EP4121332B1 - Anordnung zur abstützung eines drehmoments - Google Patents

Anordnung zur abstützung eines drehmoments Download PDF

Info

Publication number
EP4121332B1
EP4121332B1 EP21728000.7A EP21728000A EP4121332B1 EP 4121332 B1 EP4121332 B1 EP 4121332B1 EP 21728000 A EP21728000 A EP 21728000A EP 4121332 B1 EP4121332 B1 EP 4121332B1
Authority
EP
European Patent Office
Prior art keywords
transmission
rah
motor
torque
mot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21728000.7A
Other languages
English (en)
French (fr)
Other versions
EP4121332A1 (de
Inventor
Martin Zäch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP4121332A1 publication Critical patent/EP4121332A1/de
Application granted granted Critical
Publication of EP4121332B1 publication Critical patent/EP4121332B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/38Transmission systems in or for locomotives or motor railcars with electric motor propulsion
    • B61C9/48Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension
    • B61C9/50Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension in bogies

Definitions

  • the invention relates to an arrangement for supporting a torque of a transmission of a rail vehicle.
  • a torque is supported by a torque support, which is a known machine element and is part of the suspension of a transmission.
  • a gear is a machine element that is used to change movement variables. It has a so-called drive, to which a movement variable is fed in, and a so-called output, to which a movement variable is output.
  • FIG 3 shows a first view of a torque support DMS in a GET transmission of a rail vehicle according to the known prior art.
  • the drive of the transmission GET is connected to a motor MOT, while the output of the transmission GET is connected to a wheel drive system RAS.
  • the torque support DMS is used to absorb a differential torque between the drive and output by supporting it or to introduce this differential torque into a support structure, here for example into a frame RAH.
  • the DMS torque arm is functionally designed as a lever that connects the housing of the transmission outside the rotation axis of the transmission with the support structure (here, for example, the frame RAH).
  • FIG 4 shows with reference to FIG 3 in a second view, further connection details.
  • the torque support DMS is connected to the gearbox GET at its first end.
  • the torque support DMS is connected to the motor MOT at its second end.
  • the motor MOT is here, for example, connected via two attachment points BEF1, BEF2 to the frame RAH, which is designed and used as a support structure.
  • the rail vehicle engine has two directions of rotation.
  • the torque support DMS must therefore absorb or support differential torques from two directions of rotation.
  • Solid rods are used as the DMS torque support, which are connected to the MOT motor or GET gearbox via elastic bearings. This ensures that relative movements of these components are made possible.
  • Elastomeric bearings are usually used as elastic bearings, which are shown in this illustration as partial circles at the two ends of the DMS torque arm. It can be seen that these bearings take up a significant amount of space.
  • the rod-shaped torque arm DMS has to transmit both tensile forces and compressive forces due to the two directions of rotation, which requires a very solid construction of the torque arm DMS. This massive construction takes up a significant amount of space and at the same time results in increased weight.
  • a one-piece, rod-shaped torque arm for a rail vehicle is known, which is made of a fiber composite material and is used to transmit tensile forces and compressive forces.
  • the torque arm has two fiber elements as tension elements, which are designed for the exclusive transmission of tensile forces.
  • Connection points of a first fiber element are selected such that the first fiber element introduces a first tensile force resulting from the differential torque of a first rotation direction of the motor into the support structure.
  • connection points of a second fiber element are selected such that the second fiber element introduces a second tensile force resulting from the differential torque in a second direction of rotation of the motor into the support structure.
  • wheel refers to both a driven wheel and a driven wheelset.
  • the support structure is a frame of the rail vehicle.
  • the two fiber elements act as a torque support and connect the housing of the gearbox to the support structure outside the axis of rotation of the gearbox.
  • the motor has two directions of rotation and the torque support is designed such that it introduces differential torques of the two directions of rotation into the support structure.
  • a drive of the transmission is connected to the motor and an output of the transmission is coupled to the wheel or wheel set to be driven.
  • the first fiber element connects the motor to the transmission, while the second fiber element connects the transmission to the support structure.
  • the motor is connected to the support structure via attachment points.
  • the two fiber elements are made from fiber materials, preferably from Kevlar fibers and/or carbon fibers.
  • the present invention saves weight.
  • the fiber elements or tension elements transmit the respective tensile forces with a significantly lower weight compared to the solid torque supports of the prior art described.
  • This weight saving is particularly advantageous when the mass of a rail vehicle is unsprung, particularly when using axle-riding gears.
