutations into DNA in order to create genetically modified genes. According to the invention, mutagenesis is more particularly understood as site-directed mutagenesis. Site-directed mutagenesis makes it possible to introduce identified mutations into a specific gene. To do this, the DNA of interest (here the ceUa gene) containing the mutations is synthesized and then introduced into the cell to be mutated, typically using a vector, where the DNA repair mechanism takes place. takes care of integrating it into the genome.
  • Homologous recombination is a technique commonly used in genetic engineering which consists of an exchange between DNA molecules, typically using a vector.
  • vector is understood to mean any DNA sequence into which it is possible to insert fragments of foreign nucleic acid, the vectors allowing the introduction of foreign DNA into a host cell.
  • vectors are plasmids, cosmids, artificial yeast chromosomes (Y AC), artificial bacterial chromosomes (BAC) and artificial chromosomes derived from bacteriophage P1 (PAC), vectors derived from viruses.
  • the vector according to the invention allows the introduction of a mutation or a deletion.
  • said invalidation cassette comprises three DNA fragments:
  • the "target gene” is understood to mean the ceUa gene.
  • the regions upstream and downstream of the target gene are two recombinant elements, one at each end of the gene, and are necessary to precisely target the sequence to be invalidated.
  • the region upstream of the target gene (that is to say the sequence 5 ′ upstream of the ceUa gene) is in particular represented by the sequence of SEQ ID NO: 4.
  • the region downstream of the target gene (that is to say the sequence 3 'downstream of the ce! 1a gene is in particular represented by the sequence of SEQ ID NO: 5.
  • selection marker means a gene whose expression confers on the cells which contain it a characteristic allowing them to be selected.
  • the use of a selection marker in fact makes it possible to identify the cells which have integrated a genetic modification compared to those which have not integrated it. It is for example a gene for resistance to antibiotics, in particular the gene for resistance to the antibiotic hygromycin hph, as represented by the sequence of SEQ ID NO: 6.
  • the invalidation cassette preferably consists of a resistance gene placed under the control of a promoter and of a terminator, with the 5 ′ flanking regions upstream and downstream. and 3 'of the cella gene.
  • said invalidation cassette may be operably linked to a promoter, a terminator or any other sequence necessary for its expression in a host cell.
  • the invalidation cassette can be amplified according to conventional techniques well known to those skilled in the art, typically by a method chosen from conventional cloning, PCR fusion, or else in vivo cloning by PCR.
  • this invalidation cassette is amplified by PCR, in particular using the sequences represented by SEQ ID NO: 9 and SEQ ID NO: 11.
  • the invalidation cassette is then introduced by recombination into a strain of Trichoderma, in particular Trichoderma reesei, which does not express a gene for the selection marker.
  • the variant / mutant strains having incorporated the invalidation cassette are selected according to the expression or not of the selection marker; the clones which have been transformed expressing said selection marker.
  • the mutant strains are identified using the primers of SEQ ID NO: 8 and SEQ ID NO: 13.
  • FIG. 1 represents the plasmid pRS426-Acel1a-hph which was used to obtain a strain in which the cella gene has been invalidated.
  • the positions of the various fragments of the invalidation cassette and of the oligonucleotides used for the construction are indicated.
  • FIG. 2 shows the optimization of the composition of the lactose / glucose mixture used as a feed solution for the protein production phase by Trichoderma reesei RutC30-Acel1a.
  • FIG. 3 shows the comparison of the specific bioreactor productivity of the RutC30 and RutC30-4ce / 7a strains when they are fed in fed-batch mode with sugar solutions of different compositions.
  • Example 1 Invalidation of the cella gene in a hvperproductive strain
  • the flanking regions (1 kb) of cella were amplified from genomic DNA of T. reesei using Phusion polymerase (Thermo Fisher Scientific) and using the following oligonucleotides: cel1a-5F and cel1a-5R; cel1a-3F and cel1a-3R (see Table 2).
  • the hph marker was amplified from the plasmid pLHhphl using the hphF and hphR oligonucleotides (Hartl et al., 2007).
  • the oligonucleotides used for the amplification of the flanking regions overlap the different fragments of the construction ( Figure 1).
  • the deletion cassette will be assembled in the plasmid pRS426 by homologous recombination during passage into yeast. Transformation of the yeasts was carried out using the method described by Schiestl and Gietz (1989).
  • the yeast strain ATCC 208405 was transformed with the two flanking regions, the hph marker and the pla smide pRS426 digested beforehand with EcoRI and Xbal (Christianson et al., 1992) to give the plasmid pRS426 -Acel1a-hph.
  • the plasmid was then introduced and amplified in the thermocompetent NEB 10-beta E.
  • the oligonucleotides cel1a-3F and cell-5R were used to amplify the invalidation cassette from the plasmid pRS42Q-Acel1a-hph.
  • the cassette was purified using the QIAquick PCR purification kit (QIAGEN).
  • the strain used for transformation is the hyperproductive strain RutC30 (Montenecourt and Eveleigh, 1977).
  • the strain was transformed by the protoplast method (Penttila et al. (1987) using 1 ⁇ g of purified cassette.
  • the integration of the hph cassette was verified by PCR using the oligonucleotides cel1a_ch and hphR so as to obtain a PCR produced only if the cassette was correctly inserted.
  • Three independent clones were isolated and analyzed as biological replicates. The sequences and names of the primers are shown in Tables 1 and 2.
  • the strain invalidated for the cella gene is named RutC30- Acel1a.
  • the cultures in supplied flasks are carried out in Erlenmeyer flasks 8 cm in diameter, containing 60 ml of culture medium, inoculated with spores of the desired strain stored in cryotubes, and incubated at 150 rpm and 30 ° C. in an Infors Multitron incubator.
  • the culture medium has the following final composition:
  • the first growth phase is carried out for 48 hours until the glucose is used up, which causes the medium to acidify to a pH of about 3.5.
  • the pH is then raised to approximately 4.3 by adding sodium hydroxide.
  • the second production phase is carried out for 48 hours by feeding at 0.3 mL / h of a "fed-batch" solution containing:
  • the RutC30-Acel1a strain was cultured according to the protocol described in Example 2 in order to measure the specific protein productivity of the strain when it is fed in fed-batch with different glucose / lactose mixtures.
  • the glucose / lactose mixtures tested ranged from 99% glucose / 1% lactose to 50% glucose / 50% lactose.
  • The% here refers to the total amount of sugars present in the solution.
  • the cultures in bioreactors are carried out in fermenters 10 cm in diameter, containing 800 ml of culture medium, inoculated at 10% v / v from a preculture.
  • Stirring is carried out by a Rushton turbine and a 5 cm diameter pitch-blade turbine.
  • the stirring speed is controlled between 400 and 1200 rpm to maintain a dissolved oxygen concentration greater than 40% of the saturation concentration.
  • the temperature is controlled at 27 ° C during the 1 st stage and then at 25 ° C for the 2nd phase.
  • the pH is controlled throughout the culture at 4.0 by automatic addition of a 5N ammonia solution.
  • the preculture is carried out in flasks 19 cm in diameter containing 250 mL of the same culture medium, buffered with 5 g / L of dipotassium phthalate and the initial pH of which is adjusted to 5.0 with sodium hydroxide.
  • the precultures are inoculated with spores of the desired strain stored in cryotubes, and incubated at 150 rpm and 30 ° C. in an Infors Multitron incubator.
  • the culture medium has the following final composition:
  • the first phase (batch growth on glucose) is carried out for 27 to 30 h (until glucose is used up), then the 2 nd phase (production of proteins in fed-batch mode) is carried out for 70 h by feeding 'a 250g / L sugar solution containing either pure lactose or a mixture of lactose and glucose.
  • Example 5 Comparison of the performances of the RutC30 and RutC30-Acella strains using solutions of purified sugars as substrate.
  • the wild strain RutC30 fed with a solution of pure lactose has a specific productivity of 20 to 22 mg P rotein / g biomass / h. Feed the same strain with a solution containing a mixture consisting of 10% lactose and 90% glucose gives a specific productivity approximately 2.5 times lower, around 8 mg pr otéines / gbiomasse / h. This strategy would therefore have no industrial interest because the additional cost linked to lower productivity would not be offset by the savings made by using less lactose.
  • the strain RutC30-Acel1a fed with a pure lactose solution has a very low specific productivity around 3 mg pra teins / gbiomasse / h, since it is no longer able to absorb large amounts of lactose.
  • the RutC30-Acel1a strain has a specific productivity of between 16 and 19 mg P rotein / gbiomass / h, almost as good as the RutC30 strain fed with pure lactose. With 10% or 15% lactose in the mixture, a specific productivity equivalent (not significantly different) to the RutC30 control fed with pure lactose was observed.
  • Example 6 Performance of the RutC30-4cel1a strain by incorporating industrial solutions as production substrate
  • cultures in a bioreactor were carried out by incorporating a crude extract of water-soluble pentoses originating from the pretreatment of a lignocellulosic biomass. This extract is incorporated as a replacement for water for the preparation of feed solutions for the fed-batch production phase.
  • the cultures are carried out according to the protocol described in Example 4, with the only difference that the feed solution for the 2 nd phase (production phase) was prepared by dissolving the glucose and the lactose in the. crude extract of hydrosoluble pentoses, so as to obtain a solution containing a total of 500g S ucres / L S oiution and a lactose content of 0%, 5%, or 10% (% of total sugars) as appropriate.
  • the results are shown in Table 3 below.
  • the RutC30-Acel1a strain fed with a solution containing a crude extract of water-soluble pentoses (obtained from both wheat straw and corn straw) maintains a specific speed of maximum protein production (around 21 to 22 mg pra teins / gbiomasse / h) even if the lactose content of the solution is only 10% or 5%.
  • Table 3 shows the specific bioreactor productivity of the RutC30 -ûceUa strain when it is fed in fed-batch mode with solutions of sugars of different compositions and prepared using a crude extract of water-soluble pentoses obtained from corn straw or wheat straw.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

L'invention concerne les différentes utilisations d'une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cel1a est invalidé. La présente invention concerne notamment un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cel1a est invalidé, comprenant au moins deux étapes : - une première étape de croissance en phase batch en présence d'au moins un substrat carboné de croissance, et - une deuxième étape de production de protéines en phase fed-batch en présence d'une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%.

