EP4143250A1 - Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane) - Google Patents

Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane)

Info

Publication number
EP4143250A1
EP4143250A1 EP21720789.3A EP21720789A EP4143250A1 EP 4143250 A1 EP4143250 A1 EP 4143250A1 EP 21720789 A EP21720789 A EP 21720789A EP 4143250 A1 EP4143250 A1 EP 4143250A1
Authority
EP
European Patent Office
Prior art keywords
urethane
ester
poly
less
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21720789.3A
Other languages
German (de)
English (en)
Inventor
Sylvain BEAUDRAIS
Christophe Duquenne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4143250A1 publication Critical patent/EP4143250A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4676Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3878Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus
    • C08G18/3882Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus having phosphorus bound to oxygen only
    • C08G18/3885Phosphate compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6505Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6523Compounds of group C08G18/3225 or C08G18/3271 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the invention relates to a poly (ester-urethane), a poly (ester-urea-urethane) as well as the aqueous dispersions thereof and their uses in aqueous coatings, adhesives or sealants, in particular as as binder in paints or varnishes.
  • Polyester resins are resins obtained by reacting polyacids and polyols. Polyester resins can be modified by adding a fatty component derived from an oil to form a special type of polyester resins: alkyd resins. Alkyd resins have been used for over 50 years to form coatings, including decorative and industrial paints. There are also oil-free polyester resins (“oil-free polyester” or OFPE).
  • the difference between alkyd resins and oil-free polyester resins is the presence or absence of a fatty component.
  • the fatty component gives flexibility, shine ("gloss") and good water resistance to the coating obtained.
  • the alkyd resins can dry by auto-oxidation (sicactivtion).
  • the absence of a fatty component gives the resin low coloring, good chemical resistance and excellent hardness.
  • a polyester can be modified, in particular by urethane and / or urea bonds to lead to poly (ester-urethane) or poly (ester-urea-urethane), in order to improve the properties of the coatings obtained, in particular to obtain a good adhesion to substrate, good flexibility, abrasion resistance, excellent resistance to self-adhesion (“blocking”) and good mechanical strength in general.
  • Polyester resins in an organic solvent medium otherwise known as solvent-based polyester resins, have long been known to those skilled in the art, used, in general, in coatings and formulations of decorative and industrial paints. To answer questions of user comfort, odor and toxicity, specific polyester emulsions have been developed and marketed for around twenty years, with interesting performance levels in terms of gloss, drying, appearance / color, stability and odor.
  • Poly (ester-urethane) or poly (ester-urea-urethane) dispersions can be obtained by using surfactants or by introducing ionizable groups, in particular carboxylic acid groups, along the polymer backbone.
  • ionizable groups in particular carboxylic acid groups
  • the water is then added gradually and the organic solvent is evaporated to form an aqueous dispersion of poly (ester-urethane).
  • organic solvent makes it possible to control the rise in viscosity during the preparation of the prepolymer.
  • the step of evaporating the organic solvent is expensive and requires specific installations. Further, this process can only be used to make acetone soluble poly (ester-urethane). Consequently, the coatings obtained are not very resistant to solvents.
  • the dispersions according to the invention could be used in applications relating to coatings or materials with a temporary function or use, that is to say which can be easily removed after a temporary function, for example by simple cleaning with l. water or saline water or other aqueous solution, in particular having a pH> 7 and preferably> 8, optionally with heating. Examples of such applications are water soluble inks, label adhesives, hydrofragmentable support materials for 3D printing (also known as sacrificial materials) or encapsulation.
  • poly (ester-urethane) and poly (ester-urea-urethane) of the invention allow the preparation of aqueous dispersions of poly (ester-urethane) and poly (ester-urea-urethane) which meet the needs or remedy to the aforementioned drawbacks.
  • the solution of the invention is first of all a friendly solution for humans and for their environment due to the absence of organic solvents resulting in a low level of VOCs in the aqueous dispersion, optionally in the absence of sicActivting agent.
  • sicActivting agent such as metal salts (cadmium, tin, cobalt, manganese, zirconium, lead and calcium).
  • the poly (ester-urethane) and poly (ester-urea-urethane) specific to the invention make possible these dispersions and associated technical performances, in particular the rapid development of hardness after application and a reduction in yellowing. They can be used as a binder in aqueous decorative or industrial coating compositions capable of air curing. Objects of the invention
  • a first object of the invention relates to a poly (ester-urethane) comprising:
  • the invention also relates to a poly (ester-urea-urethane) comprising:
  • the invention relates to an aqueous dispersion comprising the poly (ester-urethane) according to the invention, or the poly (ester-urea-urethane) according to the invention, the acid groups of the poly (ester-urethane) or of the poly (ester-urethane). (ester-urea-urethane) being in partially or totally neutralized form.
  • the invention relates more particularly to a process for preparing an aqueous dispersion comprising the following steps:
  • a polyol P1 comprising an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, and one optionally a saturated fatty chain and / or an unsaturated fatty chain or preparation of a polyol P2 comprising a group acid having a pKa of less than 3, optionally in partially or totally neutralized form, and of a polyol P3 comprising a saturated fatty chain and / or an unsaturated fatty chain;
  • a base in particular a base chosen from a tertiary amine and a metal hydroxide, more particularly an alkali hydroxide;
  • the poly (ester-urethane) optionally in the presence of at minus one polyamine with a functionality ranging from 2 to 6, in particular from 2.25 to 6, more particularly from 2.5 to 6, more particularly still from 3 to 6, the molar ratio between the amine functions of the optional polyamine component and the isocyanate functions of the poly (ester-urethane) being from 0.01 to 3, in particular from 0.2 to 1.5, more particularly from 0.5 to 1.
  • the invention also relates to a coating, adhesive or mastic composition
  • a coating, adhesive or mastic composition comprising a poly (ester-urethane) and / or a poly (ester-urea-urethane) and / or an aqueous dispersion according to the invention.
  • Another object of the invention is the use of a poly (ester-urethane) and / or of a poly (ester-urea-urethane) and / or of an aqueous dispersion according to the invention as a binder. , in particular as a binder in a coating, adhesive or mastic composition.
  • the invention also relates to a coating, adhesive or mastic obtained by applying and drying the coating, adhesive or mastic composition according to the invention.
  • polyol means a compound comprising at least two hydroxyl functions.
  • the functionality of a polyol is the number of hydroxyl functions it contains.
  • polyester means a compound comprising at least two ester bonds.
  • a polyester can further comprise another bond, in particular an amide bond.
  • polyester polyol means a polyester comprising at least two hydroxyl functions.
  • a polyester polyol can also comprise another functional group, in particular an amine function.
  • fatty acid means a compound comprising a carboxylic acid function or an ester bond, a hydrocarbyl chain having from 6 to 60, in particular 8 to 55, more particularly 10 to 50, consecutive carbon atoms.
  • the hydrocarbyl chain can be substituted, in particular by one or more hydroxyl or carbonyl functions.
  • the fatty acid can be an unsaturated mono fatty acid or a fatty acid dimer.
  • the derivatives of unsaturated fatty acids which can generate unsaturated fatty acids by hydrolysis or transesterification are included in the term "unsaturated fatty acid". These derivatives include in particular esters of unsaturated fatty acids (in particular triglycerides), standies and estolides.
  • the term “monoacid” means a compound comprising a single carboxylic acid function.
  • a C2-C10 monoacid means a monoacid comprising 2 to 10 carbon atoms.
  • Monoacid derivatives which can generate a monoacid by hydrolysis or transesterification are included in the term "monoacid". These derivatives include in particular esters of monoacids.
  • the term “hydrocarbyl chain” means a mono- or plurivalent radical comprising carbon and hydrogen atoms.
  • a hydrocarbyl chain can in particular comprise 1 to 200 carbon atoms. Unless stated to the contrary, a hydrocarbyl chain can be substituted. Unless otherwise stated, a hydrocarbyl chain can be interrupted by one or more heteroatoms chosen from O, N, S and Si.
  • a hydrocarbyl chain having 11 to 53 consecutive carbon atoms means a hydrocarbyl chain comprising a chain of 11 to 53 atoms. of carbon without any interruption by heteroatoms (O, N, S and Si
  • poly (ester-urea-urethane) means a product obtained by forming urea bonds between the isocyanate functions of a poly (ester-urethane). The formation of urea bonds can be achieved in water, optionally in the presence of a polyamine component.
  • hydroxyl function means an —OH function
  • glycol function means an epoxide function
  • thiol function means a -SH function.
  • mercapto can also be used to denote a thiol function.
  • carboxylic acid function means a -COOH function.
  • amine function means a primary amine (-NH2) and / or secondary amine function (-NHR1 with R 1 -C 6 alkyl).
  • -NH2 primary amine
  • -NHR1 with R 1 -C 6 alkyl secondary amine function
  • the -NH- group of an amide, urea or urethane bond is not considered to be an amine function.
  • a tertiary amine is not considered to be an amine function.
  • alkyl means a monovalent saturated acyclic radical of formula -C n H2n + i .
  • Alkyl can be linear or branched.
  • C1-C6 alkyl means an alkyl comprising 1 to 6 carbon atoms.
  • alkoxy means an -O-alkyl radical.
  • fatty chain means a hydrocarbyl chain having 6 to 60, in particular 8 to 55, more particularly 10 to 50, consecutive carbon atoms.
  • a fatty chain can be substituted, in particular by one or more hydroxyl and / or glycidyl groups.
  • the term “acid group” means a group which can be anionized by loss of a proton, in particular by reaction with a base.
  • suitable bases are a tertiary amine, a metal hydroxide, an alcoholate and a quaternary ammonium, in particular an alkali hydroxide, more particularly KOH, LiOH and NaOH.
  • the term “acid group” includes the partially or totally salified or esterified forms of said acid groups, in particular the sodium, potassium, lithium, calcium, magnesium and aluminum salts of said groups as well as the mono- and di- alkyl esters of said groups.
  • graftable function means a function chosen from hydroxyl, glycidyl, thiol, amine, carboxylic acid, isocyanate, ester, amide and anhydride.
  • isocyanate-reactive function means a function chosen from hydroxyl, thiol and amine.
  • aqueous dispersion means a multiphase system having a dispersed organic phase and a continuous aqueous phase.
  • solvent means a liquid having the property of dissolving, diluting or lowering the viscosity of other substances without chemically modifying them and without itself modifying.
  • solvents are water, acetone, methyl ethyl ketone, dimethylformamide, ethylene glycol dimethyl ether, N-methylpyrrolidone, ethyl acetate, butyl acetate, ethyl 3 - ethoxypropionate, ethylene and propylene glycol diacetates, ethylene and / or propylene glycol alkyl ethers (for example 1-methoxy-2-propanol), toluene, xylene, ethanol, methanol, tert-butanol, diacetone alcohol, isopropanol, mixtures of hydrocarbons such as heavy naphtha (white spirit), light aromatic naphtha (Solvesso® 100) or heavy aromatic naphtha (Solvesso® 150).
  • the components a1) are water
  • polyaddition means a reaction between compounds bearing at least two functional groups. Unlike polycondensation, polyaddition does not generate water.
  • An example of polyaddition is the reaction between a compound bearing hydroxyl and / or amine functions and a compound bearing isocyanate functions to form urethane and / or urea bonds.
  • polycondensation means a reaction between compounds bearing at least two functional groups with concomitant formation of water.
  • An example of polycondensation is the reaction between a compound bearing hydroxyl and / or amine functions and a compound bearing carboxylic acid functions to form ester and / or amide bonds.
  • polyisocyanate means a compound having at least two isocyanate functions.
  • the functionality of a polyisocyanate corresponds to the number of isocyanate functions it contains.
  • aliphatic means a non-aromatic acyclic compound. It can be linear or branched, saturated or unsaturated, substituted or unsubstituted. It can comprise one or more bonds / functions, for example chosen from ether, ester, amide, urethane, urea and their mixtures.
  • cycloaliphatic means a non-aromatic compound comprising a ring. It can be substituted or unsubstituted. It can comprise one or more bonds / functions as defined for the term “aliphatic”.
  • aromatic means a compound comprising an aromatic ring, that is to say complying with Hückel's rule of aromaticity, in particular a compound comprising a phenyl group. It can be substituted or unsubstituted. It can comprise one or more bonds / functions as defined for the term “aliphatic”.
  • saturated means a compound which does not include a carbon-carbon double or triple bond.
  • unsaturated means a compound which comprises a carbon-carbon double or triple bond, in particular a carbon-carbon double bond.
  • polyacid means a compound comprising at least two carboxylic acid functions.
  • the functionality of a polyacid corresponds to the number of carboxylic acid functions it contains.
  • Polyacid derivatives capable of generating a polyacid by hydrolysis or transesterification are included in the term "polyacid". These derivatives include in particular the esters of polyacids.
  • polycarbonate means a compound comprising at least two carbonate bonds.
  • polycarbonate polyol means a polycarbonate comprising at least two hydroxyl functions.
  • polyorganosiloxane means a compound comprising at least two Si-O-Si bonds.
  • polyorganosiloxane polyol means a polyorganosiloxane comprising at least two hydroxyl functions.
  • polyamine means a compound having at least two amine functions.
  • the functionality of a polyamine is the number of amine functions it contains.
  • volatile compound means a compound having a vapor pressure of 0.01 kPa or more at a temperature of 20 ° C.
  • the poly (ester-urethane) according to the invention comprises
  • the poly (ester-urethane) according to the invention can in particular correspond to a mixture of poly (ester-urethane) or to a distribution of poly (ester-urethane) having a different number of isocyanate functions, of acid groups having a lower pKa. to 3, ester bonds and urethane bonds.
  • the poly (ester-urethane) can also comprise an amide bond and / or a urea bond.
  • the poly (urethane ester) according to the invention comprises isocyanate functions.
  • the content of isocyanate functions of the poly (urethane ester) can in particular be estimated by the NCO number.
  • the poly (ester-urethane) may have an NCO number of 20 to 250 mg KOH / g, in particular 30 to 200 mg KOH / g, more particularly 50 to 150 mg KOH / g.
  • the NCO index can in particular be measured according to the method described below.
  • the poly (ester-urethane) according to the invention is substantially devoid of hydroxyl functions.
  • the content of hydroxyl functions of the poly (ester-urethane) can in particular be estimated by the OH number.
  • the poly (ester-urethane) may have an OH number of less than 20 mg KOH / g, in particular less than 10 mg KOH / g, more particularly less than 1 mg KOH / g, more particularly still less. at 0.1 mg KOH / g.
  • the OH index can in particular be measured according to the method described below.
  • the poly (ester-urethane) according to the invention can comprise saturated fatty chains and / or unsaturated fatty chains.
  • the poly (ester-urethane) may have a content of saturated fatty chains and / or of unsaturated fatty chains of 0%.
  • the poly (ester-urethane) is then said to have zero oil content (“oil-free polyester”).
  • the poly (ester-urethane) may have a content of saturated fatty chains and / or of unsaturated fatty chains of at least 5%, in particular of 10 to 60%, more particularly from 15 to 40% relative to the total weight of the poly (ester-urethane).
  • the content of saturated fatty chains and / or unsaturated fatty chains can in particular be calculated according to the method described below.
  • the poly (ester-urethane) is then said to be an alkyd-urethane.
  • the poly (ester-urethane) according to the invention comprises acid groups having a pKa of less than 3, optionally in partially or totally neutralized form.
  • the acid groups having a pKa of less than 3 can in particular make it possible to obtain self-emulsification of the poly (ester-urethane) in the aqueous phase.
  • Choosing a pKa less than 3 for the acid group excludes the carboxylic acid (-COOH) and carboxylate (-COO-) groups.
  • the sulfonyl, phosphonyl, sulfated, phosphated groups described above are bonded to a carbon atom.
  • the poly (ester-urethane) can comprise acidic groups selected from a sulfonyl group and a phosphonyl group.
  • the incorporation of acid groups having a pKa of less than 3 makes it possible to obtain a coating having good properties, in particular in terms of water resistance, hardness and drying time, while avoiding the use of volatile organic compounds (VOCs), in particular volatile amine, such as triethylamine, for the neutralization of acid groups.
  • VOCs volatile organic compounds
  • the compositions comprising the poly (ester-urethane) according to the invention can be considered to be free of VOCs.
  • the poly (ester-urethane) may in particular have a number-average molecular mass Mn of 250 to 10,000 g / mol, in particular 500 to 7,000 g / mol, more particularly 1,000 to 5,000 g / mol.
  • the number-average molecular mass can in particular be measured according to the method described below.
  • the choice of a number-average molecular weight in the aforementioned ranges advantageously makes it possible to control the viscosity of the poly (ester-urethane). Thus, there is no need to add a solvent when preparing the poly (ester-urethane).
  • the poly (ester-urethane) can in particular comprise less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent.
  • the poly (ester-urethane) can in particular comprise less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of volatile amine, such as triethylamine. .
  • the poly (ester-urethane) according to the invention can be obtained by polyaddition of one or more polyisocyanates and one or more polyols according to the process described below.
  • the poly (ester-urethane) can be obtained by polyaddition of at least one polyisocyanate, of at least one polyol P1 and optionally of another polyol P4 and / or of a fatty component CG , said polyol P1 comprising an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, optionally a saturated fatty chain and / or an unsaturated fatty chain and optionally an amine function.
  • the poly (ester-urethane) can be obtained by polyaddition of at least one polyisocyanate, of at least one polyol P2, of at least one polyol P3 and optionally of another polyol P4 and / or a CG fatty component, said polyol P2 comprising an acid group having a pKa less than 3, optionally in partially or totally neutralized form, and optionally an amine function and said polyol P3 not comprising an acid group having a lower pKa to 3 and optionally comprising a saturated fatty chain and / or an unsaturated fatty chain and optionally an amine function.
  • the polyaddition is carried out with a molar ratio of the NCO / (OH + optional amine) functions greater than 1, in particular from 1.1 to 3, more particularly from 1.5 to 2.
  • the excess of isocyanate functions during the polyaddition advantageously makes it possible to control the number-average molecular mass as well as the viscosity of the poly (ester-urethane) without having to add a solvent during the polyaddition.
  • the polyaddition can be carried out in the absence of solvent, in particular in the absence of acetone and xylene.
  • the reaction medium may in particular contain less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent, in particular of acetone and of xylene.
  • the polyaddition reaction can in particular be carried out by heating the reaction medium.
  • the temperature of the reaction medium can range from 50 to 200 ° C, in particular 80 to 170 ° C, more particularly from 90 to 130 ° C.
  • the different components can be reacted in a single step or in successive steps.
  • the polyol P2 and the polyisocyanate can be reacted in a first step and then this intermediate can be reacted with the polyol P3 in a second step.
  • the progress of the polyaddition can be monitored by the NCO number of the reaction mixture.
  • the polyisocyanate used to obtain the poly (ester-urethane) can in particular be a polyisocyanate having a functionality ranging from 2 to 3, in particular a diisocyanate. It is also possible to use a mixture of polyisocyanates. According to one embodiment, the polyisocyanate is chosen from an aliphatic, cycloaliphatic or aromatic polyisocyanate, in particular a cycloaliphatic polyisocyanate. It can in particular be a diisocyanate or a triisocyanate or a derivative of these isocyanates such as oligomers of diisocyanates or precondensates or carrier prepolymers. isocyanate functions with a functionality ranging from 2 to 3. These polyisocyanates can optionally be in the form blocked by a blocking agent which is labile under the reaction conditions.
  • polyisocyanates examples include 2,4- and 2,6-toluene diisocyanate (TDI), isophorone diisocyanate (IPDI) corresponding to 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate, tetramethylene diisocyanate , hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMDI), 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dicyclohexylmethane diisocyanate (H12MDI), 3,3'-dimethyl-4,4'-biphenyl diisocyanate, 1, 4-benzene diisocyanate, 1, 5-naphthalene diisocyanate (NDI), 1, 3- and 1, 4-cyclohexane diisocyanate, 1 -methyl-2,4-diisocyanatocyclohex
  • the polyisocyanate is a diisocyanate, in particular a cycloaliphatic diisocyanate, more particularly isophorone diisocyanate (IPDI), 1, 4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate (H12MDI) and their mixtures. , more particularly still isophorone diisocyanate.
  • IPDI isophorone diisocyanate
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • the polyol P1 or the polyols P2 and P3 used to obtain the poly (ester-urethane) are polyester polyols.
  • P1, P2 and / or P3 can comprise ester bonds and hydroxyl functions.
  • P1, P2 and / or P3 can further comprise additional substituents and / or linkages.
  • P1, P2 and / or P3 can comprise an element chosen from an amine function, an amide bond, a urethane bond and their combinations.
  • P1, P2 and / or P3 can comprise an amine function.
  • the resulting poly (ester-urethane) will comprise a urea bond.
  • the amine function will react with the polyisocyanate to form a urea bond.
  • Polyol P1 comprises an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, and optionally a saturated fatty chain and / or an unsaturated fatty chain.
  • Polyol P1 can in particular be a polyester polyol PE1 obtained by polycondensation of the following components: a) an acid component comprising: a1) a compound chosen from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid; b) a polyol component comprising a polyol with a functionality ranging from 2 to 6; c) optionally a chain extender comprising a graftable function and an isocyanate reactive function; d) a hydrophilic compound comprising an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, and a graftable function; and e) optionally a fatty component compris
  • Polycondensation can be carried out by reacting the different components in a single step or in successive steps. For example, one can react component b) and component d) in a first step, then react this intermediate with component a1) in a second step and optionally then react this intermediate with component e) in a third stage. Of course, you can vary the order of introduction of the different reagents.
  • Polycondensation can be performed in the absence of any solvent other than water, especially in the absence of acetone and xylene.
  • the reaction medium may in particular contain less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water, in particular of acetone and xylene. More particularly, the reaction medium does not comprise any solvent other than the solvent optionally produced during the polycondensation.
  • the reaction medium can in particular be heated.
  • the temperature of the reaction medium can range from 100 to 300 ° C, in particular 150 to 250 ° C, more particularly from 200 to 230 ° C.
  • the water produced during the polycondensation is distilled as it is formed.
  • the progress of the polycondensation can be monitored by the acid number of the reaction mixture.
  • Component a1) used to make polyol PE1 comprises a compound selected from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof.
  • Component a1) is distinct from components a2), b), c), d) and e).
  • the polyacid can in particular be unsaturated or saturated, in particular saturated.
  • the polyacid can in particular be a dicarboxylic acid, a tricarboxylic acid, a dimer of monocarboxylic acid, a trimer of monocarboxylic acid, and mixtures thereof.
  • the polyacid can in particular comprise 3 to 54, in particular 4 to 20, more particularly 5 to 15, carbon atoms.
  • the polyacid is an aliphatic, cycloaliphatic or aromatic polyacid.
  • the polyacid is a saturated or unsaturated polyacid, preferably saturated.
  • the polyacid can be an aliphatic polyacid, more particularly a saturated or unsaturated aliphatic polyacid, more particularly a saturated aliphatic polyacid.
  • saturated aliphatic polyacids are malonic acid (diacid), succinic acid (diacid), 2-methylsuccinic acid (diacid), 2,2-dimethylsuccinic acid (diacid), glutaric acid ( diacid), 3,3-diethylglutaric acid (diacid), adipic acid (diacid), pimelic acid (diacid), suberic acid (diacid), azelaic acid (diacid), sebacic (diacid), dodecanedioic acid (diacid), citric acid (triacid), propane-1, 2,3- tricarboxylic (triacid), a C32-C36 saturated fatty acid dimer (functionality 2 to 2.2) or a C54 saturated fatty acid trimer (functionality 2.5 to 3).