  • the fiber elements or tension elements are designed to be less massive than the described torque supports of the prior art. This saves or frees up installation space.
  • the present invention saves elastomer bearings and thus gains additional installation space. This is achieved because the first task of the elastomer bearings, to allow relative movements, is fundamentally fulfilled by the fiber elements. For a second task of the elastomeric bearings, namely to introduce defined stiffness into the connection, elastomeric bearings can still be used, ideally with smaller dimensions. However, other elements that have defined rigidities can also be used for this second task.
  • FIG 1 shows a first embodiment of the present invention.
  • the drive of the transmission GET is connected to a motor MOT, while the output of the transmission GET is connected to a wheel drive system RAS.
  • Two fiber elements or tension elements FE1, FE2 are used as torque supports, through which the differential torque of the drive and output is introduced into a support structure, here for example into a frame RAH.
  • the two fiber elements or tension elements FE1, FE2 are arranged in such a way that they help to connect the housing of the transmission GET to the support structure TS (here, for example, the frame RAH) outside the axis of rotation of the transmission GET.
  • a first fiber element or tension element FE1 is connected at its first end to the transmission GET via a connection point AP1G.
  • the first fiber element FE1 is connected to the motor MOT at its second end via a connection point AP1M.
  • a second fiber element or tension element FE2 is connected at its first end to the transmission GET via a connection point AP2G.
  • the second fiber element FE2 is connected to the motor MOT at its second end via a connection point AP2M.
  • the motor MOT is connected to the frame RAH, which is designed and used as a support structure, via two attachment points BEF1, BEF2.
  • the rail vehicle's motor MOT has two directions of rotation.
  • the two fiber elements FE1, FE2 must therefore absorb differential torques from two directions of rotation.
  • connection points AP1G, AP1M, AP2G, AP2M This is achieved by choosing the position of the connection points AP1G, AP1M, AP2G, AP2M.
  • connection points AP1G, AP1M of the first fiber element FE1 are selected such that the first fiber element FE1 transmits a first differential torque or a resulting first tensile force of a first rotation direction of the motor MOT via the motor MOT and via its attachment points BEF1, BEF2 to the frame RAH .
  • connection points AP2G, AP2M of the second fiber element FE2 are selected such that the second fiber element FE2 transmits a second differential torque or a resulting second tensile force of a second rotation direction of the motor MOT via the motor MOT and via its attachment points BEF1, BEF2 to the frame RAH .
  • the two fiber elements FE1, FE2 consist of fiber materials which preferably contain Kevlar fibers and/or carbon fibers or which are constructed entirely from Kevlar fibers and/or carbon fibers.
  • the two fiber elements FE1, FE2 thus transmit tensile forces.
  • FIG 2 shows a second embodiment of the present invention.
  • the drive of the transmission GET is connected to a motor MOT, while the output of the transmission GET is connected to a wheel drive system RAS.
  • Two fiber or Tension elements FE1, FE2 are used, through which the differential torque of the drive and output are introduced into a support structure, here for example into a frame RAH.
  • the two fiber elements FE1, FE2 are arranged in such a way that they help to connect the housing of the gearbox to the support structure (here, for example, the frame RAH) outside the axis of rotation of the gearbox.
  • a first fiber element FE1 is connected at its first end to the transmission GET via a connection point AP1G.
  • the first fiber element FE1 is connected to the motor MOT at its second end via a connection point AP1M.
  • a second fiber element FE2 is connected at its first end to the transmission GET via a connection point AP2G.
  • the second fiber element FE2 is connected directly to the frame RAH at its second end via a connection point AP2R.
  • the motor MOT is connected to the frame RAH, which is designed and used as a support structure, via two attachment points BEF1, BEF2.
  • the rail vehicle's motor MOT has two directions of rotation.
  • the two fiber elements FE1, FE2 must therefore absorb differential torques from two directions of rotation.
  • connection points AP1G, AP1M, AP2G, AP2R This is achieved by choosing the position of the connection points AP1G, AP1M, AP2G, AP2R.
  • connection points AP1G, AP1M of the first fiber element FE1 are selected such that the first fiber element FE1 transmits a first differential torque or a resulting first tensile force of a first rotation direction of the motor MOT via the motor MOT and via its attachment points BEF1, BEF2 to the frame RAH .
  • connection points AP2G, AP2R of the second fiber element FE2 are selected such that the second fiber element FE2 transmits a second differential torque or a resulting second tensile force of a second direction of rotation of the motor MOT directly to the frame RAH.
  • the two fiber elements FE1, FE2 consist of fiber materials which preferably contain Kevlar fibers and/or carbon fibers or which are constructed entirely from Kevlar fibers and/or carbon fibers.
  • the two fiber elements FE1, FE2 therefore only transmit tensile forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Power Transmission Devices (AREA)
  • Arrangement Of Transmissions (AREA)