Description

Description
Tjtre . PROCÉDÉ DE PRODUCTION DE PROTEINES PAR UNE SOUCHE DE CHAMPIGNON TRICHODERMA DANS LAQUELLE LE GÈNE CEL1 A EST
INVALIDÉ
[0001] La présente invention concerne un procédé de production de protéines utilisant (i) une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, et (ii) une composition inductrice optimisée.
Contexte de l’invention
[0002] Les souches de champignon appartenant au genre Trichoderma, notamment Trichoderma reesei, sont aujourd’hui majoritairement utilisées pour la production d’enzymes. Ces enzymes, par exemple les cellulases, sont en effet utilisées pour hydrolyser la biomasse cellulosique ou lignocellulosique en sucres simples. Les enzymes produites par les champignons filamenteux sont donc utiles dans les filières de production de biocarburants de seconde génération ou encore des produits biosourcés issus de sucres provenant de biomasse (ligno)cellulosique.
[0003] Afin d’améliorer la production de biocarburants de seconde génération ou encore des produits biosourcés, il a ainsi été envisagé d'améliorer la production de cellulases.
[0004] Par exemple, le brevet EP 448 430 B1 décrit une production industrielle optimisée de cellulases par Trichoderma reesei. Cette production est réalisée en protocole fed-batch (alimentation sans soutirage) en utilisant une solution d'alimentation contenant du lactose comme sucre inducteur de la production de protéines. Ce procédé de fermentation comprend deux étapes : une première étape de croissance du champignon en présence d’un excès de source carbonée et une deuxième étape de production d’enzymes grâce à l’ajout d’un inducteur dans le milieu avec un débit optimisé (mode fed-batch). Ces étapes sont réalisées en milieu liquide dans des bioréacteurs sous une agitation et en présence d'oxygène car le champignon est aérobie stricte. Un autre exemple de procédé optimisé de production de cellulases est décrit dans le brevet EP 2744899 B1 .
[0005] Traditionnellement, notamment au laboratoire, la solution d’alimentation utilisée lors de la deuxième étape contient uniquement du lactose. Cependant, industriellement le lactose est trop onéreux pour l’utiliser seul dans la solution d’alimentation. Diverses solutions ont ainsi été envisagées pour diminuer la quantité de lactose à utiliser.
[0006] Par exemple, Jourdier et al. ont montré qu’il était possible de remplacer une partie du lactose par d'autres sucres moins onéreux tels que du glucose et/ou du xylose purifié (voir Jourdier ét al. Biotechnology for Biofuels 2013, 6:79). Dans cette étude, les auteurs ont notamment analysé l'impact du glucose et/ou du xylose sur la sécrétion des enzymes par une souche hyperproductrice de Trichoderma reesei (la souche CL847). Cette étude permet ainsi de conclure que dans la souche industrielle CL847 qui provient de la souche hyperproductrice modèle RutC30, la capacité d’induction est corrélée positivement à la teneur en lactose présent dans la solution d’alimentation : plus la teneur en lactose est forte, meilleure est l’induction.
[0007] La demande internationale PCT/FR2011/000350 décrit également un procédé de production d’enzymes cellulolytiques et/ou hémicellulolytiques utilisant au cours de la phase de production une composition comprenant de 40 à 65% en poids de glucose, de 21 à 25% en poids de lactose et de 10 à 39% en poids de xylose en combinaison avec un champignon Trichoderma reesei invalidé pour la répression catabolique par le glucose.
[0008] Des souches modifiées de Trichoderma reesei, dans lesquelles des éléments de régulation des séquences promotrices des gènes des xylanases xyn1 et xyn2 ont été insérés dans les promoteurs des cellulases ont également été décrites dans la demande internationale PCT/FR2016/050950. Ainsi, dans lesdiîes souches modifiées, les gènes sont inductibles par leurs propres substrats inducteurs, tels que le lactose, le cellobiose ou la cellulose, mais également par les substrats inducteurs des xylanases tels que le xylane, le xylose, ...
[0009] Des procédés de fermentation et souches utiles pour améliorer la production d'enzymes cellulolytiques par des champignons filamenteux, et ce faisant de produits biosourcés mais également des biocarburants de seconde génération, sont donc déjà décrits dans l’art antérieur.
[0010] Néanmoins, il existe toujours un besoin pour de nouveaux procédés de production de protéines, notamment des enzymes cellulolytiques, qui soient le plus efficaces possibles, permettant notamment une production suffisante tout en utilisant le moins de lactose possible afin de réduire les coûts.
[0011] Des souches de Trichoderma reesei dans lesquelles le gène cella a été invalidé ont été décrites dans l’art antérieur. Par exemple, les équipes de Zhou et al. ( Differential invoivement of b- Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose. Eukaryotic Cell, 11 (11) 1371-1381 (2012)) et de Xu ét al. {Intracellular b-Glucosidases
CEL1a and CEL1b Are Essential for Cellulase Induction on Lactose in Trichoderma reesei, Eukaryotic Cell 13 (8), pp. 1001-1013 (2014)) ont décrit l’invalidation du gène cella dans la souche parente Trichoderma reesei TU-6 (ATCC MYA-256). L’équipe de Xu et al. conclut notamment que la protéine CEL1a est une b-glucosidase intracellulaire qui est essentielle dans l'induction par le lactose.
[0012] Au contraire, la présente invention repose sur les résultats inattendus des inventeurs qui ont mis en évidence qu’il était possible d’induire la production de protéines à l’aide d’une composition inductrice contenant moins, voire pas du tout, de lactose, à savoir une composition contenant 0% en poids de lactose par rapport à la teneur totale des sucres dans ladite composition, ou du lactose à une teneur supérieure à 0% en poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% en poids et 30% en poids de la teneur totale des sucres dans ladite composition, en utilisant une souche de champignon Trichoderma, notamment Trichoderma reesei, dans laquelle le génome a été modifié afin d’invalider le gène cella.
[0013] L’invention présente ainsi plusieurs modes de réalisation concernant l’éventuelle teneur en lactose de la composition inductrice utilisée lors de la deuxième étape :
- soit 0% en poids de lactose, la composition inductrice comprenant au moins un autre sucre (appelé aussi dans le texte « deuxième sucre ») ; ici on n’a plus du tout recours au lactose ;
- soit du lactose dans une teneur de plus de 0% jusqu’à une teneur strictement inférieure à 5% en poids de la teneur totale des sucres dans ladite composition ;
- soit du lactose dans une teneur supérieure ou égale à 5% en poids jusqu’à une teneur inférieure ou égale à 30% en poids de la teneur totale des sucres dans ladite composition.
[0014] Les inventeurs ont notamment montré que l’invalidation du gène cella dans une souche de Trichoderma reesei permettait de diviser par 10 la quantité de lactose utilisé dans la phase de production, voire la supprimer totalement, tout en maintenant une productivité spécifique équivalente par rapport à une souche de référence.
[0015] Les inventeurs ont notamment montré que la souche invalidée pour cella, bien qu’elle ne produise pas de protéines lorsqu’elle est alimentée par du glucose pur ou par du lactose pur, produit correctement des protéines lorsqu’elle est alimentée par des mélanges glucose/lactose, avec une plage avantageuse pour des teneurs en lactose dans la solution d’alimentation comprises entre 5% et 30% en poids du cumul de sucres, notamment pour des teneurs comprises entre 10% et 20% en poids.
[0016] Plus particulièrement, les inventeurs ont montré que des solutions d'alimentation ayant des teneurs en lactose comprenant entre 10 et 15% en poids du cumul de sucres donnent une induction équivalente que le lactose pur chez la souche parente (dans laquelle le gène cella n’a pas été invalidé), avec des vitesses spécifiques de production de protéines de l’ordre de 20 ± 2 mgprotéines/gbiomasse/h .
Bref exposé de l’invention
[0017] De façon générale, la présente invention repose sur l'utilisation, durant étape de production de protéines en phase fed-batch, d'une composition comprenant un deuxième sucre, et éventuellement au moins du lactose, la teneur en lactose dans ladite composition étant égale à 0% en poids de la teneur totale des sucres dans ladite composition, ou étant supérieure à 0% en poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition.
[0018] La présente invention concerne ainsi un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, comprenant au moins deux étapes : - une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition.
[0019] La présente invention concerne ainsi un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, comprenant au moins deux étapes :
- une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 5 et 30% en poids de la teneur totale des sucres dans ladite composition.
[0020] La présente invention concerne également l’utilisation d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30%, notamment entre 5 et 30%, en poids de la teneur totale des sucres dans ladite composition pour la production de protéines d’intérêt par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé.
[0021] La présente invention concerne aussi un procédé de production de sucres à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d'enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30%, notamment entre 5 et 30%, en poids de la teneur totale des sucres dans ladite composition. Dans cet aspect, l’invention concerne donc l’utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, pour l'hydrolyse de la cellulose ou de la lignocellulose en sucre.
[0022] Le présente invention concerne également un procédé de production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30%, notamment 5 et 30%, en poids de la teneur totale des sucres dans ladite composition. Dans cet aspect, l’invention concerne donc l'utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cel1a est invalidé, pour la production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques.
[0023] La présente invention concerne aussi un procédé de production d'un biocarburant/d’alcool à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30%, notamment entre 5 et 30%, en poids de la teneur totale des sucres dans ladite composition. Dans cet aspect, l’invention concerne donc l'utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, pour la production de biocarburant/d'alcool à partir de substrats cellulosiques ou lignocellulosiques.
[0024] La présente invention concerne enfin une souche de champignon appartenant à l'espèce Trichoderma reesei, ladite souche étant issue de la souche telle que déposée sous la référence ATCC 56765 et ladite souche comprenant une invalidation du gène cella. La présente invention concerne aussi plus généralement, une souche issue de la souche Rut-C30, et ladite souche comprenant une invalidation du gène cella.
Exposé de l’invention
[0025] Dans un premier aspect, l’invention concerne ainsi un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, comprenant au moins deux étapes :
- une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% ou entre 5 et 30%, en poids de la teneur totale des sucres dans ladite composition.
