EP4107500A1 - Procédé et dispositif de détection sans contact de température d'une pièce rotative de machine électrique - Google Patents
Procédé et dispositif de détection sans contact de température d'une pièce rotative de machine électriqueInfo
- Publication number
- EP4107500A1 EP4107500A1 EP20839306.6A EP20839306A EP4107500A1 EP 4107500 A1 EP4107500 A1 EP 4107500A1 EP 20839306 A EP20839306 A EP 20839306A EP 4107500 A1 EP4107500 A1 EP 4107500A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- rotating part
- fluorescent element
- light
- fluorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/04—Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
- G01K13/08—Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/20—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/25—Devices for sensing temperature, or actuated thereby
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/66—Controlling or determining the temperature of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/35—Devices for recording or transmitting machine parameters, e.g. memory chips or radio transmitters for diagnosis
Definitions
- the invention relates to a method and a device for contactless detection of the temperature of a rotating part of an electrical machine.
- the document DE 10 2011 108 382 A1 describes an electrical machine comprising a rotor and a stator, with at least one element arranged on the rotor and thermally connected to it being provided, the degree of absorption of which for incident photons of a light source changes as a function of the temperature is that a measurement signal dependent on the momentary degree of absorption of the element is determined, which represents a measure of the element or rotor temperature.
- the present invention is achieved by a method having the features of claim 1.
- the object is also achieved by a device having the features of claim 8.
- Preferred embodiments of the invention are in the subclaims, in the description and in the figures described, wherein further features described or shown in the dependent claims and / or in the description and / or the figures can represent an object of the invention individually or in any combination if the context does not clearly indicate the opposite.
- the present invention relates to a method for the contactless detection of the temperature of a rotating part of an electrical machine rotating with respect to an axis of rotation by means of a fluorescent element arranged on the rotating part and thermally connected to it, a light source for exciting the fluorescent element and at least one light sensor for the detection of Fluorescent light that is emitted by the fluorescent element as a result of the excitation, a quantity correlating with a temperature-dependent decay time constant t of the material of the fluorescent element being determined from this detected fluorescent light and the temperature of the rotating part being determined from this.
- the determined variable is a measure of the decay time constant t and can, for example, be the decay time constant t itself.
- the fluorescent element is assigned to an angular position or an angular range of the rotating part.
- the essence of the invention is that the temperature of the rotating rotating part can be detected using the physical effect that the decay time constant of a fluorescent body is temperature-dependent. Another feature of the invention is that the temperature can be detected without contact and thus very hot objects with a temperature of up to 1000 ° C. can be detected thermally.
- the rotating part is a rotating part of the electrical machine.
- the electrical machine has a rotor and a stator, the rotating part being in particular said rotor.
- the temperature can be determined with a very high steady-state accuracy.
- the order of magnitude here is around 1-5 degrees Celsius.
- the drop in power with the PSM can be compensated in the weak field range by increasing the current.
- the drop in performance results from the reduction in torque, which in turn results from the reduction in the pole wheel.
- the lowering of the pole wheel results from the heating of the magnets in the rotor.
- the lowering of the pole wheel and thus the lowering of torque and power increases with increasing speed if it is not compensated for.
- the current compensation takes place, for example, by means of the field-oriented regulation of the permanent magnet synchronous machine by increasing the stator current by means of the power electronics.
- the improvement results in a narrower tolerance band (comparison between target and actual torque).
- the narrower tolerance band leads to a shorter detection and switch-off time.
- the fluorescent element is first guided past the light source and then past the light sensor or successively past the light sensors by the rotation of the rotating part.
- Another feature is that through a clever arrangement and number of light sensors, the temperature accuracy can be increased and, in addition, the speed and the direction of rotation can be recorded.
- a speed and / or direction of rotation of the rotating part is also determined from the signal of the detected fluorescent light.
- the fluorescent element has ruby, in particular in the form of a crystal, as the fluorescent material.
- the light source is designed as a light or laser diode (LED).
- the at least one light sensor is designed as a photo receiver, in particular a photodiode (PD).