Description

  • Die Erfindung betrifft eine Anordnung zur Abstützung eines Drehmoments eines Getriebes eines Schienenfahrzeugs.
  • Eine Abstützung eines Drehmoments erfolgt durch eine Drehmomentstütze, die als bekanntes Maschinenelement ein Bestandteil einer Aufhängung eines Getriebes ist.
  • Ein Getriebe ist ein Maschinenelement, mit dem Bewegungsgrößen geändert werden. Es besitzt einen so genannten Antrieb, an dem eine Bewegungsgröße eingespeist wird, sowie einen so genannten Abtrieb, an dem eine Bewegungsgröße ausgegeben wird.
  • FIG 3 zeigt in einer ersten Ansicht eine Drehmomentstütze DMS bei einem Getriebe GET eines Schienenfahrzeugs gemäß dem bekannten Stand der Technik.
  • Beim Schienenfahrzeug ist der Antrieb des Getriebes GET mit einem Motor MOT verbunden, während der Abtrieb des Getriebes GET mit einem Radantriebssystem RAS verbunden ist.
  • Die Drehmomentstütze DMS wird dazu verwendet, ein Differenzdrehmoment von Antrieb und Abtrieb durch Abstützung aufzufangen bzw. dieses Differenzdrehmoment in eine Tragestruktur, hier beispielsweise in einen Rahmen RAH, einzuleiten.
  • Die Drehmomentstütze DMS ist funktionell als Hebel ausgebildet, der das Gehäuse des Getriebes außerhalb der Drehachse des Getriebes mit der Tragestruktur (hier beispielsweise den Rahmen RAH) verbindet.
  • FIG 4 zeigt mit Bezug auf FIG 3 in einer zweiten Ansicht weitere Verbindungsdetails.
  • Die Drehmomentstütze DMS ist an ihrem ersten Ende mit dem Getriebe GET verbunden.
  • Die Drehmomentstütze DMS ist an ihrem zweiten Ende mit dem Motor MOT verbunden.
  • Der Motor MOT ist hier beispielhaft über zwei Befestigungspunkte BEF1, BEF2 mit dem Rahmen RAH verbunden, der als Tragestruktur ausgebildet und verwendet ist.
  • Durch diese Verbindungen bzw. durch diese Anordnung wird das oben genannte Differenzdrehmoment aufgefangen bzw. in den Rahmen eingeleitet.
  • Der Motor des Schienenfahrzeugs hat zwei Rotationsrichtungen. Die Drehmomentstütze DMS muss daher Differenzdrehmomente von zwei Rotationsrichtungen auffangen bzw. abstützen.
  • Als Drehmomentstütze DMS werden massive Stangen verwendet, die durch elastische Lager mit dem Motor MOT bzw. mit dem Getriebe GET verbunden sind. Dadurch wird erreicht, dass Relativbewegungen dieser Bauteile ermöglicht werden.
  • Als elastische Lager werden üblicherweise Elastomere-Lager verwendet, die in dieser Darstellung als Teilkreise an den beiden Enden der Drehmomentstütze DMS gezeigt sind. Es ist zu sehen, dass diese Lager einen bedeutenden Bauraum beanspruchen.
  • Die stangenförmige Drehmomentstütze DMS muss aufgrund der beiden Rotationsrichtungen sowohl Zugkräfte als auch Drucckräfte übertragen, was eine sehr massive Bauweise der Drehmomentstütze DMS bedingt. Diese massive Bauweise beansprucht wiederum einen bedeutenden Bauraum und hat zugleich ein erhöhtes Gewicht zur Folge.
  • Sowohl Bauraum als auch Gewicht müssen im Design und in der Dimensionierung des Schienenfahrzeugs berücksichtigt werden.
  • Auch aus Druckschrift DE 102013210235 A1 ist eine einteilige, stabförmige Drehmomentstütze für ein Schienenfahrzeug bekannt, die aus einem Faserverbund-Werkstoff gefertigt ist und zur Übertragung von Zugkräften und Druckkräften verwendet wird.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine Anordnung zur Abstützung eines Drehmoments anzugeben, die mit Blick auf Gewicht und Bauraum optimiert ist.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Die Erfindung betrifft eine Anordnung zur Abstützung eines Drehmoments eines Getriebes eines Schienenfahrzeugs. Die Anordnung weist folgende Elemente auf:
    • einen Motor, der zum Antrieb eines Rads des Schienenfahrzeugs ausgebildet ist,
    • ein Getriebe, das zwischen dem Motor und dem Rad angeordnet und mit beiden gekoppelt ist, um eine Antriebskraft des Motors auf das Rad zu übertragen,
    • eine Tragestruktur des Schienenfahrzeugs und
    • eine Drehmomentstütze, die mit dem Getriebe und mit der Tragestruktur verbunden ist, um ein Differenzdrehmoment des Getriebes in die Tragestruktur einzuleiten.
  • Erfindungsgemäß weist die Drehmomentstütze zwei Faserelemente als Zugelemente auf, die zur ausschließlichen Übertragung von Zugkräften ausgebildet sind. Anschlusspunkte eines ersten Faserelements sind derart gewählt, dass das erste Faserelement eine aus dem Differenzdrehmoment resultierende erste Zugkraft einer ersten Rotationsrichtung des Motors in die Tragestruktur einleitet. Entsprechend sind Anschlusspunkte eines zweiten Faserelements derart gewählt, dass das zweite Faserelement eine aus dem Differenzdrehmoment resultierende zweite Zugkraft einer zweiten Rotationsrichtung des Motors in die Tragestruktur einleitet.
  • Bei der vorliegenden Erfindung bezeichnet der Begriff "Rad" sowohl ein angetriebenes Rad als auch einen angetriebenen Radsatz.
  • In einer vorteilhaften Weiterbildung ist die Tragestruktur ein Rahmen des Schienenfahrzeugs.
  • In einer vorteilhaften Weiterbildung verbinden die beiden Faserelemente als Drehmomentstütze das Gehäuse des Getriebes außerhalb der Drehachse des Getriebes mit der Tragestruktur.
  • In einer vorteilhaften Weiterbildung weist der Motor zwei Rotationsrichtungen auf und die Drehmomentstütze ist derart ausgebildet, dass sie Differenzdrehmomente der beiden Rotationsrichtungen in die Tragestruktur einleitet.
  • In einer vorteilhaften Weiterbildung ist ein Antrieb des Getriebes mit dem Motor verbunden und ein Abtrieb des Getriebes ist mit dem anzutreibenden Rad bzw. Radsatz gekoppelt.
  • Erfindungsgemäß verbindet das erste Faserelement den Motor mit dem Getriebe, während das zweite Faserelement das Getriebe mit der Tragestruktur verbindet. Der Motor ist über Befestigungspunkte mit der Tragestruktur verbunden.
  • In einer vorteilhaften Weiterbildung sind die beiden Faserelemente aus Faserwerkstoffen, bevorzugt aus Kevlar-Fasern und/oder aus Carbon-Fasern, gefertigt.
  • Durch die vorliegende Erfindung wird Gewicht eingespart. Die Faserelemente bzw. Zugelemente übertragen die jeweiligen Zugkräfte mit einem deutlich geringeren Gewicht im Vergleich zu den massiven Drehmomentstützen des beschriebenen Stands der Technik.
  • Diese Gewichtsersparnis ist insbesondere bei einer ungefederten Masse eines Schienenfahrzeugs vorteilhaft, insbesondere bei einer Verwendung von achsreitenden Getrieben.
  • Zusätzlich sind die Faserelemente bzw. Zugelemente weniger massiv ausgestaltet als die beschriebenen Drehmomentstützen des Stands der Technik. Damit wird Bauraum eingespart bzw. frei.
  • Durch die vorliegende Erfindung werden Elastomere-Lager eingespart und damit weiterer Bauraum gewonnen. Dies wird erreicht, da die erste Aufgabe der Elastomere-Lager, Relativbewegungen zuzulassen, von den Faserelemente grundsätzlich erfüllt wird. Für eine zweite Aufgabe der Elastomere-Lager, definierte Steifigkeiten in die Verbindung einzubringen, können weiterhin Elastomere-Lager verwendet werden, idealerweise mit geringeren Abmessungen. Für diese zweite Aufgabe können jedoch auch weiter Elemente, welch definierte Steifigkeiten aufweisen, verwendet werden.
  • Die erzielbare, beträchtliche Einsparung an Bauraum ist insbesondere bei den relativ komprimierten Drehgestell-Lösungen vorteilhaft.
  • Nachfolgend wird die vorliegende Erfindung beispielhaft anhand einer Zeichnung näher erläutert. Dabei zeigt:
  • FIG 1
    eine erste Ausgestaltung der vorliegenden Erfindung,
    FIG 2
    eine zweite Ausgestaltung der vorliegenden Erfindung,
    FIG 3
    und FIG 4 den in der Einleitung beschriebenen Stand der Technik.
  • FIG 1 zeigt eine erste Ausgestaltung der vorliegenden Erfindung.
  • Beim Schienenfahrzeug ist der Antrieb des Getriebes GET mit einem Motor MOT verbunden, während der Abtrieb des Getriebes GET mit einem Radantriebssystem RAS verbunden ist.
  • Als Drehmomentstütze werden zwei Faserelemente bzw. Zugelemente FE1, FE2 verwendet, durch die das Differenzdrehmoment von Antrieb und Abtrieb in eine Tragestruktur, hier beispielsweise in einen Rahmen RAH, eingeleitet wird.
  • Die beiden Faserelemente bzw. Zugelemente FE1, FE2 sind derart angeordnet, dass sie dazu beitragen, das Gehäuse des Getriebes GET außerhalb der Drehachse des Getriebes GET mit der Tragestruktur TS (hier beispielsweise den Rahmen RAH) zu verbinden.
  • Ein erstes Faserelement bzw. Zugelement FE1 ist an seinem ersten Ende über einen Anschlusspunkt AP1G mit dem Getriebe GET verbunden. Das erste Faserelement FE1 ist an seinem zweiten Ende über einen Anschlusspunkt AP1M mit dem Motor MOT verbunden.
  • Ein zweites Faserelement bzw. Zugelement FE2 ist an seinem ersten Ende über einen Anschlusspunkt AP2G mit dem Getriebe GET verbunden. Das zweite Faserelement FE2 ist an seinem zweiten Ende über einen Anschlusspunkt AP2M mit dem Motor MOT verbunden.
  • Der Motor MOT ist über zwei Befestigungspunkte BEF1, BEF2 mit dem Rahmen RAH verbunden, der als Tragestruktur ausgebildet und verwendet ist.
  • Durch diese Verbindungen bzw. durch diese Anordnung wird das oben genannte Differenzdrehmoment aufgefangen bzw. in den Rahmen RAH eingeleitet.
  • Der Motor MOT des Schienenfahrzeugs hat zwei Rotationsrichtungen. Die beiden Faserelemente FE1, FE2 müssen daher Differenzdrehmomente von zwei Rotationsrichtungen auffangen.
  • Dies wird durch die Wahl der Position der Anschlusspunkte AP1G, AP1M, AP2G, AP2M erreicht.
  • Die Anschlusspunkte AP1G, AP1M des ersten Faserelements FE1 sind derart gewählt, dass das erste Faserelement FE1 ein erstes Differenzdrehmoment bzw. eine daraus resultierende erste Zugkraft einer ersten Rotationsrichtung des Motors MOT über den Motor MOT und über dessen Befestigungspunkte BEF1, BEF2 an den Rahmen RAH überträgt.