[0026] En d’autres termes, dans un premier aspect, l’invention concerne un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, comprenant au moins deux étapes :
- une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition comprenant un deuxième sucre, et éventuellement au moins du lactose, la teneur en lactose dans ladite composition étant égale à 0% en poids de la teneur totale des sucres dans ladite composition, ou étant supérieure à 0% en poids et d'au plus 30% en poids de la teneur totale des sucres dans ladite composition. [0027] Selon l’invention, l’expression « environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition » signifie une teneur en lactose supérieure ou égale à 0% et strictement inférieure à 5% et/ou une teneur entre 5 et 30% en poids de la teneur totale des sucres dans ladite composition. Cela signifie également une teneur en lactose supérieure ou égale à 0.01% (de préférence 0.1% ou 1%) et strictement inférieure à 5% et/ou une teneur entre 5 et 30% en poids de la teneur totale des sucres dans ladite composition.
[0028] La composition utilisée dans l’étape de fed-batch selon l’invention peut ainsi :
- être dépourvue de lactose, ou
- contenir du lactose, mais à une teneur comprise entre 0.01% et 30% en poids de la teneur totale des sucres dans ladite composition.
[0029] La composition utilisée dans l’étape de fed-batch selon l’invention peut ainsi :
- être dépourvue de lactose, ou
- contenir du lactose, mais à une teneur comprise entre 0.1% et 30% en poids de la teneur totale des sucres dans ladite composition.
[0030] La composition utilisée dans l'étape de fed-batch selon l'invention peut ainsi :
- être dépourvue de lactose, ou
- contenir du lactose, mais à une teneur comprise entre 1% et 30% en poids de la teneur totale des sucres dans ladite composition.
[0031] La composition utilisée dans l’étape de fed-batch selon l’invention peut ainsi comprendre du lactose et un autre (deuxième) sucre ou bien comprendre au moins un sucre différent du lactose, de préférence au moins deux sucres.
[0032] En d’autres termes, dans un premier aspect, l’invention concerne un procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, comprenant au moins deux étapes :
- une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition :
- ne comprenant pas de lactose et comprenant au moins un autre sucre, ou
- comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant entre 0.01 et 30% en poids de la teneur totale des sucres dans ladite composition.
[0033] Selon un mode de réalisation, la composition utilisée dans l’étape de fed-batch selon l’invention comprend :
- 0.00% de lactose ;
- une teneur en lactose strictement supérieure à 0.00% et strictement inférieure à 5.00% en poids de la teneur totale des sucres dans ladite composition, ou
- une teneur en lactose supérieure ou égale à 5.00% et inférieure ou égale à 30.00% en poids de la teneur totale des sucres dans ladite composition.
[0034] L’expression « strictement supérieure à 0.00% » s’entend d’une valeur d’au moins 0.01%, notamment au moins 0.1%, et de préférence au moins 1%, et l’expression « strictement inférieure à 5.00% » s’entend des valeurs jusqu’à 4.99%.
[0035] Selon un mode de réalisation préféré, la teneur en lactose dans la composition utilisée durant l’étape de fed-batch est comprise entre plus de 0% et 5% poids de la teneur totale des sucres dans ladite composition, ou entre plus de 5% et moins de 10% poids de la teneur totale en sucres dans ladite composition, ou de 10% poids à au plus 20% poids de la teneur totale en sucres dans ladite composition.
[0036] Selon l’invention, le gène ceUa correspond au gène représenté par la SEQ ID NO : 1 ou un gène ayant au moins 80% d’identité avec SEQ ID NO : 1. Le gène cella est également nommé TRIREDRAFT_120749 dans le génome de référence Trichoderma reesei (b¾tps://www.uniproi.ora/uniprot/GQRD31). Ce gène code une protéine CEL1a appartenant à la famille 1 des glycosides hydrolases. Plus spécifiquement, CEL1a est une b-glucosidase intracellulaire, également dénommée bgl2 ou bglll, (M. Saloheimo, J. Kuja-Panula, E. Ylôsmàki, et al. (2002) Enzymatic Properties and Intracellular Localization of the Novel Trichoderma reesei b-
Glucosidase BGLII (Cel1A). Applied and Environmental Microbiology, 68 (9) 4546-4553). La protéine CEL1a est représentée par la SEQ ID NO : 2.
[0037] Le gène ceUa est le gène de référence chez Trichoderrma reesei. Un gène ayant au moins 80% d'identité représente ainsi un variant de ce gène ou bien un gène orthologue chez une autre espèce de Trichoderma. Selon l'invention, l'expression « au moins 80% d'identité avec SEQ ID NO : 1 » signifie toutes les valeurs comprises entre 80% et 100%, notamment les valeurs de 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% et 100%, préférentiellement au moins 90%, au moins 95%, encore plus particulièrement au moins 98%, au moins 99%. L’homme du métier sait calculer un pourcentage d'identité entre deux séquences. Par exemple, selon l’invention, le pourcentage d'identité d'une séquence donnée par rapport à SEQ ID NO : 1 s'entend du pourcentage d’identité sur la longueur totale des séquences. Le pourcentage correspond ainsi au nombre de nucléotides (résidus le cas échéant) identiques entre cette séquence donnée et SEQ ID NO : 1 divisé par le nombre de nucléotides (résidus le cas échéant) dans la plus longue des deux séquences.
[0038] Lorsque la protéine CEL1 A est codée par un gène orthologue ou un variant du gène cel1, ladite protéine peut être représentée par une protéine ayant au moins 80% d’identité avec SEQ ID NO : 2, notamment au moins 90%, au moins 95%, de préférence au moins 98% ou au moins 99%. [0039] Selon un mode de réalisation préféré de l'invention, le champignon appartient à l'espèce Trichoderma reesei. Selon ce mode de réalisation, le gène cella est de préférence représenté par la SEQ ID NO : 1 ou une séquence ayant au moins 98% d’identité avec SEQ ID NO : 1. Très préférentiellement, le gène cella est représenté par la SEQ ID NO : 1. La souche parente de Trichoderma reesei peut notamment être la souche QM6a (déposée sous le numéro ATCC 13631), ou encore une souche issue de l’isolat naturel QM6a (notamment obtenue par mutagénèse aléatoire ou dirigée), telle que la souche Rut-C30 (déposée sous le numéro ATCC 56765), la souche déposée sous le numéro CNCM 1-5221 (déposée le 03 août 2017 auprès de la CNCM, Collection Nationale de Cultures de Microorganismes de l’Institut Pasteur, située 25 rue du Docteur Roux, F-75724 Paris cedex 15), la souche NG14 (déposée sous le numéro ATCC 56767) ou encore la souche QM9414 (déposée sous le numéro ATCC 26921).
[0040] Selon l’invention, les protéines sont toutes les protéines pouvant être produites par un champignon, de façon naturelle ou bien par modification génétique (par exemple après transformation à l'aide d'un vecteur approprié).
[0041] De façon avantageuse, les protéines d'intérêt selon l'invention sont des enzymes, notamment des enzymes cellulolytiques telles que des cellulases ou des hémicellulases. De façon préférée, les enzymes sont des cellulases. Selon l’invention, le terme « cellulases » s’entend plus particulièrement des enzymes appartenant à la famille des glycosides hydrolases, par exemple choisies parmi les endoglucanases, les exoglucanases et les glucosidases. Les glycosides hydrolases sont notamment regroupées sous la nomenclature « EC 3.2.1. ». Le terme « cellulase » fait plus particulièrement référence à une enzyme adaptée à l'hydrolyse de la cellulose et permettant aux microorganismes (tels que Trichoderma reesei ) qui les produisent d'utiliser la cellulose comme source de carbone, en hydrolysant ce polymère en sucres simples (glucose). La production de cellulases par une souche selon l’invention, notamment Trichoderma reesei, peut être déterminée par toutes techniques usuelles pour l’homme du métier, ou encore par les techniques décrites dans les brevets EP 448430 B1 ou EP 2744899 B1.
[0042] L’expression « la teneur en lactose représentant environ entre 0 et 30% en poids de la teneur totale des sucres » signifie que durant l’étape de fed-batch, entre 70 et 100% en poids du ou des sucres apportés par ladite composition sont un ou des sucres autres que le lactose. L'expression « la teneur en lactose représentant environ entre 5 et 30% en poids de la teneur totale des sucres » signifie que durant l'étape de fed-batch, entre 70 et 95% en poids du ou des sucres apportés par ladite composition sont un ou des sucres autres que le lactose. La teneur totale des sucres correspond ainsi à 100% en poids de la teneur des sucres de la composition.
[0043] Selon un mode de réalisation, le procédé selon l’invention est réalisé en bioréacteur agité et aéré. Plus particulièrement, la vitesse d’agitation est contrôlée, notamment afin de maintenir une concentration d’oxygène dissous supérieure à 40% de la concentration à saturation. Par exemple au laboratoire la vitesse d'agitation est généralement contrôlée entre 400 et 1200 rpm. [0044] Selon un mode de réalisation, dans ledit procédé la température est contrôlée pendant la première et la deuxième étape, notamment entre 20 et 35°C. Plus particulièrement, la température est contrôlée à 27°C pendant la première étape et à 25°C pendant la deuxième étape.
[0045] Selon un mode de réalisation, dans ledit procédé, le pH est contrôlé. Plus particulièrement le pH est contrôlé à 4.0, notamment par ajout automatique d’une solution d’ammoniaque à 5N.
[0046] Selon un mode de réalisation, la première phase se déroule jusqu’à épuisement du substrat carboné de croissance. Cette première étape dure généralement entre environ 18 et 48 heures, notamment pendant 24 à 36 heures.
[0047] Selon un mode de réalisation, la deuxième phase se déroule pendant environ 70 à 240 heures, notamment 70 heures.
[0048] Selon un mode de réalisation préféré, dans ledit procédé, la première phase dure entre 18 et 48 heures, notamment pendant 24 à 36 heures, et la deuxième phase se déroule pendant environ 70 à 240 heures, notamment 70 heures.
[0049] Selon un mode de réalisation, le procédé selon l'invention permet d'obtenir une productivité comprise entre 14 et 25 mgProtéines/gbiomasse/h, notamment entre 14 et 23 mgprotéines/gbiomasse/h. Selon un mode de réalisation, le procédé selon l’invention permet d’obtenir une productivité comprise entre 15 et 20 mgprotéines/gbiomasse/h, notamment entre 16 et 19 mgProtéines/gbiomasse/h . La capacité d’induction d'une solution de sucres sur une souche est jugée en mesurant la vitesse spécifique de production de protéines (aussi appelée « productivité spécifique »), exprimée en mg rotéines/gbiomasse/h, lors d’une culture avec alimentation de la solution de sucres à débit optimisé. Il est connu de l'homme du métier que les protéines produites par Trichoderma reesei sont majoritairement des enzymes, dont des cellulases. Une corrélation entre protéines totales sécrétées et cellulases peut être faite car chez Trichoderma reesei, les exoglucanases (CBHI, CBHII) et les endoglucanases (EGI, EGII) principales peuvent représenter jusqu’à 90% de la quantité totale de protéines sécrétées (voir par exemple Markov, A.V., Gusakov, A.V., Kondratyeva, E.G., Okunev, O. N., Bekkarevich, A.O., and Sinitsyn, A.P. (2005). New Effective Method for Analysis of the Component Composition of Enzyme Complexes from Trichoderma reesei. Biochemistry (Moscow) 70, 657-663). Ainsi, la productivité en enzymes ou en cellulases est donc équivalente à la productivité en protéines.