- variable correlating with the temperature-dependent decay time constant t of the material of the fluorescent element is determined in advance by a reference measurement using the fluorescent element, the light source and the at least one light sensor.
- the present invention also relates to a device for contactless detection of the temperature of a rotating part of an electrical machine rotating with respect to an axis of rotation, with (i) a fluorescent element arranged on the rotating part and thermally connected to it, (ii) a light source for exciting the fluorescent element Element and (iii) at least one light sensor for the detection of fluorescent light which is emitted due to the excitation of the fluorescent element, the device further comprising an evaluation unit which is set up to convert the detected fluorescent light into a temperature-dependent decay time constant t of the material of the fluorescent element to determine correlating variable and to determine the temperature of the rotating part via this variable.
- a fixed spatial arrangement of the light source, the at least one light sensor and the axis of rotation is provided, in which the fluorescent element is through a Rotating the rotating part is first guided past the light source and then past the light sensor or successively past the light sensors.
- the evaluation unit is set up to determine the variable correlating with the decay time constant t of the material of the fluorescent element in advance by means of a reference measurement using the fluorescent element, the light source and the at least one light sensor.
- the rotating part is a rotor or at least a rotor component of the electrical machine.
- the electrical machine for its part, is in particular a permanent magnet synchronous machine (PSM).
- the invention also relates to an electrical machine with a rotating part mounted rotatably with respect to an axis of rotation and a device described above for contactless detection of the temperature of the rotating rotating part.
- the rotating part 10 is in particular a rotor of the electrical machine.
- the electrical machine, for its part, is in particular a permanent magnet synchronous machine (PSM).
- PSM permanent magnet synchronous machine
- FIG. 1 shows a schematic representation of a device for temperature detection of a rotating part of an electrical machine according to a preferred embodiment of the invention
- 3 shows graphs of relevant variables when determining a variable that correlates with the temperature-dependent decay time constant t of the material of the fluorescent element and the temperature of the rotating part.
- 1 shows a rotating part 10 of an electrical machine, which is mounted rotatably with respect to a rotation axis 12, as well as a device 14 for contactless detection of the temperature of the rotating rotating part 10.
- the rotating part 10 is in particular a rotor 15 of the electrical machine.
- the device 14 for contactless detection of the temperature of the rotating part 10 rotatable / rotating with respect to the axis of rotation 12 has the following components: a fluorescent element 16 arranged on the rotating part 12 and thermally connected to it, a light source 18 for exciting the fluorescent element 16, several Light sensors 20 for the detection of fluorescent light that is emitted / sent out by the fluorescent element 16 due to the excitation, and an evaluation unit 22 which is set up to determine from the detected fluorescent light a variable that correlates with a temperature-dependent decay time constant t of the material of the fluorescent element 16 and to determine the temperature of the rotating part 10 via this variable.
- the link between the variable correlating with a temperature-dependent decay time constant t of the material of the fluorescent element 16 and the temperature is stored, for example, in a database of the evaluation unit 22.
- the spatial arrangement of the light source 18, the light sensors 20 and the axis of rotation 12 of the rotating part 10 is determined within the electrical machine in such a way that the fluorescent element 16 is guided past the light source 18 by rotating the rotating part 12 and then one after the other past the light sensors 20 ( Arrow 24).
- the light source 18 and the light sensors 20 are arranged / attached to a part of the electrical machine that is fixed to the machine, such as a housing or a stator (not explicitly shown) corresponding to the rotor 15.
- the light source 18 is designed as a light or laser diode (LED) and the light sensors 20 are photo receivers, more precisely photodiodes (PD) trained.
- the fluorescent element 16 has ruby, in particular in the form of a crystal, as the fluorescent material.
- FIG. 2 now shows graphs of the corresponding optical signals, a signal intensity, indicated here as power P related to the area, being shown over time t.
- the upper graph shows the constant signal of the light source 18.