  • Die Anschlusspunkte AP2G, AP2M des zweiten Faserelements FE2 sind derart gewählt, dass das zweite Faserelement FE2 ein zweites Differenzdrehmoment bzw. eine daraus resultierende zweite Zugkraft einer zweiten Rotationsrichtung des Motors MOT über den Motor MOT und über dessen Befestigungspunkte BEF1, BEF2 an den Rahmen RAH überträgt.
  • Die beiden Faserelemente FE1, FE2 bestehen aus Faserwerkstoffen, die bevorzugt Kevlar-Fasern und/oder Carbon-Fasern beinhalten bzw. die vollständig aus Kevlar-Fasern und/oder Carbon-Fasern aufgebaut sind.
  • Die beiden Faserelemente FE1, FE2 übertragen somit Zugkräfte.
  • FIG 2 zeigt eine zweite Ausgestaltung der vorliegenden Erfindung.
  • Beim Schienenfahrzeug ist der Antrieb des Getriebes GET mit einem Motor MOT verbunden, während der Abtrieb des Getriebes GET mit einem Radantriebssystem RAS verbunden ist.
  • Als Drehmomentstütze werden zwei Faser-bzw. Zugelemente FE1, FE2 verwendet, durch die das Differenzdrehmoment von Antrieb und Abtrieb in eine Tragestruktur, hier beispielsweise in einen Rahmen RAH, eingeleitet werden.
  • Die beiden Faserelemente FE1, FE2 sind derart angeordnet, dass sie dazu beitragen, das Gehäuse des Getriebes außerhalb der Drehachse des Getriebes mit der Tragestruktur (hier beispielsweise den Rahmen RAH) zu verbinden.
  • Ein erstes Faserelement FE1 ist an seinem ersten Ende über einen Anschlusspunkt AP1G mit dem Getriebe GET verbunden. Das erste Faserelement FE1 ist an seinem zweiten Ende über einen Anschlusspunkt AP1M mit dem Motor MOT verbunden.
  • Ein zweites Faserelement FE2 ist an seinem ersten Ende über einen Anschlusspunkt AP2G mit dem Getriebe GET verbunden. Das zweite Faserelement FE2 ist an seinem zweiten Ende über einen Anschlusspunkt AP2R direkt mit dem Rahmen RAH verbunden.
  • Der Motor MOT ist über zwei Befestigungspunkte BEF1, BEF2 mit dem Rahmen RAH verbunden, der als Tragestruktur ausgebildet und verwendet ist.
  • Durch diese Verbindungen bzw. durch diese Anordnung wird das oben genannte Differenzdrehmoment aufgefangen bzw. in den Rahmen RAH eingeleitet.
  • Der Motor MOT des Schienenfahrzeugs hat zwei Rotationsrichtungen. Die beiden Faserelemente FE1, FE2 müssen daher Differenzdrehmomente von zwei Rotationsrichtungen auffangen.
  • Dies wird durch die Wahl der Position der Anschlusspunkte AP1G, AP1M, AP2G, AP2R erreicht.
  • Die Anschlusspunkte AP1G, AP1M des ersten Faserelements FE1 sind derart gewählt, dass das erste Faserelement FE1 ein erstes Differenzdrehmoment bzw. eine daraus resultierende erste Zugkraft einer ersten Rotationsrichtung des Motors MOT über den Motor MOT und über dessen Befestigungspunkte BEF1, BEF2 an den Rahmen RAH überträgt.
  • Die Anschlusspunkte AP2G, AP2R des zweiten Faserelements FE2 sind derart gewählt, dass das zweite Faserelement FE2 ein zweites Differenzdrehmoment bzw. eine daraus resultierende zweite Zugkraft einer zweiten Rotationsrichtung des Motors MOT direkt an den Rahmen RAH überträgt.
  • Die beiden Faserelemente FE1, FE2 bestehen aus Faserwerkstoffen, die bevorzugt Kevlar-Fasern und/oder Carbon-Fasern beinhalten bzw. die vollständig aus Kevlar-Fasern und/oder Carbon-Fasern aufgebaut sind.
  • Die beiden Faserelemente FE1, FE2 übertragen somit ausschließlich Zugkräfte.

Claims (6)

  1. Anordnung zur Abstützung eines Drehmoments eines Getriebes (GET) eines Schienenfahrzeugs,
    - mit einem Motor (MOT), der zum Antrieb eines Rads (RAS) des Schienenfahrzeugs ausgebildet ist,
    - mit einem Getriebe (GET), das zwischen dem Motor (MOT) und dem Rad (RAS) angeordnet und mit beiden gekoppelt ist, um eine Antriebskraft des Motors (MOT) auf das Rad (RAS) zu übertragen,
    - mit einer Tragestruktur (RAH) des Schienenfahrzeugs und
    - mit einer Drehmomentstütze (DMS), die mit dem Getriebe (GET) und mit der Tragestruktur (RAH) verbunden ist, um ein Differenzdrehmoment des Getriebes (GET) in die Tragestruktur (RAH) einzuleiten,
    dadurch gekennzeichnet,
    - dass die Drehmomentstütze (DMS) zwei Faserelemente (FE1, FE2) als Zugelemente aufweist, die zur ausschließlichen Übertragung von Zugkräften ausgebildet sind,
    - dass Anschlusspunkte (AP1) eines ersten Faserelements (FE1) derart gewählt sind, dass das erste Faserelement (FE1) eine aus dem Differenzdrehmoment resultierende erste Zugkraft einer ersten Rotationsrichtung des Motors (MOT) in die Tragestruktur (RAH) einleitet, und
    - dass Anschlusspunkte (AP2) eines zweiten Faserelements (FE2) derart gewählt sind, dass das zweite Faserelement (FE2) eine aus dem Differenzdrehmoment resultierende zweite Zugkraft einer zweiten Rotationsrichtung des Motors (MOT) in die Tragestruktur (RAH) einleitet,
    - dass das erste Faserelement (FE1) den Motor (MOT) mit dem Getriebe (GET) verbindet,
    - dass das zweite Faserelement (FE2) das Getriebe (GET) mit der Tragestruktur (RAH) verbindet,
    - dass der Motor (MOT) über Befestigungspunkte (BEF) mit der Tragestruktur (RAH) verbunden ist.
  2. Anordnung nach Anspruch 1, bei der die Tragestruktur ein Rahmen (RAH) des Schienenfahrzeugs ist.
  3. Anordnung nach Anspruch 1, bei der die beiden Faserelemente (FE1, FE2) als Drehmomentstütze das Gehäuse des Getriebes (GET) außerhalb der Drehachse des Getriebes (GET) mit der Tragestruktur (RAH) verbinden.
  4. Anordnung nach Anspruch 1, bei der der Motor (MOT) zwei Rotationsrichtungen aufweist und die Drehmomentstütze derart ausgebildet ist, dass sie Differenzdrehmomente der beiden Rotationsrichtungen in die Tragestruktur (RAH) einleitet.
  5. Anordnung nach Anspruch 1, bei der ein Antrieb des Getriebes (GET) mit dem Motor (MOT) verbunden ist und bei der ein Abtrieb des Getriebes (GET) mit dem anzutreibenden Rad (RAS) gekoppelt ist.
  6. Anordnung nach Anspruch 1, bei der die beiden Faserelemente (FE1, FE2) aus Faserwerkstoffen, bevorzugt aus Kevlar-Fasern und/oder aus Carbon-Fasern, gefertigt sind.
EP21728000.7A 2020-05-14 2021-05-05 Anordnung zur abstützung eines drehmoments Active EP4121332B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020206100.9A DE102020206100A1 (de) 2020-05-14 2020-05-14 Anordnung zur Abstützung eines Drehmoments
PCT/EP2021/061779 WO2021228634A1 (de) 2020-05-14 2021-05-05 Anordnung zur abstützung eines drehmoments