[0050] L’expression « une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé » signifie que le génome des souches utilisées dans la présente invention a été modifié afin que le gène cella ne soit plus exprimé (ou le gène variant ou le gène orthologue le cas échéant). Ainsi dans les souches utilisées dans la présente invention, la protéine CEL1 a n’est pas produite ou alors une CEL1a non fonctionnelle est produite (c’est-à-dire que la protéine n’est plus biologiquement active). En d’autres termes, le génome de la souche selon l’invention est modifié (ou a été modifié) afin que la protéine CEL1a ne soit pas synthétisée ou soit synthétisée dans une forme non fonctionnelle. De préférence, la protéine CEL1a n'est pas produite/synthétisée. L’invalidation d’un gène est bien connue de l’homme du métier. Selon un mode de réalisation, le gène cella a été invalidé dans la souche par mutagénèse ou par recombinaison homologue, notamment à l’aide d’une cassette d’invalidation telle que représentée par la SEQ ID NO : 3.
[0051] La présente invention concerne ainsi l’utilisation d’une souche variante de champignon Trichoderma, dans laquelle le gène cella a été invalidé. Selon l’invention, le terme « souche variante » s’entend d’une souche modifiée génétiquement par rapport à une souche parente. Selon l’invention, le terme « souche parente » s'entend ainsi d’une souche dont est issue ou dérivée la souche variante, et dans laquelle le gène cella n'a pas été invalidé. La souche selon l’invention correspond ainsi à une souche variante dérivée d’une souche parente, ladite souche variante comprenant au moins une modification génétique correspondant à l'invalidation du gène cella par rapport à la souche parente.
[0052] Durant l'étape de croissance en mode « batch » il est nécessaire d’apporter une source de carbone rapidement assimilable pour la croissance du champignon Trichoderma. Selon l’invention, le « substrat carboné de croissance » est de préférence choisi parmi le lactose, le glucose, le xylose, les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation) des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique, un hydrolysat enzymatique de lignocellulose (c’est-à- dire avant fermentation), et/ou un hydrolysat de biomasse amylacée. Préférentiellement, le substrat est choisi parmi le glucose, le xylose, les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique, un hydrolysat enzymatique de lignocellulose (c’est-à-dire avant fermentation), et/ou un hydrolysat de biomasse amylacée. Très préférentiellement le substrat est le glucose.
[0053] Selon l'invention, la concentration en substrat carboné de croissance est notamment comprise entre 10 et 80 g/L, notamment entre 15 et 40 g/L.
[0054] La composition utilisée dans la deuxième étape de production de protéines du procédé selon l’invention peut également être nommée « solution d’alimentation » ou « solution d’alimentation en sucres ». Selon l’invention, et dans un premier mode de réalisation cette composition comprend au moins deux sucres : du lactose et un autre sucre. Dans un aspect de l'invention, cette composition comprend au moins trois sucres différents : du lactose et deux autres sucres. Selon l’invention et dans un autre mode de réalisation, ladite composition utilisée dans la deuxième étape de production de protéines du procédé comprend au moins un sucre à l'exception du lactose, de préférence au moins deux sucres à l'exception du lactose.
[0055] Le lactose est un substrat inducteur, c’est-à-dire qu’il permet l’expression de protéines, notamment des cellulases, dans le milieu de culture. De préférence, dans ladite composition, ledit deuxième sucre n’est pas un sucre inducteur mais est néanmoins un substrat carboné.
[0056] Selon l’invention, la concentration en sucres de la composition utilisée durant l’étape de fed-batch est notamment comprise entre 200 et 600 g/L, notamment entre 200 et 500 g/L ou entre 250 g/L et 500 g/L.
[0057] Plus particulièrement, le deuxième sucre (ou le « au moins un sucre à l’exception du lactose ») est fourni via une solution de glucose et/ou de xylose (de préférence purifié), un hydrolysat de biomasse amylacée, un hydrolysat enzymatique de biomasse lignocellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique et/ou les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation) des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique. La présente invention permet ainsi d’utiliser des solutions de sucres industrielles, à condition de les complémenter éventuellement en lactose, pour induire la production de protéines.
[0058] Selon un mode de réalisation, comme ces solutions contiennent majoritairement du glucose et du xylose, deux sucres qui ne sont pas inducteurs de la production de protéines chez Trichoderma reesei, il est nécessaire de les complémenter avec du lactose pour que le mélange obtenu fournisse un niveau d’induction correct. Selon l'invention, la composition comprenant au moins du lactose et un deuxième sucre peut ainsi être également appelée une composition inductrice. Selon un mode de réalisation particulier, la composition/solution d'alimentation utilisée dans l’étape de fed-batch correspond ainsi à une solution de glucose et/ou de xylose (de préférence purifiée), un hydrolysat de biomasse amylacée, un hydrolysat enzymatique de biomasse lignocellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique et/ou les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation) des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique, dans laquelle du lactose est ajouté, de façon à ce que la teneur en lactose dans ladite composition représente environ entre 0 et 30%, notamment 5 et 30%, en poids de la teneur totale des sucres. En d'autres termes, selon un mode de réalisation ledit deuxième sucre ou ledit « au moins un sucre différent du lactose » est choisi parmi le glucose, le xylose, les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation) des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d'une biomasse cellulosique, un hydrolysat enzymatique de lignocellulose, et/ou un hydrolysat de biomasse amylacée, de préférence le glucose, le xylose et/ou un extrait brut de pentoses hydrolubies.
[0059] Typiquement un hydrolysat de biomasse amylacée contient principalement du glucose.
[0060] Typiquement, un hydrolysat enzymatique de biomasse lignocellulosique contient principalement du glucose et du xylose.
[0061] Typiquement, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique contient principalement du xylose. La biomasse cellulosique utilisée peut par exemple être de la paille de blé, de la paille de maïs, des rafles de maïs, de la bagasse de canne à sucre, du miscanthus, du peuplier, du bouleau, et tout autre produit ou co-produit des industries agricoles et forestières. Préférentiellement, l'extrait brut de pentoses hydrosolubles est préparé par prétraitement de paille de blé ou de paille de maïs. Un procédé de prétraitement par explosion à la vapeur est décrit par exemple dans la demande WO 2019/120994 A1. Un procédé de prétraitement et extraction permettant de préparer un extrait brut de pentoses hydrosolubles est décrit par exemple dans la demande de brevet EP 3587583 A1.
[0062] Typiquement, les résidus liquides obtenus après fermentation éthanolique (optionnellement obtenus après fermentation éthanolique puis distillation) des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique contiennent principalement des sucres non fermentescibles (arabinose, mannose, galactose) et des résidus de sucres fermentescibles (glucose et xylose).
[0063] Plus particulièrement, selon un mode de réalisation préféré, le deuxième sucre est choisi parmi le glucose et/ou le xylose, de préférence le glucose. Selon un mode de réalisation, ladite composition comprend uniquement comme sucre du lactose et du glucose, OU uniquement du lactose et du xylose OU uniquement du lactose, du glucose et du xylose. Selon un mode de réalisation, ladite composition utilisée durant l’étape de production en fed-batch comprend du glucose, du lactose et un extrait brut de pentoses hydrosolubles (notamment provenant du prétraitement d’une biomasse cellulosique telle que la paille de maïs ou la paille de blé). Selon un mode de réalisation, ladite composition utilisée durant l’étape de production en fed-batch comprend du glucose, un extrait brut de pentoses hydrosolubles (notamment provenant du prétraitement d'une biomasse cellulosique telle que la paille de maïs ou la paille de blé) et est dépourvue de lactose.
[0064] Selon l'invention, les pourcentages de lactose, de glucose et/ou de xylose, et/ou de l’extrait brut de pentoses hydrosolubles dans la composition sont calculés par rapport à la teneur totale en poids des sucres dans ladite composition. Typiquement, la teneur totale des sucres est celle utilisée lors du mode fed-batch. La teneur de chaque sucre dans la composition/solution est par exemple mesurée par chromatographie en phase liquide à haute performance (HPLC), éventuellement après concentration par évaporation. Puis du lactose ou du glucose purifiés en poudre est dissous, ou une solution concentrée de glucose est mélangée. Les nouvelles teneurs de chaque sucre sont ensuite remesurées par HPLC dans le mélange final.
[0065] Selon un mode de réalisation, la composition durant l’étape de fed-batch est apportée/fournie en continue, en flux limitant. Cela signifie que la concentration de sucres dans le milieu de culture est contrôlée de façon à maintenir une concentration résiduelle de sucres dans le milieu de culture proche de zéro. De façon préférée, la concentration en sucre dans le milieu de culture est inférieure à 1 g/L pendant cette phase, notamment inférieure à 0,5 g/L, plus particulièrement inférieure à 0,1 g/L. Ceci favorise ainsi l’induction et la production de protéines.
[0066] Etant donné que le champignon Trichoderma, notamment Trichoderma reesei, est capable de consommer tous les sucres présents dans ladite composition inductrice, le calcul du débit optimisé de ladite composition (solution d’alimentation pour le mode fed-batch) doit se faire non pas par rapport à la concentration en lactose de la solution mais en cumulant la concentration de tous les sucres présents dans la solution. Selon un mode de réalisation, c'est le débit massique (en gsucres/h) qui est optimisé et non pas la concentration totale en sucres dans la solution d'alimentation (en gSucres/L). Le débit volumique de la solution d'alimentation (en L/h) peut ainsi être adapté pour apporter le bon débit massique de sucres quelle que soit la concentration en sucres dans la solution d'alimentation. Selon un mode de réalisation ladite composition dans l'étape de production (fed-batch) est apportée à un débit compris entre 0,8 et 8 rnLsoiution/Lmiiieu/h, préférentiellement entre 1 et 3 rnLsoiution/Lmiiieu/h. Le terme « mLsoiution » représente ici le volume de ladite composition (solution d’alimentation pour le mode fed-batch) et le terme « Lmmeu » représente ici le volume du bioréacteur/fermenteur.