  • unsaturated aliphatic polyacids examples include itaconic acid (diacid), maleic acid (diacid), fumaric acid (diacid), glutaconic acid (diacid) and muconic acid (diacid).
  • An example of a saturated polycycloaliphatic acid is cyclohexane dicarboxylic acid.
  • An example of an unsaturated polycycloaliphatic acid is tetrahydrophthalic acid (diacid).
  • aromatic polyacids examples include phthalic acid (diacid), isophthalic acid (diacid), terephthalic acid (diacid), naphthalene dicarboxylic acid, trimellitic acid (triacid), acid 2, 5-dicarboxylic furan.
  • the polyacid can be a derivative of polyacid. Such a derivative can be transformed into a polyacid by hydrolysis or transesterification.
  • the polyacid derivatives include the partially or fully esterified forms of the polyacids defined above, in particular the mono-di- and triesters of C1-C6 alkyls of the polyacids defined above.
  • the polyacid derivatives can in particular comprise 5 to 60, in particular 6 to 25, more particularly 7 to 20, carbon atoms.
  • Suitable polyacid derivatives are dimethylmalonate, diethylmalonate, dimethyladipate, dimethyl glutarate, dimethyl succinate.
  • the cyclic anhydride can in particular be saturated or unsaturated, in particular unsaturated.
  • the unsaturated cyclic anhydride can in particular be cycloaliphatic or aromatic, in particular aromatic.
  • saturated cyclic anhydrides are succinic anhydride and hexahydrophthalic anhydride.
  • unsaturated cycloaliphatic anhydrides are maleic anhydride, fumaric anhydride, and tetrahydrophthalic anhydride.
  • An example of an aromatic anhydride is phthalic anhydride.
  • the compound a1) comprises a dicarboxylic acid, more particularly a saturated aliphatic dicarboxylic acid, more particularly adipic acid or sebacic acid.
  • compound a1) comprises a dicarboxylic acid derivative, more particularly a dimethyl- or diethyl ester of a saturated aliphatic dicarboxylic acid, more particularly dimethylmalonate or diethylmalonate.
  • the compound a1) comprises a cyclic anhydride, more particularly an unsaturated cyclic anhydride, more particularly an aromatic anhydride, in particular phthalic anhydride.
  • the amount of component a1) used in the preparation of the polyol PE1 can in particular range from 1 to 50%, in particular 5 to 40%, more particularly 10 to 30%, by weight relative to the total weight of the compounds a1) + a2) + b) + c) + d) + e).
  • the component a2) which can optionally be used to make the polyol PE1 comprises a C2-C10 monoacid. It is also possible to use a mixture of C2-C10 monoacids.
  • Component a2) is distinct from components a1), b), c), d) and e).
  • the monoacid can be an aliphatic, cycloaliphatic or aromatic monoacid, in particular aromatic.
  • C2-C10 monoacids examples include benzoic acid, tert-butylbenzoic acid, hexahydrobenzoic acid and 2-ethylhexanoic acid.
  • component a2) comprises an aromatic C2-C10 monoacid, more particularly benzoic acid.
  • the amount of component a2) used in the preparation of the polyol PE1 can in particular range from 0 to 50%, in particular 0 to 30%, more particularly 0 to 20%, by weight relative to the total weight of the compounds a1) + a2) + b) + c) + d) + e).
  • Component b) used to make polyol PE1 comprises a polyol having a functionality of 2 to 6. It is also possible to use a mixture of polyols having a functionality of 2 to 6. Component b) is distinct from components a1), a2) , c), d) and e).
  • the polyol has a functionality of 2 to 4.
  • the polyol can in particular be an aliphatic, cycloaliphatic or aromatic polyol, in particular aliphatic or cycloaliphatic.
  • the polyol can in particular be a saturated polyol.
  • component b) comprises a branched diol, in particular a diol bearing at least one methyl substituent, in particular two methyl substituents.
  • component b) comprises polyol having a functionality of 3 to 4.
  • the polyol (s) of component b) have a molar mass of less than 400 g / mol, less than 350 g / mol, less than 300 g / mol, less than 250 g / mol, less than 200 g / mol or less than 150 g / mol.
  • component b) comprises a polyol chosen from ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 4-butanediol, 1, 3-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 3- methyl-1, 5-pentanediol, 1, 10-decanediol, 1, 12-dodecanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyoxyalkylenes such as polyethylene glycol or polypropylene glycol, preferably with a number-average molecular mass Mn (calculated from the OH number) ranging from 250 to 3000, 1, 4-cyclohexanedimethanol, 1, 6-cyclohexanedimethanol, 1, 4-cyclohexanediol, bisphenol A, hydrogenated bisphenol A, glycerol, diglycerol,
  • component b) comprises a saturated aliphatic polyol having a functionality of 2 to 4, more particularly neopentylglycol, trimethylolpropane, an ethoxylated trimethylolpropane, pentaerythritol and their mixtures.
  • the amount of component b) used in the preparation of the polyol PE1 can in particular range from 1 to 70%, in particular 5 to 50%, more particularly 10 to 40%, by weight relative to the total weight of the compounds a1) + a2) + b) + c) + d) + e).
  • Component c) optionally used to make the polyol PE1 comprises a chain extender comprising a graftable function and an isocyanate reactive function.
  • Component c) can comprise several graftable functions and / or several reactive functions with isocyanates. You can also use a mixture of chain extenders.
  • Component c) is distinct from components a1), a2), b), d) and e).
  • the graftable function of compound c) can in particular be chosen from hydroxyl, thiol, amine and carboxylic acid.
  • the isocyanate-reactive function of compound c) can in particular be chosen from hydroxyl and amine.
  • Compound c) can in particular be an amino alcohol, an amino thiol, a diamine, a mercapto alcohol, a mercapto acid, a dithiol, and mixtures thereof.
  • the chain extender can in particular be aliphatic, cycloaliphatic or aromatic, in particular aliphatic or cycloaliphatic.
  • the chain extender can in particular comprise 2 to 18 carbon atoms.
  • the chain extender comprises a primary or secondary amine function, in particular a secondary amine function, and one or two hydroxyl or thiol functions.
  • Suitable components c) are ethanolamine, N-methyl ethanolamine, N-ethyl ethanolamine, N-propyl ethanolamine, N-butyl ethanolamine, diethanolamine, propanolamine, ethylene diamine, 1, 3 -propylene diamine, 1, 4-butylene diamine, 1, 5- pentamethylene diamine, 1, 6-hexamethylene diamine, 1, 4-cyclohexane diamine, bis (aminomethyl) -1, 3-cyclohexane (1, 3-BAC), bis (aminomethyl) -1, 4-cyclohexane (1, 4-BAC), bis (aminomethyl) -1, 2-cyclohexane (1, 2-BAC), isophorone diamine, 1 -mercapto-2-propanol, 3-mercapto-1-propanol, thioglycolic acid, 3-mercapto propionic acid, 2-amino-1-ethanethiol, 3-amino-1-propanethiol, cysteine, 1,
  • the amount of component c) used in the preparation of the polyol PE1 can in particular range from 0 to 50%, in particular 5 to 40%, more particularly 10 to 35%, by weight relative to the total weight of the compounds a1) + a2) + b) + c) + d) + e).
  • Component d) used to make polyol PE1 comprises a hydrophilic compound.
  • a hydrophilic compound is a compound comprising a heteroatom.
  • the hydrophilic compound according to the invention comprises an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, and a graftable function.
  • Component d) can comprise several acid groups and / or several graftable functions. It is also possible to use a mixture of hydrophilic compounds.
  • Component d) is distinct from components a1), a2), b), c) and e).
  • Component d) allows an ionizable group to be introduced into the PE1 polyol.
  • the poly (ester-urethane) incorporating this polyol can be self-emulsifiable.
  • the sulfonyl, phosphonyl, sulfated, phosphated groups described above are bonded to a carbon atom.
  • the hydrophilic compound may comprise an acidic group selected from a sulfonyl group and a phosphonyl group.
  • the hydrophilic compound comprises one or two, preferably two, graftable functions chosen from -OH, -NH2 and -COOH, in particular -COOH.
  • the hydrophilic compound can in particular be an aliphatic, cycloaliphatic or aromatic compound, in particular aromatic.
  • Suitable components d) are sulfoisophthalic acid, sodium salt of sulfoisophthalic acid (SSBA), lithium salt of sulfoisophthalic acid (LiSIPA), potassium salt of sulfoisophthalic acid (KSBA) ), sodium salt of sulfoisophthalic acid dimethyl ester, sulfosuccinic acid, sodium salt of metasulfobenzoic acid, taurine, sodium salt of 2-hydroxy-5-sulfo-benzoic acid, sodium salt sulfoisophthalic acid dimethyl ester, 2-aminoethyl phosphonic acid and mixtures thereof.
  • SSBA sodium salt of sulfoisophthalic acid
  • LiSIPA lithium salt of sulfoisophthalic acid
  • KSBA potassium salt of sulfoisophthalic acid
  • sodium salt of sulfoisophthalic acid dimethyl ester sulfosuccinic acid, sodium
  • the amount of component d) used in the preparation of the polyol PE1 can in particular range from 1 to 40%, in particular 2 to 30%, more particularly 5 to 20%, by weight relative to the total weight of the compounds a1) + a2) + b) + c) + d) + e).
  • the optional component e) makes it possible to introduce a saturated fatty chain and / or an unsaturated fatty chain into the polyol PE1.
  • the poly (ester-urethane) incorporating this polyol may be easier to emulsify.
  • Component e) comprises a graftable function as well as a saturated fatty chain and / or an unsaturated fatty chain.
  • the graftable function can in particular be chosen from hydroxyl, glycidyl, carboxylic acid, ester and amine.
  • Component e) is distinct from components a1), a2), b), c) and d).
  • component e) can be chosen from:
  • Component e) used to make polyol PE1 can comprise an unsaturated fatty acid e1). You can also use a mixture of unsaturated fatty acids e1).
  • the unsaturated fatty acid e1) can in particular have an average iodine number ranging from 100 to 200 mg h / g as measured according to the method described below.
  • the unsaturated fatty acid may in particular correspond to the formula Alc-COOH with Alkenyl C6-C60, in particular C8-C55, more particularly C10-C50, the alkenyl possibly being substituted by one or more hydroxyl groups.
  • Suitable unsaturated fatty acids e1) are myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, ricinoleic acid (12-hydroxy-9-octadecenoic acid), ricinoleic acid.
  • the unsaturated fatty acid e1) can be a derivative of unsaturated fatty acid. Such a derivative can be converted into an unsaturated fatty acid by hydrolysis or transesterification.
  • Suitable unsaturated fatty acid derivatives are the unsaturated fatty acid esters. These compounds can be obtained by reaction between one or more unsaturated fatty acids and an alcohol compound, in particular a monoalcohol (for example methanol, ethanol, propanol, isopropanol, butanol), a diol or a triol (eg glycerol).
  • a monoalcohol for example methanol, ethanol, propanol, isopropanol, butanol
  • a diol or a triol eg glycerol
  • the esters of unsaturated fatty acids obtained with glycerol are commonly called oils or triglycerides.
  • Standolies are also fatty acid derivatives within the meaning of the invention.
  • Said standols well known to those skilled in the art, are in fact the products resulting from the reaction at high temperature, for example 250 to 300 ° C., of a mixture of oil and fatty acid.
  • estolid Another example of a suitable unsaturated fatty acid derivative is an estolid.
  • Estolides are obtained in particular by formation of an ester bond between a carboxylic acid (for example a fatty acid) and the hydroxyl function of an unsaturated hydroxylated fatty acid (for example ricinoleic acid, lesquerellic acid, acid auricolic or densipolic acid) or a hydroxylated fatty acid derivative (eg castor oil or lesquerella oil).
  • component e) comprises an unsaturated fatty acid having a hydrocarbyl chain having 15 to 29 consecutive carbon atoms, more particularly a fatty acid from dehydrated castor oil.
  • the component e) used to make the polyol PE1 can comprise a saturated fatty acid e2). You can also use a mixture of saturated fatty acids e2).
  • the saturated fatty acid may in particular correspond to the formula Alk-COOH with Alk a C6-C60 alkyl, in particular C8-C55, more particularly C10-C50, the alkyl possibly being substituted by one or more hydroxyl groups and / or glycidyl.
  • saturated fatty acids e2) are caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, 9 - hydroxy stearic, 10-hydroxystearic acid, 12-hydroxystearic acid, eicosanoic acid 14-hydroxyecosanoic acid, saturated fatty acids from palm oil, coconut oil, hydrogenated castor oil, animal fats and their mixtures.
  • Saturated fatty acid can be a derivative of unsaturated fatty acid. Such a derivative can be converted into saturated fatty acid by hydrolysis or transesterification as described above.
  • the component e) used to make the polyol PE1 can comprise a fatty alcohol e3). You can also use a mixture of fatty alcohols e3).
  • e3) fatty alcohols are octan-1-ol, octan-2-ol, 2-ethyl-1-hexanol, nonan-1 -ol, decan-1-ol, undecan-1-ol, lauryl alcohol. , myristyl alcohol, cetyl alcohol, stearyl alcohol, docosanol, and alkoxylated, in particular ethoxylated and / or propoxylated, derivatives of the polyols mentioned above and their mixtures.
  • Component e) used to make polyol PE1 can comprise an unsaturated fatty amine e4). It is also possible to use a mixture of unsaturated fatty amines e4).
  • the unsaturated fatty amine can in particular correspond to the formula Al-NHR with Aie a C6-C60 alkenyl, in particular C8-C55, more particularly C10-C50, the alkenyl possibly being substituted by one or more hydroxyl groups and R is H or C1 to C6 alkyl.
  • Examples of unsaturated fatty amines can in particular correspond to the unsaturated fatty acids described above by replacing the carboxylic acid function by an amine function.
  • the amount of component e) used in the preparation of the polyol PE1 can in particular range from 0 to 90%, in particular to 80%, more particularly 10 to 70%, more particularly still 20 to 60%, by weight relative to the weight total of compounds a1) + a2) + b) + c) + d) + e).
  • the polyester polyol PE1 is obtained by reaction of:
  • the weight of all the compounds a1) + a2) + b) + c) + d) + e) represents 100% of the weight of the polyol PE1.
  • Polyol P1 can also be an elongated polyol produced by reaction between polyester polyol PE1 as described above and a polyisocyanate with a lack of NCO functions. This reaction corresponds to a chain extension by formation of urethane bonds.
  • the elongation reaction is in particular controlled in order to obtain an NCO number of less than 20 mg KOH / g, in particular less than 10 mg KOH / g, more particularly less than 1 mg KOH / g.
  • the resulting elongated polyol comprises in particular hydroxyl functions, ester and urethane bonds.
  • the extended polyol may optionally include an amide and / or urea bond. If the PE1 polyol includes an amine function, the extended polyol will include a urea bond.
  • the P2 polyol comprises an acid group having a pKa of less than 3 but does not include a saturated fatty chain or an unsaturated fatty chain.
  • Polyol P2 can in particular be a polyester polyol PE2 obtained by polycondensation of the following components: a) an acid component comprising: a1) a compound chosen from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid; b) a polyol component comprising a polyol with a functionality ranging from 2 to 6; c) optionally a chain extender comprising a graftable function and an isocyanate reactive function; and d) a hydrophilic compound comprising an acid group having a pKa of less than 3, optionally in partially or totally neutralized form, and a graftable function.
  • an acid component comprising: a1) a compound chosen from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid; b
  • Polycondensation can be carried out by reacting the different components in a single step or in successive steps.
  • component b) and component d) can be made to react in a first step and then this intermediate can be reacted with component a1) in a second step.
  • this intermediate can be reacted with component a1) in a second step.
  • Polycondensation can be performed in the absence of any solvent other than water, especially in the absence of acetone and xylene.
  • the reaction medium may in particular contain less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water, in particular of acetone and xylene. More particularly, the reaction medium does not comprise any solvent other than the solvent optionally produced during the polycondensation.
  • the reaction medium can in particular be heated.
  • the temperature of the reaction medium can range from 80 to 250 ° C, in particular 100 to 220 ° C, more particularly from 120 to 200 ° C.
  • the water produced during the polycondensation is distilled as it is formed.
  • the progress of the polycondensation can be monitored by the acid number of the reaction mixture.
  • the components a1), a2), b), c) and d) can be as defined above for the polyester polyol PE1.
  • the polyester polyol PE2 is obtained by reaction of:
  • the weight of all the compounds a1) + a2) + b) + c) + d) represents 100% of the weight of the polyol PE2.
  • Polyol P2 can also be an elongated polyol produced by reaction between polyester polyol PE2 and a polyisocyanate with a lack of NCO functions, as described for polyol P1.
  • Polyol P3 optionally comprises a saturated fatty chain and / or an unsaturated fatty chain but does not include an acid group having a pKa of less than 3.
  • the polyol P3 can be a polyester polyol PE3-1 obtained by polycondensation of the following components: a) an acid component comprising: a1) a compound selected from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid; b) a polyol component comprising a polyol with a functionality ranging from 2 to 6; c) optionally a chain extender comprising an amine function and one or two functions chosen from amine, hydroxyl and their mixtures; and e) optionally a fatty component comprising a graftable function as well as a saturated fatty chain and / or an unsaturated fatty chain.
  • an acid component comprising: a1) a compound selected from a polyacid having a carboxylic acid functionality of 2 to 3, a cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid
  • the polyol P3 can be a polyester polyol PE3-2 obtained by polycondensation of the following components: a) optionally an acid component comprising: a1) a compound chosen from a polyacid having a carboxylic acid functionality of 2 to 3, cyclic anhydride and mixtures thereof; and a2) optionally a C2-C10 monoacid; b) optionally a polyol component comprising a polyol with a functionality ranging from 2 to 6; c) optionally a chain extender comprising an amine function and one or two functions chosen from amine, hydroxyl and their mixtures; and e) a fatty component comprising a graftable function as well as a saturated fatty chain and / or an unsaturated fatty chain; provided that at least one of the acid component a) and the polyol component b) is present and can react with the graftable function of the fatty component to form an ester bond.
  • an acid component comprising: a1) a compound chosen from a
  • Polycondensation can take place between components a) and e), optionally in the presence of b) and / or c). Alternatively, the polycondensation can take place between components b) and e), optionally in the presence of a) and / or c).
  • the fatty component comprises a hydroxyl or glycidyl graftable function and the polyacid component a) is present.
  • the polyol component b) is not necessary but it can optionally be present.
  • the fatty component comprises a graftable carboxylic acid or ester function and the polyol compound b) is present.
  • the polyacid component a) is not necessary but it can optionally be present.
  • Polycondensation can be carried out by reacting the different components in a single step or in successive steps.
  • the polycondensation can be carried out in the absence of a solvent other than water, in particular in the absence of acetone and xylene.
  • the reaction medium may in particular contain less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water, in particular of acetone and xylene. More in particular, the reaction medium does not include any solvent other than the solvent optionally produced during the polycondensation.
  • the reaction medium can in particular be heated.
  • the temperature of the reaction medium can range from 100 to 300 ° C, in particular 150 to 270 ° C, more particularly from 200 to 250 ° C.
  • the water produced during the polycondensation is distilled as it is formed.
  • the progress of the polycondensation can be monitored by the acid number of the reaction mixture.
  • polyester polyol PE3-1 is obtained by reaction of:
  • the polyester polyol PE3-2 is obtained by reaction of:
  • the weight of all the compounds a1) + a2) + b) + c) + e) represents 100% of the weight of the polyol PE3.
  • Polyol P3 can also be an elongated polyol produced by reaction between polyester polyol PE3 and a polyisocyanate with a lack of NCO functions, as described for polyol P1.
  • the Polyol P4 which can be used during the preparation of the poly (ester-urethane) can in particular make it possible to compatibilize the polyisocyanate with the polyols P1, P2, and / or P3.
  • the polyol P4 can in particular be as defined above for the polyol component b).
  • the polyol P4 comprises an aliphatic polyol, more particularly neopentylglycol, trimethylolpropane, pentaerythritol, glycerin, alkoxylated derivatives, in particular ethoxylated and / or propoxylated, of the polyols mentioned above and their mixtures.
  • the fatty component CG which can be used during the preparation of the poly (ester-urethane) makes it possible in particular to facilitate the subsequent emulsification of the poly (ester-urea-urethane) particles which will be obtained with the poly (ester-urethane).
  • the fatty component CG can be as defined for the fatty component e) which can enter into the preparation of the polyol PE1.
  • the fatty component CG is a fatty alcohol e3) as defined above.
  • the poly (ester-urethane) obtained by the process described above can be extended to form a poly (este r- u re e-u reth a n e).
  • the poly (ester-urea-urethane) according to the invention comprises
  • the poly (ester-urea-urethane) according to the invention can in particular correspond to a mixture of poly (ester-urea-urethane) or to a distribution of poly (ester-urea-urethane) having a different number of acid groups having a pKa less than 3, ester bonds, urea bonds and urethane bonds.
  • the poly (ester-urea-urethane) can also comprise an amide bond.
  • the poly (ester-urea-urethane) according to the invention can comprise a small number of hydroxyl functions.
  • the content of hydroxyl functions of the poly (ester-urea-urethane) can in particular be estimated by the OH number.
  • the poly (ester-urea-urethane) may have an OH number of less than 120 mg KOH / g, in particular less than 60 mg KOH / g, more particularly less than 40 mg KOH / g, so more particularly less than 20 mg KOH / g, more particularly still less than 10 mg KOH / g.
  • the OH index can in particular be measured according to the method described below.
  • the poly (ester-urea-urethane) according to the invention does not include amine functions.
  • the content of amine functions of the poly (ester-urea-urethane) can in particular be estimated by the amine number.
  • the poly (ester-urea-urethane) may have an amine number of less than 20 mg KOH / g, in particular less than 10 mg KOH / g, more particularly less than 1 mg KOH / g, more particularly still less than 0.1 mg KOH / g.
  • the amine number can in particular be measured according to the method described below.
  • the poly (ester-urea-urethane) according to the invention can comprise saturated fatty chains and / or unsaturated fatty chains.
  • the poly (ester-urea-urethane) may have a content of saturated fatty chains and / or of unsaturated fatty chains of 0%. It is then said that the poly (ester-urea-urethane) has a zero oil content (“oil-free polyester”)
  • the poly (ester-urea-urethane) can have a chain content. saturated fatty acids and / or unsaturated fatty chains of at least 5%, in particular from 10 to 60%, more particularly from 15 to 40% relative to the total weight of the poly (ester-urea-urethane).
  • the content of saturated fatty chains and / or fatty chains unsaturated can in particular be calculated according to the method described below.
  • the poly (ester-urea-urethane) is then said to be an alkyd-urea-urethane.
  • the poly (ester-urea-urethane) according to the invention comprises acid groups having a pKa of less than 3, optionally in partially or completely neutralized form.
  • the acid groups having a pKa of less than 3 can in particular make it possible to obtain self-emulsification of the poly (ester-urea-urethane) in the aqueous phase. Choosing a pKa of less than 3 for the acid group excludes the carboxylic acid and carboxylate groups.
  • the acid groups having a pKa of less than 3 can in particular be as described above for the poly (ester-urethane).
  • the poly (ester-urea-urethane) can optionally be in crosslinked form.
  • the crosslinking of the poly (ester-urea-urethane) can be characterized by Dynamic Mechanical Analysis (DMA) as defined below.
  • DMA Dynamic Mechanical Analysis
  • the crosslinking can be present even within the particles which will be obtained after emulsifying the poly (ester-urea-urethane). Thus, the particles can be pre-crosslinked before coalescing leading to film formation.
  • the poly (ester-urea-urethane) may in particular comprise less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water.
  • the poly (ester-urea-urethane) can in particular comprise less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of volatile amine, such as triethylamine.
  • the poly (ester-urea-urethane) can in particular comprise less than 2%, in particular less than 1%, more particularly less than 0.01%, by weight of metal-based urethanization catalyst.
  • metal-based urethanization catalyst are organometallic compounds, in particular based on tin, cadmium, zirconium, zinc, titanium or bismuth, such as in particular dibutyltin dilaurate, dibutyltin oxide or neodecanoate of bismuth.
  • Poly (ester-urea-urethane) can in particular be obtained by the process described below.
  • the poly (ester-urea-urethane) according to the invention can be obtained by extending reaction of the poly (ester-urethane) as defined above in water. This extension reaction can in particular correspond to the formation of urea bonds on the isocyanate functions of the poly (ester-urethane).
  • the extension reaction can be carried out in the presence of a polyamine component with a functionality ranging from 2 to 6, in particular from 2.25 to 6, more particularly from 2.5 to 6, more particularly from 3 to 6, the molar ratio between the amine functions of the optional polyamine component and the isocyanate functions of the poly (ester-urethane) being from 0.01 to 3, in particular from 0.2 to 1.5, more particularly from 0.5 to 1.
  • a polyamine component with a functionality ranging from 2 to 6, in particular from 2.25 to 6, more particularly from 2.5 to 6, more particularly from 3 to 6, the molar ratio between the amine functions of the optional polyamine component and the isocyanate functions of the poly (ester-urethane) being from 0.01 to 3, in particular from 0.2 to 1.5, more particularly from 0.5 to 1.
  • the polyamine component includes a polyamine.
  • the polyamine component can comprise a blend of polyamines.
  • the polyamine component comprises a single polyamine
  • the functionality of the polyamine component corresponds to the functionality of the polyamine.
  • the functionality of the polyamine component corresponds to the number average functionality of amine functions of the polyamines used in the blend.
  • the extension reaction is carried out in the presence of a polyamine component having a functionality from 2.25 to 6, in particular from 2.5 to 6, more particularly from 3 to 6.
  • the poly ( ester-urea-urethane) obtained under these conditions is advantageously in crosslinked form.
  • the extension reaction can be carried out in water, without adding any additional reagent.
  • part of the isocyanate functions of the poly (ester-urethane) can react with water to form primary amine functions which can then react with the residual isocyanate functions of the poly (ester-urethane) and form urea bonds.
  • the extension reaction can in particular be carried out at a temperature of 10 to 100 ° C, in particular 20 to 80 ° C, more particularly 30 to 70 ° C.
  • a partial or total neutralization of the acid groups of the poly (ester-urethane) can in particular be carried out by adding a base in the poly (ester-urethane). If the acid groups of the poly (ester-urethane) are already in partially or fully neutralized form, the neutralization step is not necessary.
  • the base used for the neutralization is chosen from a tertiary amine, a metal hydroxide, an alcoholate and a quaternary ammonium, in particular an alkali hydroxide, more particularly KOH, LiOH and NaOH.
  • the poly (ester-urethane) is dispersed in water.
  • the dispersion can in particular be carried out by gradually adding water to the poly (ester-urethane) and phase inversion or by adding the poly (ester-urethane) to water.
  • the polyamine component can optionally be added.
  • the polyamine component can be added as is or diluted with water.
  • the polyamine component which can be used in the extension reaction can in particular comprise an aliphatic, cycloaliphatic or aromatic polyamine, in particular aliphatic.
  • the polyamine component comprises a polyalkyleneamine, in particular a polyethyleneamine.
  • a polyalkyleneamine is a polyamine in which the amine functions are linked to each other by an alkylene bridge, in particular an ethylene bridge.
  • a polyalkyleneamine can in particular be aliphatic or cycloaliphatic, in particular aliphatic.
  • aliphatic polyalkyleneamines examples include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, 3,3,5-trimethyl-1, 6-hexanediamine, 3,5,5-trimethyl-1, 6-hexanediamine, 2-methyl-1, 5- pentanediamine, A /, A / '- bis- (3-aminopropyl) -1, 2-ethanediamine and A / - (3-aminopropyl) -1, 2-ethanediamine.
  • polyalkyleneamine having a functionality greater than 2, in particular greater than 3, or a mixture of polyalkyleneamines having an average functionality of 2.25 to 6, in particular 2.5 to 6, advantageously allows d 'obtaining poly (ester-urea-urethane) particles in crosslinked form.
  • a cycloaliphatic polyalkyleneamine comprising a piperazine unit can in particular be represented by the following formula (II):
  • each Y is independently H or - (CR3R4) n- [N (Z) - (CR3R4) n] m-NH2; m, n, R3, R 4 and Z being as defined above for formula (I).
  • cycloaliphatic polyalkyleneamines examples include piperazine, N-aminoethylpiperazine and A /, A / '- bis- (2-aminoethyl) piperazine. It is also possible to use cycloaliphatic polyalkyleneamines comprising a cyclohexyl unit.
  • cycloaliphatic polyalkyleneamines comprising a cyclohexyl unit are 1, 2-diaminocyclohexane, 1, 3-diaminocyclohexane, 1, 4-diaminocyclohexane, isophorone diamine, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 4,4'-diaminodicyclohexylmethane and 2,4'-diaminodicyclohexylmethane.
  • the polyamine component comprises a polyetheramine.
  • a polyetheramine is a polyamine comprising ether bonds (-O-), more particularly ethylene oxide (-O-Chb-Ctte) and / or propylene oxide (-O-CH2-CHCH3-) units.
  • polyetheramines are the compounds marketed by Hunstmann under the reference Jeffamine®, in particular the Jeffamine® D, ED and EDR series (diamines) and or the Jeffamine® T series (triamines). These series include in particular the following references Jeffamine®D-230, Jeffamine® D-400, Jeffamine® D-2000, Jeffamine® D-4000, Jeffamine® ED-600, Jeffamine® ED-900, Jeffamine® ED-2003, Jeffamine ® EDR-148, Jeffamine® EDR-176, Jeffamine® T-403, Jeffamine® T-3000 and Jeffamine® T-5000.
  • the polyamine component comprises an epoxy-amine adduct.
  • An epoxy amine adduct can in particular be obtained by reacting an excess of polyamine with an epoxy compound.
  • the polyamine can be as described above.
  • the epoxy compound can in particular be a compound comprising several epoxy functions, such as in particular bisphenol A diglycidyl ether, ethylene glycol diglycidyl ether, butanediol diglycidyl ether and trimethylpropanol triglycidyl ether.
  • the aqueous dispersion according to the invention comprises poly (ester-urethane) as defined above or poly (ester-urea-urethane) as defined above.
  • the acid groups of the poly (ester-urethane) or of the poly (ester-urea-urethane) are in partially or totally neutralized form.
  • the aqueous dispersion of the invention may in particular comprise polymer particles, in particular poly (ester-urethane) or poly (ester-urea-urethane) particles, dispersed in an aqueous phase.
  • the aqueous phase is a liquid comprising water.
  • This liquid may further include a solvent other than water, such as, for example, ethanol or isopropanol.
  • a solvent other than water such as, for example, ethanol or isopropanol.
  • the aqueous phase comprises less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water, in particular acetone and xylene. .
  • the organic phase can be a polymer phase comprising the poly (ester-urethane) or the poly (ester-urea-urethane) as defined above.
  • a dispersion having a liquid organic phase can correspond to an emulsion.
  • a dispersion having a solid or semi-solid organic phase can correspond to a colloidal suspension. In the field of polymers, such colloidal suspensions can also be considered as emulsions and their preparation process is known under the name of emulsion polymerization.
  • Another term frequently used to characterize an aqueous dispersion of polymer particles is "latex".
  • the aqueous dispersion comprises less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of solvent other than water.
  • the acid groups having a pKa of less than 3 present on the poly (ester-urethane) or the poly (ester-urea-urethane), may be sufficient to obtain self-emulsification of the poly (ester-urethane) or of the poly (ester-urethane).
  • urea-urethane) in aqueous phase may be sufficient to obtain self-emulsification of the poly (ester-urethane) or of the poly (ester-urethane).
  • urea-urethane) in aqueous phase comprises less than 10%, in particular less than 5%, more particularly less than 1%, more particularly still less than 0.1%, by weight of additional surfactant.
  • the aqueous dispersion may in particular comprise less than 2%, in particular less than 1%, more particularly less than 0.01%, by weight of metal-based urethanization catalyst as defined above.
  • the aqueous dispersion has a solids content of 5 to 70%, in particular 10 to 60%, more particularly 30 to 50% by weight.
  • the aqueous dispersion can in particular have a pH of 5 to 9, in particular 6 to 8, more particularly 6.5 to 7.5.
  • the viscosity of the aqueous dispersion may in particular range from 1 to 10,000 mPa s, in particular 50 to 2,000 mPa s, more particularly 100 to 1,000 mPa.s.
  • the viscosity can be measured at 25 ° C according to the measurement method described below.
  • the polymer particles can in particular have an average size of 10 to 1000 nm, in particular 40 to 300 nm, more particularly 50 to 200 nm.
  • the average particle size can be measured according to the measurement method described below.
  • the aqueous dispersion comprises particles of poly (ester-urea-urethane) in crosslinked form.
  • the crosslinking of the poly (ester-urea-urethane) can be characterized by Dynamic Mechanical Analysis (DMA) as defined below.
  • the aqueous dispersion according to the invention can in particular be obtained by the process described below.
  • the process for preparing an aqueous dispersion according to the invention may in particular comprise the following steps:
  • optional poly (ester-urethane) elongation reaction optionally in the presence of a polyamine component with a functionality ranging from 2 to 6, in particular from 2.25 to 6, more particularly from 2.5 to 6, more particularly still from 3 to 6, the molar ratio between the amine functions of the optional polyamine component and the isocyanate functions of the poly (ester-urethane) being from 0.01 to 3, in particular from 0.2 to 1.5, more particularly from 0.5 to 1.
  • the step of preparing polyol P1 or the step of preparing polyol P2 and polyol P3 can in particular be as defined above in the process for preparing poly (ester-urethane).
  • the polyol P1 or the polyols P2 and P3 obtained in this step are directly used in the next step of preparing a poly (ester-urethane).
  • the step of polyaddition of the polyisocyanate, of the polyol P1 and optionally of another polyol P4 and / or of a fatty component CG or the step of polyaddition of the polyisocyanate, of the polyol P2, of the polyol P3 and optionally of another polyol P4 and / or a fatty component CG may in particular be as defined above in the process for preparing the poly (ester-urethane).
  • the optional neutralization step can in particular be as defined above in the process for preparing the poly (ester-urea-urethane).
  • the step of dispersing the poly (ester-urethane) in water can in particular be as defined above in the process for preparing the poly (ester-urea-urethane).
  • the optional extension reaction can in particular be as defined above in the process for preparing the poly (ester-urea-urethane).
  • the coating, adhesive or mastic composition according to the invention comprises a poly (ester-urethane) and / or a poly (ester-urea-urethane) and / or an aqueous dispersion as defined above.
  • the coating, adhesive or sealant composition is preferably an aqueous composition.
  • the poly (ester-urethane), the poly (ester-urea-urethane) and / or the aqueous dispersion can in particular play the role of binder in the composition.
  • composition may further comprise another aqueous polymer dispersion other than the aqueous dispersion according to the invention.
  • the other aqueous dispersion may be based on resins and / or polymers and / or copolymers of Mw ⁇ 200,000 g / mol, preferably chosen from alkyd resins not modified or modified or treated by oxidative treatment, such as those described in patent application WO 2004/069933, acrylic polymers or copolymers (including styrene-acrylic or styrene-maleic anhydride), hydrocarbon resins, rosin resins, polyurethanes, polyurethanes / acrylics, saturated polyesters or unsaturated, multifunctional (meth) acrylic oligomers, such as epoxyacrylates, urethane-acrylates and acrylated acrylates.
  • Those resins and / or polymers or copolymers can be dispersed with the aid of surfactants or with the aid of hydrophilic groups in their structure, making them self-dispersible.
  • the composition can also comprise an additional compound chosen from a rheological agent, a thickener, a dispersing and / or stabilizing agent (surfactant, emulsifier), a wetting agent, a filler, a fungicide, a bactericide, a plasticizer, an antifreeze agent. , wax, colorant, pigment, leveling agent, UV absorber, antioxidant, solvent, adhesion promoter, and mixtures thereof.
  • a rheological agent a thickener, a dispersing and / or stabilizing agent (surfactant, emulsifier), a wetting agent, a filler, a fungicide, a bactericide, a plasticizer, an antifreeze agent.
  • a rheological agent chosen from a rheological agent, a thickener, a dispersing and / or stabilizing agent (surfactant, emulsifier), a wetting agent, a filler, a fungicide, a bacter
  • the composition comprises a sicActivting agent.
  • the drying agents are typically metal salts, in particular salts of cadmium, tin, cobalt, manganese, zirconium, lead, iron and calcium, of organic compounds such as, for example, fatty acids.
  • the composition does not include a drying agent and simply dries with oxygen in the air.
  • the drying agent increases the rate of polymerization of film-forming compositions comprising ethylenically unsaturated bonds.
  • the aqueous phase it suffices for the aqueous phase to be naturally removed by drying to obtain a coating having good mechanical properties. In this case, the use of a sicActivting agent is not necessary.
  • composition according to the invention may be a two-component composition comprising:
  • - Component 1 a poly (ester-urethane) and / or a poly (ester-urea-urethane) and / or an aqueous dispersion according to the invention.
  • - Component 2 a crosslinking agent chosen from melamine, a polyisocyanate (in particular a blocked polyisocyanate), a polyanhydride or a polysilane (in particular polysilane blocked by alkoxy).
  • a crosslinking agent chosen from melamine, a polyisocyanate (in particular a blocked polyisocyanate), a polyanhydride or a polysilane (in particular polysilane blocked by alkoxy).
  • a crosslinking agent can in particular be used when the poly (ester-urethane) or the poly (ester-urea-urethane) has a zero oil length (“oil free polyester”) and has primary or secondary amine functions.
  • composition according to the invention can be applied to a wide variety of substrates, including wood, metal, stone, plaster, concrete, glass, fabric, leather, paper, plastic, composite. .
  • the application can be carried out in a conventional manner, in particular with a brush or a roller, by spray, immersion or covering.
  • the composition can in particular be used to obtain a film, a varnish, a lacquer, a stain, an adhesion primer, a paint, an ink, an adhesive or a mastic.
  • the aqueous phase can be removed naturally by drying in the open air, in particular at room temperature or by heating.
  • the invention also relates to a coating, an adhesive or a mastic obtained by applying and drying the composition according to the invention.
  • a binder Use as a binder
  • the invention also relates to the use of a poly (ester-urethane) and / or a poly (ester-urea-urethane) and / or an aqueous dispersion as defined above as a binder, in particular as a binder in a coating, adhesive or mastic composition. More particularly, this use relates to decorative or industrial aqueous coatings, adhesives or mastics selected from films, varnishes, lacquers, stains, adhesion primers, paints, inks, adhesives or mastics.
  • coatings are suitable for substrates selected from wood, metal, stone, plaster, concrete, glass, fabric, leather, paper, plastic, composite.
  • substrates selected from wood, metal, stone, plaster, concrete, glass, fabric, leather, paper, plastic, composite.
  • the invention is illustrated by the following non-limiting examples.
  • NCO index (INCO expressed in mg KOH per gram of product) is measured by assay with a Metrohm titrimeter (848 titrino plus) equipped with a probe Metrohm reference 6.0229.100.
  • the sample to be analyzed is weighed in a 250 ml screw-type Erlenmeyer flask. Add 50 ml of acetone and seal the Erlenmeyer flask. The sample is completely dissolved by magnetic stirring with heating if necessary. If the dissolution of the sample has required heating, the mixture is allowed to come to room temperature before the next step.
  • VE Volume of titrant poured for sample assay (mL)
  • VB Volume of titrant poured for blank assay (mL)
  • NT Normality of titrant (0.1 N)
  • the OH index is measured according to ISO 2554 (October 1998).
  • the acid number is measured according to the ISO 2114 standard (November 2000). Amine number
  • the amine number (AMI expressed in mg KOH per gram of product) is measured by direct acid-base assay under the following conditions: an exact weight p of product (exactly 1 gram) is dissolved in approximately 40 ml of acid glacial acetic. The basicity is determined by a solution of perchloric acid in glacial acetic acid with a normal N content (in Eq / I) exact about 0.1 N. The equivalent point is detected by a glass electrode (filled with a solution of lithium perchlorate at 1 mol per liter in glacial acetic acid) controlling an automatic burette (“716 DMS Titrino” ® Metrohm automatic titration apparatus) delivering the equivalent volume VE. The amine number (AMI) is calculated by the following formula:
  • the fatty chain content corresponds to the percentage by weight of fatty component (saturated fatty acid, unsaturated fatty acid, fatty alcohol) relative to the weight of all the constituents used in the preparation of the poly (ester-urethane) or of the poly ( ester-urea-urethane).
  • Average iodine number The average iodine number is measured according to ISO 3961 (March 2018).
  • the viscosity is measured at 25 ° C with a Brookfield viscometer (DV-II +) equipped with an S34 cylindrical spindle rotating at 1 rpm.
  • the temperature is kept constant with a temperature regulation system by circulating water. Average particle size
  • the average size of the particles is measured by laser granulometry on an LS230 apparatus (Beckman Coulter).
  • the sample is pre-diluted in demineralized water with magnetic stirring, then introduced into the particle size tank at the optimum concentration for the measurement (linked to the obscuration of the laser beam).
  • the mean size of the particles corresponds to the diameter D43 which is the mean diameter by volume (mean De Brouckere diameter).
  • Neopentyl glycol (283.82 g) was heated to 165 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer.
  • the lithium salt of sulfoisophthalic acid was introduced (177.98 g).
  • the temperature was maintained between 165 ° C and 175 ° C.
  • the water formed by the reaction was distilled until an acid number of less than 10 mg KOH / g was obtained.
  • the adipic acid (200.40 g) was then introduced and the reaction medium maintained between 175 ° C and 185 ° C.
  • the water formed by the reaction was distilled until an acid number of less than 12 mg KOH / g was obtained.
  • Example 2 Preparation of a polyester polvol PE2 (b)
  • Neopentyl glycol (141.91 g) was heated to 165 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer.
  • the sodium salt of sulfoisophthalic acid was introduced (70.00 g).
  • the temperature was maintained between 165 ° C and 175 ° C.
  • the water formed by the reaction was distilled to obtain an acid number of less than 10 mg KOH / g.
  • Adipic acid (114.42 g) was then introduced and the reaction medium maintained between 175 ° C and 185 ° C.
  • the water formed by the reaction was distilled to obtain an acid number of less than 12 mg KOH / g.
  • Neopentyl glycol (283.82 g) was heated to 165 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer.
  • the lithium salt of sulfoisophthalic acid was introduced (177.98 g).
  • the temperature was maintained between 165 ° C and 170 ° C.
  • the water formed by the reaction was distilled to obtain an acid number of less than 10 mg KOH / g.
  • the sebacic acid (262.74 g) was then introduced and the reaction medium maintained between 175 ° C and 185 ° C.
  • the water formed by the reaction was distilled to obtain an acid number of less than 12 mg KOH / g.
  • Neopentyl glycol (141.91 g) and sulfosuccinic acid (99.93 g) were introduced into a reactor equipped with a distillation column and an inclined paddle stirrer.
  • An aqueous sodium hydroxide solution at 9.681 mol / kg (36.12 g) was added over 20 minutes at a constant rate (1.806 g / min).
  • the mixture was heated at 130 ° C for 1 hour to distill Part 1 of water.
  • the reactor was then placed under vacuum (0.4 bar).
  • the water formed by the reaction was distilled until an acid number of less than 20 mg KOH / g was obtained.
  • Adipic acid (101.83g) was introduced and the temperature was maintained between 135 ° C and 145 ° C.
  • the water formed was distilled under vacuum (0.4 bar) until an acid number of less than 12 mg KOH / g was obtained.
  • Trimethylolpropane (70.0 g) was heated to 150 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer.
  • the sodium salt of metasulfobenzoic acid (40.0 g) was introduced.
  • the reaction medium was heated to 205 ° C and the water formed by the reaction distilled until an acid number of less than 10 mg KOH / g was obtained.
  • Adipic acid (40.0 g) was introduced and the temperature was maintained between 215 ° C and 225 ° C.
  • the water produced was distilled to obtain an acid number of less than 20 mg KOH / g.
  • Dehydrated castor fatty acid (130.0 g) was introduced.
  • the water produced was distilled and the temperature maintained between 215 ° C and 225 ° C until an acid number of less than 20 mg KOH / g was obtained.
  • Trimethylolpropane (146.34 g), benzoic acid (81.27 g), phthalic anhydride (56.81 g) and dehydrated castor fatty acid (250.00 g) were introduced in a reactor equipped with a distillation column and an inclined blade stirrer. The reaction mixture was heated between 230 ° C and 240 ° C. The water formed by the reaction was distilled to obtain an acid number of less than 5 mg KOH / g.
  • Example 8 Preparation of a polv (ester-urea-urethane) with a PE1
  • PE1 (a) from Example 5 (75.0g) was mixed with IPDI (25.23g). The mixture was heated to 110 ° C while controlling the exotherm. The temperature was maintained until the isocyanate number was less than 65 mg KOH / g. The temperature was reduced to 95 ° C.
  • Example 9 Preparation of a polv (ester-urea-urethane) with a PE2 and a PE3
  • a polyester polyol PE2 (25.0 g) was heated to 110 ° C, then introduced into a reactor containing IPDI (25.52 g) at 80 ° C. The mixture was heated to 110 ° C while controlling the exothermicity. The temperature was kept at 110 ° C for 1 hour.
  • Example 10 Properties of the polv (ester-urea-urethane) prepared
  • the poly (ester-urea-urethane) of Examples 8 and 9 were applied to a glass plate with a film puller to form a layer having a wet thickness of about 100 ⁇ m.
  • the film was dried under a nitrogen atmosphere for 12 h at room temperature (20-25 ° C).
  • the Persoz hardness was measured 2 hours, 4 hours, 9 hours and 24 hours after application according to the method described above.
  • the poly (ester-urea-urethane) according to the invention exhibit excellent Persoz hardness. In addition, hardness develops rapidly since the coatings exhibit good hardness only 2 hours after application.
  • the DMA curve (Fig. 1) shows that the film after drying obtained with the poly (ester-urea-urethane) of Example 9.3 is in crosslinked form without adding an external drying agent.
  • Neopentyl glycol (141.91 g) was heated to 165 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer. Sulfoisophthalic acid dimethyl ester sodium salt was introduced (77.31 g). BuSnOOH (0.050g) was introduced. The temperature was increased and then maintained for 1 hour between 195 ° C and 205 ° C. The methanol formed by the reaction was distilled off. Adipic acid (114.42 g) was then introduced and the reaction medium maintained between 175 ° C and 185 ° C. The water formed by the reaction was distilled to obtain an acid number of less than 12 mg KOH / g.
  • Example 12 Preparation of a polvol polyester
  • Neopentyl glycol (141.91 g) was heated to 165 ° C in a reactor equipped with a distillation column and an inclined paddle stirrer.
  • the sodium salt of sulfoisophthalic acid dimethyl ester was introduced (77.31 g).
  • BuSnOOH (0.050g) was introduced.
  • the temperature was increased and then maintained for 1 hour between 195 ° C and 205 ° C.
  • the methanol formed by the reaction was distilled off.
  • Diethyl malonate (130, 82g) was then introduced and the reaction medium maintained between 175 ° C and 185 ° C for 8 hours.
  • the ethanol formed by the reaction was distilled off.
  • Example 13 Preparation of a polvol polyester
  • Neopentyl glycol (249.19 g) and adipic acid (314.34 g) were heated to 165 ° C in a reactor equipped with a distillation column and an inclined blade stirrer. The temperature was increased and then maintained between 210 ° C and 220 ° C. The water formed by the reaction was distilled to obtain an acid number of less than 10 mg KOH / g
  • Neopentyl glycol (249.19 g) and diethyl malonate (354.85 g) were heated to 180 ° C in a reactor equipped with a distillation column and an inclined blade stirrer.
  • BuSnOOH (0.100g) was introduced and the reaction medium maintained between 175 ° C and 185 ° C for 16 hours.
  • the ethanol formed by the reaction was distilled off.
  • the polyester polyol of Example 11 (25.0 g) was heated to 110 ° C, then introduced into a reactor containing IPDI (25.52 g) at 80 ° C. The mixture was heated to 110 ° C while controlling the exotherm. The temperature was kept at 110 ° C for 30 minutes. Octanol (Aldrich) (12.75 g) was then introduced. The reaction medium was maintained at 110 ° C until an isocyanate number of less than 70 mg KOH / g was obtained. The temperature was reduced to 95 ° C.
  • Example 16 Preparation of a polv (ester-urea-urethane)
  • the polyester polyol of Example 11 (25.0 g) was heated to 110 ° C., then introduced into a reactor containing IPDI (25, 52 g) at 80 ° C. The mixture was heated to 110 ° C while controlling the exothermicity. The temperature was kept at 110 ° C for 30 minutes.
  • Octanol (Aldrich) (4.15 g) and the polyester polyol of Example 13 (45.85 g) were introduced. The reaction medium was maintained at 110 ° C. until an isocyanate number of less than 50 mg KOH / g was obtained. The temperature was reduced to 95 ° C.
  • Example 17 Preparation of a polv (ester-urea-urethane ' )
  • the polyester polyol of Example 12 (25.0 g) was heated to 110 ° C, then introduced into a reactor containing IPDI (25.52 g) at 80 ° C. The mixture was heated to 110 ° C while controlling the exotherm. The temperature was kept at 110 ° C for 30 minutes. Octanol (Aldrich) (4.15 g) and the polyester of Example 14 (45.85 g) were introduced. The reaction medium was maintained at 110 ° C until an isocyanate number of less than 50 mg KOH / g was obtained. The temperature was reduced to 95 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne un poly(ester-uréthane), un poly(ester-urée-uréthane) ainsi que les dispersions aqueuses de ceux-ci et leurs utilisations dans les revêtements, adhésifs ou mastics aqueux, notamment en tant que liant dans des peintures ou vernis.

Description

Description
Titre de l'invention : Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester- urée-uréthane)
Résumé de l’invention L’invention concerne un poly(ester-uréthane), un poly(ester-urée-uréthane) ainsi que les dispersions aqueuses de ceux-ci et leurs utilisations dans les revêtements, adhésifs ou mastics aqueux, notamment en tant que liant dans des peintures ou vernis.
Arrière-plan technique
Les résines polyester sont des résines obtenues en faisant réagir des polyacides et des polyols. Les résines polyester peuvent être modifiées en ajoutant un composant gras dérivé d’une huile pour former un type particulier de résines polyester : les résines alkyde. Les résines alkyde sont utilisées depuis plus de 50 ans pour former des revêtements, notamment des peintures décoratives et industrielles. Il existe également des résines polyester sans huile (« oil-free polyester » ou OFPE).
La différence entre les résines alkyde et les résines polyester sans huile est la présence ou l’absence d’un composant gras. Le composant gras confère de la flexibilité, de la brillance (« gloss ») et une bonne résistance à l’eau au revêtement obtenu. Lorsque le composant gras comprend des insaturations, les résines alkyde peuvent sécher par auto-oxydation (siccativation). L’absence de composant gras confère une faible coloration à la résine, une bonne résistance chimique et une excellente dureté. Un polyester peut être modifié, notamment par des liaisons uréthane et/ou urée pour conduire à des poly(ester-uréthane) ou poly(ester-urée-uréthane), afin d’améliorer les propriétés des revêtements obtenus, notamment pour obtenir une bonne adhérence sur substrat, une bonne flexibilité, une résistance à l’abrasion, une excellente résistance à l’auto-adhésion (« blocking ») et une bonne tenue mécanique en général. Les résines polyester en milieu solvant organique, autrement appelées résines polyester solvantées, sont connues de longue date par l’homme du métier, utilisés, en règle générale, dans les revêtements et les formulations de peintures décoratives et industrielles. Pour répondre à des questions de confort d’utilisation, d’odeur et de toxicité, des émulsions de polyester spécifiques ont été développées et mises sur le marché depuis une vingtaine d’années environ, avec des niveaux de performance intéressants en termes de brillant, de séchage, d’aspect/couleur, de stabilité et d’odeur.
Des dispersions de poly(ester-uréthane) ou de poly(ester-urée-uréthane) peuvent être obtenues en utilisant des tensioactifs ou bien en introduisant des groupes ionisables, notamment des groupes acides carboxyliques, le long du squelette polymère. Il existe plusieurs procédés pour préparer une dispersion de poly(ester-uréthane), notamment le procédé de dispersion assistée par un solvant tel que décrit dans WO 2008/086977. Ce procédé consiste à préparer un intermédiaire alkyde dans un solvant organique miscible à l’eau ayant un faible point d’ébullition, comme l’acétone, et faire réagir celui-ci avec un polyisocyanate pour former un prépolymère. L’eau est alors ajoutée progressivement et le solvant organique est évaporé pour former une dispersion aqueuse de poly(ester-uréthane). L’utilisation de solvant organique permet de contrôler la montée en viscosité lors de la préparation du prépolymère. Toutefois, l’étape d’évaporation du solvant organique est coûteuse et requiert des installations spécifiques. En outre, ce procédé ne peut être utilisé que pour fabriquer des poly(ester- uréthane) solubles dans l’acétone. Par conséquent les revêtements obtenus ne sont pas très résistants aux solvants.
On connaît également des procédés d’allongement d’alkydes en phase aqueuse par des diisocyanates, tel que décrit dans WO 02/31021. Toutefois, les revêtements obtenus avec ces dispersions ne sont pas satisfaisants en termes de dureté et de temps de séchage.
Il existe un besoin pour une dispersion de poly(ester-uréthane) ou de poly(ester-urée-uréthane) sans-COV, ne faisant pas intervenir de solvant organique lors de son procédé de préparation et présentant des bonnes propriétés en termes de brillance, dureté, adhérence sur substrat, flexibilité, résistance à l’abrasion, résistance à l’auto-adhésion (blocking), tenue mécanique, séchage, aspect/couleur, stabilité et odeur. Dans certains cas, les dispersions selon l’invention pourront être utilisées dans des applications concernant des revêtements ou matériaux à fonction ou usage provisoire, c’est-à-dire pouvant être éliminés facilement après une fonction provisoire, par exemple par simple nettoyage à l’eau ou l’eau saline ou une autre solution aqueuse, en particulier ayant un pH > 7 et de préférence > 8, éventuellement en chauffant. Des exemples de telles applications sont les encres hydrosolubles, des adhésifs pour étiquettes, des matériaux support hydrofragmentables pour l’impression 3D (dit aussi matériaux sacrificiels) ou l’encapsulation.
Exposé de l’invention
Les poly(ester-uréthane) et les poly(ester-urée-uréthane) de l’invention permettent la préparation de dispersions aqueuses de poly(ester-uréthane) et de poly(ester-urée-uréthane) qui remplissent les besoins ou remédient aux inconvénients précités.
La solution de l’invention est d’abord une solution amicale pour l’homme et pour son environnement du fait de l’absence de solvants organiques entraînant un faible taux de COV dans la dispersion aqueuse, éventuellement en l’absence d’agent siccativant, tel que des sels métalliques (cadmium, étain, cobalt, manganèse, zirconium, plomb et calcium).
Ainsi, les poly(ester-uréthane) et les poly(ester-urée-uréthane) spécifiques de l’invention rendent possible ces dispersions et performances techniques associées, notamment le développement rapide de dureté après l’application et une réduction de jaunissement. Elles peuvent être utilisées comme liant dans des compositions de revêtements décoratifs ou industriels aqueux capables de durcir à l’air. Objets de l’invention
Un premier objet de l’invention concerne un poly(ester-uréthane) comprenant :
- des fonctions isocyanate;
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ;
- des liaisons ester et uréthane ;
- éventuellement une liaison amide ; et
- éventuellement une liaison urée. L’invention concerne également un poly(ester-urée-uréthane) comprenant :
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ;
- des liaisons ester, urée et uréthane ; et - éventuellement une liaison amide.
Ensuite, l’invention concerne une dispersion aqueuse comprenant le poly(ester-uréthane) selon l’invention, ou le poly(ester-urée-uréthane) selon l’invention, les groupes acides du poly(ester- uréthane) ou du poly(ester-urée-uréthane) étant sous forme partiellement ou totalement neutralisée.
L’invention concerne plus particulièrement un procédé de préparation d’une dispersion aqueuse comprenant les étapes suivantes :
- préparation d’un polyol P1 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et une éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée ou préparation d’un polyol P2 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et d’un polyol P3 comprenant une chaîne grasse saturée et/ou une chaîne grasse insaturée ;
- préparation d’un poly(ester-uréthane) par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG ou par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P2, d’au moins un polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, la polyaddition s’effectuant avec un ratio NCO/(OH + amine éventuelle) supérieur à 1 , en particulier de 1 ,1 à 3, plus particulièrement de 1 ,5 à 2 ;
- en option neutralisation partielle ou totale des groupes acides du poly(ester-uréthane) par ajout d’une base, en particulier une base choisie parmi une amine tertiaire et un hydroxyde métallique, plus particulièrement un hydroxyde alcalin ;
- dispersion du poly(ester-uréthane) dans de l’eau, en particulier par addition progressive d’eau dans ledit poly(ester-uréthane) et inversion de phase ou par addition du poly(ester-uréthane) dans de l’eau ;
- en option réaction d’allongement du poly(ester-uréthane), éventuellement en présence d’au moins une polyamine de fonctionnalité allant de 2 à 6, en particulier de 2,25 à 6, plus particulièrement de 2,5 à 6, plus particulièrement encore de 3 à 6, le rapport molaire entre les fonctions amines du composant polyamine éventuele et les fonctions isocyanate du poly(ester- uréthane) étant de 0,01 à 3, en particulier de 0,2 à 1 ,5, plus particulièrement de 0,5 à 1 .
L’invention concerne également une composition de revêtement, d’adhésif ou de mastic comprenant un poly(ester-uréthane) et/ou un poly(ester-urée-uréthane) et/ou une dispersion aqueuse selon l’invention.
Un autre objet de l’invention est l’utilisation d’un poly(ester-uréthane) et/ou d’un poly(ester-urée- uréthane) et/ou d’une dispersion aqueuse selon l’invention en tant que liant, en particulier en tant que liant dans une composition de revêtement, d’adhésif ou de mastic.
Enfin, l’invention se rapporte aussi à un revêtement, adhésif ou mastic obtenu par application et séchage de la composition de revêtement, d’adhésif ou de mastic selon l’invention.
Définitions
Dans la présente demande, les termes « comprend un » et « comprend une » signifient respectivement « comprend un ou plusieurs » et « comprend une ou plusieurs ».
Sauf mention contraire, les pourcentages en poids dans un composé ou une composition sont exprimés par rapport au poids du composé ou de la composition.
Le terme « polyol » signifie un composé comprenant au moins deux fonctions hydroxyle. La fonctionnalité d’un polyol correspond au nombre de fonctions hydroxyle qu’il contient.
Le terme « polyester » signifie un composé comprenant au moins deux liaisons ester. Un polyester peut en outre comprendre une autre liaison, notamment une liaison amide.
Le terme « polyester polyol » signifie un polyester comprenant au moins deux fonctions hydroxyle. Un polyester polyol peut en outre comprendre un autre groupe fonctionnel, notamment une fonction amine.
Le terme « acide gras » signifie un composé comprenant une fonction acide carboxylique ou une liaison ester, une chaîne hydrocarbyle ayant de 6 à 60, en particulier 8 à 55, plus particulièrement 10 à 50, atomes de carbone consécutifs. Un acide gras saturé est un acide gras qui ne comprend pas de double liaison C=C. Un acide gras insaturé comprend une double liaison C=C. La chaîne hydrocarbyle peut être substituée, notamment par une ou plusieurs fonctions hydroxyle ou carbonyle. L’acide gras peut être un monoacide gras insaturé ou un dimère d’acide gras. Les dérivés d’acides gras insaturés pouvant générer des acides gras insaturés par hydrolyse ou transestérification sont inclus dans le terme « acide gras insaturé ». Ces dérivés incluent notamment les esters d’acides gras insaturés (notamment les triglycérides), les standolies et les estolides.
Le terme « monoacide » signifie un composé comprenant une seule fonction acide carboxylique. Un monoacide en C2-C10 signifie un monoacide comprenant 2 à 10 atomes de carbone. Les dérivés de monoacides pouvant générer un monoacide par hydrolyse ou transestérification sont inclus dans le terme « monoacide ». Ces dérivés incluent notamment les esters de monoacides. Le terme « chaîne hydrocarbyle » signifie un radical mono- ou plurivalent comprenant des atomes de carbone et d’hydrogène. Une chaîne hydrocarbyle peut notamment comprendre 1 à 200 atomes de carbone. Sauf mention du contraire, une chaîne hydrocarbyle peut être substituée. Sauf mention du contraire, une chaîne hydrocarbyle peut être interrompue par un ou plusieurs hétéroatomes choisis parmi O, N, S et Si. Une chaîne hydrocarbyle ayant de 11 à 53 atomes de carbone consécutifs signifie une chaîne hydrocarbyle comprenant un enchaînement de 11 à 53 atomes de carbone sans aucune interruption par des hétéroatomes (O, N, S et Si).
Le terme « poly(ester-uréthane) » signifie un polyester polyol dans lequel les fonctions hydroxyle ont été modifiées par réaction avec un polyisocyanate pour former des liaisons uréthane (-0-C(=0)-NH- ou -NH-C(=0)-0-), le poly(ester-uréthane) comprenant des fonctions isocyanate résiduelles.
Le terme « poly(ester-urée-uréthane) » signifie un produit obtenu par formation de liaisons urée entre les fonctions isocyanate d’un poly(ester-uréthane). La formation de liaisons urée peut être obtenue dans l’eau, éventuellement en présence d'un composant polyamine.
Le terme « fonction hydroxyle » signifie une fonction -OH.
O Le terme « fonction glycidyle » signifie une fonction époxyde
Le terme « fonction thiol » signifie une fonction -SH. Le terme mercapto peut également être utilisé pour désigner une fonction thiol.
Le terme « fonction carbonyle » signifie une fonction -C(=0)-.
Le terme « fonction acide carboxylique » signifie une fonction -COOH. Le terme « fonction isocyanate » signifie une fonction -N=C=0.
Le terme « fonction ester » signifie une fonction -C(=0)-0-Y, Y étant une chaîne hydrocarbyle.
Le terme « fonction amide » signifie une fonction -C(=0)-NH2 ou -C(=0)-NH-(alkyle en C1-C6).
Le terme « fonction anhydride » signifie une fonction -C(=0)-0-C(=0)-(alkyle en C1-C6).
Le terme « fonction amine » signifie une fonction amine primaire (-NH2) et/ou amine secondaire (-NHR1 avec Ri alkyle en C1-C6). Le groupe -NH- d’une liaison amide, urée ou uréthane n’est pas considéré comme une fonction amine. Une amine tertiaire n’est pas considérée comme une fonction amine.
Le terme « alkyle » signifie un radical acyclique saturé monovalent de formule -CnH2n+i. Un alkyle peut être linéaire ou ramifié. Un alkyle en C1-C6 signifie un alkyle comprenant 1 à 6 atomes de carbone.
Le terme « alcényle » signifie un radical acyclique monovalent ayant une ou plusieurs doubles liaisons C=C. Un alcényle peut être linéaire ou ramifié. Un alcényle en C6-C60 signifie un alcényle comprenant 6 à 60 atomes de carbone.
Le terme « alkoxy » signifie un radical -O-alkyle. Le terme « liaison ester » signifie une liaison -C(=0)-0- ou -0-C(=0)-.
Le terme « liaison uréthane » signifie une liaison -NH-C(=0)-0- ou -0-C(=0)-NH-.
Le terme « liaison amide » signifie une liaison -C(=0)-NH- ou -NH-C(=0)-.
Le terme « liaison urée » signifie une liaison -NH-C(=0)-NH-.
Le terme « substitué » signifie le remplacement d’un ou plusieurs atomes d’hydrogène par un groupe ou une fonction indépendamment choisis parmi alkyle, hydroxyle, alkoxy, glycidyle, halogène (Br, Cl, I), nitrile, isocyanate, carbonyle, amine, acide carboxylique, ester, anhydride, un groupe sulfonylé (-S(=0)20R), un groupe phosphonylé (-P(=0)(0R)2), un groupe sulfaté (-0-S(=0)20R) et un groupe phosphaté (-0-P(=0)(0R)2), chaque R étant indépendamment un atome d’hydrogène, un sel métallique ou une chaîne hydrocarbyle et leurs mélanges.
Le terme « chaîne grasse » signifie une chaîne hydrocarbyle ayant 6 à 60, en particulier 8 à 55, plus particulièrement 10 à 50, atomes de carbone consécutifs. Une chaîne grasse peut être saturée, c’est- à-dire qu’elle ne comprend pas de double liaison C=C, ou une chaîne grasse peut être insaturée, c’est-à-dire qu’elle comprend une double liaison C=C. Une chaîne grasse peut être substituée, en particulier par un ou plusieurs groupes hydroxyle et/ou glycidyle.
Le terme « groupe acide » signifie un groupe qui peut être anionisé par perte d’un proton, notamment par réaction avec une base. Par exemple, un groupe acide sulfonique (-S(=0)2-0H) peut se transformer en groupe sulfonate (-S(=0)2-0~) par réaction avec une base. Des exemples de bases convenables sont une amine tertiaire, un hydroxyde métallique, un alcoolate et un ammonium quaternaire, en particulier un hydroxyde alcalin, plus particulièrement KOH, LiOH et NaOH. Le terme « groupe acide » inclut les formes partiellement ou totalement salifiées ou estérifiées desdits groupes acides, notamment les sels de sodium, de potassium, de lithium, de calcium, de magnésium et d’aluminium desdits groupes ainsi que les mono- et di-alkyl esters desdits groupes.
Le terme « fonction greffable » signifie une fonction choisie parmi hydroxyle, glycidyle, thiol, amine, acide carboxylique, isocyanate, ester, amide et anhydride.
Le terme « fonction réactive aux isocyanates » signifie une fonction choisie parmi hydroxyle, thiol et amine.
Le terme « dispersion aqueuse » signifie un système polyphasique ayant une phase organique dispersée et une phase aqueuse continue.
Le terme « solvant » signifie un liquide ayant la propriété de dissoudre, de diluer ou d'abaisser la viscosité d’autres substances sans les modifier chimiquement et sans lui-même se modifier. Des exemples de solvants sont l’eau, l’acétone, la méthyléthylcétone, le diméthylformamide, le diméthyl éther de l'éthylène glycol, la N-méthylpyrrolidone, l’acétate d’éthyle, l’acétate de butyle, l’éthyle 3- éthoxypropionate, les diacétates d’éthylène et de propylène glycol, les éthers d’alkyle d’éthylène et/ou de propylène glycol (par exemple 1-méthoxy-2-propanol), le toluène, le xylène, l’éthanol, le méthanol, le tert-butanol, la diacétone alcool, isopropanol, des mélanges d’hydrocarbures tels que le naphta lourd (white spirit), naphta aromatique léger (Solvesso® 100) ou naphta aromatique lourd (Solvesso® 150). Les composants a1), a2), a3), b), c), d), P1 , P2, P3, P4, CG, PE1 , PE2, PE3 tels que définis ci-après ne sont pas considérés comme des solvants.
Le terme « polyaddition » signifie une réaction entre des composés portant au moins deux groupes fonctionnels. Contrairement à une polycondensation, une polyaddition ne génère pas d’eau. Un exemple de polyaddition est la réaction entre un composé portant des fonctions hydroxyle et/ou amine et un composé portant des fonctions isocyanate pour former des liaisons uréthane et/ou urée.
Le terme « polycondensation » signifie une réaction entre des composés portant au moins deux groupes fonctionnels avec formation concomitante d’eau. Un exemple de polycondensation est la réaction entre un composé portant des fonctions hydroxyle et/ou amine et un composé portant des fonctions acide carboxylique pour former des liaisons ester et/ou amide.
Le terme « polyisocyanate » signifie un composé ayant au moins deux fonctions isocyanate. La fonctionnalité d’un polyisocyanate correspond au nombre de fonctions isocyanates qu’il contient.
Le terme « aliphatique » signifie un composé acyclique non-aromatique. Il peut être linéaire ou ramifié, saturé ou insaturé, substitué ou non substitué. Il peut comprendre une ou plusieurs liaisons/fonctions, par exemples choisies parmi éther, ester, amide, uréthane, urée et leurs mélanges.
Le terme « cycloaliphatique » signifie un composé non-aromatique comprenant un cycle. Il peut être substitué ou non substitué. Il peut comprendre une ou plusieurs liaisons/fonctions telles que définies pour le terme « aliphatique ».
Le terme « aromatique » signifie un composé comprenant un cycle aromatique, c’est-à-dire respectant la règle d’aromaticité de Hückel, notamment un composé comprenant un groupe phényle. Il peut être substitué ou non substitué. Il peut comprendre une ou plusieurs liaisons/fonctions telles que définies pour le terme « aliphatique ».
Le terme « saturé » signifie un composé qui ne comprend pas de double ou triple liaison carbone- carbone.
Le terme « insaturé » signifie un composé qui comprend une double ou triple liaison carbone- carbone, en particulier une double liaison carbone-carbone.
Le terme « anhydride cyclique » signifie un composé cyclique comprenant une liaison -C(=0)-0-C(=0)-.
Le terme « polyacide » signifie un composé comprenant au moins deux fonctions acide carboxylique. La fonctionnalité d’un polyacide correspond au nombre de fonctions acide carboxylique qu’il contient. Les dérivés de polyacides pouvant générer un polyacide par hydrolyse ou transestérification sont inclus dans le terme « polyacide ». Ces dérivés incluent notamment les esters de polyacides.
Le terme « polycarbonate » signifie un composé comprenant au moins deux liaisons carbonate.
Le terme « polycarbonate polyol » signifie un polycarbonate comprenant au moins deux fonctions hydroxyle. Le terme « polyorganosiloxane» signifie un composé comprenant au moins deux liaisons Si-O-Si.
Le terme « polyorganosiloxane polyol » signifie un polyorganosiloxane comprenant au moins deux fonctions hydroxyle.
Le terme « polyamine » signifie un composé ayant au moins deux fonctions amine. La fonctionnalité d’une polyamine correspond au nombre de fonctions amine qu’elle contient.
Le terme « composé volatil » signifie un composé ayant une pression de vapeur de 0,01 kPa ou plus à une température de 20°C.
Description détaillée
Polv(ester-uréthane)
Le poly(ester-uréthane) selon l’invention comprend
- des fonctions isocyanate ;
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ;
- des liaisons ester et uréthane.
Le poly(ester-uréthane) selon l’invention peut notamment correspondre à un mélange de poly(ester- uréthane) ou à une distribution de poly(ester-uréthane) ayant un nombre différent de fonctions isocyanate, de groupes acides ayant un pKa inférieur à 3, de liaisons ester et de liaisons uréthane.
Selon un mode de réalisation particulier, le poly(ester-uréthane) peut en outre comprendre une liaison amide et/ou une liaison urée.
Le poly(ester-uréthane) selon l’invention comprend des fonctions isocyanate. La teneur en fonctions isocyanate du poly(ester-uréthane) peut notamment être estimée par l’indice NCO. Selon un mode de réalisation, le poly(ester-uréthane) peut présenter un indice NCO de 20 à 250 mg KOH/g, en particulier 30 à 200 mg KOH/g, plus particulièrement 50 à 150 mg KOH/g. L’indice NCO peut notamment être mesuré selon la méthode décrite ci-après.
Selon un mode de réalisation particulier, le poly(ester-uréthane) selon l’invention est substantiellement dépourvu de fonctions hydroxyle. La teneur en fonctions hydroxyle du poly(ester- uréthane) peut notamment être estimé par l’indice OH. Selon un mode de réalisation, le poly(ester- uréthane) peut présenter un indice OH inférieur à 20 mg KOH/g, en particulier inférieur à 10 mg KOH/g, plus particulièrement inférieur à 1 mg KOH/g, plus particulièrement encore inférieur à 0,1 mg KOH/g. L’indice OH peut notamment être mesuré selon la méthode décrite ci-après.
Le poly(ester-uréthane) selon l’invention peut comprendre des chaînes grasses saturées et/ou des chaînes grasses insaturées. Selon un mode de réalisation particulier, le poly(ester-uréthane) peut présenter une teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées de 0%. On dit alors que le poly(ester-uréthane) a une teneur en huile nulle (« oil-free polyester »). Selon un autre mode de réalisation particulier, le poly(ester-uréthane) peut présenter une teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées d’au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40% par rapport au poids total du poly(ester-uréthane). La teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées peut notamment être calculée selon la méthode décrite ci-après. On dit alors que le poly(ester-uréthane) est un alkyde-uréthane.
Le poly(ester-uréthane) selon l’invention comprend des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée. Les groupes acides ayant un pKa inférieur à 3 peuvent notamment permettre d’obtenir une auto-émulsification du poly(ester- uréthane) en phase aqueuse. Le choix d’un pKa inférieur à 3 pour le groupe acide exclut les groupes acide carboxylique (-COOH) et carboxylate (-COO-). Selon un mode de réalisation particulier, les groupes acides ayant un pKa inférieur à 3 sont choisis parmi un groupe sulfonylé (-S(=0)20R), un groupe phosphonylé (-P(=0)(0R)2), un groupe sulfaté (-0-S(=0)20R), un groupe phosphaté (-0-P(=0)(0R)2) et leurs mélanges, chaque R étant indépendamment un atome d’hydrogène, un sel métallique ou une chaîne hydrocarbyle. Les groupes sulfonylé, phosphonylé, sulfaté, phosphaté décrits ci-dessus sont liés à un atome de carbone. En particulier, le poly(ester-uréthane) peut comprendre des groupes acides choisis parmi un groupe sulfonylé et un groupe phosphonylé. Plus particulièrement, le groupe acide peut être un groupe sulfonylé de formule -S(=0)20R chaque R étant indépendamment un atome d’hydrogène ou un sel métallique, notamment un sel de métal alcalin comme, par exemple, un sel de sodium, potassium ou lithium ou un sel divalent comme, par exemple, un sel de calcium, de magnésium ou d’aluminium.
Sans vouloir être liée par une quelconque théorie, l’incorporation de groupes acides ayant un pKa inférieur à 3 permet d’obtenir un revêtement ayant de bonnes propriétés, notamment en termes de résistance à l’eau, de dureté et de temps de séchage, tout en évitant l’utilisation de composés organiques volatiles (COV), notamment d’amine volatile, telle que la triéthylamine, pour la neutralisation des groupes acides. Ainsi, les compositions comprenant le poly(ester-uréthane) selon l’invention peuvent être considérées comme exemptes de COV.
Le poly(ester-uréthane) peut notamment présenter une masse moléculaire moyenne en nombre Mn de 250 à 10 000 g/mol, en particulier 500 à 7 000 g/mol, plus particulièrement 1 000 à 5 000 g/mol. La masse moléculaire moyenne en nombre peut notamment être mesurée selon la méthode décrite ci-après. Le choix d’une masse moléculaire moyenne en nombre dans les gammes précitées permet avantageusement de contrôler la viscosité du poly(ester-uréthane). Ainsi, il n’est pas nécessaire d’ajouter de solvant lors de la préparation du poly(ester-uréthane).
Le poly(ester-uréthane) peut notamment comprendre moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1 %, plus particulièrement encore moins de 0,1%, en poids de solvant.
Le poly(ester-uréthane) peut notamment comprendre moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1 %, en poids d’amine volatile, telle que la triéthylamine.
Le poly(ester-uréthane) selon l’invention peut être obtenu par polyaddition d’un ou plusieurs polyisocyanates et d’un ou plusieurs polyols selon le procédé décrit ci-après. Procédé de préparation du polv(ester-uréthane)
Selon un premier mode de réalisation, le poly(ester-uréthane) peut être obtenu par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, ledit polyol P1 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée et éventuellement une fonction amine.
Selon un deuxième mode de réalisation, le poly(ester-uréthane) peut être obtenu par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P2, d’au moins un polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, ledit polyol P2 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et éventuellement une fonction amine et ledit polyol P3 ne comprenant pas de groupe acide ayant un pKa inférieur à 3 et comprenant éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée et éventuellement une fonction amine.
Dans les deux modes de réalisations décrits ci-dessus, la polyaddition s’effectue avec un rapport molaire des fonctions NCO/(OH + amine éventuelle) supérieur à 1 , en particulier de 1 ,1 à 3, plus particulièrement de 1 ,5 à 2.
L’excès de fonctions isocyanate lors de la polyaddition permet avantageusement de contrôler la masse moléculaire moyenne en nombre ainsi que la viscosité du poly(ester-uréthane) sans avoir à ajouter de solvant lors de la polyaddition. Selon un mode de réalisation particulier, la polyaddition peut être réalisée en l’absence de solvant, notamment en l’absence d’acétone et de xylène. Ainsi, le milieu réactionnel peut notamment contenir moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant, notamment d’acétone et de xylène.
La réaction de polyaddition peut notamment être réalisée en chauffant le milieu réactionnel. Par exemple, la température du milieu réactionnel peut aller de 50 à 200°C, en particulier 80 à 170°C, plus particulièrement de 90 à 130°C.
Les différents composants peuvent être mis en réaction en une seule étape ou dans des étapes successives. Par exemple, pour le second mode de réalisation, on peut faire réagir le polyol P2 et le polyisocyanate dans une première étape et ensuite faire réagir cet intermédiaire avec le polyol P3 dans une deuxième étape.
L’avancée de la polyaddition peut être contrôlée par l’indice NCO du mélange réactionnel.
Le polyisocyanate utilisé pour obtenir le poly(ester-uréthane) peut notamment être un polyisocyanate ayant une fonctionnalité allant de 2 à 3, en particulier un diisocyanate. On peut également utiliser un mélange de polyisocyanates. Selon un mode de réalisation, le polyisocyanate est choisi parmi un polyisocyanate aliphatique, cycloaliphatique ou aromatique, en particulier un polyisocyanate cycloaliphatique. Il peut notamment être un diisocyanate ou un triisocyanate ou un dérivé de ces isocyanates comme les oligomères de diisocyanates ou précondensats ou prépolymères porteurs de fonctions isocyanates avec une fonctionnalité allant de 2 à 3. Ces polyisocyanates peuvent éventuellement être sous forme bloquée par un agent bloquant labile dans les conditions de réaction.
Comme exemples de polyisocyanates convenables, on peut citer sans limitation les suivants : 2,4- et 2,6-toluène diisocyanate (TDI), isophorone diisocyanate (IPDI) correspondant au 3- isocyanatométhyl-3,5,5-triméthylcyclohexylisocyanate, tetraméthylène diisocyanate, hexaméthylène diisocyanate (HDI), triméthylhexaméthylène diisocyanate (TMDI), 4,4'-diphénylméthane diisocyanate (MDI), 4,4'-dicyclohexylméthane diisocyanate (H12MDI), 3,3'-diméthyl-4,4'-biphényl diisocyanate, 1 ,4-benzène diisocyanate, 1 ,5-naphtalène diisocyanate (NDI), 1 ,3- et 1 ,4-cyclohexane diisocyanate, 1 -méthyl-2,4-diisocyanatocyclohexane, 1 -méthyl-2,6-diisocyanatocyclohexane, dodécane diisocyanate, m-tétraméthylène xylylène diisocyanate, 4,6-xylylène diisocyanate, triisocyanato toluène, un trimère TDI (comme Desmodur® R de Bayer), un trimère HDI (comme Desmodur® N de Bayer), et leurs mélanges.
Selon un mode de réalisation, le polyisocyanate est un diisocyanate, en particulier un diisocyanate cycloaliphatique, plus particulièrement l’isophorone diisocyanate (IPDI), le 1 ,4-cyclohexane diisocyanate, le 4,4'-dicyclohexylméthane diisocyanate (H12MDI) et leurs mélanges, plus particulièrement encore l’isophorone diisocyanate.
Selon un mode de réalisation particulier, le polyol P1 ou les polyols P2 et P3 utilisés pour obtenir le poly(ester-uréthane) sont des polyester polyols. Ainsi, P1 , P2 et/ou P3 peuvent comprendre des liaisons ester et des fonctions hydroxyle. P1 , P2 et/ou P3 peuvent en outre comprendre des substituants et/ou liaisons additionnels. Par exemple, P1 , P2 et/ou P3 peuvent comprendre un élément choisi parmi une fonction amine, une liaison amide, une liaison uréthane et leurs combinaisons.
En particulier, P1 , P2 et/ou P3 peuvent comprendre une fonction amine. Lorsque P1 , P2 et/ou P3 comprennent une fonction amine, le poly(ester-uréthane) résultant comprendra une liaison urée. En effet, lors de la polyaddition, la fonction amine réagira avec le polyisocyanate pour former une liaison urée.
Le polyol P1 comprend un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée. Le polyol P1 peut notamment être un polyester polyol PE1 obtenu par polycondensation des composants suivants : a) un composant acide comprenant : a1) un composé choisi parmi un polyacide ayant une fonctionnalité en acide carboxylique de 2 à 3, un anhydride cyclique et leurs mélanges ; et a2) en option un monoacide en C2-C10 ; b) un composant polyol comprenant un polyol de fonctionnalité allant de 2 à 6 ; c) en option un allongeur de chaîne comprenant une fonction greffable et une fonction réactive aux isocyanates ; d) un composé hydrophile comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et une fonction greffable ; et e) en option un composant gras comprenant une fonction greffable ainsi qu’une chaîne grasse saturée et/ou une chaîne grasse insaturée.
La polycondensation peut être réalisée en mettant les différents composants en réaction en une seule étape ou dans des étapes successives. Par exemple, on peut faire réagir le composant b) et le composant d) dans une première étape, ensuite faire réagir cet intermédiaire avec le composant a1) dans une deuxième étape et éventuellement ensuite faire réagir cet intermédiaire avec le composant e) dans une troisième étape. Bien entendu, on peut faire varier l’ordre d’introduction des différents réactifs.
La polycondensation peut être réalisée en l’absence de solvant autre que l’eau, notamment en l’absence d’acétone et de xylène. Ainsi, le milieu réactionnel peut notamment contenir moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau, notamment d’acétone et de xylène. Plus particulièrement, le milieu réactionnel ne comprend pas de solvant autre que le solvant éventuellement produit lors de la polycondensation.
Le milieu réactionnel peut notamment être chauffé. Par exemple, la température du milieu réactionnel peut aller de 100 à 300°C, en particulier 150 à 250°C, plus particulièrement de 200 à 230°C.
Selon un mode de réalisation particulier, l’eau produite lors de la polycondensation est distillée au fur et à mesure de sa formation.
L’avancée de la polycondensation peut être contrôlée par l’indice d’acide du mélange réactionnel.
Le composant a1) utilisé pour faire le polyol PE1 comprend un composé choisi parmi un polyacide ayant une fonctionnalité en acide carboxylique de 2 à 3, un anhydride cyclique et leurs mélanges. Le composant a1) est distinct des composants a2), b), c), d) et e).
Le polyacide peut notamment être insaturé ou saturé, en particulier saturé. Le polyacide peut notamment être un diacide carboxylique, un triacide carboxylique, un dimère de monoacide carboxylique, un trimère de monoacide carboxylique, et leurs mélanges. Le polyacide peut notamment comprendre 3 à 54, en particulier 4 à 20, plus particulièrement 5 à 15, atomes de carbone. Selon un mode de réalisation, le polyacide est un polyacide aliphatique, cycloaliphatique ou aromatique. Selon un mode de réalisation le polyacide est une polyacide saturé ou insaturé, de préférence saturé. En particulier, le polyacide peut être un polyacide aliphatique, plus particulièrement un polyacide aliphatique saturé ou insaturé, plus particulièrement encore un polyacide aliphatique saturé.
Des exemples de polyacides aliphatiques saturés sont l’acide malonique (diacide), l'acide succinique (diacide), l'acide 2-méthylsuccinique (diacide), l'acide 2,2-diméthylsuccinique (diacide), l’acide glutarique (diacide), l’acide 3,3-diéthylglutarique (diacide), l'acide adipique (diacide), l’acide pimélique (diacide), l’acide subérique (diacide), l’acide azélaïque (diacide), l'acide sébacique (diacide), l'acide dodécanedioïque (diacide), l'acide citrique (triacide), l’acide propane-1 ,2,3- tricarboxylique (triacide), un dimère d'acide gras saturé en C32 à C36 (de fonctionnalité 2 à 2,2) ou un trimère d'acide gras saturé en C54 (de fonctionnalité 2,5 à 3).
Des exemples de polyacides aliphatiques insaturés sont l'acide itaconique (diacide), l'acide maléique (diacide), l’acide fumarique (diacide), l’acide glutaconique (diacide) et l’acide muconique (diacide).
Un exemple de polyacide cycloaliphatique saturé est l’acide dicarboxylique de cyclohexane.
Un exemple de polyacide cycloaliphatique insaturé est l’acide tétrahydrophtalique (diacide).
Des exemples de polyacides aromatiques sont l’acide phtalique (diacide), l’acide isophtalique (diacide), l’acide téréphtalique (diacide), l’acide dicarboxylique de naphtalène, l’acide triméllitique (triacide), l’acide 2,5-furane dicarboxylique.
Le polyacide peut un dérivé de polyacide. Un tel dérivé peut être transformé en polyacide par hydrolyse ou transestérification. Les dérivés de polyacide incluent les formes partiellement ou totalement estérifiées des polyacides définis ci-dessus, notamment les mono- di- et triesters d’alkyles en C1-C6 des polyacides définis ci-dessus. Les dérivés de polyacide peuvent notamment comprendre 5 à 60, en particulier 6 à 25, plus particulièrement 7 à 20, atomes de carbone.
Des exemples de dérivés de polyacides convenables sont le diméthylmalonate, le diéthylmalonate le diméthyladipate, le diméthyl glutarate, le diméthyl succinate.
L’anhydride cyclique peut notamment être saturé ou insaturé, en particulier insaturé. L’anhydride cyclique insaturé peut notamment être cycloaliphatique ou aromatique, en particulier aromatique.
Des exemples d’anhydrides cycliques saturés sont l’anhydride succinique et l’anhydride hexahydrophtalique. Des exemples d’anhydrides insaturés cycloaliphatiques sont l’anhydride maléique, l’anhydride fumarique et l’anhydride tétrahydrophtalique. Un exemple d’anhydride aromatique est l’anhydride phtalique.
Selon un mode de réalisation particulier, le composé a1) comprend un diacide carboxylique, plus particulièrement un diacide carboxylique aliphatique saturé, plus particulièrement encore l'acide adipique ou l'acide sébacique.
Selon un mode de réalisation particulier, le composé a1) comprend un dérivé de diacide carboxylique, plus particulièrement un diméthyl- ou diéthylesterd’un diacide carboxylique aliphatique saturé, plus particulièrement encore le diméthylmalonate ou le diéthylmalonate.
Selon un mode de réalisation particulier, le composé a1) comprend un anhydride cyclique, plus particulièrement un anhydride cyclique insaturé, plus particulièrement encore un anhydride aromatique, notamment l’anhydride phtalique.
La quantité de composant a1) entrant dans la préparation du polyol PE1 peut notamment aller de 1 à 50%, en particulier 5 à 40%, plus particulièrement 10 à 30%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e). Le composant a2) pouvant éventuellement être utilisé pour faire le polyol PE1 comprend un monoacide en C2-C10. On peut également utiliser un mélange de monoacides en C2-C10. Le composant a2) est distinct des composants a1), b), c), d) et e).
Le monoacide peut être un monoacide aliphatique, cycloaliphatique ou aromatique, en particulier aromatique.
Des exemples de monoacides en C2-C10 convenables sont l’acide benzoïque, l’acide tert- butylbenzoïque, l’acide hexahydrobenzoïque et l’acide 2-éthylhexanoïque.
Selon un mode de réalisation particulier, le composant a2) comprend un monoacide en C2-C10 aromatique, plus particulièrement l’acide benzoïque.
La quantité de composant a2) entrant dans la préparation du polyol PE1 peut notamment aller de 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e).
Le composant b) utilisé pour faire le polyol PE1 comprend un polyol ayant une fonctionnalité de 2 à 6. On peut également utiliser un mélange de polyols ayant une fonctionnalité de 2 à 6. Le composant b) est distinct des composants a1), a2), c), d) et e).
Selon un mode de réalisation particulier, le polyol présente une fonctionnalité de 2 à 4. Le polyol peut notamment être un polyol aliphatique, cycloaliphatique ou aromatique, en particulier aliphatique ou cycloaliphatique. Le polyol peut notamment être un polyol saturé.
Selon un mode de réalisation, le composant b) comprend un diol ramifié, notamment un diol porteur d’au moins un substituant méthyle, en particulier de deux substituants méthyles.
Selon un mode de réalisation, le composant b) comprend polyol ayant une fonctionnalité de 3 à 4.
Selon un mode de réalisation, le ou les polyols du composant b) ont une masse molaire inférieure à 400 g/mol, inférieure à 350 g/mol, inférieure à 300 g/mol, inférieure à 250 g/mol, inférieure à 200 g/mol ou inférieure à 150 g/mol.
Selon un mode de réalisation, le composant b) comprend un polyol choisi parmi éthylène glycol, 1 ,2- propanediol, 1 ,3-propanediol, 1 ,4-butanediol, 1 ,3-butanediol, 1 ,5-pentanediol, 1 ,6-hexanediol, 3- méthyl-1 ,5-pentanediol, 1 ,10-decanediol, 1 ,12-dodecanediol, diéthylène glycol, triéthylène glycol, dipropylène glycol, tripropylène glycol, des polyoxyalkylènes tels que polyéthylène glycol ou polypropylène glycol, de préférence de masse moléculaire moyenne en nombre Mn (calculée à partir de l'indice OH) allant de 250 à 3000, 1 ,4-cyclohexanediméthanol, 1 ,6-cyclohexanediméthanol, 1 ,4- cyclohexanediol, bisphénol A, bisphénol A hydrogéné, glycérol, diglycérol, tricyclodécane diméthanol, triméthylolpropane, di(triméthylolpropane), triméthyloléthane, 1 ,2,6-hexanetriol, 1 ,2,4- butanetriol, érythritol, pentaérythritol, di(pentaérythritol), néopentyl glycol, 2-butyl-2-ethyl-1 ,3- propanediol, 2-méthyl-1 ,3-propanediol, 2-méthyl-1 ,2-propanediol, sorbitol, mannitol, xylitol, isosorbide, isoidide, isomannide, méthyl glucoside, polyester polyols (notamment polycaprolactone polyol), polycarbonate polyols, polyorganosiloxane polyols (notamment polydiméthysiloxane polyol), polyglycérols tels que les oligomères de glycérol comme le Polyglycérol-3 (trimère de glycérol) et le décaglycérol, un polybutadiène à terminaison hydroxy, les dérivés partiellement ou totalement alkoxylés, notamment éthoxylés et/ou propoxylés, des polyols cités ci-dessus et leurs mélanges.
Selon un mode de réalisation particulier, le composant b) comprend un polyol aliphatique saturé ayant une fonctionnalité de 2 à 4, plus particulièrement le néopentylglycol, le triméthylolpropane, un triméthylolpropane éthoxylé, le pentaérythritol et leurs mélanges.
La quantité de composant b) entrant dans la préparation du polyol PE1 peut notamment aller de 1 à 70%, en particulier 5 à 50%, plus particulièrement 10 à 40%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e).
Le composant c) éventuellement utilisé pour faire le polyol PE1 comprend un allongeur de chaîne comprenant une fonction greffable et une fonction réactive aux isocyanates. Le composant c) peut comprendre plusieurs fonctions greffables et/ou plusieurs fonctions réactives aux isocyanates. On peut également utiliser un mélange d’allongeurs de chaîne. Le composant c) est distinct des composants a1), a2), b), d) et e).
La fonction greffable du composé c) peut notamment être choisie parmi hydroxyle, thiol, amine et acide carboxylique.
La fonction réactive aux isocyanates du composé c) peut notamment être choisie parmi hydroxyle, et amine.
Le composé c) peut notamment être un amino alcool, un amino thiol, une diamine, un mercapto alcool, un mercapto acide, un dithiol, et leurs mélanges. L’allongeur de chaîne peut notamment être aliphatique, cycloaliphatique ou aromatique, en particulier aliphatique ou cycloaliphatique. L’allongeur de chaîne peut notamment comprendre 2 à 18 atomes de carbone.
Selon un mode de réalisation particulier, l’allongeur de chaîne comprend une fonction amine primaire ou secondaire, en particulier une fonction amine secondaire, et une ou deux fonctions hydroxyle ou thiol.
Des exemples de composants c) convenables sont l’éthanolamine, la N-méthyl éthanolamine, la N- éthyl éthanolamine, la N-propyl éthanolamine, la N-butyl éthanolamine la diéthanolamine, la propanolamine, l’éthylène diamine, la 1 ,3-propylène diamine, la 1 ,4-butylène diamine, la 1 ,5- pentaméthylène diamine, la 1 ,6-hexaméthylène diamine, la 1 ,4-cyclohexane diamine, la bis(aminométhyl)-1 ,3-cyclohexane (1 ,3-BAC), la bis(aminométhyl)-1 ,4-cyclohexane (1 ,4-BAC), la bis(aminométhyl)-1 ,2-cyclohexane (1 ,2-BAC), l’isophorone diamine, le 1-mercapto-2-propanol, le 3- mercapto-1-propanol, l’acide thioglycolique, l’acide 3-mercapto propionique, le 2-amino-1- éthanethiol, le 3-amino-1-propanethiol, la cystéine, le 1 ,2-éthanedithiol, le 1 ,3-propanedithiol et leurs mélanges. La quantité de composant c) entrant dans la préparation du polyol PE1 peut notamment aller de 0 à 50%, en particulier 5 à 40%, plus particulièrement 10 à 35%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e). Le composant d) utilisé pour faire le polyol PE1 comprend un composé hydrophile. Un composé hydrophile est un composé comprenant un hétéroatome. Le composé hydrophile selon l’invention comprend un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et une fonction greffable. Le composant d) peut comprendre plusieurs groupes acides et/ou plusieurs fonctions greffables. On peut également utiliser un mélange de composés hydrophiles. Le composant d) est distinct des composants a1), a2), b), c) et e).
Le composant d) permet d’introduire un groupement ionisable dans le polyol PE1. Ainsi, le poly(ester-uréthane) incorporant ce polyol pourra être auto-émulsifiable.
Selon un mode de réalisation particulier, le composé hydrophile comprend un groupe acide ayant un pKa inférieur à 3 choisi parmi un groupe sulfonylé (-S(=0)20R), un groupe phosphonylé (-P(=0)(0R)2), un groupe sulfaté (-0-S(=0)20R), un groupe phosphaté (-0-P(=0)(0R)2) et leurs mélanges, chaque R étant indépendamment un atome d’hydrogène, un sel métallique ou une chaîne hydrocarbyle. Les groupes sulfonylé, phosphonylé, sulfaté, phosphaté décrits ci-dessus sont liés à un atome de carbone. En particulier, le composé hydrophile peut comprendre un groupe acide choisi parmi un groupe sulfonylé et un groupe phosphonylé. Plus particulièrement, le groupe acide peut être un groupe sulfonylé de formule -S(=0)20R avec R étant un atome d’hydrogène ou un sel métallique, notamment un sel de métal alcalin comme, par exemple, un sel de sodium, potassium ou lithium ou un sel divalent comme, par exemple, un sel de calcium, de magnésium ou d’aluminium.
Selon un mode de réalisation particulier, le composé hydrophile comprend une ou deux, de préférence deux, fonctions greffables choisies parmi -OH, -NH2 et -COOH, en particulier -COOH.
Selon un mode de réalisation particulier, le groupe acide du composé hydrophile est un groupe sulfonylé de formule -S(=0)20R avec R étant un atome d’hydrogène ou un sel métalllique et la fonction greffable du composé hydrophile est -OH, -NH2, -COOH ou -C(=0)-0R3 avec R3 alkyle en C1-C6, en particulier -COOH ou -C(=0)-0R3.
Le composé hydrophile peut notamment être un composé aliphatique, cycloaliphatique ou aromatique, en particulier aromatique.
Des exemples de composants d) convenables sont l’acide sulfoisophtalique, le sel de sodium de l’acide sulfoisophtalique (SSBA), le sel de lithium de l’acide sulfoisophtalique (LiSIPA), le sel de potassium de l’acide sulfoisophtalique (KSBA), le sel de sodium du diméthylester sulfoisophtalique, l’acide sulfosuccinique, le sel de sodium de l’acide métasulfobenzoïque, la taurine, le sel de sodium de l’acide 2-hydroxy-5-sulfo-benzoïque, le sel de sodium du dimethylester de l’acide sulfoisophtalique, l’acide 2-aminoéthyl phosphonique et leurs mélanges.
La quantité de composant d) entrant dans la préparation du polyol PE1 peut notamment aller de 1 à 40%, en particulier 2 à 30%, plus particulièrement 5 à 20%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e).
Le composant optionnel e) permet d’introduire une chaîne grasse saturée et/ou une chaîne grasse insaturée dans le polyol PE1 . Ainsi, le poly(ester-uréthane) incorporant ce polyol pourra être plus facile à émulsifier. Le composant e) comprend une fonction greffable ainsi qu’une chaîne grasse saturée et/ou une chaîne grasse insaturée. La fonction greffable peut notamment être choisie parmi hydroxyle, glycidyle, acide carboxylique, ester et amine. Le composant e) est distinct des composants a1), a2), b), c) et d).
Selon un mode de réalisation particulier, le composant e) peut être choisi parmi :
- e1) un acide gras insaturé,
- e2) un acide gras saturé,
- e3) un alcool gras,
- e4) une amine grasse insaturée, et leurs mélanges.
Le composant e) utilisé pour faire le polyol PE1 peut comprendre un acide gras insaturé e1). On peut également utiliser un mélange d’acides gras insaturés e1).
L’acide gras insaturé e1) peut notamment avoir un indice d’iode moyen allant de 100 à 200 mg h/g tel que mesuré selon la méthode décrite ci-après.
L’acide gras insaturé peut notamment correspondre à la formule Alc-COOH avec Aie un alcényle en C6-C60, en particulier C8-C55, plus particulièrement C10-C50, l’alcényle pouvant être substitué par un ou plusieurs groupes hydroxyle.
Des exemples d’acides gras insaturés e1) convenables sont l’acide myristoléique, l’acide palmitoléique, l’acide sapiénique, l’acide oléique, l’acide ricinoléique (acide 12-hydroxy-9- octadécènoïque), l’acide ricinoléique deshydraté, l’acide élaïdique, l’acide trans-vaccénique, l’acide linoléique, l’acide linolélaïdique, l’acide alpha-linolénique, l’acide gamma-linolénique, l’acide dihomo- gamma-linolénique, l’acide arachidonique, l’acide eicosapentaénoïque, l’acide clupanodonique, l’acide docosahexaénoïque, l’acide éléostéarique, l’acide licanique, l’acide érucique, l’acide brassidique, l’acide lesquérolique (acide 14-hydroxy-11-cis-eicosènoïque), l’acide auricolique, l’acide densipolique, le Nouracid® DE656, DE655, DE554, DE503, DZ453 (Acide gras de ricin déshydraté - Oleon), le Nouracid® HE456, HE305, HE304 (Acide gras de tournesol isomérisé - Oleon), le Nouracid® LE805 (Acide gras de lin isomérisé - Oleon), le Dedico® 5981 (Acide gras de ricin déshydraté - Croda), l'Isomergin® SK, SY, SF (Acide gras végétal isomérisé - Hobum Harburger Fettchemie Brinkcman & Mergell GmbH), le Pamolyn® 300, 380 (Acide linoléique isomérisé - Eastman), les acides gras insaturés issus d'huile de soja, de tournesol, de carthame, de coton, de tallol (« tall-oil fatty acid » (TOFA)), de ricin, de ricin déshydratée (« dehydrated castor oil fatty acid » (DCOFA)), de lin, de bois de Chine (tung), d’oiticica, de colza, de maïs, de calendula, de chanvre, de lesquerella, et leurs mélanges.
L’acide gras insaturé e1) peut être un dérivé d’acide gras insaturé. Un tel dérivé peut être transformé en acide gras insaturé par hydrolyse ou transestérification.
Des dérivés d’acides gras insaturés convenables sont les esters d’acides gras insaturés. Ces composés peuvent être obtenus par réaction entre un ou plusieurs acides gras insaturés et un composé alcool, notamment un monoalcool (par exemple méthanol, éthanol, propanol, isopropanol, butanol), un diol ou un triol (par exemple le glycérol). Les esters d’acides gras insaturés obtenus avec le glycérol sont communément appelés huiles ou triglycérides.
Les standolies sont également des dérivés d’acides gras au sens de l’invention. Lesdites standolies, bien connues de l'homme du métier, sont en fait les produits résultant de la réaction à haute température, par exemple 250 à 300°C, d'un mélange d'huile et d'acide gras.
Un autre exemple de dérivé d’acides gras insaturé convenable est un estolide. Les estolides sont notamment obtenus par formation d’une liaison ester entre un acide carboxylique (par exemple un acide gras) et la fonction hydroxyle d’un acide gras hydroxylé insaturé (par exemple l’acide ricinoléique, l’acide lesquerellique, l’acide auricolique ou l’acide densipolique) ou d’un dérivé d’acide gras hydroxylé (par exemple l’huile de ricin ou l’huile de lesquerella).
Selon un mode de réalisation particulier, le composant e) comprend un acide gras insaturé ayant une chaîne hydrocarbyle ayant 15 à 29 atomes de carbone consécutifs, plus particulièrement un acide gras d’huile de ricin deshydratée.
Le composant e) utilisé pour faire le polyol PE1 peut comprendre un acide gras saturé e2). On peut également utiliser un mélange d’acides gras saturés e2).
L’acide gras saturé peut notamment correspondre à la formule Alk-COOH avec Alk un alkyle en C6- C60, en particulier C8-C55, plus particulièrement C10-C50, l’alkyle pouvant être substitué par un ou plusieurs groupes hydroxyle et/ou glycidyle.
Des exemples d’acides gras saturés e2) convenables sont l’acide caproïque, l’acide caprylique, l’acide caprique, l’acide laurique, l’acide myristique, l’acide palmitique, l’acide stéarique, l’acide 9- hydroxy stéarique, l’acide 10-hydroxystéarique, l’acide 12-hydroxystéarique, l’acide eïcosanoïque l’acide 14-hydroxyeïcosanoïque, les acides gras saturés issus d’huile de palme, de coco, de ricin hydrogénée, de graisses animales et leurs mélanges.
L’acide gras saturé peut être un dérivé d’acide gras insaturé. Un tel dérivé peut être transformé en acide gras saturé par hydrolyse ou transestérification tel que décrit ci-dessus.
Le composant e) utilisé pour faire le polyol PE1 peut comprendre un alcool gras e3). On peut également utiliser un mélange d’alcools gras e3).
L’alcool gras peut notamment correspondre à la formule Alk-(0-CH2-CH2)n-(0-CH(CH3)-CH2)m-0H avec Alk un alkyle en C6-C60, en particulier C8-C55, plus particulièrement C10-C50 et n et m = 0 à 50.
Des exemples d’alcools gras e3) convenables sont octan-1-ol, octan-2-ol, 2-éthyl-1-hexanol, nonan- 1 -ol, décan-1-ol, undécan-1-ol, alcool laurylique, alcool myristylique, alcool cétylique, alcool stéarylique, docosanol, et les dérivés alkoxylés, notamment éthoxylés et/ou propoxylés, des polyols cités ci-dessus et leurs mélanges.
Le composant e) utilisé pour faire le polyol PE1 peut comprendre une amine grasse insaturée e4). On peut également utiliser un mélange d’amines grasses insaturées e4). L’amine grasse insaturée peut notamment correspondre à la formule Alc-NHR avec Aie un alcényle en C6-C60, en particulier C8-C55, plus particulièrement C10-C50, l’alcényle pouvant être substitué par un ou plusieurs groupes hydroxyle et R est H ou un alkyle en C1 à C6. Des exemples d’amines grasses insaturées peuvent notamment correspondre aux acides gras insaturés décrits ci-dessus en remplaçant la fonction acide carboxylique par une fonction amine.
La quantité de composant e) entrant dans la préparation du polyol PE1 peut notamment aller de 0 à 90%, en particulier s à 80%, plus particulièrement 10 à 70%, plus particulièrement encore 20 à 60%, en poids par rapport au poids total des composés a1) + a2) + b) + c) + d) + e).
Selon un mode de réalisation particulier, le polyester polyol PE1 est obtenu par réaction de :
- 1 à 50%, en particulier s à 40%, plus particulièrement 10 à 30% de composé a1) ;
- 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20% de composé a2) ;
- 1 à 70%, en particulier 5 à 50%, plus particulièrement 10 à 40% de composé b) ;
- 0 à 50%, en particulier 5 à 40%, plus particulièrement 10 à 35% de composé c) ; et
- 1 à 40%, en particulier 2 à 30%, plus particulièrement 5 à 20% de composé d) ;
- 0 à 90%, en particulier 5 à 80%, plus particulièrement 20 à 60% de composé e) ; les pourcentages étant des pourcentages en poids exprimés par rapport au poids de l’ensemble des composés a1) + a2) + b) + c) + d) + e).
Selon un mode de réalisation, le poids de l’ensemble des composés a1) + a2) + b) + c) + d) + e) représente 100% du poids du polyol PE1 .
Le polyol P1 peut également être un polyol allongé produit par réaction entre le polyester polyol PE1 tel que décrit ci-dessus et un polyisocyanate avec un défaut de fonctions NCO. Cette réaction correspond à un allongement de chaîne par formation de liaisons uréthanes. La réaction d’allongement est notamment contrôlée afin d’obtenir un indice NCO inférieur à 20 mg KOH/g, en particulier inférieur à 10 mg KOH/g, plus particulièrement inférieur à 1 mg KOH/g. Le polyol allongé résultant comprend notamment des fonctions hydroxyle, des liaisons ester et uréthane. Le polyol allongé peut éventuellement comprendre une liaison amide et/ou urée. Si le polyol PE1 comprend une fonction amine, le polyol allongé comprendra une liaison urée.
Le polyol P2 comprend un groupe acide ayant un pKa inférieur à 3 mais ne comprend pas de chaîne grasse saturée ni de chaîne grasse insaturée.
Le polyol P2 peut notamment être un polyester polyol PE2 obtenu par polycondensation des composants suivants : a) un composant acide comprenant : a1) un composé choisi parmi un polyacide ayant une fonctionnalité en acide carboxylique de 2 à 3, un anhydride cyclique et leurs mélanges ; et a2) en option un monoacide en C2-C10 ; b) un composant polyol comprenant un polyol de fonctionnalité allant de 2 à 6 ; c) en option un allongeur de chaîne comprenant une fonction greffable et une fonction réactive aux isocyanates ; et d) un composé hydrophile comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et une fonction greffable.
La polycondensation peut être réalisée en mettant les différents composants en réaction en une seule étape ou dans des étapes successives. Par exemple, on peut faire réagir le composant b) et le composant d) dans une première étape et ensuite faire réagir cet intermédiaire avec le composant a1) dans une deuxième étape. Bien entendu, on peut faire varier l’ordre d’introduction des différents réactifs.
La polycondensation peut être réalisée en l’absence de solvant autre que l’eau, notamment en l’absence d’acétone et de xylène. Ainsi, le milieu réactionnel peut notamment contenir moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau, notamment d’acétone et de xylène. Plus particulièrement, le milieu réactionnel ne comprend pas de solvant autre que le solvant éventuellement produit lors de la polycondensation.
Le milieu réactionnel peut notamment être chauffé. Par exemple, la température du milieu réactionnel peut aller de 80 à 250°C, en particulier 100 à 220°C, plus particulièrement de 120 à 200°C.
Selon un mode de réalisation particulier, l’eau produite lors de la polycondensation est distillée au fur et à mesure de sa formation.
L’avancée de la polycondensation peut être contrôlée par l’indice d’acide du mélange réactionnel.
Les composants a1), a2), b), c) et d) peuvent être tels que définis ci-dessus pour le polyester polyol PE1 .
Selon un mode de réalisation particulier, le polyester polyol PE2 est obtenu par réaction de :
- 10 à 70%, en particulier 15 à 60%, plus particulièrement 20 à 50% de composé a1) ;
- 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20% de composé a2) ;
- 10 à 90%, en particulier 15 à 70%, plus particulièrement 20 à 50% de composé b) ;
- 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20% de composé c) ; et - 1 à 50%, en particulier 5 à 40%, plus particulièrement 10 à 30% de composé d) ; les pourcentages étant des pourcentages en poids exprimés par rapport au poids de l’ensemble des composés a1) + a2) + b) + c) + d).
Selon un mode de réalisation, le poids de l’ensemble des composés a1) + a2) + b) + c) + d) représente 100% du poids du polyol PE2.
Le polyol P2 peut également être un polyol allongé produit par réaction entre le polyester polyol PE2 et un polyisocyanate avec un défaut de fonctions NCO, tel que décrit pour le polyol P1 .
Le polyol P3 comprend éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée mais ne comprend de groupe acide ayant un pKa inférieur à 3.
Selon un mode de réalisation, le polyol P3 peut être un polyester polyol PE3-1 obtenu par polycondensation des composants suivants : a) un composant acide comprenant : a1) un composé choisi parmi un polyacide ayant une fonctionnalité en acide carboxylique de 2 à 3, un anhydride cyclique et leurs mélanges ; et a2) éventuellement un monoacide en C2-C10 ; b) un composant polyol comprenant un polyol de fonctionnalité allant de 2 à 6 ; c) éventuellement un allongeur de chaîne comprenant une fonction amine et une ou deux fonctions choisies parmi amine, hydroxyle et leurs mélanges ; et e) éventuellement un composant gras comprenant une fonction greffable ainsi qu’une chaîne grasse saturée et/ou une chaîne grasse insaturée. Selon un autre mode de réalisation, le polyol P3 peut être un polyester polyol PE3-2 obtenu par polycondensation des composants suivants : a) éventuellement un composant acide comprenant : a1) un composé choisi parmi un polyacide ayant une fonctionnalité en acide carboxylique de 2 à 3, un anhydride cyclique et leurs mélanges ; et a2) éventuellement un monoacide en C2-C10 ; b) éventuellement un composant polyol comprenant un polyol de fonctionnalité allant de 2 à 6 ; c) éventuellement un allongeur de chaîne comprenant une fonction amine et une ou deux fonctions choisies parmi amine, hydroxyle et leurs mélanges ; et e) un composant gras comprenant une fonction greffable ainsi qu’une chaîne grasse saturée et/ou une chaîne grasse insaturée ; à condition qu’au moins un parmi le composant acide a) et le composant polyol b) soit présent et puisse réagir avec la fonction greffable du composant gras pour former une liaison ester.
La polycondensation peut s’effectuer entre les composants a) et e), éventuellement en présence de b) et/ou c). Alternativement, la polycondensation peut s’effectuer entre les composants b) et e), éventuellement en présence de a) et/ou c).
Selon un mode de réalisation, le composant gras comprend une fonction greffable hydroxyle ou glycidyle et le composant polyacide a) est présent. Dans ce cas, le composant polyol b) n’est pas nécessaire mais il peut éventuellement être présent.
Selon un autre mode de réalisation, le composant gras comprend une fonction greffable acide carboxylique ou ester et le composé polyol b) est présent. Dans ce cas, le composant polyacide a) n’est pas nécessaire mais il peut éventuellement être présent.
La polycondensation peut être réalisée en mettant les différents composants en réaction en une seule étape ou dans des étapes successives.
La polycondensation peut être réalisée en l’absence de solvant autre que l’eau, notamment en l’absence d’acétone et de xylène. Ainsi, le milieu réactionnel peut notamment contenir moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau, notamment d’acétone et de xylène. Plus particulièrement, le milieu réactionnel ne comprend pas de solvant autre que le solvant éventuellement produit lors de la polycondensation.
Le milieu réactionnel peut notamment être chauffé. Par exemple, la température du milieu réactionnel peut aller de 100 à 300°C, en particulier 150 à 270°C, plus particulièrement de 200 à 250°C.
Selon un mode de réalisation particulier, l’eau produite lors de la polycondensation est distillée au fur et à mesure de sa formation.
L’avancée de la polycondensation peut être contrôlée par l’indice d’acide du mélange réactionnel.
Les composants a1), a2), b), c) et e) sont tels que définis ci-dessus pour le polyester polyol PE1 . Selon un mode de réalisation particulier, le polyester polyol PE3-1 est obtenu par réaction de :
- 10 à 70%, en particulier 15 à 60%, plus particulièrement 20 à 50% de composé a1) ;
- 0 à 50%, en particulier 0 à 40%, plus particulièrement 0 à 35% de composé a2) ;
- 10 à 90%, en particulier 15 à 70%, plus particulièrement 20 à 50% de composé b) ; et
- 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20% de composé c) ; et - 0 à 90%, en particulier 0 à 70%, plus particulièrement 0 à 60% de composé e) ; les pourcentages étant des pourcentages en poids exprimés par rapport au poids de l’ensemble des composés a1) + a2) b) + c) + e).
Selon un mode de réalisation particulier, le polyester polyol PE3-2 est obtenu par réaction de :
- 0 à 70%, en particulier 15 à 60%, plus particulièrement 20 à 50% de composé a1) ; - 0 à 50%, en particulier 0 à 40%, plus particulièrement 0 à 35% de composé a2) ;
- 0 à 90%, en particulier 15 à 70%, plus particulièrement 20 à 50% de composé b) ; et
- 0 à 50%, en particulier 0 à 30%, plus particulièrement 0 à 20% de composé c) ; et
- 5 à 90%, en particulier 10 à 70%, plus particulièrement 20 à 60% de composé e) ; les pourcentages étant des pourcentages en poids exprimés par rapport au poids de l’ensemble des composés a1) + a2) b) + c) + e).
Selon un mode de réalisation, le poids de l’ensemble des composés a1) + a2) + b) + c) + e) représente 100% du poids du polyol PE3.
Le polyol P3 peut également être un polyol allongé produit par réaction entre le polyester polyol PE3 et un polyisocyanate avec un défaut de fonctions NCO, tel que décrit pour le polyol P1. Le Polyol P4 pouvant être utilisé lors de la préparation du poly(ester-uréthane) peut notamment permettre de compatibiliser le polyisocyanate avec les polyols P1 , P2, et/ou P3. Le polyol P4 peut notamment être tel que défini ci-dessus pour le composant polyol b).
Selon un mode de réalisation particulier, le polyol P4 comprend un polyol aliphatique, plus particulièrement le néopentylglycol, le triméthylolpropane, le pentaérythritol, glycérine, les dérivés alkoxylés, notamment éthoxylés et/ou propoxylés, des polyols cités ci-dessus et leurs mélanges.
Le composant gras CG pouvant être utilisé lors de la préparation du poly(ester-uréthane) permet notamment de faciliter la mise en émulsion ultérieure des particules de poly(ester-urée-uréthane) qui seront obtenues avec le poly(ester-uréthane). Le composant gras CG peut être tel que défini pour le composant gras e) pouvant entrer dans la préparation du polyol PE1 .
Selon un mode de réalisation, le composant gras CG est un alcool gras e3) tel que défini ci-dessus.
Le poly(ester-uréthane) obtenu par le procédé décrit ci-dessus peut être allongé pour former un po ly (este r- u ré e- u réth a n e) .
Polv(ester-urée-uréthane')
Le poly(ester-urée-uréthane) selon l’invention comprend
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ; et
- des liaisons ester, urée et uréthane.
Le poly(ester-urée-uréthane) selon l’invention peut notamment correspondre à un mélange de poly(ester-urée-uréthane) ou à une distribution de poly(ester-urée-uréthane) ayant un nombre différent de groupes acides ayant un pKa inférieur à 3, liaisons ester, liaisons urée et liaisons uréthane.
Selon un mode de réalisation particulier, le poly(ester-urée-uréthane) peut en outre comprendre une liaison amide.
Le poly(ester-urée-uréthane) selon l’invention peut comprendre un faible nombre de fonctions hydroxyle. La teneur en fonctions hydroxyles du poly(ester-urée-uréthane) peut notamment être estimée par l’indice OH. Selon un mode de réalisation, le poly(ester-urée-uréthane) peut présenter un indice OH inférieur à 120 mg KOH/g, en particulier inférieur à 60 mg KOH/g, plus particulièrement inférieur à 40 mg KOH/g, de manière plus particulière inférieur à 20 mg KOH/g, plus particulièrement encore inférieur à 10 mg KOH/g. L’indice OH peut notamment être mesuré selon la méthode décrite ci-après.
Selon un mode de réalisation particulier, le poly(ester-urée-uréthane) selon l’invention ne comprend pas de fonctions amine. La teneur en fonctions amine du poly(ester-urée-uréthane) peut notamment être estimée par l’indice d’amine. Selon un mode de réalisation, le poly(ester-urée-uréthane) peut présenter un indice d’amine inférieur à 20 mg KOH/g, en particulier inférieur à 10 mg KOH/g, plus particulièrement inférieur à 1 mg KOH/g, plus particulièrement encore inférieur à 0,1 mg KOH/g. L’indice d’amine peut notamment être mesuré selon la méthode décrite ci-après.
Le poly(ester-urée-uréthane) selon l’invention peut comprendre des chaînes grasses saturées et/ou des chaînes grasses insaturées. Selon un mode de réalisation particulier, le poly(ester-urée- uréthane) peut présenter une teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées de 0%. On dit alors que le poly(ester-urée-uréthane) a une teneur en huile nulle (« oil- free polyester ») Selon un autre mode de réalisation particulier, le poly(ester-urée-uréthane) peut présenter une teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées d’au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40% par rapport au poids total du poly(ester-urée-uréthane). La teneur en chaînes grasses saturées et/ou en chaînes grasses insaturées peut notamment être calculée selon la méthode décrite ci-après. On dit alors que le poly(ester-urée-uréthane) est un alkyde-urée-uréthane.
Le poly(ester-urée-uréthane) selon l’invention comprend des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée. Les groupes acides ayant un pKa inférieur à 3 peuvent notamment permettre d’obtenir une auto-émulsification du poly(ester- urée-uréthane) en phase aqueuse. Le choix d’un pKa inférieur à 3 pour le groupe acide exclut les groupes acide carboxylique et carboxylate. Les groupes acides ayant un pKa inférieur à 3 peuvent notamment être tels que décrits précédemment pour le poly(ester-uréthane).
Le poly(ester-urée-uréthane) peut éventuellement être sous forme réticulée. La réticulation du poly(ester-urée-uréthane) peut être caractérisée par Analyse Mécanique Dynamique (DMA) tel que défini ci-après. La réticulation peut être présente au sein même des particules qui seront obtenues après mise en émulsion du poly(ester-urée-uréthane). Ainsi, les particules peuvent être préréticulées avant la coalescence menant à la formation d’un film.
Le poly(ester-urée-uréthane) peut notamment comprendre moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que de l’eau.
Le poly(ester-urée-uréthane) peut notamment comprendre moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1 %, plus particulièrement encore moins de 0,1%, en poids d’amine volatile, telle que la triéthylamine.
Le poly(ester-urée-uréthane) peut notamment comprendre moins de 2%, en particulier moins de 1%, plus particulièrement moins de 0,01%, en poids de catalyseur d’uréthanisation à base de métal. Des exemples de catalyseur d’uréthanisation sont des composés organométalliques, notamment à base d’étain, de cadmium, de zirconium, de zinc, de titane ou de bismuth, tels que notamment le dilaurate de dibutylétain, l’oxyde de dibutylétain ou le néodécanoate de bismuth.
Le poly(ester-urée-uréthane) peut notamment être obtenu par le procédé décrit ci-après.
Procédé de préparation du polv(ester-urée-uréthane)
Le poly(ester-urée-uréthane) selon l’invention peut être obtenu par réaction d’allongement du poly(ester-uréthane) tel que défini précédemment dans de l’eau. Cette réaction d’allongement peut notamment correspondre à la formation de liaisons urée sur les fonctions isocyanates du poly(ester- uréthane).
La réaction d’allongement peut être réalisée en présence d’un composant polyamine de fonctionnalité allant de 2 à 6, en particulier de 2,25 à 6, plus particulièrement de 2,5 à 6, plus particulièrement encore de 3 à 6, le rapport molaire entre les fonctions amine du composant polyamine éventuel et les fonctions isocyanate du poly(ester-uréthane) étant de 0,01 à 3, en particulier de 0,2 à 1 ,5, plus particulièrement de 0,5 à 1 .
Le composant polyamine comprend une polyamine. Le composant polyamine peut comprendre un mélange de polyamines. Lorsque le composant polyamine comprend une seule polyamine, la fonctionnalité du composant polyamine correspond à la fonctionnalité de la polyamine. Lorsque le composant polyamine comprend un mélange de polyamines, la fonctionnalité du composant polyamine correspond à la fonctionnalité moyenne en nombre de fonctions amine des polyamines utilisées dans le mélange.
Selon un mode de réalisation particulier, la réaction d’allongement est réalisée en présence d’un composant polyamine ayant une fonctionnalité de 2,25 à 6, en particulier de 2,5 à 6, plus particulièrement de 3 à 6. Le poly(ester-urée-uréthane) obtenu dans ces conditions est avantageusement sous forme réticulée.
Alternativement, la réaction d’allongement peut se faire dans l’eau, sans ajout de réactif supplémentaire. En effet, une partie des fonctions isocyanate du poly(ester-uréthane) peut réagir avec l’eau pour former des fonctions amine primaire qui peuvent alors réagir avec les fonctions isocyanate résiduelles du poly(ester-uréthane) et former des liaisons urée.
La réaction d’allongement peut notamment être réalisée à une température de 10 à 100°C, en particulier de 20 à 80°C, plus particulièrement de 30 à 70°C.
Avant la réaction d’allongement, on peut éventuellement réaliser une neutralisation partielle ou totale des groupes acides du poly(ester-uréthane). Cette neutralisation partielle ou totale peut notamment être réalisée par ajout d’une base dans le poly(ester-uréthane). Si les groupes acides du poly(ester- uréthane) sont déjà sous forme partiellement ou totalement neutralisée, l’étape de neutralisation n’est pas nécessaire. Selon un mode de réalisation particulier, la base utilisée pour la neutralisation est choisie parmi une amine tertiaire, un hydroxyde métallique, un alcoolate et un ammonium quaternaire, en particulier un hydroxyde alcalin, plus particulièrement KOH, LiOH et NaOH.
Selon un mode de réalisation particulier, le poly(ester-uréthane) est dispersé dans l’eau. La dispersion peut notamment être réalisée par addition progressive d’eau dans le poly(ester-uréthane) et inversion de phase ou par addition de le poly(ester-uréthane) dans de l’eau.
Une fois que le poly(ester-uréthane) est dispersé dans l’eau, on peut éventuellement ajouter le composant polyamine. Le composant polyamine peut être ajouté tel quel ou dilué dans de l’eau.
Le composant polyamine pouvant être utilisé dans la réaction d’allongement peut notamment comprendre une polyamine aliphatique, cycloaliphatique ou aromatique, en particulier aliphatique.
Selon un mode de réalisation, le composant polyamine comprend une polyalkylèneamine, notamment une polyéthylèneamine. Une polyalkylèneamine est une polyamine dans laquelle les fonctions amines sont liées les unes aux autres par un pont alkylène, notamment un pont éthylène. Une polyalkylèneamine peut notamment être aliphatique ou cycloaliphatique, en particulier aliphatique.
Une polyalkylèneamine aliphatique peut notamment être représentée par la formule (I) suivante : [Chem 1] avec n = 2 à 6, en particulier n = 2 ; m = 0 à 6 ; chaque R3 est indépendamment H ou alkyle en C1-C6, en particulier H ou méthyle, plus particulièrement H ; chaque R4 est indépendamment H ou alkyle en C1-C6, en particulier H ou méthyle, plus particulièrement H ; chaque Z est indépendamment H ou -(CR3R4)n-NH2, en particulier Z est H.
Selon un mode de réalisation particulier, la polyalkylèneamine aliphatique est représentée par la formule (I) ci-dessus, dans laquelle n = 2, plus particulièrement n = 2 et Z est H.
Des exemples de polyalkylèneamines aliphatiques sont éthylènediamine, diéthylènetriamine, triéthylènetétramine, tétraéthylènepentamine, 3,3,5-triméthyl-1 ,6-hexanediamine, 3,5,5-triméthyl- 1 ,6-hexanediamine, 2-méthyl-1 ,5-pentanediamine, A/,A/'-bis-(3-aminopropyl)-1 ,2-éthanediamine et A/-(3-aminopropyl)-1 ,2-éthanediamine. L’utilisation d’une polyalkylèneamine ayant une fonctionnalité supérieure à 2, en particulier supérieur à 3, ou d’un mélange de polyalkylèneamines ayant une fonctionnalité moyenne de 2,25 à 6, en particulier de 2,5 à 6, permet avantageusement d’obtenir des particules de poly(ester-urée-uréthane) sous forme réticulée.
On peut également utiliser des polyalkylèneamines cycloaliphatiques comprenant un motif pipérazine. Une polyalkylèneamine cycloaliphatique comprenant un motif pipérazine peut notamment être représentée par la formule (II) suivante :
[Chem 2] dans laquelle chaque Y est indépendamment H ou -(CR3R4)n-[N(Z)-(CR3R4)n]m-NH2 ; m, n, R3, R4 et Z étant tels que définis ci-dessus pour la formule (I).
Selon un mode de réalisation particulier, la polyalkylèneamine cycloaliphatique est représentée par la formule (I) ci-dessus, dans laquelle n = 2, plus particulièrement n = 2 et Z est H.
Des exemples de polyalkylèneamines cycloaliphatiques sont pipérazine, N-aminoéthylpipérazine et A/,A/'-bis-(2-aminoéthyl)pipérazine. On peut également utiliser des polyalkylèneamines cycloaliphatiques comprenant un motif cyclohexyle. Des exemples de polyalkylèneamines cycloaliphatiques comprenant un motif cyclohexyle sont 1 ,2-diaminocyclohexane, 1 ,3-diaminocyclohexane, 1 ,4-diaminocyclohexane, isophorone diamine, 3,3'-diméthyl-4,4'-diaminodicyclohexylméthane, 4,4'- diaminodicyclohexylméthane et 2,4'-diaminodicyclohexylméthane.
Selon un autre mode de réalisation, le composant polyamine comprend une polyétheramine. Une polyétheramine est une polyamine comprenant des liaisons éther (-O-), plus particulièrement des motifs oxyde d’éthylène (-O-Chb-Ctte) et/ou oxyde de propylène (-O-CH2-CHCH3-).
Des exemples de polyétheramines sont les composés commercialisés par Hunstmann sous la référence Jeffamine®, notamment les séries Jeffamine® D, ED et EDR (diamines) et ou la série Jeffamine® T (triamines). Ces séries incluent notamment les références suivantes Jeffamine®D- 230, Jeffamine® D-400, Jeffamine® D-2000, Jeffamine® D-4000, Jeffamine® ED-600, Jeffamine® ED-900, Jeffamine® ED-2003, Jeffamine® EDR-148, Jeffamine® EDR-176, Jeffamine® T-403, Jeffamine® T-3000 et Jeffamine® T-5000.
Selon un autre mode de réalisation, le composant polyamine comprend un adduit époxy-amine. Un adduit époxy amine peut notamment être obtenu en faisant réagir un excès de polyamine sur un composé époxy. La polyamine peut être telle que décrite précédemment. Le composé époxy peut notamment être un composé comprenant plusieurs fonctions époxy, tel que notamment le bisphénol A diglycidyl éther, l’éthylène glycol diglycidyl éther, le butanediol diglycidyl éther et le triméthylpropanol triglycidyl éther.
Dispersion aqueuse
La dispersion aqueuse selon l’invention comprend le poly(ester-uréthane) tel que défini ci-dessus ou le poly(ester-urée-uréthane) tel que défini ci-dessus.
Les groupes acides du poly(ester-uréthane) ou du poly(ester-urée-uréthane) sont sous forme partiellement ou totalement neutralisée.
La dispersion aqueuse de l’invention peut notamment comprendre des particules de polymère, notamment des particules de poly(ester-uréthane) ou de poly(ester-urée-uréthane), dispersées dans une phase aqueuse.
La phase aqueuse est un liquide comprenant de l’eau. Ce liquide peut en outre comprendre un solvant autre que l’eau, comme, par exemple, l’éthanol ou l’isopropanol. De préférence, la phase aqueuse comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau, notamment acétone et xylène.
La phase organique peut être une phase polymère comprenant le poly(ester-uréthane) ou le poly(ester-urée-uréthane) tels que définis ci-dessus. Une dispersion ayant une phase organique liquide peut correspondre à une émulsion. Une dispersion ayant une phase organique solide ou semi-solide peut correspondre à une suspension colloïdale. Dans le domaine des polymères, de telles suspensions colloïdales peuvent également être considérées comme des émulsions et leur procédé de préparation est connu sous le nom de polymérisation en émulsion. Un autre terme fréquemment utilisé pour caractériser une dispersion aqueuse de particules de polymère est « latex ». Selon un mode de réalisation, la dispersion aqueuse comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1 %, en poids de solvant autre que l’eau.
Les groupes acides ayant un pKa inférieur à 3 présents sur le poly(ester-uréthane) ou le poly(ester- urée-uréthane), peuvent suffire à obtenir une auto-émulsification du poly(ester-uréthane) ou du poly(ester-urée-uréthane) en phase aqueuse. Selon un mode de réalisation, la dispersion aqueuse comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de tensioactif additionnel.
La dispersion aqueuse peut notamment comprendre moins de 2%, en particulier moins de 1%, plus particulièrement moins de 0,01%, en poids de catalyseur d’uréthanisation à base de métal tel que défini ci-dessus.
Selon un mode de réalisation, la dispersion aqueuse présente une teneur en solides de 5 à 70%, en particulier de 10 à 60%, plus particulièrement de 30 à 50% en poids.
La dispersion aqueuse peut notamment présenter un pH de 5 à 9, en particulier de 6 à 8, plus particulièrement de 6,5 à 7,5.
La viscosité de la dispersion aqueuse peut notamment aller de 1 à 10 000 mPa s, en particulier 50 à 2 000 mPa s, plus particulièrement 100 à 1 000 mPa.s. La viscosité peut être mesurée à 25°C selon la méthode de mesure décrite ci-après.
Les particules de polymère peuvent notamment présenter une taille moyenne de 10 à 1000 nm, en particulier de 40 à 300 nm, plus particulièrement de 50 à 200 nm. La taille moyenne des particules peut être mesurée selon la méthode de mesure décrite ci-après.
Selon un mode de réalisation, la dispersion aqueuse comprend des particules de poly(ester-urée- uréthane) sous forme réticulée. La réticulation du poly(ester-urée-uréthane) peut être caractérisée par Analyse Mécanique Dynamique (DMA) tel que défini ci-après.
La dispersion aqueuse selon l’invention peut notamment être obtenue par le procédé décrit ci-après. Procédé de préparation de la dispersion aqueuse
Le procédé de préparation d’une dispersion aqueuse selon l’invention peut notamment comprendre les étapes suivantes :
- préparation d’au moins un polyol P1 ou préparation d’au moins un polyol P2 et d’au moins un polyol P3 tels que définis ci-dessus ;
- préparation d’un poly(ester-uréthane) par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG ou par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P2, d’au moins un polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, la polyaddition s’effectuant avec un rapport molaire des fonctions NCO/(OH + amine éventuelle) supérieur à 1 , en particulier de 1 ,1 à 3, plus particulièrement de 1 ,5 à 2 ;
- en option neutralisation partielle ou totale des groupes acides du poly(ester-uréthane) par ajout d’une base;
- dispersion du poly(ester-uréthane) dans de l’eau ; et
- en option réaction d’allongement du poly(ester-uréthane), éventuellement en présence d’un composant polyamine de fonctionnalité allant de 2 à 6, en particulier de 2,25 à 6, plus particulièrement de 2,5 à 6, plus particulièrement encore de 3 à 6, le rapport molaire entre les fonctions amine du composant polyamine éventuel et les fonctions isocyanate du poly(ester- uréthane) étant de 0,01 à 3, en particulier de 0,2 à 1 ,5, plus particulièrement de 0,5 à 1.
L’étape de préparation du polyol P1 ou l’étape de préparation du polyol P2 et du polyol P3 peut notamment être telle que définie ci-dessus dans le procédé de préparation du poly(ester-uréthane). Le polyol P1 ou les polyols P2 et P3 obtenus dans cette étape sont directement utilisés dans l’étape suivante de préparation d’un poly(ester-uréthane).
L’étape de polyaddition du polyisocyanate, du polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG ou l’étape de polyaddition du polyisocyanate, du polyol P2, du polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG peut notamment être telle que définie ci-dessus dans le procédé de préparation du poly(ester-uréthane).
L’étape de neutralisation optionnelle peut notamment être telle que définie ci-dessus dans le procédé de préparation du poly(ester-urée-uréthane).
L’étape de dispersion du poly(ester-uréthane) dans de l’eau peut notamment être telle que définie ci-dessus dans le procédé de préparation du poly(ester-urée-uréthane). La réaction d’allongement optionnelle peut notamment être telle que définie ci-dessus dans le procédé de préparation du poly(ester-urée-uréthane).
Composition de revêtement, d’adhésif ou de mastic
La composition de revêtement, d’adhésif ou de mastic selon l’invention comprend un poly(ester- uréthane) et/ou un poly(ester-urée-uréthane) et/ou une dispersion aqueuse tels que définis ci- dessus.
La composition de revêtement, d’adhésif ou de mastic est de préférence une composition aqueuse.
Le poly(ester-uréthane), le poly(ester-urée-uréthane) et/ou la dispersion aqueuse peuvent notamment jouer le rôle de liant dans la composition.
La composition peut en outre comprendre une autre dispersion aqueuse de polymère autre que la dispersion aqueuse selon l’invention.
L’autre dispersion aqueuse peut-être à base de résines et/ou polymères et/ou copolymères de Mw < 200000 g/mol, de préférence choisis parmi les résines alkydes non modifiées ou modifiées ou traitées par traitement oxydant, telles que celles décrites dans la demande de brevet WO 2004/069933, les polymères ou copolymères acryliques (y compris styrène-acrylique ou styrène- anhydride maléique), les résines d’hydrocarbures, les résines de colophane, les polyuréthanes, les polyuréthanes/acryliques, les polyesters saturés ou insaturés, les oligomères (méth)acryliques multifonctionnels, tels que les époxyacrylates, les uréthane-acrylates et les acrylates acrylés. Ces résines et/ou polymères ou copolymères peuvent être dispersés à l’aide de tensioactifs ou à l’aide de groupements hydrophiles dans leur structure, les rendant auto-dispersibles.
La composition peut en outre comprendre un composé additionnel choisi parmi un agent rhéologique, un épaississant, un agent dispersant et/ou stabilisant (tensioactif, émulsifiant), un agent mouillant, une charge, un fongicide, un bactéricide, un plastifiant, un agent antigel, une cire, un colorant, un pigment, un agent de nivellement, un absorbeur UV, un antioxydant, un solvant, un promoteur d’adhérence et leurs mélanges.
Selon un mode de réalisation, la composition comprend un agent siccativant. Les agents siccativants sont typiquement des sels métalliques, notamment des sels de cadmium, étain, cobalt, manganèse, zirconium, plomb, fer et calcium, de composés organiques comme, par exemple, d’acides gras. Selon un autre mode de réalisation, la composition ne comprend pas d’agent siccativant et sèche simplement avec l’oxygène de l’air. L’agent siccativant permet d’augmenter la vitesse de polymérisation de compositions filmogènes comprenant des liaisons éthyléniquement insaturées. Lorsque les particules de polymère sont sous forme réticulée dans la dispersion aqueuse, il suffit que la phase aqueuse s’élimine naturellement par séchage pour obtenir un revêtement ayant de bonnes propriétés mécaniques. Dans ce cas, l’utilisation d’un agent siccativant n’est pas nécessaire.
Selon un mode de réalisation, la composition selon l’invention peut-être une composition bi- composante comprenant :
- Composant 1 : un poly(ester-uréthane) et/ou un poly(ester-urée-uréthane) et/ou une dispersion aqueuse selon l’invention ; et
- Composant 2 : un agent réticulant choisi parmi la mélamine, un polyisocyanate (en particulier un polyisocyanate bloqué), un polyanhydride ou un polysilane (en particulier polysilane bloqué par alcoxy).
Un agent réticulant peut notamment être utilisé lorsque le poly(ester-uréthane) ou le poly(ester-urée- uréthane) a une longueur en huile nulle (« oil free polyester ») et présente des fonctions amines primaires ou secondaires.
La composition selon l’invention peut être appliquée sur une grande diversité de substrats, incluant du bois, du métal, de la pierre, du plâtre, du béton, du verre, du tissu, du cuir, du papier, un plastique, un composite. L’application peut être réalisée de manière conventionnelle, notamment avec un pinceau ou un rouleau, par spray, immersion ou recouvrement.
La composition peut notamment être utilisée pour obtenir un film, un vernis, une laque, une lasure, un primaire d’adhésion, une peinture, une encre, un adhésif ou un mastic.
Après application de la composition, la phase aqueuse peut être éliminée naturellement par séchage à l’air libre, notamment à température ambiante ou en chauffant.
Ainsi, l’invention concerne également un revêtement, un adhésif ou un mastic obtenu par application et séchage de la composition selon l’invention. Utilisation en tant que liant
L'invention concerne également l'utilisation d’un poly(ester-uréthane) et/ou d’un poly(ester-urée- uréthane) et/ou d’une dispersion aqueuse tels que définis ci-dessus en tant que liant, en particulier en tant que liant dans une composition de revêtement, d’adhésif ou de mastic. Plus particulièrement, cette utilisation concerne des revêtements, adhésifs ou mastics aqueux décoratifs ou industriels sélectionnés parmi les films, vernis, laques, lasures, primaires d’adhésion, peintures, encres, adhésifs ou mastics.
Ces revêtements conviennent pour substrats sélectionnés parmi du bois, du métal, de la pierre, du plâtre, du béton, du verre, du tissu, du cuir, du papier, un plastique, un composite. L’invention est illustrée par les exemples non-limitatifs suivants.
Exemples
Méthodes de mesure
Les méthodes de mesure utilisées dans la présente demande sont décrites ci-dessous : Indice NCO L’indice NCO (INCO exprimé en mg KOH par gramme de produit) est mesuré par dosage avec un titrimètre Metrohm (848 titrino plus) équipé d’une sonde de mesure Metrohm de référence 6.0229.100. L’échantillon à analyser est pesé dans un erlenmeyer de 250 ml à vis. On ajoute 50 ml d’acétone et on ferme hermétiquement l’erlenmeyer. L’échantillon est complètement dissout par agitation magnétique en chauffant si nécessaire. Si la dissolution de l’échantillon a nécessité un chauffage, on laisse le mélange revenir à température ambiante avant l’opération suivante. On ajoute 15 mL de dibutylamine à 0,15 N dans du toluène à l’aide d’une pipette de précision de 15 mL. On bouche hermétiquement l’erlenmeyer et on laisse réagir 15 minutes sous agitation lente. On ajoute 100 mL d’isopropanol en prenant soin de rincer les parois de l’erlenmeyer. On titre sous agitation magnétique avec de l’acide chlorhydrique 0,1 N aqueux, selon la méthode d'utilisation du titrimètre choisi. Dans les mêmes conditions, on effectue un dosage à blanc (sans prise d’échantillon). L’indice NCO est calculé selon l’équation suivante :
(VB - VE) X NT X 56,1 lNco(mgKOH/g) = M avec
VE = Volume de titrant versé pour le dosage de l’échantillon (mL) VB = Volume de titrant versé pour le dosage du blanc (mL)
NT = Normalité du titrant (0,1 N)
M = Masse de l’échantillon (g).
Indice OH
L’indice OH est mesuré selon la norme ISO 2554 (octobre 1998).
Indice d’acide
L’indice d’acide est mesuré selon la norme ISO 2114 (novembre 2000). Indice d’amine
L’indice d’amine (IAM exprimé en mg KOH par gramme de produit) est mesuré par dosage acido- basique direct dans les conditions suivantes : un poids exact p de produit (exactement 1 gramme) est dissout dans environ 40 ml d'acide acétique glacial. On dose la basicité par une solution d'acide perchlorique dans l'acide acétique glacial de titre normal N (en Eq/I) exact d'environ 0,1 N. Le point équivalent est détecté par une électrode de verre (remplie avec une solution de perchlorate de lithium à 1 mole par litre dans l'acide acétique glacial) asservissant une burette automatique (appareil de titration automatique « 716 DMS Titrino »® Metrohm) délivrant le volume équivalent VE. On calcule l'indice d'amine (IAM) par la formule suivante :
VE X N X 56,1 IAM (mg avec
VE = Volume équivalent (mL)
N = Normalité du titrant (Eq/L) p = Masse de l’échantillon (g). Teneur en chaînes grasses
La teneur en chaînes grasses correspond au pourcentage en poids de composant gras (acide gras saturé, acide gras insaturé, alcool gras) par rapport au poids de l’ensemble des constituants entrant dans la préparation du poly(ester-uréthane) ou du poly(ester-urée-uréthane).
Indice d’iode moyen L’indice d’iode moyen est mesuré selon la norme ISO 3961 (août 2018).
Réticulation /DMA
La présence d'une réticulation peut démontrée par Analyse Mécanique Dynamique (ou DMA en anglais). Cette technique permet d'enregistrer les modules de conservation (G') et de perte (G") d'un matériau en fonction de la température. On définit également le rapport G'VG’ comme étant le facteur de perte ou la tangente delta (tan delta) d'un matériau. La transition vitreuse d'un matériau correspond à la température pour laquelle la valeur de cette tangente est maximale (Ta).
Un échantillon est réticulé lorsque le module de conservation G' présente un plateau après la transition vitreuse. D'autre part, dans ce cas le facteur de perte (tan delta) tend vers zéro.
Les mesures des modules de conservation (G') et de perte (G") ont été réalisées sur un appareil Rheometric Scientific RSA II piloté par le logiciel RSI Orchestrator, avec une montée en température de -50°C à 200°C, par paliers de 3°C et stabilisation de 20 secondes par pallier, en soumettant un échantillon sous forme de film d'épaisseur d’environ 20 microns et de dimension 7*6 mm (longueur utile entre mors ajustable entre 5 et 6 mm, ces valeurs de forme d’échantillon étant prises en compte dans le calcul des modules par le logiciel) à une sollicitation sinusoïdale en traction en mode force tracking de 110% avec une force statique initiale de 2g, un taux de déformation de 0.05% et une fréquence de 1Hz . Viscosité
La viscosité est mesurée à 25°C avec un viscosimètre Brookfield (DV-II+) équipé d’un mobile cylindrique S34 tournant à 1 tr/min. La température est maintenue constante avec un système de régulation de température par une circulation d’eau. Taille moyenne des particules
La taille moyenne des particules est mesurée par granulométrie laser sur un appareil LS230 (Beckman Coulter). L’échantillon est pré-dilué dans de l’eau déminéralisée sous agitation magnétique, puis introduit dans la cuve de granulométrie à la concentration optimale pour la mesure (liée à l’obscuration du faisceau laser). Le modèle optique utilisé est : n = 1.55 - 0,1 i. La taille moyenne des particules correspond au diamètre D43 qui est le diamètre moyen en volume (diamètre moyen de De Brouckere).
Dureté Persoz
La Dureté Persoz est mesurée selon la norme ISO 1522 (mars 2007).
Matériaux Les matériaux utilisés dans les exemples sont décrits ci-dessous :
- néopentyl glycol de Perstorp
- triméthylolpropane de Perstorp
- sel de lithium de l’acide sulfoisophtalique de Sigma-Aldrich
- sel de sodium de l’acide sulfoisophtalique de Sigma-Aldrich - acide sulfosuccinique sous la forme d’une solution à 70% massique dans l’eau de Sigma-Aldrich
- sel de sodium de l’acide métasulfobenzoique de Sigma-Aldrich
- sel de sodium du diméthylester de l’acide sulfoisophtalique de TCI
- acide adipique de Bayer
- acide sébacique de Sigma-Aldrich - diéthyle malonate de Sigma-Aldrich
- acide gras de ricin déshydraté vendu sous la référence Nouracid® DE554 par Oléon
- BuSnOOH vendu sous la référence Fascat® 4100 par PMC organometallix
Exemple 1 : Préparation d’un polyester polvol PE2(a)
Du néopentyl glycol (283,82 g) a été chauffé à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de lithium de l’acide sulfoisophtalique a été introduit (177,98 g). La température a été maintenue entre 165°C et 175°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 10 mg KOH/g. L’acide adipique (200,40 g) a ensuite été introduit et le milieu réactionnel maintenu entre 175°C et 185°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 12 mg KOH/g. Exemple 2 : Préparation d’un polyester polvol PE2(b)
Du néopentyl glycol (141 ,91 g) a été chauffé à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de sodium de l’acide sulfoisophtalique a été introduit (70,00 g). La température a été maintenue entre 165°C et 175°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 10 mg KOH/g. L’acide adipique (114,42 g) a ensuite été introduit et le milieu réactionnel maintenu entre 175°C et 185°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 12 mg KOH/g.
Exemple 3 : Préparation d’un polyester polvol PE2(c)
Du néopentyl glycol (283,82 g) a été chauffé à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de lithium de l’acide sulfoisophtalique a été introduit (177,98 g). La température a été maintenue entre 165°C et 170°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 10 mg KOH/g. L’acide sébacique (262,74 g) a ensuite été introduit et le milieu réactionnel maintenu entre 175°C et 185°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 12 mg KOH/g.
Exemple 4 : Préparation d’un polyester polvol PE2(d)
Du néopentyl glycol (141 ,91 g) et de l’acide sulfosuccinique (99,93 g) ont été introduits dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Une solution aqueuse de soude à 9,681 mol/kg (36,12 g) a été ajoutée en 20 minutes à débit constant (1 ,806 g/min). Le mélange a été chauffé à 130°C pendant 1 heure afin de distiller une 1ère partie de l’eau. Le réacteur a ensuite été mis sous vide (0,4 bar). L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 20 mg KOH/g. L’acide adipique (101 ,83 g) a été introduit et la température a été maintenue entre 135°C et 145°C. L’eau formée a été distillée sous vide (0,4 bar) jusqu’à obtenir un indice d’acide inférieur à 12 mg KOH/g
Exemple 5 : Préparation d’un polyester polvol PE1 (a)
Du triméthylolpropane (70,0 g) a été chauffé à 150°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de sodium de l’acide métasulfobenzoique (40,0 g) a été introduit. Le milieu réactionnel a été chauffé à 205°C et l’eau formée par la réaction distillée jusqu’à obtenir un indice d’acide inférieur à 10mg KOH/g. L’acide adipique (40,0 g) a été introduit et la température a été maintenue entre 215°C et 225°C. L’eau produite a été distillée jusqu’à obtenir un indice d’acide inférieur à 20 mg KOH/g. L’acide gras de ricin déshydraté (130,0 g) a été introduit. L’eau produite a été distillée et la température maintenue entre 215°C et 225°C jusqu’à obtenir un indice d’acide inférieur à 20 mg KOH/g.
Exemple 6 : Préparation d’un polyester polvol PE3(a)
Du pentaérythritol (242,15 g), de l’acide benzoïque (385,69 g) et de l’acide gras de ricin déshydraté (537,41 g) ont été introduits dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le mélange réactionnel a été chauffé entre 230°C et 240°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 5 mg KOH/g. Exemple 7 : Préparation d’un polyester polvol PE3(b)
Du triméthylolpropane (146,34 g), de l’acide benzoïque (81 ,27 g), de l’anhydride phtalique (56,81 g) et de l’acide gras de ricin déshydraté (250,00 g) ont été introduits dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le mélange réactionnel a été chauffé entre 230°C et 240°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 5 mg KOH/g.
Exemple 8 : Préparation d’un polv(ester-urée-uréthane) avec un PE1
Le PE1 (a) de l’exemple 5 (75,0 g) a été mélangé avec de l’IPDI (25,23 g). Le mélange a été chauffé jusqu’à 110°C en contrôlant l’exothermie. La température a été maintenue jusqu’à ce que l’indice d’isocyanate soit inférieur à 65 mg KOH/g. La température a été réduite à 95°C. Le produit obtenu a été mis en émulsion en ajoutant de l’eau distillée (140,0 g) sous agitation à une vitesse de 300 tr/min en maintenant la température à 95°C (débit d’introduction de l’eau = 140 g/heure). L’émulsion a été maintenue à 95°C jusqu’à obtenir un indice d’isocyanate inférieur à 2 mg KOH/g. L’indice d’OH est de 0 mg KOH/g.
Exemple 9 : Préparation d’un polv(ester-urée-uréthane) avec un PE2 et un PE3
Les différents réactifs utilisés dans cet exemple sont décrits dans le tableau ci-dessous. Un polyester polyol PE2 (25,0 g) a été chauffé à 110°C, puis introduit dans un réacteur contenant de l’IPDI (25,52 g) à 80°C. Le mélange a été chauffé jusqu’à 110°C en contrôlant l’exothermie. La température a été maintenue à 110°C pendant 1 heure. Un polyester polyol PE3 (50,0 g) a été ensuite introduit en 1 heure (débit d’introduction = 50 g/heure). Le milieu réactionnel a été maintenu à 110°C jusqu’à obtenir un indice d’isocyanate inférieur à 50 mg KOH/g. La température a été réduite à 95°C. Le produit obtenu a été mis en émulsion en ajoutant de l’eau distillée (145,0 g) sous agitation à une vitesse de 300 tr/min en maintenant la température à 95°C (débit d’introduction de l’eau = 14,5 g/min). Après introduction de l’eau, la température de l’émulsion a été abaissée à 40°C. L’indice d’isocyanate (INCO) a été mesuré (en mg KOH/g) afin de calculer la masse de polyamine nécessaire pour la réaction d’allongement. La polyamine a ensuite été ajoutée au mélange réactionnel et la réaction maintenue sous agitation jusqu’à obtenir un indice d’isocyanate inférieur à 2 mg KOH/g. L’indice d’OH est de 0 mg KOH/g. Exemple 10 : Propriétés des polv(ester-urée-uréthane) préparés
Les poly(ester-urée-uréthane) des exemples 8 et 9 ont été appliqués sur une plaque de verre avec un tire-film pour former une couche ayant une épaisseur humide d’environ 100 pm. Le film a été séché sous atmosphère d’azote pendant 12h à température ambiante (20-25°C). La dureté Persoz a été mesurée 2h, 4h, 9h et 24h après l’application selon la méthode décrite précédemment.
Les poly(ester-urée-uréthane) selon l’invention présentent une excellente dureté Persoz. En outre, la dureté se développe rapidement puisque les revêtements présentent une bonne dureté seulement 2 heures après leur application. La courbe de DMA (Fig. 1) montre que le film après séchage obtenu avec le poly(ester-urée- uréthane) de l’exemple 9.3 est sous forme réticulée sans ajout d’agent siccativant externe.
Exemple 11 : Préparation d’un polyester polvol
Du néopentyl glycol (141 ,91 g) a été chauffé à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de sodium du dimethylester de l’acide sulfoisophtalique a été introduit (77,31 g). Du BuSnOOH (0,050g) a été introduit. La température a été augmentée puis maintenue 1 heure entre 195°C et 205°C. Le méthanol formé par la réaction a été distillé. L’acide adipique (114,42 g) a ensuite été introduit et le milieu réactionnel maintenu entre 175°C et 185°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 12 mg KOH/g. Exemple 12 : Préparation d’un polyester polvol
Du néopentyl glycol (141 ,91 g) a été chauffé à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Le sel de sodium du dimethylester de l’acide sulfoisophtalique a été introduit (77,31 g). Du BuSnOOH (0,050g) a été introduit. La température a été augmentée puis maintenue 1 heure entre 195°C et 205°C. Le méthanol formé par la réaction a été distillé. Le diéthyle malonate (130, 82g) a ensuite été introduit et le milieu réactionnel maintenu entre 175°C et 185°C pendant 8 heures. L’éthanol formé par la réaction a été distillé. Exemple 13 : Préparation d’un polyester polvol
Du néopentyl glycol (249,19 g) et de l’acide adipique (314,34 g) ont été chauffés à 165°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. La température a été augmentée puis maintenue entre 210°C et 220°C. L’eau formée par la réaction a été distillée jusqu’à obtenir un indice d’acide inférieur à 10 mg KOH/g
Exemple 14 : Préparation d’un polyester polvol
Du néopentyl glycol (249,19 g) et du diéthyle malonate (354,85 g) ont été chauffés à 180°C dans un réacteur équipé d’une colonne de distillation et d’un agitateur à pâles inclinées. Du BuSnOOH (0,100g) a été introduit et le milieu réactionnel maintenu entre 175°C et 185°C pendant 16 heures. L’éthanol formé par la réaction a été distillé.
Exemple 15 : Préparation d’un polv(ester-urée-uréthane)
Le polyester polyol de l’exemple 11 (25,0 g) a été chauffé à 110°C, puis introduit dans un réacteur contenant de l’IPDI (25,52 g) à 80°C. Le mélange a été chauffé jusqu’à 110°C en contrôlant l’exothermie. La température a été maintenue à 110°C pendant 30 minutes. De l’octanol (Aldrich) (12,75 g) a été ensuite introduit. Le milieu réactionnel a été maintenu à 110°C jusqu’à obtenir un indice d’isocyanate inférieur à 70 mg KOH/g. La température a été réduite à 95°C. Le produit obtenu a été mis en émulsion en ajoutant de l’eau distillée (90,0 g) hors du système de chauffage sous agitation à une vitesse de 300 tr/min en maintenant la température à 95°C (débit d’introduction de l’eau = 9,0 g/min). Après introduction de l’eau, la température de l’émulsion a été abaissée et maintenue à 40°C. L’indice d’isocyanate (INCO) a été mesuré à 18,0 mg KOH/g. La tétraéthylène pentamine (1 ,49 g) a ensuite été ajoutée au mélange réactionnel et la réaction maintenue sous agitation jusqu’à obtenir un indice d’isocyanate inférieur à 2 mg KOH/g. L’indice d’OH est de 0 mg KOH/g.
Exemple 16 : Préparation d’un polv(ester-urée-uréthane) Le polyester polyol de l’exemple 11 (25,0 g) a été chauffé à 110°C, puis introduit dans un réacteur contenant de l’IPDI (25,52 g) à 80°C. Le mélange a été chauffé jusqu’à 110°C en contrôlant l’exothermie. La température a été maintenue à 110°C pendant 30 minutes. De l’octanol (Aldrich) (4,15 g) et le polyester polyol de l’exemple 13 (45,85 g) ont été introduits. Le milieu réactionnel a été maintenu à 110°C jusqu’à obtenir un indice d’isocyanate inférieur à 50 mg KOH/g. La température a été réduite à 95°C. Le produit obtenu a été mis en émulsion en ajoutant de l’eau distillée (140,0 g) hors du système de chauffage sous agitation à une vitesse de 300 tr/min en maintenant la température à 95°C (débit d’introduction de l’eau = 14,0 g/min). Après introduction de l’eau, la température de l’émulsion a été abaissée et maintenue à 40°C. L’indice d’isocyanate (INCO) a été mesuré à 13,8 mg KOH/g. La tétraéthylène pentamine (1 ,79 g) a ensuite été ajoutée au mélange réactionnel et la réaction maintenue sous agitation jusqu’à obtenir un indice d’isocyanate inférieur à 2 mg KOH/g. L’indice d’OH est de 0 mg KOH/g. Exemple 17 : Préparation d’un polv(ester-urée-uréthane')
Le polyester polyol de l’exemple 12 (25,0 g) a été chauffé à 110°C, puis introduit dans un réacteur contenant de l’IPDI (25,52 g) à 80°C. Le mélange a été chauffé jusqu’à 110°C en contrôlant l’exothermie. La température a été maintenue à 110°C pendant 30 minutes. De l’octanol (Aldrich) (4,15 g) et le polyester de l’exemple 14 (45,85 g) ont été introduits. Le milieu réactionnel a été maintenu à 110°C jusqu’à obtenir un indice d’isocyanate inférieur à 50 mg KOH/g. La température a été réduite à 95°C. Le produit obtenu a été mis en émulsion en ajoutant de l’eau distillée (140,0 g) hors du système de chauffage sous agitation à une vitesse de 300 tr/min en maintenant la température à 95°C (débit d’introduction de l’eau = 14,0 g/min). Après introduction de l’eau, la température de l’émulsion a été abaissée et maintenue à 40°C. L’indice d’isocyanate (INCO) a été mesuré à 14,1 mg KOH/g. La tétraéthylène pentamine (1 ,83 g) a ensuite été ajoutée au mélange réactionnel et la réaction maintenue sous agitation jusqu’à obtenir un indice d’isocyanate inférieur à 2 mg KOH/g. L’indice d’OH est de 0 mg KOH/g.

Claims

Revendications
1. Poly(ester-uréthane) caractérisé en ce qu’il comprend :
- des fonctions isocyanate;
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ;
- des liaisons ester et uréthane ;
- éventuellement une liaison amide ; et
- éventuellement une liaison urée.
2. Poly(ester-uréthane) selon la revendication 1 , caractérisé en ce qu’il présente une ou plusieurs caractéristiques choisies parmi :
- une masse moléculaire moyenne en nombre Mn de 250 à 10 000 g/mol, en particulier 500 à 7000 g/mol, plus particulièrement 1 000 à 5000 g/mol ;
- un indice NCO de 20 à 250 mg KOH/g, en particulier 30 à 200 mg KOH/g, plus particulièrement 50 à 150 mg KOH/g ;
- un indice OH inférieur à 20 mg KOH/g, en particulier inférieur à 10 mg KOH/g, plus particulièrement inférieur à 1 mg KOH/g, plus particulièrement encore inférieur à 0,1 mg KOH/g ;
- les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent 0% ou au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40%, du poids total du poly(ester- uréthane);
- il comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant ;
- il comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids d’amine volatile.
3. Poly(ester-uréthane) selon la revendication 1 ou 2, caractérisé en ce qu’il comprend des chaînes grasses saturées et/ou des chaînes grasses insaturées.
4. Poly(ester-uréthane) selon la revendication 3, caractérisé en ce que les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40%, du poids total du poly(ester-uréthane).
5. Poly(ester-uréthane) selon la revendication 1 ou 2, caractérisé en ce que les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent 0% du poids total du poly(ester-uréthane).
6. Poly(ester-uréthane) selon l’une quelconque des revendications 1 à 5, caractérisé en ce que les groupes acides ayant un pKa inférieur à 3 sont choisis parmi un groupe sulfonylé (-S(=0)20R), un groupe phosphonylé (-P(=0)(0R)2), un groupe sulfaté (-0-S(=0)20R), un groupe phosphaté (-0-P(=0)(0R)2) et leurs mélanges, chaque R étant indépendamment un atome d’hydrogène, un sel métallique ou une chaîne hydrocarbyle ; en particulier les groupes acides sont choisis parmi un groupe sulfonylé et un groupe phosphonylé ; plus particulièrement les groupes acides sont un groupe sulfonylé de formule -S(=0)20R chaque R étant indépendamment un atome d’hydrogène ou un sel métallique, notamment un sel de métal alcalin comme, par exemple, un sel de sodium, potassium ou lithium ou un sel divalent comme, par exemple, un sel de calcium, de magnésium ou d’aluminium.
7. Poly(ester-uréthane) selon l’une quelconque des revendications 1 à 6, caractérisé en ce qu’il est obtenu par :
- polyaddition d’au moins un polyisocyanate, d’au moins un polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, ledit polyol P1 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, éventuellement une chaîne grasse saturée et/ou une chaîne grasse insaturée et éventuellement une fonction amine; ou par
- polyaddition d’au moins un polyisocyanate, d’au moins un polyol P2, d’au moins un polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, ledit polyol P2 comprenant un groupe acide ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée, et éventuellement une fonction amine, ledit polyol P3 comprenant une chaîne grasse saturée et/ou une chaîne grasse insaturée et éventuellement une fonction amine ; dans laquelle la polyaddition s’effectue avec un rapport molaire des fonctions NCO/(OH + amine éventuelle) supérieur à 1 , en particulier de 1 ,1 à 3, plus particulièrement de 1 ,5 à 2.
8. Poly(ester-uréthane) selon la revendication 7, caractérisé en ce que la polyaddition est réalisée en l’absence de solvant, notamment en l’absence de xylène et d’acétone.
9. Poly(ester-uréthane) selon la revendication 7 ou 8, caractérisé en ce que le polyol P1 , le polyol P2 et le polyol P3 sont des polyester polyols, P1 , P2 et/ou P3 pouvant comprendre un élément choisi parmi une fonction amine, une liaison amide, une liaison uréthane et leurs combinaisons.
10. Poly(ester-urée-uréthane) caractérisé en ce qu’il comprend :
- des groupes acides ayant un pKa inférieur à 3, éventuellement sous forme partiellement ou totalement neutralisée ;
- éventuellement des chaînes grasses saturées et/ou des chaînes grasses insaturées ;
- des liaisons ester, urée et uréthane ; et
- éventuellement une liaison amide.
11. Poly(ester-urée-uréthane) selon la revendication 10, caractérisé en ce qu’il présente une ou plusieurs des propriétés suivantes :
- un indice d’amine inférieur à 20 mg KOH/g, en particulier inférieur à 10 mg KOH/g, plus particulièrement inférieur à 1 mg KOH/g, de manière plus particulière inférieur à 0,1 mg KOH/g ;
- un indice OH inférieur à 120 mg KOH/g, en particulier inférieur à 60 mg KOH/g, plus particulièrement inférieur à 40 mg KOH/g, de manière plus particulière inférieur à 20 mg KOH/g, plus particulièrement encore inférieur à 10 mg KOH/g ;
- les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent 0% ou au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40%, du poids total du poly(ester- urée-uréthane);
- il comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau ;
- il comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids d’amine volatile ;
- il comprend moins de 2%, en particulier moins de 1%, plus particulièrement moins de 0,01%, en poids de catalyseur d’uréthanisation à base de métal ;
- le poly(ester-urée-uréthane) est éventuellement réticulé.
12. Poly(ester-urée-uréthane) selon la revendication 10 ou 11 , caractérisé en ce qu’il comprend des chaînes grasses saturées et/ou des chaînes grasses insaturées.
13. Poly(ester-urée-uréthane) selon la revendication 12, caractérisé en ce que les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent au moins 5%, en particulier de 10 à 60%, plus particulièrement de 15 à 40%, du poids total du poly(ester-urée-uréthane).
14. Poly(ester-urée-uréthane) selon la revendication 10 ou 11 , caractérisé en ce que les chaînes grasses saturées et/ou les chaînes grasses insaturées représentent 0% du poids total du po ly (este r- u ré e- u réth a n e) .
15. Poly(ester-urée-uréthane) selon l’une quelconque des revendications 10 à 14, caractérisé en ce que le poly(ester-urée-uréthane) est réticulé.
16. Poly(ester-urée-uréthane) selon l’une quelconque des revendications 10 à 15, caractérisé en ce qu’il est obtenu par réaction d’allongement du poly(ester-uréthane) tel que défini à l’une quelconque des revendications 1 à 9 dans de l’eau, éventuellement en présence d’un composant polyamine de fonctionnalité allant de 2 à 6, en particulier de 2,25 à 6, plus particulièrement de 2,5 à 6, plus particulièrement encore de 3 à 6, le rapport molaire entre les fonctions amine du composant polyamine éventuel et les fonctions isocyanate du poly(ester-uréthane) étant de 0,01 à 3, en particulier de 0,2 à 1 ,5, plus particulièrement de 0,5 à 1.
17. Poly(ester-urée-uréthane) selon la revendication 16, caractérisé en ce qu’il est obtenu par réaction d’allongement du poly(ester-uréthane) dans de l’eau en présence d’un composant polyamine de fonctionnalité allant de 2,25 à 6, en particulier de 2,5 à 6, plus particulièrement de 3 à 6.
18. Dispersion aqueuse comprenant le poly(ester-uréthane) selon l’une quelconque des revendications 1 à 9, ou le poly(ester-urée-uréthane) selon l’une quelconque des revendications 10 à 17, les groupes acides du poly(ester-uréthane) ou du poly(ester-urée-uréthane) étant sous forme partiellement ou totalement neutralisée.
19. Dispersion aqueuse selon la revendication 18, caractérisée en ce qu’elle présente une ou plusieurs des propriétés suivantes :
- elle comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de solvant autre que l’eau ;
- elle comprend moins de 10%, en particulier moins de 5%, plus particulièrement moins de 1%, plus particulièrement encore moins de 0,1%, en poids de tensioactif additionnel;
- elle comprend moins de 2%, en particulier moins de 1%, plus particulièrement moins de 0,01%, en poids de catalyseur d’uréthanisation à base de métal;
- une teneur en solides de 5 à 70%, en particulier de 10 à 60%, plus particulièrement de 30 à 50% en poids ;
- un pH de 5 à 9, en particulier de 6 à 8, plus particulièrement de 6,5 à 7,5 ;
- une viscosité à 25°C de 1 à 10000 mPa.s, en particulier 50 à 2000 mPa.s, plus particulièrement 100 à 1000 mPa.s;
- les particules présentent une taille moyenne de 10 à 1000 nm, en particulier de 40 à 300 nm, plus particulièrement de 50 à 200 nm ;
- le poly(ester-urée-uréthane) est éventuellement réticulé.
20. Dispersion aqueuse selon la revendication 18 ou 19, caractérisée en ce que le poly(ester- urée-uréthane) est réticulé.
21. Dispersion aqueuse selon l’une quelconque des revendications 18 à 20, caractérisée en ce qu’elle est obtenue par un procédé comprenant les étapes suivantes :
- préparation d’au moins un polyol P1 ou préparation d’au moins un polyol P2 et d’au moins un polyol P3 tels que définis à la revendication 4 ;
- préparation d’un poly(ester-uréthane) par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P1 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG ou par polyaddition d’au moins un polyisocyanate, d’au moins un polyol P2, d’au moins un polyol P3 et éventuellement d’un autre polyol P4 et/ou d’un composant gras CG, la polyaddition s’effectuant avec un rapport molaires des fonctions NCO/(OH + amine éventuelle) supérieur à 1 , en particulier de 1 ,1 à 3, plus particulièrement de 1 ,5 à 2 ;
- en option neutralisation partielle ou totale des groupes acides du poly(ester-uréthane) par ajout d’une base, en particulier une base choisie parmi une amine tertiaire et un hydroxyde métallique, plus particulièrement un hydroxyde alcalin; - dispersion du poly(ester-uréthane) dans de l’eau, en particulier par addition progressive d’eau dans ledit poly(ester-uréthane) et inversion de phase ou par addition du poly(ester-uréthane) dans de l’eau ;
- en option réaction d’allongement du poly(ester-uréthane), éventuellement en présence d’un composant polyamine de fonctionnalité allant de 2 à 6, en particulier de 2,25 à 6, plus particulièrement de 2,5 à 6, plus particulièrement encore de 3 à 6, le rapport molaire entre les fonctions amine du composant polyamine éventuel et les fonctions isocyanate du poly(ester- uréthane) étant de 0,01 à 3, en particulier de 0,2 à 1 ,5, plus particulièrement de 0,5 à 1.
22. Dispersion aqueuse selon la revendication 21 , caractérisée en ce qu’elle est obtenue par un procédé comprenant une réaction d’allongement du poly(ester-uréthane) en présence d’un composant polyamine de fonctionnalité allant de 2,25 à 6, en particulier de 2,5 à 6, plus particulièrement de 3 à 6.
23. Composition de revêtement, d’adhésif ou de mastic caractérisée en ce qu’elle comprend un poly(ester-uréthane) tel que défini selon l’une quelconque des revendications 1 à 9 et/ou un poly(ester-urée-uréthane) tel que défini selon l’une quelconque des revendications 10 à 17 et/ou une dispersion aqueuse telle que définie selon l’une quelconque des revendications 18 à 22.
24. Utilisation d’un poly(ester-uréthane) tel que défini selon l’une quelconque des revendications 1 à 9 et/ou d’un poly(ester-urée-uréthane) tel que défini selon l’une quelconque des revendications 10 à 17 et/ou d’une dispersion aqueuse telle que définie selon l’une quelconque des revendications 18 à 22, en tant que liant, en particulier en tant que liant dans une composition de revêtement, d’adhésif ou de mastic.
25. Revêtement, adhésif ou mastic obtenu par application et séchage de la composition selon la revendication 24.
EP21720789.3A 2020-04-28 2021-04-28 Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane) Pending EP4143250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004209A FR3109583B1 (fr) 2020-04-28 2020-04-28 Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane)
PCT/EP2021/061202 WO2021219760A1 (fr) 2020-04-28 2021-04-28 Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane)

Publications (1)

Publication Number Publication Date
EP4143250A1 true EP4143250A1 (fr) 2023-03-08

Family

ID=71111629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21720789.3A Pending EP4143250A1 (fr) 2020-04-28 2021-04-28 Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane)

Country Status (7)

Country Link
US (1) US20230167227A1 (fr)
EP (1) EP4143250A1 (fr)
CN (1) CN115715304A (fr)
CA (1) CA3180797A1 (fr)
FR (1) FR3109583B1 (fr)
MX (1) MX2022013363A (fr)
WO (1) WO2021219760A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088143A (ja) * 2019-12-05 2021-06-10 日東電工株式会社 積層体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9311139D0 (en) * 1993-05-28 1993-07-14 Zeneca Resins Bv Aqueous crosslinkable coating compositions
US5637639A (en) * 1994-09-09 1997-06-10 H.B. Fuller Licensing And Financing, Inc. Reduced solvent process for preparation of aqueous polyurethane dispersions with improved heat-and water-resistance
EP0918807A1 (fr) * 1996-08-13 1999-06-02 H.B. Fuller Licensing &amp; Financing, Inc. Compositions polymeres sulfonees a base d'eau
US5807919A (en) * 1996-08-13 1998-09-15 H.B. Fuller Licensing & Financing, Inc. Water-based sulfonated polymer compositions
US5929160A (en) * 1997-09-25 1999-07-27 Minnesota Mining And Manufacturing Company Method for reducing water uptake in silyl terminated sulfopoly(ester-urethanes)
MXPA01013072A (es) * 1999-06-29 2002-08-20 Eastman Chem Co Composiciones intermediarias de resina de poliester y preparacion y usos de las mismas.
WO2002031021A1 (fr) 2000-10-10 2002-04-18 Polymer Coating Technologies Of Singapore Pte Ltd. Dispersions de compose organique faiblement volatile d'alkyde polyol et dispersions de polyurethanne
FR2850663B1 (fr) 2003-01-31 2007-04-20 Cray Valley Sa Dispersion aqueuse de resine alkyde traitee par un agent oxydant, a sechage ameliore
DE102006016638A1 (de) * 2006-04-08 2007-10-11 Bayer Materialscience Ag Mikroporöse Beschichtung auf Basis von Polyurethan-Polyharnstoff
US20100048812A1 (en) 2007-01-18 2010-02-25 Adriaan Hofland Water-dispersible, air-drying uralkyd resins
EP2221330A1 (fr) * 2009-02-19 2010-08-25 Bayer MaterialScience AG Dispersions de poly-résine de polyuréthane fonctionnalisées
TWI555800B (zh) * 2011-04-04 2016-11-01 拜耳材料科學股份有限公司 聚胺基甲酸酯脲分散體
EP3303431B1 (fr) * 2015-05-28 2020-09-16 Basf Se Liaison de polyisocyanurate-polyurethane ayant d'excellentes proprietes mecaniques
CN106916273B (zh) * 2015-12-28 2021-06-15 科思创德国股份有限公司 聚氨酯脲水性分散体

Also Published As

Publication number Publication date
US20230167227A1 (en) 2023-06-01
MX2022013363A (es) 2022-11-30
CA3180797A1 (fr) 2021-11-04
FR3109583B1 (fr) 2022-07-29
WO2021219760A1 (fr) 2021-11-04
FR3109583A1 (fr) 2021-10-29
CN115715304A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
EP0018665B1 (fr) Polymères d&#39;uréthane et dispersions de polymères
EP2268741B1 (fr) Composition aqueuse de revêtement auto-oxydable
US9382446B2 (en) Aqueous emulsion coating composition comprising an autoxidisable fatty acid modified polyester
EP2956513B1 (fr) Système de solvants et compositions le contenant
EP3071617B1 (fr) Compositions reticulables de polyurethanes 2 k a faible taux de cov.
HUE034405T2 (en) Coating composition and application
FR2991683A1 (fr) Resines portant des groupements carbonates cycliques et compositions reticulables de ces resines a faible taux de cov
FR3087774A1 (fr) Preparation continue de polyurethanes ou de polyurees
EP4143250A1 (fr) Dispersion aqueuse de poly(ester-uréthane) ou de poly(ester-urée-uréthane)
CA2867644C (fr) Dispersions aqueuses de resines polyurethanes a base de colophane
FR2989975A1 (fr) Polyurethane pour revetements non aqueux a base de polyester gras hydroxyle biosource, modifie a la colophane
EP2331641B1 (fr) Agent de neutralisation pour peintures
EP4255955A1 (fr) Composition thixotropique à base de diurée-diuréthane
FR2507610A1 (fr) Emulsions aqueuses de resines alkydes pour peintures et vernis sechant a l&#39;air
EP1627004A2 (fr) Compositions a base d&#39;isocyanate, leur procede d&#39;utilisation, leur utilisation pour realiser des revetements a adherence directe et revetements ainsi obtenus
WO2024008777A1 (fr) Émulsion d&#39;alkyde ayant une resistance à l&#39;eau et un développement de dureté ameliorés
WO2024056688A1 (fr) Procédé de préparation d&#39;une résine aminosuccinique à faible indice d&#39;amine
WO2023126198A1 (fr) Oligomère urée (méth)acrylate ou urée-uréthane (méth)acrylate, compositions le comprenant et ses utilisations
WO2016092119A1 (fr) Composition aqueuse comprenant un compose polymerique soluble dans l&#39;eau formant un film resistant a l&#39;eau apres sechage chimique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)