Publications (2)

Publication Number Publication Date
EP4121332A1 EP4121332A1 (de) 2023-01-25
EP4121332B1 true EP4121332B1 (de) 2024-03-20

Family

ID=76138041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21728000.7A Active EP4121332B1 (de) 2020-05-14 2021-05-05 Anordnung zur abstützung eines drehmoments

Country Status (4)

Country Link
EP (1) EP4121332B1 (de)
CN (1) CN115605389A (de)
DE (1) DE102020206100A1 (de)
WO (1) WO2021228634A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008027A1 (de) 2008-02-04 2009-08-06 Siemens Aktiengesellschaft Antriebsvorrichtung für ein Schienenfahrzeug
DE102009049400B4 (de) * 2009-10-14 2013-05-08 Trelleborg Automotive Germany Gmbh Drehmomentstütze
DE102013210235A1 (de) * 2013-06-03 2014-12-04 Zf Friedrichshafen Ag Drehmomentstütze für ein Schienenfahrzeug
DE102013213442A1 (de) 2013-07-09 2015-01-15 Zf Friedrichshafen Ag Drehmomentstütze für ein Schienenfahrzeug
EP3012170B1 (de) 2014-10-17 2020-05-06 Windhoff Bahn- und Anlagentechnik GmbH Schienenfahrzeug mit fahrwerk
AT518916A1 (de) * 2016-07-19 2018-02-15 Siemens Ag Oesterreich Fahrwerk für ein Schienenfahrzeug

Also Published As

Publication number Publication date
DE102020206100A1 (de) 2021-11-18
WO2021228634A1 (de) 2021-11-18
EP4121332A1 (de) 2023-01-25
CN115605389A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
DE102016118245B4 (de) Zahnradtrieb
EP1982811B1 (de) Baustoffmischer
DE19527514A1 (de) Schnittstelle für die Schwingungsreduktion in strukturdynamischen Systemen
DE102012218396A1 (de) Stabilisator für ein Fahrwerk eines Kraftfahrzeugs
DE102017214530A1 (de) Steer-by-wire-Lenksystem für ein Kraftfahrzeug
EP1685014B2 (de) Angetriebenes fahrwerk für schienenfahrzeuge, insbesondere drehgestelle für niederflurfahrzeuge
DE102019213277A1 (de) Verfahren zum Betreiben eines verstellbaren Wankstabilisators
EP4121332B1 (de) Anordnung zur abstützung eines drehmoments
WO2019092230A1 (de) Kupplungsvorrichtung
DE102010004773A1 (de) Radialelastische Kupplung
DE102019124666A1 (de) Differenzialgetriebe
EP4100295B1 (de) Trageanordnung für ein fahrwerk eines schienenfahrzeugs
DE102015217046A1 (de) Nutzfahrzeuglenkung
EP1551661B1 (de) Wellenstrang, insbesondere gelenkwelle und homokinetischer drehgestellantrieb für schienenfahrzeuge
DE102019213269A1 (de) Verfahren zur Erkennung eines Bruchs eines verstellbaren Wankstabilisators für ein Kraftfahrzeug und System zur Wankstabilisierung
DE102013210235A1 (de) Drehmomentstütze für ein Schienenfahrzeug
DE102019116595A1 (de) Differenzial mit erhöhter Sperrwirkung
DE10040674B4 (de) Welle zur Übertragung einer Antriebsleistung
EP0160188B1 (de) Allradantrieb für Kraftfahrzeuge
DE102018000110A1 (de) Antriebsvorrichtung für einen Kraftwagen, insbesondere für einen Lastkraftkraftwagen
DE102012211777A1 (de) Lenksystem eines Kraftfahrzeugs mit mechanischem Durchtrieb
DE10064439A1 (de) Lenkungsgelenkwelle
DE102010048341A1 (de) Vorderachsträger eines Fahrzeugs mit Lenkgetriebe
DE102009039864A1 (de) Getriebe mit Leistungsverzweigung
DE102022211613A1 (de) Strukturverbund zur Integration eines Aggregates in den Hilfsrahmen eines Fahrzeuges

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003058

Country of ref document: DE