[0067] Selon l’invention, l’expression « environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition » ou « environ entre 5 et 30% en poids de la teneur totale des sucres dans ladite composition » représente toutes les valeurs comprises entre 0 et 30, c’est-à-dire 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29 et 30. Plus spécifiquement, le terme « environ » signifie que des valeurs très légèrement inférieures à 5 (par exemple comprises entre 4,5 et 5) sont comprises dans la gamme 5-30%. Cela signifie également que des valeurs très légèrement supérieures à 30 (par exemple comprises entre 30 et 30,5) sont comprises dans la gamme 5-30%.
[0068] Selon un mode de réalisation particulier, dans le procédé de production de protéines selon l’invention, ladite composition comprend, par rapport à la teneur totale des sucres dans ladite composition :
- environ entre 70-95% en poids de glucose et/ou de xylose, et
- environ entre 5-30% en poids de lactose.
[0069] L’expression « environ entre 70-95% » signifie que des valeurs très légèrement inférieures à 70 (par exemple comprises entre 69,5 et 70) sont comprises dans la gamme 70-95%. Cela signifie également que des valeurs très légèrement supérieures à 95 (par exemple comprises entre 95 et 95,5) sont comprises dans la gamme 70-95%.
[0070] Selon un mode de réalisation encore plus particulier, dans le procédé de production de protéines selon l’invention, ladite composition comprend, par rapport à la teneur totale des sucres dans ladite composition :
- entre 70-95% en poids de glucose, et
- entre 5-30% en poids de lactose.
[0071] Encore plus préférentiellement, dans ledit procédé de production de protéines selon l’invention, la teneur en lactose dans ladite composition représente environ entre 10 et 20% en poids, notamment entre 10 et 20% en poids, de la teneur totale des sucres dans ladite composition.
[0072] L’expression « environ entre 10 et 20% » signifie que des valeurs très légèrement inférieures à 10 (par exemple comprises entre 9,5 et 10) sont comprises dans la gamme 10-20%. Cela signifie également que des valeurs très légèrement supérieures à 20 (par exemple comprises entre 20 et 20,5) sont comprises dans la gamme 10-20%.
[0073] Selon un mode de réalisation encore plus particulier, dans le procédé de production de protéines selon l’invention, ladite composition comprend :
- environ entre 80-90% en poids de glucose et/ou de xylose, et
- environ entre 10-20% en poids de lactose, et plus particulièrement
- environ entre 80-90% en poids de glucose, et
- environ entre 10-20% en poids de lactose.
[0074] Encore plus préférentiellement, dans ledit procédé de production de protéines selon l'invention, la teneur en lactose dans ladite composition représente environ entre 10 et 15% en poids, notamment entre 10 et 15% en poids, de la teneur totale des sucres dans ladite composition.
[0075] L’expression « environ entre 10 et 15% » signifie que des valeurs très légèrement inférieures à 10 (par exemple comprises entre 9,5 et 10) sont comprises dans la gamme 10-15%. Cela signifie également que des valeurs très légèrement supérieures à 15 (par exemple comprises entre 15 et 15,5) sont comprises dans la gamme 10-15%.
[0076] Selon un mode de réalisation encore plus particulier, dans le procédé de production de protéines selon l’invention, ladite composition comprend :
- environ entre 85-90% en poids de glucose et/ou de xylose, et
- environ entre 10-15% en poids de lactose, et plus particulièrement
- environ entre 85-90% en poids de glucose, et
- environ entre 10-15% en poids de lactose. [0077] Selon un mode de réalisation encore plus particulier, dans le procédé de production de protéines selon l’invention, ladite composition comprend :
- environ entre 90-95% en poids d’extrait brut de pentoses hydrosolubles et de glucose, et
- entre 5-10% de lactose.
[0078] Selon un mode de réalisation encore plus particulier, dans le procédé de production de protéines selon l’invention, la teneur en sucres dans ladite composition est constituée à 100% d’extrait brut de pentoses hydrosolubles et de glucose.
[0079] Selon un mode de réalisation, les substrats sont stérilisés. Ainsi, selon un mode de réalisation, le substrat carboné de croissance est introduit dans le bioréacteur avant stérilisation. Selon un autre mode de réalisation, le substrat carboné de croissance est stérilisé séparément puis introduit dans le bioréacteur après stérilisation. Selon l'une ou l’autre de ces alternatives, selon un mode de réalisation, la composition de sucres utilisée au cours de l’étape de fed-batch est stérilisée séparément puis introduite dans le bioréacteur après stérilisation.
[0080] Dans un deuxième aspect, l’invention concerne l’utilisation d'une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0% et 30% ou entre 5% et 30%, en poids de la teneur totale des sucres dans ladite composition, pour la production de protéines d’intérêt par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé.
[0081] Dans un deuxième aspect, l’invention concerne l’utilisation d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d'au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition, pour la production de protéines d’intérêt par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé.
[0082] Dans un troisième aspect, l’invention concerne un procédé de production de sucres à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d'enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d'une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0% et 30% ou entre 5% et 30%, en poids de la teneur totale des sucres dans ladite composition.
[0083] Dans un troisième aspect, l’invention concerne un procédé de production de sucres à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d'enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition.
[0084] En d’autres termes, l’invention concerne l’utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, pour l'hydrolyse de la cellulose ou de la lignocellulose en sucre.
[0085] Dans un quatrième aspect, l’invention concerne un procédé de production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0% et 30% ou entre 5% et 30%, en poids de la teneur totale des sucres dans ladite composition.
[0086] Dans un quatrième aspect, l’invention concerne un procédé de production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition étant de 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition.
[0087] En d’autres termes, l’invention concerne l’utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, pour la production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques.
[0088] Selon l'invention, le terme << produits biosourcés » s’entend plus particulièrement des molécules intéressant l'industrie chimique, comme par exemple des acides organiques tels que l'acide acétique, propionique, acrylique, butyrique, succinique, malique, fumarique, citrique, itaconique, ou des hydroxyacides comme l'acide glycolique, hydroxypropionique, ou lactique, ainsi que d’autres types de produits biosourcés comme des solvants et alcools , par exemple l’éthanol, l’acétone, l’isopropanol, le butanol.
[0089] Dans un cinquième aspect, l’invention concerne un procédé de production d'un biocarburant/d’alcool, notamment d'éthanol, à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, en présence d'une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0% et 30% ou entre 5% et 30%, en poids de la teneur totale des sucres dans ladite composition.
[0090] Dans un cinquième aspect, l’invention concerne un procédé de production d'un biocarburant/d’alcool, notamment d’éthanol, à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, en présence d'une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition comprenant 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition.
[0091] En d’autres termes, l'invention concerne l’utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, pour la production de biocarburant/d’alcool à partir de substrats cellulosiques ou lignocellulosiques.
[0092] Selon l’invention, le terme « biocarburant » s’entend plus particulièrement d’un biocarburant de seconde génération, c’est-à-dire issu de ressources non alimentaires. Selon l'invention, le terme « biocarburant » peut également être défini comme étant tout produit issu de la transformation de la biomasse et pouvant être utilisé à des fins énergétiques. D'une part et sans vouloir se limiter, on peut citer à titre d’exemple des biogaz, des produits pouvant être incorporés (éventuellement après transformation ultérieure) à un carburant ou être un carburant à part entière, tels que des alcools (l’éthanol, le butanol et/ou l’isopropanol selon le type d’organisme fermentaire utilisé), des solvants (acétone), des acides (butyrique), des lipides et leurs dérivés (acides gras à courtes ou longues chaînes, esters d’acides gras), ainsi que l’hydrogène. De manière préférée, le biocarburant selon l’invention est un alcool, par exemple l’éthanol, le butanol, l’isopropanol, le 1,2- propane diol, le 1,3-propane diol, le 1 ,4-butane diol, et/ou le 2,3-butane diol. Plus préférentiellement, le biocarburant selon l'invention est l’éthanol. Dans un autre mode de réalisation, le biocarburant est du biogaz.
[0093] Selon un autre mode de réalisation particulier, ledit procédé de production d'un biocarburant ou d'alcool à partir de substrats cellulosiques ou lignocellulosiques comprend les étapes suivantes :
- i) une étape de prétraitement d'un substrat cellulosique ou lignocellulosique afin d’obtenir un substrat prétraité,
- ii) une étape de production enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène ceUa est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0% et 30% ou entre 5% et 30%, en poids de la teneur totale des sucres dans ladite composition,
- iii) une étape d'hydrolyse enzymatique du substrat prétraité, en présence des enzymes cellulolytiques obtenues à l’étape ii) et d'un substrat approprié, afin d’obtenir un hydrolysat,
- iv) une étape de fermentation alcoolique de l'hydrolysat obtenu,
- v) une étape de séparation, notamment par distillation, lesdites étapes iii) et iv) étant optionnellement réalisées simultanément.
[0094] Selon un mode de réalisation particulier, ledit procédé de production d'un biocarburant ou d'alcool à partir de substrats cellulosiques ou lignocellulosiques comprend les étapes suivantes :
- i) une étape de prétraitement d'un substrat cellulosique ou lignocellulosique afin d'obtenir un substrat prétraité,
- ii) une étape de production enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cel1a est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d'au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition,
- iii) une étape d'hydrolyse enzymatique du substrat prétraité, en présence des enzymes cellulolytiques obtenues à l’étape ii) et d'un substrat approprié, afin d’obtenir un hydrolysat,
- iv) une étape de fermentation alcoolique de l'hydrolysat obtenu,.
- v) une étape de séparation, notamment par distillation.
[0095] Selon un autre mode de réalisation particulier, ledit procédé de production d'un biocarburant ou d'alcool à partir de substrats cellulosiques ou lignocellulosiques comprend les étapes suivantes :
- i) une étape de prétraitement d'un substrat cellulosique ou lignocellulosique afin d’obtenir un substrat prétraité,
- ii) une étape de production enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant 0% poids de lactose de la teneur totale des sucres dans ladite composition, ou du lactose en teneur supérieure à 0% poids et d’au plus 30% en poids de la teneur totale des sucres dans ladite composition, et étant notamment comprise entre 5% poids et 30% poids de la teneur totale des sucres dans ladite composition,
- iii) une étape d'hydrolyse enzymatique du substrat prétraité, en présence des enzymes cellulolytiques obtenues à l’étape ii) et d'un substrat approprié, afin d’obtenir un hydrolysat,
- iv) une étape de fermentation alcoolique de l'hydrolysat obtenu, - v) une étape de séparation, notamment par distillation, lesdites étapes iii) et iv) étant réalisées simultanément. Cela est typiquement le cas dans les procédés de production dits « SSF » (Simultaneous Saccharification and Fermentation).
[0096] Selon un mode de réalisation particulier, l’étape de prétraitement d'un substrat cellulosique ou lignocellulosique est une étape de mise en suspension en phase aqueuse dudit substrat cellulosique ou lignocellulosique.
[0097] Selon un mode de réalisation particulier, l’hydrolysat obtenu à l’étape iii) est un hydrolysat contenant du glucose.
[0098] Selon un mode de réalisation particulier, l’étape de fermentation alcoolique de l'hydrolysat obtenu est une étape de fermentation, en présence d'un organisme fermentaire, du glucose issu de l'hydrolysat de manière à produire un moût de fermentation. Un organisme fermentaire est par exemple une levure.
[0099] Selon un mode de réalisation particulier, l’étape de séparation est une séparation du biocarburant ou de l’alcool et du moût de fermentation, notamment par distillation.
[0100] Selon un mode de réalisation encore plus préféré, le substrat cellulosique ou lignocellulosique prétraité à hydrolyser est mis en suspension en phase aqueuse à raison de 6 à 40% de matière sèche, de préférence 20 à 30%. Le pH est ajusté entre 4 et 5,5, de préférence entre 4,8 et 5,2 et la température entre 40°C et 60°C, de préférence entre 45°C et 50°C. La réaction d'hydrolyse est démarrée par l'ajout des enzymes agissant sur le substrat prétraité. La quantité d’enzymes habituellement utilisée est de 10 à 30 mg de protéines par gramme de substrat prétraité ou moins. La réaction dure généralement de 15 à 48 heures. La réaction est suivie par dosage des sucres libérés, notamment le glucose. La solution de sucres est séparée de la fraction solide non hydrolysée, essentiellement constituée de lignine, par filtration ou centrifugation et ensuite traitée dans une unité de fermentation.
[0101] Selon un autre mode de réalisation encore plus préféré, lorsque l’étape d’hydrolyse et de fermentation sont réalisées conjointement, les enzymes et l'organisme fermentaire sont ajoutés simultanément puis incubés à une température comprise entre 30°C et 35°C pour produire un moût de fermentation. Selon ce mode de réalisation, la cellulose présente dans le substrat prétraité est convertie en glucose, et en même temps, dans le même réacteur, l'organisme fermentaire (par exemple une levure) convertit le glucose en produit final selon un procédé de SSF (Simultaneous Saccharification and Fermentation) connu de l'homme du métier. Selon les capacités métaboliques et hydrolytiques de l'organisme fermentaire, le bon déroulement de l'opération peut nécessiter l'addition d'une quantité plus ou moins importante de mélange cellulolytique exogène.
[0102] Dans un sixième aspect, l’invention concerne une souche de champignon appartenant à l'espèce Trichoderma reesei, ladite souche étant issue de la souche telle que déposée sous la référence ATCC 56765 (Rut-C30) et ladite souche comprenant une invalidation du gène cella. L’invention concerne ainsi également une souche RutC30 dont le génome a été modifié afin d’invalider le gène ceUa. L’invention concerne également une souche issue de la souche RutC30 dont le génome a été modifié afin d’invalider le gène ceUa. Cette souche variante de RutC30 est donc une souche dans laquelle la protéine CEL1a n'est pas produite, ou alors une protéine CEL1a non fonctionnelle est produite.
[0103] Selon un mode de réalisation, une telle souche est obtenue par un procédé de modification génétique d’une souche de champignon Rut-C30, comprenant une étape d’invalidation du gène ceUa. Cette étape d’invalidation du gène ceUa est notamment réalisée par mutagénèse, par recombinaison homologue ou plus préférentiellement à l’aide d’une cassette d’invalidation représentée par la SEQ ID NO : 3.
[0104] La mutagénèse est une technique communément utilisée en génie génétique. Elle vise à introduire volontairement des mutations dans l’ADN afin de créer des gènes génétiquement modifiés. Selon l’invention, la mutagénèse s’entend plus particulièrement de la mutagénèse dirigée. La mutagénèse dirigée permet en effet d'introduire des mutations identifiées dans un gène précis. Pour ce faire, l’ADN d'intérêt (ici le gène ceUa) contenant les mutations est synthétisé puis introduit dans la cellule à muter, typiquement à l’aide d’un vecteur, où le mécanisme de réparation de l’ADN s’occupe de l’intégrer dans le génome.
[0105] La recombinaison homologue est une technique communément utilisée en génie génétique qui consiste à un échange entre molécules d’ADN, typiquement à l’aide d’un vecteur.
[0106] Le terme « vecteur » s’entend de toute séquence d’ADN dans laquelle il est possible d'insérer des fragments d'acide nucléique étranger, les vecteurs permettant d’introduire de l’ADN étranger dans une cellule hôte. Des exemples de vecteurs sont les plasmides, les cosmides, les chromosomes artificiels de levures (Y AC), les chromosomes artificiels de bactéries (BAC) et les chromosomes artificiels dérivés du bactériophage P1 (PAC), les vecteurs dérivés de virus. Le vecteur selon l'invention permet l'introduction d'une mutation ou d'une délétion.
[0107] Dans un mode de réalisation préféré, ladite cassette d’invalidation comprend trois fragments d'ADN :
(1) une région en amont du gène cible,
(2) un marqueur de sélection, et
(3) une région en aval du gène cible.
[0108] Dans le cas de la présente invention, le « gène cible » s’entend du gène ceUa. Les régions en amont et en aval du gène cible sont deux éléments de recombinaison, un à chaque extrémité du gène, et sont nécessaires pour cibler de façon précise la séquence à invalider.
[0109] Selon l’invention, la région en amont du gène cible (c’est-à-dire la séquence 5’ en amont du gène ceUa) est notamment représentée par la séquence de SEQ ID NO : 4.
[0110] Selon l'invention, la région en aval du gène cible (c’est-à-dire la séquence 3' en aval du gène ce!1a est notamment représentée par la séquence de SEQ ID NO : 5. [0111] L’expression « marqueur de sélection » s'entend d’un gène dont l’expression confère aux cellules qui le contiennent une caractéristique permettant de les sélectionner. L'utilisation d’un marqueur de sélection permet en effet d’identifier les cellules ayant intégré une modification génétique par rapport à celles qui ne l'ont pas intégrée. Il s’agit par exemple d'un gène de résistance aux antibiotiques, notamment le gène de résistance à l’antibiotique hygromycine hph, tel que représenté par la séquence de SEQ ID NO : 6.
[0112] Plus précisément, selon l’invention, la cassette d’invalidation est préférentiellement constituée d’un gène de résistance placé sous le contrôle d’un promoteur et d’un terminateur, avec en amont et en aval les régions flanquantes 5’ et 3' du gène cella. Selon l’invention, ladite cassette d’invalidation pourra être liée opérationnellement à un promoteur, un terminateur ou toute autre séquence nécessaire à son expression dans une cellule hôte.
[0113] La cassette d'invalidation peut être amplifiée selon les techniques classiques bien connues de l'homme du métier, typiquement par une méthode choisie parmi le clonage classique, la fusion PCR, ou encore le clonage in vivo par PCR. Préférentiellement, cette cassette d'invalidation est amplifiée par PCR, notamment à l'aide des séquences représentée par les SEQ ID NO : 9 et SEQ ID NO : 11. La cassette d’invalidation est ensuite introduite par recombinaison dans une souche de Trichoderma, notamment Trichoderma reesei, qui n'exprime pas un gène du marqueur de sélection. Après culture, les souches variantes/mutantes ayant incorporé la cassette d’invalidation sont sélectionnées en fonction de l'expression ou non du marqueur de sélection; les clones ayant été transformés exprimant ledit marqueur de sélection. Il s'agit notamment des souches à utilisées selon l'invention. Préférentiellement, les souches mutantes sont identifiées à l'aide des amorces de SEQ ID NO : 8 et SEQ ID NO : 13. Ces techniques de recombinaison génétiques sont bien connues de l’homme du métier.
[0114] Dans la présente description, les définitions, mode de réalisation et préférences indiquées dans un aspect s’appliquent mutatis mutandis aux autres aspects. Par exemple, toutes les définitions et préférences indiquées dans le premier aspect de l’invention ci-dessus s’appliquent également aux deuxième, troisième, quatrième, cinquième et sixième aspects.
Brève description des Figures
[0115] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture des Figures annexées.
Fig. 1
[0116] [Fig. 1] représente le plasmide pRS426-Acel1a-hph qui a été utilisé pour obtenir une souche dans laquelle le gène cella a été invalidé. Les positions des différents fragments de la cassette d’invalidation et des oligonucléotides utilisées pour la construction sont indiquées.
Fig. 2
[0117] [Fig. 2] représente l'optimisation de la composition du mélange lactose/glucose utilisé comme solution d’alimentation pour la phase de production de protéines par Trichoderma reesei RutC30-Acel1a.
Fig. 3 [0118] [Fig. 3] représente la comparaison de la productivité spécifique en bioréacteur des souches RutC30 et RutC30-4ce/7a lorsqu'elles sont alimentées en mode fed-batch par des solutions de sucres de différentes compositions.
Séquences de la présente invention [0119] [Tableau 1]
Bibliographie des exemples
[0120] Hartl, Lukas; Kubicek, Christian P.; Seiboth, Bernhard (2007): Induction of the gai pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. In The Journal of Biological Chemistry 282 (25), pp. 18654-18659. DOI: 10.1074/j bc. M700955200.
[0121] Christianson, T. W.; Sikorski, R. S.; Dante, M.; Shero, J. H.; Hieter, P. (1992): Multifunctional yeast high-copy-number shuttle vectors. In Gene 110 (1 ), pp. 119-122.
[0122] Montenecourt, B. S.; Eveleigh, D. E. (1977) Semiquantitative Plate Assay for Détermination of Cellulase Production by Trichoderma viride. In : Applied and environmental microbiology, vol. 33, n° 1 , p. 178-183 [0123] Schiestl, Robert H.; Gietz, R. Daniel (1989): High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. In Current Genetics 16 (5), pp. 339-346. DOI: 10.1007/BF00340712.
Exemples [0124] Exemple 1 : Invalidation du gène cella dans une souche hvperproductrice
[0125] Pour la construction de la cassette d’invalidation de cella contenant le gène de résistance à l’hygromycine B ( hph les régions flanquantes (1 kb) de cella ont été amplifiées à partir d’ADN génomique de T. reesei en utilisant la polymérase Phusion (Thermo Fisher Scientific) et à l’aide des oligonucléotides suivants : cel1a-5F et cel1a-5R ; cel1a-3F et cel1a-3R (voir le Tableau 2). Le marqueur hph a été amplifié à partir du plasmide pLHhphl à l'aide des oligonucléotides hphF and hphR (Hartl et al., 2007). Les oligonucléotides utilisés pour l’amplification des régions flanquantes chevauchent les différents fragments de la construction (Figure 1). La cassette de délétion sera assemblée dans le plasmide pRS426 par recombinaison homologue lors du passage dans la levure. La transformation des levures a été réalisée en utilisant la méthode décrite par Schiestl et Gietz (1989). La souche de levure ATCC 208405 a été transformée avec les deux régions flanquantes, le marqueur hph et le plasmide pRS426 préalablement digéré par EcoRI et Xbal (Christianson et al., 1992) pour donner le plasmide pRS426 -Acel1a-hph. Le plasmide a ensuite été introduit et amplifié dans les bactéries E. coli thermo-compétentes NEB 10-beta (New England Biolabs). Les oligonucléotides cel1a-3F et cella- 5R ont servi à amplifier la cassette d’invalidation à partir du plasmide pRS42Q-Acel1a-hph. La cassette a été purifiée à l'aide du kit de purification PCR QIAquick (QIAGEN). La souche utilisée pour la transformation est la souche hyperproductrice RutC30 (Montenecourt et Eveleigh, 1977). La souche a été transformée par la méthode des protoplastes (Penttila et al. (1987) en utilisant 1 pg de cassette purifiée. L’intégration de la cassette hph a été vérifiée par PCR en utilisant les oligonucléotides cel1a_ch et hphR de manière à obtenir un produit PCR uniquement si la cassette s’est correctement insérée. Trois clones indépendants ont été isolés et analysés comme réplicats biologiques. Les séquences et noms des amorces sont présentés dans les Tableaux 1 et 2. La souche invalidée pour le gène cella est nommés RutC30-Acel1a.
[0126] [Tableau 2]
[0127] Séquences des amorces de la présente invention
[0128] Exemple 2 : Protocole de culture en fioles
[0129] Les cultures en fioles alimentées sont réalisées dans des fioles Erlenmeyer de 8 cm de diamètre, contenant 60mL de milieu de culture, ensemencées avec des spores de la souche souhaitée stockés en cryotubes, et mises en incubation à 150 rpm et 30°C dans un incubateur Infors Multitron.
[0130] Le milieu de culture possède la composition finale suivante :
- 1 mL/L H3PO485%
- 2,8 g/L de (NH )2S04 - 0,3 g/L de MgS04,7H20
- 0,15 g/L de CaCI2,2H20
- 1 mL/L de solution d'oligos éléments (FeS04 : 5 g/L, MnS04 : 1 ,4 g/L, ZnS04 : 1 ,4 g/L, CoCI2 : 3,7 g/i)
- 8,0 g/L de dipotassium phtalate - 1 ,5 g/L de cornsteep
- 12,5 g/L de glucose
- pH ajusté à 5.4 avec de la soude 30%
- Stérilisation 20 min à 121°C (le glucose est stérilisé séparément des autres composés)
[0131] La première phase de croissance est réalisée pendant 48h jusqu'à épuisement du glucose, ce qui entraîne l'acidification du milieu à un pH d'environ 3,5. Le pH est alors remonté à environ 4,3 par ajout de soude.
[0132] La deuxième phase de production est réalisée pendant 48h par alimentation à 0,3 mL/h d’une solution de « fed-batch » contenant :
- 50 g/L de sucres (lactose pur, ou mélanges lactose + glucose) - 5,6 g/L d’urée (ajoutée à partir d’un stock à 250 g/L stérilisé par filtration) qui permet de mimer l'ammoniaque qui serait apporté par la régulation de pH lors d’une culture en bioréacteur.
[0133] Des prélèvements réguliers de 2 mL sont effectués pour suivre le pH, le glucose résiduel, et la concentration en protéines. A la fin de chacune des deux phases, un prélèvement plus conséquent (environ 10mL) est réalisé pour mesurer la concentration en champignon dans le milieu de culture (par filtration et séchage avec un filtre de 1 ,2 mhp).
[0134] Pour juger du niveau d’induction d’une composition de sucres sur la souche, la vitesse spécifique de production (en rng rot&nes/gbiomasse/h) est calculée en rapportant la productivité en protéines (en mgprotéines/L/h) à la concentration en champignon (gbiomasse/L). [0135] Exemple 3 : Optimisation de la composition du fed-batch pour l’induction de la souche RutC30-Acel1a
[0136] La souche RutC30-Acel1a a été cultivée selon le protocole décrit dans l’exemple 2 afin de mesurer la productivité spécifique en protéines de la souche lorsqu’elle est alimentée en fed- batch par différents mélanges glucose/lactose. Les mélanges glucose/lactose testés vont de 99%glucose/1%lactose à 50%glucose/50%lactose. Le % s’entend ici par rapport à la quantité totale de sucres présents dans la solution.
[0137] La productivité spécifique est présentée Figure 2 après normalisation par la valeur maximale qui a été mesurée. On observe une productivité maximale avec le mélange 15%lactose/85%glucose, optimale dans la gamme de teneur en lactose comprise entre 10% et 20%, et bonne dans la gamme de teneur en lactose comprise entre 5% et 30%.
[0138] Exemple 4 : Protocole de culture en bioréacteurs
[0139] Les cultures en bioréacteurs sont réalisées dans des fermenteurs de 10 cm de diamètre, contenant 800 mL de milieu de culture, ensemencés à 10%v/v à partir d'une préculture. L’agitation est effectuée par une turbine Rushton et une turbine pitch-blade de 5 cm de diamètre. La vitesse d’agitation est contrôlée entre 400 et 1200 rpm pour maintenir une concentration d’oxygène dissous supérieure à 40% de la concentration à saturation. La température est contrôlée à 27°C pendant la 1ère phase puis à 25°C pendant la 2e phase. Le pH est contrôlé pendant toute la culture à 4,0 par ajout automatique d’une solution d’ammoniaque à 5N.
[0140] La préculture est réalisée dans des fioles de 19 cm de diamètre contenant 250 mL du même milieu de culture, tamponné avec 5g/L de dipotassium phtalate et dont le pH initial est ajusté à 5.0 avec de la soude. Les précultures sont ensemencées avec des spores de la souche souhaitée stockés en cryotubes, et mises en incubation à 150 rpm et 30°C dans un incubateur Infors Multitron.
[0141] Le milieu de culture possède la composition finale suivante :
- 3 mL/L d’acide orthophosphorique à 85%
- 0,25 mL/L d’acide sulfurique à 96%
- 1 ,66 g/L de potasse KOH en cristaux
- 2,8 g/L de (NH4)2S04
- 0,6 g/L de MgS04,7H20
- 0,6 g/L de CaCI2,2H20 - 0,12 g/L de Na2HP04,12H20
- 1 mL/L de solution d’oligos éléments (FeS04 : 5 g/L, MnSC : 1 ,4 g/L, ZnS04 : 1 ,4 g/L, CoCI2 : 3,7 g/l)
- 1 g/L de cornsteep
- 20 g/L de glucose - Stérilisation 20 min à 121°C (le glucose est stérilisé séparément des autres composés)
- Ajustement du pH à 4,0 avec la solution d’ammoniaque servant au contrôle du pH
[0142] La première phase (croissance en batch sur glucose) est réalisée pendant 27 à 30h (jusqu’à épuisement du glucose), puis la 2e phase (production de protéines en mode fed-batch) est réalisée pendant 70h par alimentation d’une solution de sucres à 250g/L contenant soit du lactose pur, soit un mélange de lactose et de glucose.
[0143] Des prélèvements réguliers d’environ 15 mL sont effectués pour :
- suivre le glucose résiduel
- mesurer la concentration en champignon (par filtration puis séchage sur filtres de 1 ,2pm)
- mesurer la concentration en protéines (kit Biorad DC-Protein Assay en utilisant de la BSA comme standard).
[0144] Exemple 5 : Comparaison des performances des souches RutC30 et RutC30- Acella en utilisant comme substrat des solutions de sucres purifiés
[0145] Pour mesurer plus précisément la vitesse spécifique de production de protéines de la souche RutC30-Acel1a lorsqu'elle est alimentée par les différentes solutions optimales (identifiées dans l’exemple 3), et comparer avec la souche de référence RutC30, des cultures en bioréacteurs ont été réalisées avec ces 2 souches et avec différentes solutions d’alimentation pour la phase de production en fed-batch, selon le protocole décrit dans l’exemple 4. Les résultats sont présentés en Figure 3.
[0146] La souche sauvage RutC30 alimentée avec une solution de lactose pur a une productivité spécifique de 20 à 22 mgProtéines/gbiomasse/h. Alimenter cette même souche avec une solution contenant un mélange composé de 10% de lactose et 90% de glucose donne une productivité spécifique environ 2,5 fois plus faible, autour de 8 mgprotéines/gbiomasse/h. Cette stratégie n’aurait donc pas d’intérêt industriellement car le surcoût lié à une productivité plus faible ne serait pas compensé par l’économie réalisée en utilisant moins de lactose.
[0147] La souche RutC30-Acel1a alimentée avec une solution de lactose pur a une productivité spécifique très faible, autour de 3 mgpratéines/gbiomasse/h, car elle n’est plus capable d’assimiler de grande quantité de lactose. En revanche, lorsqu’elle est alimentée avec une solution contenant un mélange glucose/lactose avec 10 à 20% de lactose dans le mélange, la souche RutC30-Acel1a a une productivité spécifique comprise entre 16 et 19 mgProtéines/gbiomasse/h, soit quasiment aussi bonne que la souche RutC30 alimentée avec du lactose pur. Avec 10% ou 15% de lactose dans le mélange, une productivité spécifique équivalente (non significativement différente) au témoin RutC30 alimenté pas du lactose pur a été observée.
[0148] Exemple 6 : Performance de la souche RutC30-4cel1a en incorporant des solutions industrielles comme substrat de production [0149] Pour mesurer la performance de la souche RutC30-Acel1a dans des conditions industrielles, des cultures en bioréacteur ont été réalisées en incorporant un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse lignocellulosique. Cet extrait est incorporé en remplacement de l’eau pour la préparation des solutions d’alimentation de la phase de production en fed-batch.
[0150] Deux extraits bruts de pentoses hydrosolubles ont été utilisés, l’un préparé par le prétraitement de paille de maïs, et l’autre préparé par le prétraitement de paille de blé.
[0151] Les cultures sont réalisées selon le protocole décrit dans l’exemple 4, à la seule différence que la solution d’alimentation pour la 2e phase (phase de production) a été préparée en dissolvant le glucose et le lactose dans l’extrait brut de pentoses hydrosolubles, de manière à obtenir une solution contenant un total de 500gSucres/LSoiution et une teneur en lactose de 0%, 5%, ou 10% (en % du total des sucres) selon les cas. Les résultats sont présentés dans le Tableau 3 ci- après.
[0152] La souche RutC30-Acel1a, alimentée par une solution contenant un extrait brut de pentoses hydrosolubles (issu aussi bien de paille de blé que de paille de maïs) garde une vitesse spécifique de production de protéines maximale (autour de 21 à 22 mgpratéines/gbiomasse/h) même si la teneur en lactose de la solution est seulement de 10% ou 5%.
[0153] Alimentée par une solution préparée à partir d’un extrait brut de pentoses hydrosolubles issu de paille de blé et ne contenant pas de lactose, la souche RutC30-Acel1a produit des protéines à une vitesse environ 30% plus faible (=14±2 mgProtéines/gbiomasse/h). Cette performance est néanmoins bien meilleure que celle de la souche RutC30 qui ne produit que très peu de protéines dans Ce Cas (=4±1 mg rotéines/gbiomasse/h).
[0154] Le Tableau 3 ci-dessous présente la productivité spécifique en bioréacteur de la souche RutC30 -ûceUa lorsqu'elle est alimentée en mode fed-batch par des solutions de sucres de différentes compositions et préparées en utilisant un extrait brut de pentoses hydrosolubles issu de paille de maïs ou de paille de blé.
[0155] [Tableau 3]

Claims

Revendications
[Revendication 1] Procédé de production de protéines par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, comprenant au moins deux étapes :
- une première étape de croissance en phase batch en présence d’au moins un substrat carboné de croissance, et
- une deuxième étape de production de protéines en phase fed-batch en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%.
[Revendication 2] Procédé selon la revendication précédente, caractérisé en ce que la teneur en lactose dans ladite composition est comprise entre plus de 0% et 5% en poids de la teneur totale des sucres dans ladite composition, ou entre plus de 5% et moins de 10% en poids de la teneur totale en sucres dans ladite composition, ou de 10% poids à au plus 20% en poids de la teneur totale en sucres dans ladite composition.
[Revendication 3] Procédé de production de protéines selon l'une des revendications 1 à 2, dans lequel le champignon appartient à l’espèce Trichoderma reesei.
[Revendication 4] Procédé de production de protéines selon l'une quelconque des revendications précédentes, dans lequel les protéines sont des enzymes, notamment des enzymes cellulolytiques telles que des cellulases ou des hémicellulases.
[Revendication 5] Procédé de production de protéines selon l'une quelconque des revendications précédentes, dans lequel le deuxième sucre est choisi parmi le glucose ou le xylose, de préférence le glucose.
[Revendication 6] Procédé de production de protéines selon l'une quelconque des revendications précédentes, dans lequel la teneur en lactose dans ladite composition représente environ entre 10 et 20% en poids de la teneur totale des sucres dans ladite composition.
[Revendication 7] Procédé de production de protéines selon l’une quelconque des revendications précédentes, dans lequel ladite composition comprend :
- environ entre 70-95% en poids de glucose et/ou de xylose, et
- environ entre 5-30% en poids de lactose.
[Revendication 8] Procédé de production de protéines selon l'une quelconque des revendications précédentes, dans lequel ladite composition comprend :
- environ entre 80-90% en poids de glucose et/ou de xylose, et
- environ entre 10-20% en poids de lactose, et plus particulièrement - environ entre 80-90% en poids de glucose, et
- environ entre 10-20% en poids de lactose.
[Revendication 9] Procédé de production de protéines selon l’une quelconque des revendications 1 à 5, dans lequel :
- ladite composition comprend environ entre 90-95% en poids d’extrait brut de pentoses hydrosolubles et de glucose et entre 5-10% de lactose, ou
- la teneur en sucres dans ladite composition est constituée à 100% d’extrait brut de pentoses hydrosolubles et de glucose.
[Revendication 10] Procédé de production de protéines selon l’une quelconque des revendications précédentes, dans lequel ledit deuxième sucre est choisi parmi le glucose, le xylose, les résidus liquides obtenus après fermentation éthanolique, optionnellement obtenus après fermentation éthanolique puis distillation, des sucres monomères des hydrolysats enzymatiques de biomasse cellulosique, un extrait brut de pentoses hydrosolubles provenant du prétraitement d’une biomasse cellulosique, un hydrolysat enzymatique de lignocellulose, et/ou un hydrolysat de biomasse amylacée.
[Revendication 11] Procédé de production de protéines selon l’une quelconque des revendications précédentes, dans lequel le gène cella a été invalidé dans ladite souche par mutagénèse ou par recombinaison homologue, notamment à l'aide d'une cassette d'invalidation telle que représentée par la SEQ ID NO : 3.
[Revendication 12] Procédé de production de sucres à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d'enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%.
[Revendication 13] Procédé de production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%.
[Revendication 14] Procédé de production d'alcool, notamment de l'éthanol, à partir de substrats cellulosiques ou lignocellulosiques, comprenant une étape de production d’enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%.
[Revendication 15] Procédé de production d'un d’alcool à partir de substrats cellulosiques ou lignocellulosiques selon la revendication précédente, comprenant :
- i) une étape de prétraitement d'un substrat cellulosique ou lignocellulosique afin d’obtenir un substrat prétraité,
- ii) une étape de production enzymes cellulolytiques par une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, en présence d’une composition comprenant au moins du lactose et un deuxième sucre, la teneur en lactose dans ladite composition représentant environ entre 0 et 30% en poids de la teneur totale des sucres dans ladite composition, notamment entre 5 et 30%,
- iii) une étape d'hydrolyse enzymatique du substrat prétraité, en présence des enzymes cellulolytiques obtenues à l’étape ii) et d'un substrat approprié, afin d’obtenir un hydrolysat,
- iv) une étape de fermentation alcoolique de l'hydrolysat obtenu, l’étape iv) étant optionnellement réalisée en simultané avec l’étape iii). - v) une étape de séparation, notamment par distillation.
[Revendication 16] Utilisation d’une souche de champignon appartenant au genre Trichoderma dans laquelle le gène cella est invalidé, pour l'hydrolyse de la cellulose ou de la lignocellulose en sucre, ou pour la production de produits biosourcés à partir de substrats cellulosiques ou lignocellulosiques. [Revendication 17] Souche de champignon appartenant à l’espèce Trichoderma reesei, ladite souche étant issue de la souche Rut C30, notamment telle que déposée sous la référence ATCC 56765, et ladite souche comprenant une invalidation du gène cella.
EP21740145.4A 2020-06-22 2021-06-21 Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé Pending EP4168531A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006495A FR3111643A1 (fr) 2020-06-22 2020-06-22 Procede de production de proteines, de sucres, d’alcool, par une souche de champignon trichoderma dans laquelle le gene cel1a est invalide
PCT/FR2021/051117 WO2021260310A1 (fr) 2020-06-22 2021-06-21 Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé

Publications (1)

Publication Number Publication Date
EP4168531A1 true EP4168531A1 (fr) 2023-04-26

Family

ID=73698904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740145.4A Pending EP4168531A1 (fr) 2020-06-22 2021-06-21 Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé

Country Status (7)

Country Link
US (1) US20230303991A1 (fr)
EP (1) EP4168531A1 (fr)
CN (1) CN116323909A (fr)
BR (1) BR112022026007A2 (fr)
CA (1) CA3182330A1 (fr)
FR (1) FR3111643A1 (fr)
WO (1) WO2021260310A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659664B1 (fr) 1990-03-19 1994-08-05 Inst Francais Du Petrole Composition d'enzymes adaptee a l'hydrolyse des polysaccharides d'un substrat lignocellulosique, sa preparation et son utilisation.
FR2881753B1 (fr) * 2005-02-09 2009-10-02 Inst Francais Du Petrole Procede de production d'enzymes cellulolytiques et hemicellulolytiques utilisant les residus de distillation de fermentation ethanolique d'hydrolysats enzymatiques de materiaux (ligno-)cellulosique
FR2979111B1 (fr) 2011-08-19 2015-05-01 IFP Energies Nouvelles Procede de production de cellulases par un champignon filamenteux adapte a un fermenteur ayant un faible coefficient de transfert volumetrique d'oxygene kla
JP2014150745A (ja) * 2013-02-06 2014-08-25 Nagaoka Univ Of Technology トリコデルマ属に属する微生物の変異株および該変異株の使用
FR3075203B1 (fr) 2017-12-20 2020-09-25 Ifp Energies Now Procede de traitement de biomasse ligno-cellulosique par impregnation
FR3083126B1 (fr) 2018-06-27 2020-06-26 IFP Energies Nouvelles Procede de traitement de biomasse ligno-cellulosique

Also Published As

Publication number Publication date
WO2021260310A1 (fr) 2021-12-30
CN116323909A (zh) 2023-06-23
CA3182330A1 (fr) 2021-12-30
US20230303991A1 (en) 2023-09-28
BR112022026007A2 (pt) 2023-03-14
FR3111643A1 (fr) 2021-12-24

Similar Documents

Publication Publication Date Title
EP2342329B1 (fr) Variants de beta-glucosidase a activite amelioree et leurs utilisations
EP3158071B1 (fr) Variants d&#39;exoglucanases a activite amelioree et leurs utilisations
EP2593543B1 (fr) Procédé de production d&#39;enzymes cellulolytiques et/ou hémicellulolytiques amélioré
EP3158076B1 (fr) Variants d&#39;exoglucanases a activite amelioree et leurs utilisations
EP4069718A1 (fr) Souche de champignon ayant une viscosite diminuee
EP4168531A1 (fr) Procédé de production de proteines par une souche de champignon trichoderma dans laquelle le gène cel1 a est invalidé
CA2883715C (fr) Polypeptide a activite beta-glucosidase renforcee a basse temperature
EP3071692B1 (fr) Variants d&#39;endoglucanases a activite amelioree et leurs utilisations
EP3071693B1 (fr) Variants d&#39;endoglucanases a activite amelioree et leurs utilisations
FR3128470A1 (fr) Souche de champignon hyperproductrice de proteines
CA3215584A1 (fr) Insertion multicopies d&#39;un gene d&#39;interet dans le genome d&#39;un champignon
WO2023186568A1 (fr) Procédé de production d&#39;enzymes cellulolytiques et/ou hémicellulytiques
FR3113291A1 (fr) Procédé de production d’alcool par hydrolyse enzymatique et fermentation de biomasse lignocellulosique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)