- the middle graph shows the fluorescence signal of the fluorescent element 16 and the lower three graphs the discrete signals of the light sensors 20. These discrete signals are from the respective position of the fluorescent element 16 with respect to the light source 18 and the light sensors 20 triggered.
- the quantity correlating with the decay time constant t of the material of the fluorescent element is determined via the intensity of the fluorescent light detected by the light sensors 20 and the time difference between the signals detected by the different sensors 20 (left graph) and via this quantity and the temperature dependency of the decay time constant t the temperature of the fluorescent element 16 and the rotating part 10 thermally connected to it is determined.
- the essence of the invention is that the temperature on a rotating part 10 can be detected using the physical effect that the decay time constant of a fluorescent body is temperature-dependent. Another feature of the invention is that the temperature can be recorded without contact and thus a very hot measurement object (here, for example, the rotor 15) can also be recorded up to 1000 ° C.
- a very hot measurement object here, for example, the rotor 15
- the temperature can be determined with a very high steady-state accuracy.
- the order of magnitude here is around 1-5 degrees Celsius.
- a further feature is that the temperature accuracy can be increased through a clever arrangement and a higher number of light sensors 20 and, in addition, the speed and the direction of rotation can be detected.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
L'invention concerne un procédé de détection sans contact de la température d'une pièce rotative (10) d'une machine électrique, qui tourne par rapport à un axe de rotation (12), au moyen d'un élément fluorescent (16) qui est situé sur la pièce rotative (10) et qui est relié thermiquement à celle-ci, une source de lumière (18) pour l'excitation de l'élément fluorescent (16) et au moins un capteur de lumière (20) pour la détection de la lumière fluorescente émise par suite de l'excitation de l'élément fluorescent (16), une variable en corrélation avec une constante de temps de décroissance τ dépendant de la température du matériau de l'élément fluorescent étant déterminée à partir de cette détection et la température de la partie rotative (10) étant déterminée à l'aide de ladite variable. L'invention concerne également un dispositif correspondant (14) pour la détection sans contact de la température d'une partie rotative (10) d'une machine électrique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020202077.9A DE102020202077A1 (de) | 2020-02-19 | 2020-02-19 | Verfahren und Vorrichtung zur berührungslosen Erfassung der Temperatur von einem Rotationsteil einer elektrischen Maschine |
PCT/EP2020/087390 WO2021164930A1 (fr) | 2020-02-19 | 2020-12-21 | Procédé et dispositif de détection sans contact de température d'une pièce rotative de machine électrique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4107500A1 true EP4107500A1 (fr) | 2022-12-28 |
Family
ID=74181141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20839306.6A Pending EP4107500A1 (fr) | 2020-02-19 | 2020-12-21 | Procédé et dispositif de détection sans contact de température d'une pièce rotative de machine électrique |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4107500A1 (fr) |
CN (1) | CN219200665U (fr) |
DE (1) | DE102020202077A1 (fr) |
WO (1) | WO2021164930A1 (fr) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1480583A (en) * | 1973-07-02 | 1977-07-20 | Reyrolle Parsons Ltd | Measurement of surface temperature of rotating objects |
US4215275A (en) * | 1977-12-07 | 1980-07-29 | Luxtron Corporation | Optical temperature measurement technique utilizing phosphors |
US4652143A (en) | 1984-11-29 | 1987-03-24 | Luxtron Corporation | Optical temperature measurement techniques |
US5232285A (en) | 1992-07-30 | 1993-08-03 | Electric Power Research Institute, Inc. | Optical rotor temperature sensing apparatus using phosphors and method of measuring the temperature at the bottom of a rotor slot in a rotating rotor |
CA2188478C (fr) | 1996-10-22 | 2005-05-17 | Nahla Khalil | Thermometre fibres optiques faisant appel aux changements dans les caracteristiques fluroescentes d'un cristal de rubis dop |
DE102011108382A1 (de) | 2011-07-22 | 2013-01-24 | Audi Ag | Elektrische Maschine |
DE102018213406A1 (de) * | 2018-08-09 | 2020-02-13 | Robert Bosch Gmbh | Sensorsystem zur Bestimmung einer Temperatur und mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements |
-
2020
- 2020-02-19 DE DE102020202077.9A patent/DE102020202077A1/de active Pending
- 2020-12-21 CN CN202090001106.2U patent/CN219200665U/zh active Active
- 2020-12-21 EP EP20839306.6A patent/EP4107500A1/fr active Pending
- 2020-12-21 WO PCT/EP2020/087390 patent/WO2021164930A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
CN219200665U (zh) | 2023-06-16 |
WO2021164930A1 (fr) | 2021-08-26 |
DE102020202077A1 (de) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3292416B1 (fr) | Procédé de mesure d'un courant électrique et capteur de courant | |
DE2314954C3 (de) | Anordnung zur laufenden Ermittlung und Überwachung der Lebensdauer von thermisch belasteten dickwandigen Bauelementen | |
DE102007059309B4 (de) | System und Verfahren für integrierte Messungen unter Anwendung optischer Sensoren | |
EP2281935B1 (fr) | appareil ménager avec un moteur électrique | |
EP2332249A1 (fr) | Détermination de l angle de rotor d une machine synchrone à l arrêt à l aide d impulsions de test itératives | |
DE2041594C3 (de) | Einrichtung zur Überwachung des Luftspaltes in rotierenden elektrischen Maschinen | |
DE102011108382A1 (de) | Elektrische Maschine | |
DE102009034854A1 (de) | Anordnung und Verfahren zum Bestimmen eines Ladezustands | |
DE102017003100A1 (de) | Sensoreinrichtung, Wellenmessanordnung mit einer eine Mittelachse aufweisenden tordierbaren Welle und einer Sensoreinrichtung. Elektromotor mit einer Sensoreinrichtung und einer eine Mittelachse aufweisenden tordierbaren Welle, und Verfahren zum Ermitteln eines an einer tordierbaren Welle angreifenden Drehmoments mittels einer Sensoreinrichtung | |
EP4107500A1 (fr) | Procédé et dispositif de détection sans contact de température d'une pièce rotative de machine électrique | |
EP4107499A1 (fr) | Procédé et dispositif de détection sans contact de la température d'une partie rotative d'une machine électrique | |
WO2017162232A1 (fr) | Procédé de fixation ajustée d'un système de capteur magnétique sur un actionneur et actionneur muni d'un moteur électrique et d'un système de capteur magnétique | |
EP2942633A1 (fr) | Procédé et dispositif de détection de court-circuit entre spires et machine électrique | |
EP2307866A1 (fr) | Dispositif, système et procédé permettant de déterminer une température | |
DE102020203203A1 (de) | Elektrische Maschine sowie Luftverdichter mit einer elektrischen Maschine | |
DE102004050586A1 (de) | Verfahren und Vorrichtung zur berührungslosen Drehwinkelerfassung | |
DE69616399T2 (de) | Verfahren und Vorrichtung zur Überwachung der Polymerisation von reaktiven Systemen | |
DE2552715C3 (de) | Verfahren und Vorrichtung zur Prüfung der hysteretischen Eigenschaften von Läufern für Hysteresemotoren | |
EP2697618B1 (fr) | Dispositif pour déterminer un couple et procédé de mesure correspondant | |
DE102015214749A1 (de) | Vorrichtung und Verfahren zur Erfassung einer Last sowie mechanische Komponente | |
EP2990076B1 (fr) | Implant doté d'une reconnaissance d'appareil mri | |
EP0948126A2 (fr) | Dispositif de détection de paramètre d'un moteur asynchrone | |
DE102008051983A1 (de) | Verfahren und Vorrichtung zur Temperaturmessung an einem rotierenden Bauteil | |
DE69921135T2 (de) | Überwachungsverfahren für elektromagnetische, pneumatische oder hydraulische aktuatoren und vorrichtungen zu seiner durchführung | |
DE102009029406A1 (de) | Verfahren und Vorrichtung zur Temperatur-Überwachung in einem Steuergerät einer elektrischen Hilfskraftlenkung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |