EP4076720A1 - Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux - Google Patents

Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux

Info

Publication number
EP4076720A1
EP4076720A1 EP20817034.0A EP20817034A EP4076720A1 EP 4076720 A1 EP4076720 A1 EP 4076720A1 EP 20817034 A EP20817034 A EP 20817034A EP 4076720 A1 EP4076720 A1 EP 4076720A1
Authority
EP
European Patent Office
Prior art keywords
reaction chamber
reactor
gas
liquid
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20817034.0A
Other languages
German (de)
English (en)
Inventor
Frederic Augier
Alexandre VONNER
Pedro MAXIMIANO RAIMUNDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4076720A1 publication Critical patent/EP4076720A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2422Mixing means, e.g. fins or baffles attached to the monolith or placed in the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2474Mixing means, e.g. fins or baffles attached to the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2475Separation means, e.g. membranes inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium

Definitions

  • the present invention relates to the field of gas / liquid reactors allowing the oligomerization of ethylene to linear olefins by homogeneous catalysis with a reaction chamber comprising transverse internals capable of slowing the rise of gaseous ethylene in said reactor.
  • the invention also relates to the use of said gas / liquid reactor in a process for the oligomerization of ethylene into linear alpha-olefins, such as but-1-ene, hex-1-ene, or oct-. 1-ene or a mixture of linear alpha-olefins.
  • linear alpha-olefins such as but-1-ene, hex-1-ene, or oct-. 1-ene or a mixture of linear alpha-olefins.
  • the invention relates to the field of gas / liquid reactors also called bubble column, as well as their use in an ethylene oligomerization process.
  • One drawback encountered when using such reactors in ethylene oligomerization processes is the management of the gas overhead, corresponding to the upper part of the reactor in the gaseous state.
  • Said gas sky comprises gaseous compounds which are sparingly soluble in the liquid phase, compounds which are partially soluble in the liquid but inert, as well as gaseous ethylene not dissolved in said liquid.
  • the passage of the gaseous ethylene from the lower liquid part of the reaction chamber to the gas overhead is a phenomenon called piercing.
  • the gaseous sky is purged in order to remove said gaseous compounds.
  • the Applicant has observed that in a reactor operating at a constant flow of injected gaseous ethylene, the quantity of dissolved ethylene and therefore the piercing rate depends on the dimensions of the reactors implementing the process and in particular the height of the liquid phase. In fact, the lower the height, the lower the time during which the gaseous ethylene travels through the liquid phase to dissolve and the higher the piercing rate.
  • the Applicant has discovered that it is possible to improve the conversion of olefin (s), while retaining a high selectivity for the desired linear olefin (s), and in particular for alpha-olefin (s). , by limiting the drilling phenomena by means of a gas / liquid reactor making it possible to increase the residence time of the gaseous ethylene in the liquid phase by means of internals capable of slowing the rise of the gaseous ethylene.
  • a reactor according to the present invention makes it possible to slow the rise of the gaseous ethylene, which has the effect of improving the dissolution of the gaseous ethylene and therefore of limiting the phenomenon of piercing for a given volume of liquid phase. .
  • the invention also relates to a process for the oligomerization of olefins and in particular of ethylene using the reactor according to the invention comprising at least two transverse internals.
  • the Applicant has developed a gas / liquid gaseous ethylene oligomerization reactor that can contain a liquid phase and a gaseous sky, said reactor comprising:
  • said enclosure 1 comprises at least two transverse internals 11 arranged on at least part of a section of the enclosure (1) of said reactor so as to increase the residence time of gaseous ethylene in the liquid phase,
  • each of said internal having at least one opening 12 of hydraulic diameter between 21 and 500 mm, and
  • the transverse internals are arranged to increase the residence time of ethylene gas, by disrupting the rise of ethylene gas within the liquid phase.
  • the transverse internals have at least one opening 12 with a hydraulic diameter of between 25 and 450 mm, preferably between 30 and 400 mm.
  • the transverse internals have a plurality of openings with a hydraulic diameter of between 21 and 500 mm, preferably between 25 and 450 mm, preferably between 30 and 400 mm.
  • said one opening or the sum of the openings occupies (s) between 25 and 75% of the total area of a cross section of the enclosure on which said internal is located, preferably between 40 and 70 %, preferably between 40 and 60% and more preferably between 45 and 55%.
  • the transverse internals extend radially over the entire section of enclosure 1 of said reactor, so as to be able to slow the rise of gaseous ethylene in the liquid phase.
  • the transverse internals are chosen from a perforated plate, a slotted plate such as a grid, valve plate, discs and crowns. In a preferred embodiment, the transverse internals extend radially over part of the section of the enclosure 1 of said reactor, so as to be able to slow the rise of the gaseous ethylene in the liquid phase.
  • the transverse internals are chosen from flat, curved or pyramidal side plates, or any other internal capable of playing the role of baffle.
  • said reactor comprises at least two transverse internals extending partially over part of the section of said enclosure, said internals being positioned alternately on the walls of enclosure 1.
  • the enclosure comprises a number of transverse internals between 2 and 30, preferably between 2 and 20, preferably between 2 and 15.
  • said reactor further comprises means for withdrawing a gaseous fraction at the level of the gas overhead of the reaction chamber and means for introducing said gaseous fraction withdrawn into the liquid phase in the lower part. of the reaction chamber.
  • said reactor further comprises a recirculation loop comprising a withdrawal means on the lower part of the reaction chamber, preferably at the bottom, so as to withdraw a liquid fraction to one or more exchanger (s). ) thermal (s) capable of cooling said liquid fraction, and means for introducing said cooled fraction into the upper part of the reaction chamber.
  • a recirculation loop comprising a withdrawal means on the lower part of the reaction chamber, preferably at the bottom, so as to withdraw a liquid fraction to one or more exchanger (s). ) thermal (s) capable of cooling said liquid fraction, and means for introducing said cooled fraction into the upper part of the reaction chamber.
  • Another object of the present invention relates to a process for oligomerization of gaseous ethylene using the reactor according to any one of the preceding embodiments.
  • the oligomerization process is carried out at a pressure between 0.1 and 10.0 MPa, at a temperature between 30 and 200 ° C comprising the following steps:
  • oligomerization denotes any reaction of addition of a first olefin to a second olefin, identical or different from the first and includes dimerization, trimerization and tetramerization.
  • the olefin thus obtained is of type C n H 2n where n is equal to or greater than 4.
  • olefin denotes both an olefin and a mixture of olefins.
  • alpha-olefin denotes an olefin, on which the double bond is located at the terminal position of the alkyl chain.
  • heteroatom is an atom other than carbon and hydrogen.
  • a heteroatom can be selected from oxygen, sulfur, nitrogen, phosphorus, silicon and halides such as fluorine, chlorine, bromine or iodine.
  • hydrocarbon is an organic compound consisting exclusively of carbon (C) and hydrogen (H) atoms of the crude formula C m H p , with m and p natural integers.
  • catalytic system denotes a mixture of at least one metal precursor, at least one activating agent, optionally at least one additive and optionally at least one solvent.
  • alkyl is a hydrocarbon chain comprising between 1 and 20 carbon atoms, preferably from 2 to 15 carbon atoms and even more preferably from 2 to 8 carbon atoms, denoted CC 20 alkyl, saturated or not, linear or branched, non-cyclic, cyclic or polycyclic.
  • CC 6 alkyl is meant an alkyl chosen from methyl, ethyl, propyl, butyl, pentyl, cyclopentyl, hexyl and cyclohexyl groups.
  • aryl is an aromatic group, mono or polycyclic, fused or not, comprising between 6 and 30 carbon atoms, denoted C 6 -C 3 o aryl.
  • alkoxy is a monovalent radical consisting of an alkyl group bonded to an oxygen atom such as the C 4 H 9 0 group .
  • aryloxy is a monovalent radical consisting of an aryl group bonded to an oxygen atom such as the C 6 H 5 O- group.
  • lower part of the gas / liquid reactor enclosure refers to the lower half of the reactor and the reaction zone.
  • upper part of the reaction chamber of the gas / liquid reactor refers to the upper half of the reactor or the reaction zone.
  • withdrawal flow rate designates the mass of liquid withdrawn from the reactor per unit of time, it is expressed in tonnes per hour (t / h).
  • non-condensable gas designates a species in the physical form of a gas which dissolves only partially in the liquid at the temperature and pressure conditions of the reaction chamber, and which can, under certain conditions, accumulate in the air. of the reactor (example here: ethane).
  • liquid phase is understood to mean the mixture of all the compounds which are in a liquid physical state under the temperature and pressure conditions of the reaction chamber, said phase possibly comprising gaseous compounds such as gaseous ethylene under bubble shape.
  • gaseous sky is understood to mean the upper part of the enclosure in the gaseous state located at the top of the reaction enclosure, that is to say directly above the liquid phase and consisting of a mixture of compounds which are found in the physical gas state when operating a reactor in an oligomerization process.
  • lower lateral part of the reaction chamber is meant a part of the casing of the reaction chamber of the reactor located at the bottom and on the side.
  • reactor or device denote all of the means allowing the implementation of the oligomerization process according to the invention, such as in particular the reaction chamber and the recirculation loop.
  • bottom of the reaction chamber is understood to mean the lower quarter of the reaction chamber.
  • the top of the reaction chamber is understood to mean the upper quarter of the reaction chamber.
  • transverse we mean the surface, the interior or the section perpendicular to the vertical axis of the enclosure.
  • solvent designates a liquid which has the property of dissolving, diluting or extracting other substances without chemically modifying them and without modifying itself.
  • the expression "between ... and " should be understood as including the limits mentioned.
  • chamber or "reaction chamber” denote the wall of the reactor in which the oligomerization reaction takes place.
  • saturation rate is understood to mean the percentage of ethylene dissolved in the liquid phase relative to the maximum quantity of ethylene which could be dissolved in said liquid phase, defined by the thermodynamic equilibrium between the partial pressure of gaseous ethylene and said liquid phase. The degree of saturation can be measured by gas chromatography.
  • updraft is meant the direction of the gaseous ethylene flowing through the liquid phase within the reactor.
  • FIG. 1 illustrates a gas / liquid reactor according to the prior art.
  • This device consists of a reaction chamber 1 comprising a lower part comprising a liquid phase, an upper part comprising a gas overhead, and a means for introducing gaseous ethylene 2 via a gas distributor 3 in the liquid phase.
  • the upper part comprises a purge means 4.
  • In the bottom of the reaction chamber 1 There is a pipe for drawing off a liquid fraction 5. Said fraction 5 is divided into two streams, a first main stream 7 sent to a heat exchanger 8 then introduced via a pipe 9 into the liquid phase and a second stream 6 corresponding to the effluent sent to a subsequent stage.
  • Line 10 at the bottom of the reaction chamber allows the introduction of the catalytic system.
  • Figure 2 illustrates a gas / liquid reactor, of bubble column type, according to a first embodiment of the invention, which differs from Figure 1 in that the reaction chamber comprises two transverse internals of the perforated tray type so to slow the rise of bubbles of ethylene gas.
  • FIG. 3 shows a top view of a transverse internal 11 of the reactor according to FIG. 2, said internal is a plate of which each perforation 12 has a hydraulic diameter D2, and of which the diameter D1 corresponds to the internal diameter of the reaction chamber .
  • FIG. 4 illustrates a gas / liquid reactor, of the bubble column type, according to a second embodiment of the invention, which differs from FIG. 1 in that the enclosure comprises four transverse internals of the baffle type arranged so as to slow the rise of ethylene gas bubbles.
  • FIG. 5 illustrates a gas / liquid reactor, of the bubble column type, according to a third embodiment of the invention, which differs from that of FIG. 4 in that the transverse internals of the baffle type have different geometric shapes.
  • Figure 6 shows a top view of a transverse internal which can act as a baffle, the diameter D1 of which corresponds to the internal diameter of the reactor enclosure and the diameter D2 corresponds to that of the opening.
  • the invention relates to a gas / liquid reactor for gaseous ethylene oligomerization, preferably with an ascending current, which may contain a liquid phase and a gaseous sky, said reactor comprising:
  • Said enclosure 1 comprises at least two transverse internals 11 arranged on at least part of a section of the enclosure (1) of said reactor so as to increase the residence time of gaseous ethylene in the liquid phase;
  • Each of said internal having at least one opening 12 of hydraulic diameter between 21 and 500 mm;
  • Said reactor may also include a means for introducing gaseous ethylene 2, 3, located in the lower part of the enclosure, more particularly in the bottom of the enclosure, implementing a means for injecting the gas. olefin within said liquid phase of the reaction chamber.
  • Said reactor may also include a means for introducing the catalytic system 4, located in the lower part, more particularly in the bottom of the reaction chamber.
  • the enclosure 1 has a height to width ratio (denoted H / L) of between 1 and 8, preferably between 2 and 7.
  • the reaction enclosure is cylindrical in shape.
  • the gas / liquid reactor comprises a means 4 for purging the gas overhead located at the top of the reactor.
  • the gas / liquid reactor comprises a means for withdrawing a reaction effluent from the bottom of the enclosure, preferably the withdrawing means is located under the means for introducing gaseous ethylene.
  • the gas / liquid reactor also comprises a pressure sensor, making it possible to maintain the pressure constant, within the reaction chamber.
  • said pressure is kept constant by introducing additional olefin into the enclosure.
  • the gas / liquid reactor also comprises a liquid level sensor, said level being able to be kept constant by modulating the flow rate of the effluent withdrawn in step c) described below, of the process implementing the reactor according to invention.
  • the level sensor is located at the interphase between the liquid phase and the gaseous sky.
  • the gas / liquid reactor comprises at least two transverse internals positioned on at least part of a section of the enclosure 1 of said reactor.
  • Said transverse internals advantageously make it possible to increase the residence time of the gaseous ethylene, by disturbing the rise of the gaseous ethylene within the liquid phase, which has the effect of improving the dissolution of the gaseous ethylene and therefore to limit the phenomenon of drilling.
  • the transverse internals have at least one opening 12 with a hydraulic diameter of between 21 and 500 mm, preferably between 25 and 450 mm, preferably between 30 and 400 mm.
  • the transverse internals 11 have a plurality of openings with a hydraulic diameter of between 21 and 500 mm, preferably between 25 and 450 mm, preferably between 30 and 400 mm.
  • said one opening 12 or the sum of the openings 12 occupies (s) between 20 and 80% of the total area of a cross section of the reaction chamber on which said interior is located, preferably between 25 and 75%, preferably between 40 and 70%, preferably between 40 and 60% and more preferably between 45 and 55%.
  • said transverse internals 11 extend radially over the entire section of enclosure 1 of said reactor, so as to be able to slow the rise of gaseous ethylene in the liquid phase when said reactor is put into operation. artwork.
  • said transverse internals 11 are preferably chosen from a perforated plate, a slotted plate such as a grid, valve plate, discs and rings.
  • said opening 12 corresponds to the perforations, holes, slots or any other void made in said internal so as to allow the liquid phase and gaseous ethylene to pass.
  • the transverse internals 11 extend radially over part of the section of the enclosure 1 of said reactor, so as to be able to slow the rise of gaseous ethylene in the liquid phase when said reactor is implemented.
  • the transverse internals are positioned on the side walls of the reactor enclosure 1.
  • the transverse internals 11 are chosen from flat, curved or pyramidal side plates, or any other internal capable of playing the role of baffle.
  • said opening 12 with a hydraulic diameter of between 21 and 500 mm, corresponds to the space between one end of the transverse interior and the wall opposite the wall to which the interior is fixed.
  • a connection is implemented by fixing the transverse internals, for example by welding, gluing, screwing, bolting, or any means similar.
  • the fixing is implemented by welding.
  • the enclosure comprises internal transverse 11 according to the first and the second embodiment.
  • the enclosure comprises several, preferably at least two, transverse internals according to the second embodiment extending partially over a part of the section of said enclosure, said internals are positioned alternately on a wall of the enclosure. then on the other, as shown schematically in Figures 4 and 5.
  • the enclosure comprises a number of transverse internals between 2 and 30, preferably between 2 and 20, more preferably between 2 and 15 and even more preferably the number of retarders is equal to 2, 3, 4, 5 , 6, 7, 8, 9, or 10.
  • transverse internals are able to pass the reaction medium comprising the liquid phase containing gaseous ethylene and to slow the rise of said gaseous ethylene within the liquid phase contained in the reaction chamber.
  • the transverse internals act as a retarder and increase the residence time of gaseous ethylene in the liquid phase and thus increase the dissolution of ethylene in said liquid phase.
  • the transverse internals therefore make it possible to increase the saturation rate by limiting the phenomenon of drilling.
  • the transverse internals are arranged at an equal distance from each other within the reaction chamber.
  • the reaction chamber comprises a means for introducing gaseous ethylene 2 located in the lower part of said chamber, more particularly in the lower lateral part.
  • the means for introducing ethylene is chosen from a pipe, a network of pipes, a multi-tube distributor, a perforated plate or any other means known to those skilled in the art.
  • the means for introducing the ethylene is located in the recirculation loop.
  • a gas distributor 3 which is a device for dispersing gaseous ethylene uniformly over the entire liquid section, is positioned at the end of the introduction means within the reaction chamber.
  • Said device comprises a network of perforated pipes, the diameter of the orifices of which is between 1.0 and 12.0 mm, preferably between 3.0 and 10.0 mm, to form bubbles of ethylene in the liquid of size millimeter.
  • the enclosure comprises a means for introducing the catalytic system 10.
  • the introduction means is located on the lower part of the enclosure, and preferably at the bottom of said enclosure.
  • the introduction of the catalytic system is carried out in the recirculation loop.
  • the means for introducing the catalytic system is chosen from any means known to those skilled in the art and preferably is a pipe.
  • said solvent is introduced by an introduction means located in the lower part of the enclosure, preferably in bottom of the enclosure or in the recirculation loop.
  • the homogeneity of the liquid phase, as well as the regulation of the temperature within the enclosure of the reactor according to the invention can be achieved by the use of a recirculation loop comprising means on the lower part of the reactor. the enclosure, preferably at the bottom, to carry out the withdrawal of a liquid fraction to one or more heat exchanger (s) allowing the cooling of said liquid, and means for introducing said cooled liquid into the liquid phase in the upper part of the enclosure.
  • a recirculation loop comprising means on the lower part of the reactor. the enclosure, preferably at the bottom, to carry out the withdrawal of a liquid fraction to one or more heat exchanger (s) allowing the cooling of said liquid, and means for introducing said cooled liquid into the liquid phase in the upper part of the enclosure.
  • the recirculation loop allows good homogenization of the concentrations as well as temperature control in the liquid phase within the enclosure.
  • the implementation of a recirculation loop makes it possible to induce a direction of circulation of the liquid phase in the chamber from the upper part to the lower part of said chamber, which makes it possible to increase the residence time of the chamber.
  • ethylene gas by slowing its rise in said liquid phase and therefore further limiting the phenomenon of piercing.
  • the recirculation loop can advantageously be implemented by any means necessary and known to those skilled in the art, such as a pump for withdrawing the liquid fraction, a means capable of regulating the flow rate of the withdrawn liquid fraction, or again a line for purging at least part of the liquid fraction.
  • the means for withdrawing the liquid fraction from the enclosure is a pipe.
  • the heat exchanger (s) capable of cooling the liquid fraction is (are) chosen from any means known to those skilled in the art.
  • the gas / liquid oligomerization reactor according to the invention further comprises a loop for recycling the gas overhead in the lower part of the liquid phase.
  • Said loop comprising means for withdrawing a gaseous fraction at the level of the gas overhead located in the upper part of the enclosure and means for introducing said gaseous fraction withdrawn into the liquid phase in the lower part of said enclosure.
  • the recycle loop advantageously makes it possible to compensate for the phenomenon of piercing and to limit the loss of productivity of the reactor, by maintaining the saturation of ethylene dissolved in the liquid phase close to the desired value.
  • the recycle loop further comprises a compressor.
  • the introduction of the withdrawn gaseous fraction is carried out through the means of introducing gaseous ethylene.
  • the introduction of the gas fraction withdrawn is carried out via a gas distributor which is a device allowing the gas fraction to be dispersed uniformly over the entire liquid section, and is positioned at the center. end of the means of introduction into the enclosure.
  • Said device comprises a network of perforated pipes, the diameter of the orifices of which is between 1.0 and 12.0 mm, preferably between 3.0 and 10.0 mm, to form bubbles of ethylene in the liquid of size millimeter.
  • the means for introducing the gaseous fraction withdrawn is chosen from a pipe, a network of pipes, a multitubular distributor, a perforated plate or any other means known to those skilled in the art.
  • Another object of the present invention covers an oligomerization process implementing the gas / liquid reactor according to the invention as described above.
  • the flow of gaseous ethylene introduced in step b), as described below is controlled by the pressure in the reaction chamber.
  • the flow rate of gaseous ethylene introduced in step b), as described above decreases which leads to a decrease in the quantity of ethylene dissolved in the liquid phase, and therefore of the ethylene saturation. Said reduction is detrimental for the conversion of ethylene and is accompanied by a reduction in the productivity of the reactor, and possibly in its selectivity.
  • the implementation of the reactor according to the invention in an oligomerization process, preferably by homogeneous catalysis, makes it possible to have a degree of saturation of ethylene dissolved in the liquid phase greater than 70.0%, preferably between 70%. , 0 and 100%, preferably between 80.0 and 100%, preferably between 80.0 and 99.0%, preferably between 85.0 and 99.0% and even more preferably between 89, 0 and 98.0%.
  • the degree of saturation in dissolved ethylene can be measured by any method known to those skilled in the art and for example by gas chromatographic analysis (commonly called GC) of a fraction of the liquid phase withdrawn from the reaction chamber. .
  • GC gas chromatographic analysis
  • the process implementing the gas / liquid reactor according to the invention makes it possible to obtain linear olefins and particularly linear alpha-olefins by contacting olefin (s), in particular ethylene and a catalytic system, optionally in the presence of an additive and / or a solvent, and by the implementation of said gas / liquid reactor according to the invention.
  • olefin s
  • ethylene in particular ethylene
  • a catalytic system optionally in the presence of an additive and / or a solvent
  • the catalytic systems comprise, preferably consist of:
  • a metal precursor preferably based on nickel, titanium or chromium
  • the metal precursor used in the catalytic system is chosen from compounds based on nickel, titanium or chromium.
  • the metal precursor is based on nickel and preferably comprises nickel of oxidation degree (+11).
  • the nickel precursor is chosen from nickel (II) carboxylates such as, for example, nickel 2-ethylhexanoate, nickel (II) phenates, nickel (II) naphthenates, nickel acetate ( ll), nickel trifluoroacetate (ll), nickel triflate (ll), nickel acetylacetonate (ll), nickel hexafluoroacetylacetonate (ll), TT-allylnickel (ll) chloride, TT-allylnickel (ll), methallylnickel (ll) chloride dimer, h 3 - allylnickel (ll) hexafluorophosphate, r
  • the metal precursor is based on titanium and preferably comprises an aryloxy or alkoxy compound of titanium.
  • the titanium alkoxy compound advantageously corresponds to the general formula [Ti (OR) 4 ] in which R is a linear or branched alkyl radical.
  • R is a linear or branched alkyl radical.
  • preferred alkoxy radicals mention may be made, by way of nonlimiting example, of: tetraethoxy, tetraisopropoxy, tetra-n-butoxy and tetra-2-ethyl-hexyloxy.
  • the titanium aryloxy compound advantageously corresponds to the general formula [Ti (OR ′) 4] in which R ′ is an aryl radical which may or may not be substituted by alkyl or aryl groups.
  • R ′ radical may contain substituents based on a heteroatom.
  • the preferred aryloxy radicals are chosen from phenoxy, 2-methylphenoxy, 2,6-dimethylphenoxy,
  • the metal precursor is based on chromium and preferably comprises a chromium (II) salt, a chromium (III) salt, or a salt of different oxidation degree which may contain one or more identical anions. or different, such as for example halides, carboxylates, acetylacetonates, anions alkoxy or aryloxy.
  • the chromium-based precursor is chosen from CrCl 3 , CrCl 3 (tetrahydrofuran) 3 , Cr (acetylacetonate) 3 , Cr (naphthenate) 3 , Cr (2-ethylhexanoate) 3 , Cr (acetate) 3 .
  • the concentration of nickel, titanium or chromium is between 0.01 and 300.0 ppm by mass of atomic metal relative to the reaction mass, preferably between 0.02 and 100.0 ppm, preferably between 0, 03 and 50.0 ppm, more preferably between 0.5 and 20.0 ppm and even more preferably between 2.0 and 50.0 ppm by mass of atomic metal relative to the reaction mass.
  • the catalytic system further comprises one or more activating agents chosen from aluminum-based compounds such as methylaluminum dichloride (MeAICI 2 ), dichloroethylaluminum (EtAICI 2 ), sesquichloride of ethylaluminum (Et 3 AI 2 CI 3 ), chlorodiethylaluminum (Et 2 AICI), chlorodiisobutylaluminum (i-Bu 2 AICI), triethylaluminum (AIEt 3 ), tripropylaluminum (Al (n- Pr) 3 ), triisobutylaluminum ( Al (i-Bu) 3 ), diethyl-ethoxyaluminum (Et 2 AIOEt), methylaluminoxane (MAO), ethylaluminoxane and modified methylaluminoxanes (MMAO).
  • aluminum-based compounds such as methylaluminum dichloride (MeAICI 2 ), dichloroe
  • the catalytic system comprises one or more additives.
  • the additive is chosen from,
  • - compounds of the nitrogen type such as trimethylamine, triethylamine, pyrrole, 2,5-dimethylpyridine, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-methoxypyridine, 3 -methoxypyridine, 4-methoxypyridine,
  • a and A ’ are independently oxygen or a single bond between the phosphorus atom and a carbon atom
  • R 1a and R 1b groups are independently chosen from methyl, trifluoromethyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, pentyl, cyclohexyl, adamantyl groups, substituted or not, containing or not containing heteroelements; phenyl, o-tolyl, m-tolyl, p-tolyl, mesityl, 3,5-dimethylphenyl, 4-n-butylephenyl, 2-methylphenyl, 4-methoxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-isopropoxyphenyl, 4- methoxy-3,5-dimethylphenyl, 3,5-ditert-butyl-4-methoxyphenyl, 4-chlorophenyl, 3,5-di (trifluoromethyl) phenyl,
  • the R 2 group is independently chosen from methyl, trifluoromethyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, pentyl, cyclohexyl, adamantyl, substituted or unsubstituted, containing heteroelements or not ; phenyl, o-tolyl, m-tolyl, p-tolyl, mesityl, 3,5-dimethylphenyl, 4-n-butylephenyl, 4-methoxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-isopropoxyphenyl, 4-methoxy-3,5-dimethylphenyl, 3,5-ditert-butyl-4-methoxyphenyl, 4-chlorophenyl, 3,5-bis (trifluoromethyl) phenyl, benzyl, naphthy
  • the additive is chosen from diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether, 2-methoxy-2-methylpropane, 2-methoxy-2-methylbutane, dimethoxy- 2,2 propane, di (2-ethylhexyloxy) - 2,2 propane, 2,5-dihydrofuran, tetrahydrofuran, 2-methoxytetrahydrofuran, 2- methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,3-dihydropyran, tetrahydropyran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, dimethoxyethane, di (2-methoxyethyl) ether, benzofuran, glyme and diglyme taken alone or as a mixture.
  • the additive is chosen from,
  • - compounds of the nitrogen type such as trimethylamine, triethylamine, pyrrole, 2,5-dimethylpyridine, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-methoxypyridine, 3 -methoxypyridine, 4-methoxypyridine,
  • M is chosen from magnesium, calcium, strontium and barium, preferably magnesium,
  • R 3 is an aryl radical containing from 6 to 30 carbon atoms
  • X is a halogen or an alkyl radical containing from 1 to 20 carbon atoms
  • n is an integer which can take the values of 0 or 1
  • y is an integer between 1 and 10, preferably y is equal to 1, 2, 3 or 4.
  • the aryloxy radical R s O is chosen from 4-phenylphenoxy, 2-phenylphenoxy, 2,6-diphenylphenoxy, 2,4,6-triphenylphenoxy, 2, 3,5,6-tetraphenylphenoxy, 2-tert-butyl-6-phenylphenoxy, 2,4-ditertbutyl-6-phenylphenoxy, 2,6-diisopropylphenoxy, 2,6-dimethylphenoxy, 2,6-ditert-butylphenoxy, 4-methyl-2 , 6-ditert-butylphenoxy, 2,6-dichloro-4-tert-butylphenoxy and 2,6-dibromo-4-tert-butylphenoxy.
  • the two aryloxy radicals can be carried by the same molecule, such as for example the biphenoxy radical, binaphthoxy or 1, 8-naphthalene-dioxy,
  • the aryloxy radical R s O is 2,6-diphenylphenoxy, 2 -tert-butyl-6-phenylphenoxy or 2,4-ditert-butyl-6-phenylphenoxy.
  • the catalytic system optionally comprises one or more solvents.
  • the solvent is chosen from the group formed by aliphatic and cycloaliphatic hydrocarbons such as hexane, cyclohexane, heptane, butane or isobutane.
  • the solvent used is cyclohexane.
  • a solvent or a mixture of solvents can be used during the oligomerization reaction.
  • Said solvent is advantageously chosen independently from the group formed by aliphatic and cycloaliphatic hydrocarbons such as hexane, cyclohexane, heptane, butane or isobutane.
  • the linear alpha olefins obtained comprise from 4 to 20 carbon atoms, preferably from 4 to 18 carbon atoms, preferably from 4 to 10 carbon atoms, and preferably from 4 to 8 carbon atoms.
  • the olefins are linear alpha-olefins, selected from but-1-ene, hex-1-ene or oct-1-ene.
  • the oligomerization process is carried out at a pressure of between 0.1 and 10.0 MPa, preferably between 0.2 and 9.0 MPa and preferably between 0.3 and 8.0 MPa, at a temperature between 30 and 200 ° C, preferably between 35 and 150 ° C and preferably between 45 and 140 ° C.
  • the catalyst concentration is between 0.01 and 500.0 ppm by mass of atomic metal relative to the reaction mass, preferably between 0.05 and 100.0 ppm, preferably between 0.1 and 50 0 ppm and preferably between 0.2 and 30.0 ppm by weight of atomic metal relative to the reaction weight.
  • the oligomerization process is carried out continuously.
  • the catalytic system formed as described above, is injected at the same time as the ethylene into a reactor stirred by conventional mechanical means known to those skilled in the art or by external recirculation, and maintained at the desired temperature.
  • the components of the catalytic system can also be injected separately into the reaction medium.
  • the gaseous ethylene is introduced through a pressure-controlled inlet valve, which maintains the latter constant in the reactor.
  • the reaction mixture is withdrawn by means of a valve controlled by the liquid level so as to keep the latter constant.
  • the catalyst is destroyed continuously by any usual means known to those skilled in the art, then the products resulting from the reaction as well as the solvent are separated, for example. by distillation. Ethylene which has not been converted can be recycled to the reactor.
  • the catalyst residues included in a heavy fraction can be incinerated.
  • the method implementing the gas / liquid reactor according to the invention comprises a step a) of introducing a catalytic system comprising a metal catalyst and an activating agent, and optionally a solvent or a mixture of solvents, in a reaction chamber comprising a liquid phase in a lower part and a gaseous sky in an upper part.
  • the introduction of the catalytic system is carried out in the liquid phase in the lower part of the reaction chamber and preferably in the bottom of the reaction chamber.
  • the pressure of introduction into the reaction chamber is between 0.1 and 10.0 MPa, preferably between 0.2 and 9.0 MPa and preferably between 0.3 and 8.0 MPa.
  • the temperature of introduction into the reaction chamber is between 30 and 200 ° C, preferably between 35 and 150 ° C and more preferably between 45 and 140 ° C.
  • Step b) contacting with gaseous ethylene
  • the method implementing the gas / liquid reactor according to the invention comprises a step b) of bringing the catalytic system introduced in step a) into contact with gaseous ethylene.
  • Said gaseous ethylene is introduced into the liquid phase at the lower part of the reaction chamber, preferably on the lower lateral part of the reaction chamber.
  • the introduced gaseous ethylene comprises fresh gaseous ethylene, and preferably said fresh gaseous ethylene is combined with recycled gaseous ethylene in a separation step subsequent to the oligomerization process.
  • the liquid phase comprises undissolved gaseous ethylene, thus depending on the zones of the reaction chamber, the liquid phase liquid phase corresponds to a gas-liquid mixture between in particular the liquid phase and gaseous ethylene.
  • the area in the bottom of the reaction chamber below the level of introduction of the gaseous ethylene comprises, preferably consists of the liquid phase without gaseous ethylene.
  • the gaseous ethylene is distributed by dispersion during its introduction into the lower liquid phase of the reaction chamber by means suitable for producing said uniformly dispersed over the entire section of the reactor.
  • the dispersion means is chosen from a distribution network with a homogeneous distribution of the ethylene injection points over the entire section of the reactor.
  • the speed of the gaseous ethylene leaving the orifices is between 1.0 and 30.0 m / s. Its surface speed (volume speed of gas divided by the section of the reaction chamber) is between 0.5 and 10.0 cm / s and preferably between 1.0 and 8.0 cm / s.
  • the gaseous ethylene is introduced at a flow rate of between 1 and 250 t / h, preferably between 3 and 200 t / h, preferably between 5 and 150 t / h and preferably between 10 and 100 t / h .
  • the flow of gaseous ethylene introduced in step b) is controlled by the pressure in the reaction chamber.
  • a flow of gaseous hydrogen can also be introduced into the reaction chamber, with a flow rate representing 0.2 to 1.0% by mass of the incoming ethylene flow rate.
  • the flow of gaseous hydrogen is introduced through the pipe used for the introduction of the gaseous ethylene.
  • the method implementing the gas / liquid reactor according to the invention comprises a step c) of withdrawing a fraction of the liquid phase, preferably in the lower part of the reaction chamber.
  • the withdrawal carried out in step c) is preferably carried out in the lower part of the reaction chamber, preferably below the level of the injection of gaseous ethylene, and preferably in the bottom of the. pregnant.
  • the withdrawal is implemented by any means suitable for carrying out the withdrawal and preferably by a pump.
  • the withdrawal rate is between 500 and 10,000 t / h, and preferably between 800 and 7,000 t / h.
  • a second stream is withdrawn from the liquid phase.
  • Said second stream corresponds to the effluent obtained at the end of the oligomerization process and can be sent to a separation section located downstream of the device used in the process according to the invention.
  • the liquid fraction withdrawn from the liquid phase is divided into two streams. The first so-called main stream is sent to cooling step d), and the second stream corresponds to the effluent and is sent to the downstream separation section.
  • the flow rate of said second stream is regulated to maintain a constant liquid level in the reactor.
  • the flow rate of said second stream is 5 to 200 times lower than the liquid flow rate sent to the cooling step.
  • the flow rate of said effluent is 5 to 150 times lower, preferably 10 to 120 times lower and preferably 20 to 100 times lower.
  • the method implementing the gas / liquid reactor according to the invention comprises a step d) of cooling the liquid fraction withdrawn in step c).
  • the cooling step is carried out by circulating the main liquid stream withdrawn in step c), through one or more heat exchangers located inside or outside the reaction chamber and preferably outdoors.
  • the heat exchanger makes it possible to decrease the temperature of the liquid fraction from 1.0 to 30.0 ° C, preferably between 2.0 and 20 ° C, preferably between 2.0 and 15.0 ° C, preferably between 2.5 and 10.0 ° C, preferably 3.0 to 9.0 ° C, preferably 4.0 to 8.0 ° C.
  • the cooling of the liquid fraction makes it possible to maintain the temperature of the reaction medium within the desired temperature ranges.
  • the implementation of the liquid cooling step, via the recirculation loop also makes it possible to perform the stirring of the reaction medium, and thus to homogenize the concentrations of the reactive species throughout the volume. liquid from the reaction chamber.
  • the method implementing the gas / liquid reactor according to the invention comprises a step e) of introducing the cooled liquid fraction in step d).
  • the introduction of the cooled liquid fraction resulting from step d) is carried out in the liquid phase of the reaction chamber, preferably in the upper part of said chamber, by any means known to those skilled in the art.
  • a direction of circulation of said liquid phase is induced from the top to the bottom of said chamber, which slows the rise of ethylene. gas in the liquid phase and therefore improves dissolution of ethylene in the liquid phase.
  • the rate of introduction of the cooled liquid fraction is between 500 and 10,000 t / h, and preferably between 800 and 7,000 t / h.
  • Steps c) to e) constitute a recirculation loop.
  • the recirculation loop makes it possible to stir the reaction medium, and thus to homogenize the concentrations of the reactive species throughout the liquid volume of the reaction chamber.
  • the method implementing the gas / liquid reactor according to the invention comprises a step f) of recycling a gas fraction withdrawn from the gas overhead of the reaction chamber and introduced at the lower part of the reaction chamber. in the liquid phase, preferably on the lower lateral part of the reaction chamber, preferably at the bottom of the reaction chamber.
  • the optional step f) for recycling the gas fraction is also called the recycling loop.
  • the withdrawal of the gas fraction implemented in step f) is carried out by any means suitable for carrying out the withdrawal and preferably by a compressor.
  • An advantage of the optional recycling step f) is to make it possible to compensate in a simple and economical manner the phenomenon of piercing of gaseous ethylene in the gas overhead in an oligomerization process whatever the dimensions of the reactor according to the invention.
  • the piercing phenomenon corresponds to the gaseous ethylene which passes through the liquid phase without dissolving and which passes into the gas sky.
  • the piercing then causes an increase in pressure in the reaction chamber.
  • the rate of introduction of ethylene in step b) is controlled by the pressure in the reaction chamber.
  • the decrease in saturation is detrimental for the conversion of ethylene and is accompanied by a decrease in the productivity of the reactor.
  • the optional step of recycling a gaseous fraction advantageously makes it possible to optimize the saturation of the dissolved ethylene and therefore to improve the volume productivity of the process.
  • the gas fraction withdrawn in step f) can be introduced into the reaction chamber alone or as a mixture with the gaseous ethylene introduced in step b).
  • the gaseous fraction is introduced as a mixture with the gaseous ethylene introduced in step b).
  • the gaseous fraction withdrawn in step f) is introduced into the reaction chamber by dispersion in the lower liquid phase of the reaction chamber by means capable of producing said dispersion uniformly over the whole of the reaction chamber.
  • the dispersion means is chosen from a distribution network with a homogeneous distribution of the injection points of the gas fraction withdrawn in step f) over the entire section of the reactor.
  • the speed of the gas fraction withdrawn at the outlet of the orifices is between 1.0 and 30.0 m / s. Its surface speed (volume speed of gas divided by the section of the reaction chamber) is between 0.5 and 10.0 cm / s and preferably between 1.0 and 8.0 cm / s.
  • the fraction withdrawing flow rate is between 0.1 and 100% of the flow rate of gaseous ethylene introduced in step b), preferably 0.5 and 90.0%, preferably 1.0 and 80.0%, preferably between 2.0 and 70.0%, preferably between 4.0 and 60.0%, preferably between 5.0 and 50.0%, preferably between 10.0 and 40, 0% and preferably between 15.0 and 30.0%.
  • the flow rate for withdrawing the gaseous fraction in step f) is controlled by the pressure within the reaction chamber, which makes it possible to maintain the pressure at a desired value or range and therefore to compensate for the phenomenon of piercing ethylene gas in the air.
  • the gas fraction withdrawn in step f) is divided into two streams, a first so-called main gas stream is recycled directly into the reaction chamber, and a second gas stream.
  • said second gas flow corresponds to a purge of the gas overhead, which makes it possible to eliminate part of the non-condensable gases.
  • the flow rate of the second gas stream is between 0.005 and 1.00% of the ethylene flow rate introduced in step b), preferably between 0.01 and 0.50%.
  • Example 1 illustrates the reference case corresponding to Figure 1, in which the oligomerization process uses a gas-liquid reactor, according to the prior art.
  • a gas / liquid oligomerization reactor according to the prior art comprising a reaction chamber of cylindrical shape having a diameter of 1.8 m and a liquid height of 6 m, is implemented at a pressure of 7.0 MPa. and at a temperature of 120 ° C.
  • the catalytic system introduced into the reaction chamber is a chromium-based catalytic system, as described in patent FR3019064, in the presence of cyclohexane as solvent.
  • Said catalytic system is contacted with ethylene by introducing said gaseous ethylene into the lower part of said enclosure.
  • the effluent is then recovered at the bottom of the reactor.
  • the volume productivity of this reactor is 17 kg of alpha-olefin produced per hour and per m 3 of reaction volume.
  • This reactor makes it possible to convert 77.4% of the ethylene injected, for a saturation rate of dissolved in the liquid phase of 61.0% and to achieve a selectivity of 83.1% for hexene-1, for a mass content of solvent of 1.6.
  • Said solvent level is calculated as the mass ratio of the flow rate of solvent injected over the flow rate of gaseous ethylene injected.
  • a reactor according to the invention having two perforated trays as transverse internal ones is implemented under the same conditions as Example 1.
  • Each of the perforated trays having the following characteristics - plurality of openings 11 of hydraulic diameter 0.44 meters,
  • the volume productivity of this reactor is 38.3 kg of alpha-olefin produced per hour and per m 3 of reaction volume.
  • This reactor makes it possible to convert 57.8% of the ethylene injected, for a saturation rate of ethylene dissolved in the liquid phase of 89.0% and to achieve a selectivity of 87.5% in alpha. desired olefin, for a solvent mass content of 1.6.
  • Said solvent level is calculated as the mass ratio of the flow rate of solvent injected over the flow rate of gaseous ethylene injected.
  • the reactor according to the invention makes it possible to increase the saturation of ethylene by 28%, to increase the selectivity for alpha-olefin by 4.3% and to multiply the productivity by 2.25, relative to in the case according to the prior art of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne le domaine des réacteurs gaz/liquide permettant l'oligomérisation d'éthylène en oléfines linéaires par catalyse homogène avec une enceinte réactionnelle comprenant des internes transversaux aptes à ralentir l'ascension de l'éthylène gazeux dans ledit réacteur.

Description

REACTEUR GAZ/LIQUIDE D OLIGOMERISATION COMPRENANT DES INTERNES
TRANSVERSAUX
DOMAINE TECHNIQUE
La présente invention concerne le domaine des réacteurs gaz/liquide permettant l’oligomérisation d’éthylène en oléfines linéaires par catalyse homogène avec une enceinte réactionnelle comprenant des internes transversaux aptes à ralentir l’ascension de l’éthylène gazeux dans ledit réacteur.
L’invention concerne également la mise en œuvre dudit réacteur gaz/liquide dans un procédé d’oligomérisation d’éthylène en alpha-oléfines linéaires, telles que le but-1-ène, le hex-1-ène, ou l’oct-1-ène ou un mélange d’alpha-oléfines linéaires.
ART ANTERIEUR
L’invention concerne le domaine des réacteurs gaz/liquide encore appelés colonne à bulles, ainsi que leurs mises en œuvre dans un procédé d’oligomérisation de l’éthylène. Un inconvénient rencontré lors de la mise en œuvre de tels réacteurs dans des procédés d’oligomérisation de l’éthylène est la gestion du ciel gazeux, correspondant à la partie supérieure du réacteur à l’état gazeux. Ledit ciel gazeux comprend les composés gazeux peu solubles dans la phase liquide, des composés partiellement solubles dans le liquide mais inertes, ainsi que de l’éthylène gazeux non dissous dans ledit liquide. Le passage de l’éthylène gazeux de la partie inférieure liquide de l’enceinte réactionnelle vers le ciel gazeux est un phénomène appelé perçage. Or le ciel gazeux est purgé afin d’éliminer lesdits composés gazeux. Lorsque la quantité d’éthylène gazeux présente dans le ciel gazeux est importante la purge du ciel gazeux entraîne une perte en éthylène non négligeable ce qui nuit à la productivité et au coût du procédé d’oligomérisation. De plus, un phénomène de perçage important signifie que beaucoup d’éthylène gazeux n’a pas été dissous dans la phase liquide et donc n’a pas pu réagir ce qui nuit à la productivité et à la sélectivité du procédé d’oligomérisation.
Afin d’améliorer l’efficacité du procédé d’oligomérisation en terme de productivité et de coût, il est donc indispensable de limiter le phénomène de perçage de l’éthylène afin d’améliorer sa conversion dans ledit procédé tout en conservant un bonne sélectivité en alpha oléfines linéaires souhaitées.
Les procédés de l’art antérieur mettant en œuvre un réacteur gaz/liquide, tel qu’illustré sur la figure 1 , ne permettent pas de limiter la perte en éthylène gazeux, et la purge du ciel gazeux entraîne une sortie d’éthylène gazeux du réacteur néfaste pour le rendement et le coût du procédé.
La demanderesse a décrit des procédés dans les demandes W02019/011806 et W02019/011609 permettant d’augmenter la surface de contact entre la partie supérieure de la fraction liquide et le ciel gazeux par l’intermédiaire de moyen de dispersion ou de vortex afin de favoriser le passage de l’éthylène contenu dans le ciel gazeux vers la phase liquide au niveau de l’interface liquide/gaz. Ces procédés ne permettent pas de limiter le phénomène de perçage et ne sont pas suffisants lorsque la quantité d’éthylène dans le ciel gazeux est importante du fait d’un fort taux de perçage.
De plus lors de ces recherches, la demanderesse a constaté que dans un réacteur fonctionnant à débit constant d’éthylène gazeux injecté, la quantité d’éthylène dissous et donc le taux de perçage est dépendant des dimensions des réacteurs mettant en œuvre le procédé et notamment de la hauteur de la phase liquide. En effet, plus la hauteur est faible plus le temps durant lequel l’éthylène gazeux parcourt la phase liquide pour se dissoudre est faible et plus le taux de perçage est élevé.
La demanderesse a découvert qu’il est possible d’améliorer la conversion d’oléfine(s), tout en conservant une sélectivité élevée en oléfine(s) linéaire(s) recherchée(s), et notamment en alpha-oléfine(s), en limitant les phénomènes de perçage au moyen d’un réacteur gaz/liquide permettant d’augmenter le temps de séjour de l’éthylène gazeux dans la phase liquide au moyen d’internes aptes à ralentir l’ascension de l’éthylène gazeux.
En effet, un réacteur selon la présente invention permet de ralentir l’ascension de l’éthylène gazeux ce qui a pour effet d’améliorer la dissolution de l’éthylène gazeux et donc de limiter le phénomène de perçage pour un volume de phase liquide donné.
L’invention porte également sur un procédé d’oligomérisation d’oléfines et en particulier d’éthylène mettant en œuvre le réacteur selon l’invention comprenant au moins deux internes transversaux.
OBJET DE L’INVENTION
La demanderesse a mis au point un réacteur gaz/liquide d’oligomérisation d’éthylène gazeux pouvant contenir une phase liquide et un ciel gazeux, ledit réacteur comprenant :
- une enceinte 1 de forme allongée le long de l’axe vertical,
- un moyen d’introduction d’éthylène gazeux 2, situé dans la partie inférieure de l’enceinte réactionnelle, - un moyen de soutirage 5 d’un effluent liquide réactionnel situé dans la partie inférieure l’enceinte réactionnelle,
- un moyen de purge 4 d’une fraction gazeuse être situé au sommet dudit réacteur, dans lequel
- ladite enceinte 1 comprend au moins deux internes transversaux 11 disposés sur au moins une partie d’une section de l’enceinte (1) dudit réacteur de manière à augmenter le temps de séjour de l’éthylène gazeux dans la phase liquide,
- chacun desdits internes présentant au moins une ouverture 12 de diamètre hydraulique compris entre 21 et 500 mm, et
- ladite ouverture 12 ou la somme des ouvertures pour un interne occupant entre 20 et 80 % de la surface totale d’une section transversale de l’enceinte réactionnelle sur laquelle se situe ledit interne.
Dans un mode de réalisation préféré, les internes transversaux sont agencés de manière à augmenter le temps de séjour de l’éthylène gazeux, en perturbant l’ascension de l’éthylène gazeux au sein de la phase liquide.
Dans un mode de réalisation préféré, les internes transversaux présentent au moins une ouverture 12 de diamètre hydraulique compris entre 25 et 450 mm, de préférence entre 30 et 400 mm.
Dans un mode de réalisation préféré, les internes transversaux présentent une pluralité d’ouvertures de diamètre hydraulique compris entre 21 et 500 mm, préférentiellement entre 25 et 450 mm, de préférence entre 30 et 400 mm.
Dans un mode de réalisation préféré, ladite une ouverture ou la somme des ouvertures occupe(nt) entre 25 et 75 % de la surface totale d’une section transversale de l’enceinte sur laquelle se situe ledit interne, de préférence entre 40 et 70 %, de préférence entre 40 et 60% et de manière préférée entre 45 et 55%.
Dans un mode de réalisation préféré, les internes transversaux s’étendent radialement sur toute la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide.
Dans un mode de réalisation préféré, les internes transversaux sont choisis parmi une plaque perforée, un plateau à fentes tel qu’une grille, plateau à clapets, disques et couronnes. Dans un mode de réalisation préféré, les internes transversaux s’étendent radialement sur une partie de la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide.
Dans un mode de réalisation préféré, les internes transversaux sont choisis parmi des plaques latérales planes, courbes ou pyramidales, ou tout autre interne apte à jouer le rôle de chicane.
Dans un mode de réalisation préféré, ledit réacteur comprend au moins deux internes transversaux s’étendant partiellement sur une partie de la section de ladite enceinte, lesdites internes étant positionnés alternativement sur les parois de l’enceinte 1.
Dans un mode de réalisation préféré, l’enceinte comprend un nombre d’internes transversaux compris entre 2 et 30, de préférence entre 2 et 20, de préférence entre 2 et 15.
Dans un mode de réalisation préféré, ledit réacteur comprend en outre un moyen de soutirage d’une fraction gazeuse au niveau du ciel gazeux de l’enceinte réactionnelle et un moyen d’introduction de ladite fraction gazeuse soutirée dans la phase liquide dans la partie inférieure de l’enceinte réactionnelle.
Dans un mode de réalisation préféré, ledit réacteur comprend en outre une boucle de recirculation comprenant un moyen de soutirage sur la partie inférieure de l’enceinte réactionnelle, de préférence au fond, de manière à soutirer une fraction liquide vers un ou plusieurs échangeur(s) thermique(s) apte au refroidissement de ladite fraction liquide, et un moyen d’introduction de ladite fraction refroidie dans la partie supérieure de l’enceinte réactionnelle.
Un autre objet de la présente invention concerne un procédé d’oligomérisation d’éthylène gazeux mettant en œuvre le réacteur selon l’un quelconque des modes de réalisation précédent.
Dans un mode de réalisation préféré, le procédé d’oligomérisation est mis en œuvre à une pression comprise entre 0,1 et 10,0 MPa, à une température comprise entre 30 et 200°C comprenant les étapes suivantes :
- une étape a) d’introduction d’un système catalytique d’oligomérisation comprenant un catalyseur métallique et un agent activateur, dans une enceinte réactionnelle,
- une étape b) de mise en contact dudit système catalytique avec de l’éthylène gazeux par l’introduction dudit éthylène gazeux dans la zone inférieure de l’enceinte réactionnelle, - une étape c) de soutirage d’une fraction liquide,
- une étape d) de refroidissement de la fraction soutirée à l’étape c) par le passage de ladite fraction dans un échangeur thermique,
- une étape e) d’introduction de la fraction refroidie à l’étape d) dans la partie supérieure de la zone inférieure de l’enceinte réactionnelle,
- une étape optionnel de recyclage d’une fraction gazeuse soutirée au niveau du ciel gazeux de l’enceinte réactionnelle et introduite au niveau de la partie inférieure de l’enceinte réactionnelle dans la phase liquide.
DEFINITIONS & ABREVIATIONS Les termes suivants sont définis pour une meilleure compréhension de l’invention :
Le terme « oligomérisation » désigne toute réaction d’addition d’une première oléfine sur une seconde oléfine, identique ou différente de la première et comprend la dimérisation, la trimérisation et la tétramérisation. L’oléfine ainsi obtenue de type CnH2n où n est égal ou supérieur à 4. Le terme « oléfine » désigne aussi bien une oléfine qu’un mélange d’oléfines.
Le terme « alpha-oléfine » désigne une oléfine, sur laquelle la double liaison est située en position terminale de la chaîne alkyle.
Le terme « hétéroatome » est un atome différent du carbone et de l'hydrogène. Un hétéroatome peut être choisi parmi l’oxygène, le soufre, l’azote, le phosphore, le silicium et les halogénures tels que le fluor, le chlore, le brome ou l’iode.
Le terme « hydrocarbure » est un composé organique constitué exclusivement d'atomes de carbone (C) et d'hydrogène (H) de formule brute CmHp, avec m et p des entiers naturels.
Le terme « système catalytique » désigne un mélange d’au moins un précurseur métallique, d’au moins un agent activateur, éventuellement d’au moins un additif et éventuellement d’au moins un solvant.
La terme « alkyle » est une chaîne hydrocarbonée comprenant entre 1 et 20 atomes de carbone, préférentiellement de 2 à 15 atomes de carbone et encore plus préférentiellement de 2 à 8 atomes de carbone, noté alkyle en C C20, saturée ou non, linéaire ou ramifiée, non cyclique, cyclique ou polycyclique. Par exemple, on entend par alkyle en C C6, un alkyle choisi parmi les groupements méthyle, éthyle, propyle, butyle, pentyle, cyclopentyle, hexyle et cyclohexyle.
Le terme « aryle » est un groupement aromatique, mono ou polycyclique, fusionné ou non, comprenant entre 6 et 30 atomes de carbone, noté aryle en C6-C3o.
Le terme « alcoxy » est un radical monovalent constitué d’un groupement alkyl lié à un atome d’oxygène tel que le groupement C4H90-.
Le terme « aryloxy » est un radical monovalent constitué d’un groupement aryle lié à un atome d’oxygène tel que le groupement C6H50-.
Le terme « partie inférieure » de l’enceinte du réacteur gaz/liquide désigne la moitié inférieure du réacteur et de la zone réactionnelle.
Le terme « partie supérieure » de l’enceinte réactionnelle du réacteur gaz/liquide désigne la moitié supérieure du réacteur ou de la zone réactionnelle.
Le terme « débit de soutirage » désigne la masse de liquide soutirée du réacteur par unité de temps, il est exprimé en tonnes par heure (t/h).
Le terme « par gaz incondensable » désigne une espèce sous forme physique gaz qui ne se dissout que partiellement dans le liquide aux conditions de température et de pression de l’enceinte réactionnelle, et qui peut, dans certaines conditions, s’accumuler dans le ciel du réacteur (exemple ici : l’éthane).
On entend par phase liquide, le mélange de l’ensemble des composés qui se trouvent à un état physique liquide dans les conditions de température et de pression de l’enceinte réactionnelle, ladite phase pouvant comprendre des composés gazeux tel que l’éthylène gazeux sous forme de bulles.
On entend par ciel gazeux, la partie supérieure de l’enceinte à l’état gazeux se situant au sommet de l’enceinte réactionnelle, c’est-à-dire directement au-dessus de la phase liquide et constitué d’un mélange de composés qui se trouvent à l’état physique gaz lors de la mise en œuvre d’un réacteur dans un procédé d’oligomérisation.
On entend par partie inférieure latérale de l’enceinte réactionnelle une partie de l’enveloppe de l’enceinte réactionnelle du réacteur située en partie basse et sur le côté.
On entend par t/h, la valeur d’un débit exprimée en tonne par heure et par kg/s, la valeur d’un débit en kilogramme par seconde. On désigne par les termes réacteur ou dispositif, l’ensemble des moyens permettant la mise en œuvre du procédé d’oligomérisation selon l’invention, tel que notamment l’enceinte réactionnelle et la boucle de recirculation.
On entend par fond de l’enceinte réactionnelle le quart inférieur de l’enceinte réactionnelle.
On entend par sommet de l’enceinte réactionnelle le quart supérieur de l’enceinte réactionnelle.
On désigne par transversale, la surface, l’interne ou encore la section perpendiculaires à l’axe vertical de l’enceinte.
Le terme « solvant » désigne un liquide qui a la propriété de dissoudre, de diluer ou d'extraire d'autres substances sans les modifier chimiquement et sans lui-même se modifier. L’expression « compris(e) entre ... et ... » doit s’entendre comme incluant les bornes citées.
Les termes « enceinte » ou « enceinte réactionnelle » désigne la paroi du réacteur dans lequel a lieu la réaction d’oligomérisation.
On entend par taux de saturation, le pourcentage d’éthylène dissous dans la phase liquide par rapport à la quantité maximale d’éthylène qui pourrait être dissoute dans ladite phase liquide, défini par l’équilibre thermodynamique entre la pression partielle d’éthylène gazeuse et ladite phase liquide. Le taux de saturation peut être mesuré par chromatographie en phase gazeuse.
Le diamètre hydraulique (DH) est défini pour une ouverture par la formule DH = 4A/P, dans laquelle A désigne l’aire de l’ouverture (exprimé en mm2) et P le périmètre de ladite ouverture (exprimé en mm2), soit quatre fois l’aire de l’ouverture divisé par le périmètre de ladite ouverture.
Par courant ascendant on désigne le sens de l’éthylène gazeux parcourant la phase liquide au sein du réacteur.
BREVE DESCRIPTION DES FIGURES
La figure 1 illustre un réacteur gaz/liquide selon l’art antérieur. Ce dispositif est constitué d’une enceinte réactionnelle 1 comprenant une partie inférieure comprenant une phase liquide, une partie supérieure comprenant un ciel gazeux, et un moyen d’introduction de l’éthylène gazeux 2 par l’intermédiaire d’un distributeur gazeux 3 dans la phase liquide. La partie supérieure comprend un moyen de purge 4. Dans le fond de l’enceinte réactionnelle 1 se situe une conduite pour le soutirage d’une fraction liquide 5. Ladite fraction 5 est divisée en deux flux, un premier flux principal 7 envoyé vers un échangeur à chaleur 8 puis introduit par l’intermédiaire d’une conduite 9 dans la phase liquide et un second flux 6 correspondant à l’effluent envoyé vers une étape ultérieure. La conduite 10 dans le fond de l’enceinte réactionnelle permet l’introduction du système catalytique.
La Figure 2 illustre un réacteur gaz/liquide, de type colonne à bulles, selon un premier mode de réalisation de l’invention, qui diffère de la figure 1 en ce que l’enceinte réactionnelle comprend deux internes transversaux de type plateau perforé de manière à ralentir l’ascension des bulles d’éthylène gazeux.
La figure 3 présente une vue du dessus d’un interne transversale 11 du réacteur selon la figure 2, ledit interne est un plateau dont chaque perforation 12 présente un diamètre hydraulique D2, et dont le diamètre D1 correspond au diamètre interne de l’enceinte réactionnelle.
La figure 4 illustre un réacteur gaz/liquide, de type colonne à bulles, selon un second mode de réalisation de l’invention, qui diffère de la figure 1 en ce que l’enceinte comprend quatre internes transversaux de type chicane disposés de manière à ralentir l’ascension des bulles d’éthylène gazeux.
La figure 5 illustre un réacteur gaz/liquide, de type colonne à bulles, selon un troisième mode de réalisation de l’invention, qui diffère de celui de la figure 4 en ce que les internes transversaux de type chicane ont des formes géométriques différentes.
La figure 6 présente une vue du dessus d’un interne transversal pouvant jouer le rôle de chicane dont le diamètre D1 correspond au diamètre interne de l’enceinte du réacteur et le diamètre D2 correspond à celui de l’ouverture.
DESCRIPTION DETAILLEE DE L’INVENTION
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison. Dans la suite de la description l’objet de l’invention est illustré au cas particulier de l’oligomérisation de l’éthylène gazeux, mais s’applique également à toutes charges oléfiniques introduites à l’état gazeux dans le réacteur selon l’invention.
Il est précisé que, dans toute cette description, l’expression « compris(e) entre ... et ... » doit s’entendre comme incluant les bornes citées. Dans le sens de la présente invention, les différentes plages de paramètre pour une étape donnée tels que les plages de pression et les plages température peuvent être utilisés seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeur préférée de pression peut être combinée avec une plage de valeur de température plus préférée.
L’invention porte sur un réacteur gaz/liquide d’oligomérisation d’éthylène gazeux, de préférence à courant ascendant, pouvant contenir une phase liquide et un ciel gazeux, ledit réacteur comprenant :
- une enceinte 1 de forme allongée le long de l’axe vertical ;
- un moyen d’introduction d’éthylène gazeux 2, situé dans la partie inférieure de l’enceinte réactionnelle,
- un moyen de soutirage 5 d’un effluent liquide réactionnel situé dans la partie inférieure l’enceinte réactionnelle;
- un moyen de purge 4 d’une fraction gazeuse être situé au sommet dudit réacteur ; dans lequel
- ladite enceinte 1 comprend au moins deux internes transversaux 11 disposés sur au moins une partie d’une section de l’enceinte (1) dudit réacteur de manière à augmenter le temps de séjour de l’éthylène gazeux dans la phase liquide ;
- chacun desdits internes présentant au moins une ouverture 12 de diamètre hydraulique compris entre 21 et 500 mm ; et
- ladite ouverture 12 ou la somme des ouvertures pour un interne occupant entre 20 et 80 % de la surface totale d’une section transversale de l’enceinte réactionnelle sur laquelle se situe ledit interne.
Ledit réacteur peut aussi comprendre un moyen d’introduction de l’éthylène gazeux 2, 3, situé dans la partie inférieure de l’enceinte, plus particulièrement dans le fond de l’enceinte, mettant en œuvre un moyen d’injection de l’oléfine au sein de ladite phase liquide de l’enceinte réactionnelle. Ledit réacteur peut aussi comprendre un moyen d’introduction du système catalytique 4, situé dans la partie inférieure, plus particulièrement dans le fond de l’enceinte réactionnelle.
De préférence, l’enceinte 1 présente un rapport hauteur sur largeur (noté H/L) compris entre 1 et 8, de préférence entre 2 et 7. De préférence, l’enceinte réactionnelle est de forme cylindrique. Le réacteur gaz/liquide comprend un moyen de purge 4 du ciel gazeux situé au sommet du réacteur.
Le réacteur gaz/liquide comprend un moyen de soutirage 5 d’un effluent réactionnel au fond de l’enceinte, de préférence le moyen de soutirage est situé sous le moyen d’introduction de l’éthylène gazeux.
De préférence, le réacteur gaz/liquide comprend également un capteur de pression, permettant de maintenir la pression constante, au sein de l’enceinte réactionnelle. De préférence, ladite pression est maintenue constante par l’introduction d’oléfine additionnelle dans l’enceinte.
De préférence, le réacteur gaz/liquide comprend également un capteur de niveau liquide, ledit niveau pouvant être maintenu constant en modulant le débit de l’effluent soutiré à l’étape c) décrite ci-après, du procédé mettant en œuvre le réacteur selon l’invention. De préférence, le capteur de niveau est situé à l’interphase entre la phase liquide et le ciel gazeux.
Internes transversaux
Selon l’invention, le réacteur gaz/liquide comprend au moins deux internes transversaux positionnés sur au moins une partie d’une section de l’enceinte 1 dudit réacteur.
Lesdits internes transversaux permettent avantageusement d’augmenter le temps de séjour de l’éthylène gazeux, en perturbant l’ascension de l’éthylène gazeux au sein de la phase liquide ce qui a pour effet d’améliorer la dissolution de l’éthylène gazeux et donc de limiter le phénomène de perçage.
Les internes transversaux présentent au moins une ouverture 12 de diamètre hydraulique compris entre 21 et 500 mm, préférentiellement entre 25 et 450 mm, de préférence entre 30 et 400 mm.
Dans un mode de réalisation préféré, les internes transversaux 11 présentent une pluralité d’ouvertures de diamètre hydraulique compris entre 21 et 500 mm, préférentiellement entre 25 et 450 mm, de préférence entre 30 et 400 mm.
Pour chacun des internes, ladite une ouverture 12 ou la somme des ouvertures 12 occupe(nt) entre 20 et 80 % de la surface totale d’une section transversale de l’enceinte réactionnelle sur laquelle se situe ledit interne, de préférence entre 25 et 75%, de préférence entre 40 et 70 %, de préférence entre 40 et 60% et de manière préférée entre 45 et 55%. Dans un premier mode de réalisation, lesdits internes transversaux 11 s’étendent radialement sur toute la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide lorsque ledit réacteur est mis en œuvre.
Dans ce premier mode de réalisation lesdites internes transversaux 11 sont de préférence choisis parmi une plaque perforée, un plateau à fentes tel qu’une grille, plateau à clapets, disques et couronnes.
Dans le premier mode de réalisation, ladite ouverture 12 correspond aux perforations, trous, fentes ou tout autre vide pratiqué dans ledit interne de manière à laisser passer la phase liquide et l’éthylène gazeux.
Dans un second mode de réalisation, les internes transversaux 11 s’étendent radialement sur une partie de la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide lorsque ledit réacteur est mis en œuvre. En d’autres termes, dans ce mode de réalisation les internes transversaux sont positionnés sur les parois latérales de l’enceinte 1 du réacteur.
De préférence, dans ce second mode de réalisation, les internes transversaux 11 sont choisis parmi des plaques latérales planes, courbes ou pyramidales, ou tout autre interne apte à jouer le rôle de chicane.
Dans le second mode de réalisation, ladite ouverture 12 de diamètre hydraulique compris entre 21 et 500 mm, correspond à l’espace entre une extrémité de l’interne transversale et la paroi opposée à la paroi sur laquelle est fixé l’interne.
Afin de renforcer la stabilité et la solidité des internes transversaux avec la paroi de l’enceinte du réaction, une solidarisation est mise en œuvre par fixation des internes transversaux, par exemple par soudage, par collage, par vissage, par boulonnage, ou tout moyen analogue. De préférence, la fixation est mise en œuvre par soudage.
De préférence, l’enceinte comprend des internes 11 transversaux selon le premier et le second mode de réalisation.
De préférence, lorsque l’enceinte comprend plusieurs, de préférence au moins deux, internes transversaux selon le second mode de réalisation s’étendant partiellement sur une partie de la section de ladite enceinte, lesdites internes sont positionnés alternativement sur une paroi de l’enceinte puis sur l’autre, tel que schématisé aux figures 4 et 5. De préférence, l’enceinte comprend un nombre d’internes transversaux compris entre 2 et 30, de préférence entre 2 et 20, plus préférentiellement entre 2 et 15 et encore plus préférentiellement le nombre de ralentisseurs est égal à 2, 3, 4, 5, 6, 7, 8, 9, ou 10.
Lesdits internes transversaux sont aptes à laisser passer le milieu réactionnel comprenant la phase liquide contenant de l’éthylène gazeux et de ralentir l’ascension dudit éthylène gazeux au sein de la phase liquide contenue dans l’enceinte réactionnelle. En d’autres termes, les internes transversaux, joue le rôle de ralentisseur et permettent d’augmenter le temps de séjour de l’éthylène gazeux dans la phase liquide et ainsi d’augmenter la dissolution de l’éthylène dans ladite phase liquide. Les internes transversaux permettent donc d’augmenter le taux de saturation en limitant le phénomène de perçage.
Préférentiellement, les internes transversaux sont disposés à égale distance les uns des autres au sein de l’enceinte réactionnelle.
- un moyen d’introduction de l’éthylène gazeux
Selon l’invention, l’enceinte réactionnelle comprend un moyen d’introduction de l’éthylène gazeux 2 situé dans la partie inférieure de ladite enceinte, plus particulièrement dans la partie inférieure latérale.
De préférence le moyen d’introduction de l’éthylène est choisi parmi une conduite, un réseau de conduites, un distributeur multitubulaire, une plaque perforée ou tout autre moyen connu de l’Homme du métier.
Dans un mode de réalisation particulier, le moyen d’introduction de l’éthylène est situé dans la boucle de recirculation.
De préférence, un distributeur gazeux 3, qui est un dispositif permettant de disperser l’éthylène gazeux de manière uniforme sur toute la section liquide, est positionné à l’extrémité du moyen d’introduction au sein de l’enceinte réactionnelle. Ledit dispositif comprend un réseau de conduites perforées, dont le diamètre des orifices est compris entre 1,0 et 12,0 mm, de préférence entre 3,0 et 10,0 mm, pour former des bulles d’éthylène dans le liquide de dimension millimétrique.
- un moyen optionnel d’introduction du système catalytique
Avantageusement, l’enceinte comprend un moyen d’introduction du système catalytique 10. De préférence, le moyen d’introduction est situé sur la partie inférieure de l’enceinte, et de préférence en fond de ladite enceinte.
Selon une variante de réalisation, l’introduction du système catalytique est réalisée dans la boucle de recirculation.
Le moyen d’introduction du système catalytique est choisi parmi tout moyen connu de l’Homme du métier et de préférence est une conduite.
Dans le mode de réalisation où le système catalytique est mis en œuvre en présence d’un solvant ou d’un mélange de solvants, ledit solvant est introduit par un moyen d’introduction situé dans la partie inférieure de l’enceinte, de préférence en fond de l’enceinte ou encore dans la boucle de recirculation.
- une boucle optionnelle de recirculation
Avantageusement, l’homogénéité de la phase liquide, ainsi que la régulation de la température au sein de l’enceinte du réacteur selon l’invention peuvent être réalisées par l’utilisation d’une boucle de recirculation comprenant un moyen sur la partie inférieure de l’enceinte, de préférence au fond, pour réaliser le soutirage d’une fraction liquide vers un ou plusieurs échangeur(s) thermique(s) permettant le refroidissement dudit liquide, et un moyen d’introduction dudit liquide refroidi dans la phase liquide dans la partie supérieure de l’enceinte.
La boucle de recirculation permet une bonne homogénéisation des concentrations ainsi qu’un contrôle de la température dans la phase liquide au sein de l’enceinte.
Avantageusement, la mise en œuvre d’une boucle de recirculation permet d’induire un sens de circulation de la phase liquide dans l’enceinte de la partie supérieure vers la partie inférieure de ladite enceinte ce qui permet d’augmenter le temps de séjour de l’éthylène gazeux en ralentissant sa montée dans ladite phase liquide et donc de limiter encore le phénomène de perçage.
La boucle de recirculation peut avantageusement être mise en œuvre par tout moyen nécessaire et connu de l’Homme du métier, tel que, une pompe pour le soutirage de la fraction liquide, un moyen apte à réguler le débit de la fraction liquide soutirée, ou encore une conduite de purge d’au moins une partie de la fraction liquide.
De préférence le moyen de soutirage de la fraction liquide de l’enceinte est une conduite. Le ou les échangeur(s) thermique(s) apte(s) à refroidir la fraction liquide est (sont) choisi(s) parmi tout moyen connu de l’Homme du métier.
- une boucle optionnelle de recycle du ciel gazeux
Avantageusement, le réacteur gaz/liquide d’oligomérisation selon l’invention comprend en outre une boucle de recycle du ciel gazeux dans la partie inférieure de la phase liquide. Ladite boucle comprenant un moyen de soutirage d’une fraction gazeuse au niveau du ciel gazeux situé dans la partie supérieure de l’enceinte et un moyen d’introduction de ladite fraction gazeuse soutirée dans la phase liquide dans la partie inférieure de ladite enceinte.
La boucle de recycle permet avantageusement de compenser le phénomène de perçage et de limiter la perte de productivité du réacteur, en maintenant la saturation en éthylène dissous dans la phase liquide proche de la valeur souhaitée.
Un autre avantage de la boucle de recycle est d’améliorer la productivité volumique du dispositif et donc de diminuer les coûts. Dans un mode de réalisation préféré, la boucle de recycle comprend en outre un compresseur. Dans un mode de réalisation, l’introduction de la fraction gazeuse soutirée est réalisée par l’intermédiaire du moyen d’introduction de l’éthylène gazeux.
Dans un autre mode de réalisation, l’introduction de la fraction gazeuse soutirée est réalisée par l’intermédiaire d’un distributeur gazeux qui est un dispositif permettant de disperser la fraction gazeuse de manière uniforme sur toute la section liquide, et est positionné à l’extrémité du moyen d’introduction au sein de l’enceinte. Ledit dispositif comprend un réseau de conduites perforées, dont le diamètre des orifices est compris entre 1,0 et 12,0 mm, de préférence entre 3,0 et 10,0 mm, pour former des bulles d’éthylène dans le liquide de dimension millimétrique.
De préférence le moyen d’introduction de la fraction gazeuse soutirée est choisi parmi une conduite, un réseau de conduites, un distributeur multitubulaire, une plaque perforée ou tout autre moyen connu de l’Homme du métier.
Procédé d’oligomérisation
Un autre objet de la présente invention couvre un procédé d’oligomérisation mettant en œuvre le réacteur gaz/liquide selon l’invention tel que décrit précédemment. De préférence, dans un réacteur gaz/liquide le débit d’éthylène gazeux introduit à l’étape b), telle que décrite ci-après, est asservi à la pression dans l’enceinte réactionnelle. Ainsi, en cas d’augmentation de la pression dans le réacteur du fait d’un fort taux de perçage de l’éthylène dans le ciel gazeux, le débit d’éthylène gazeux introduit à l’étape b), telle que décrite ci-après, diminue ce qui entraîne une diminution de la quantité d’éthylène dissous dans la phase liquide, donc de la saturation en éthylène. Ladite diminution est préjudiciable pour la conversion de l’éthylène et s’accompagne d’une diminution de la productivité du réacteur, et éventuellement de sa sélectivité.
Avantageusement la mise en œuvre du réacteur selon l’invention dans un procédé d’oligomérisation, de préférence par catalyse homogène, permet d’avoir un taux de saturation en éthylène dissous dans la phase liquide supérieur à 70,0 %, de préférence entre 70,0 et 100 %, de préférence entre 80,0 et 100 %, de manière préférée compris entre 80,0 et 99,0 %, de préférence entre 85,0 et 99,0 % et de manière encore plus préférée entre 89,0 et 98,0 %.
Le taux de saturation en éthylène dissous peut être mesuré par toute méthode connue de l’Homme du métier et par exemple par l’analyse chromatographique en phase gaz (couramment appelée GC) d’une fraction de la phase liquide soutirée de l’enceinte réactionnelle.
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention permet l’obtention d’oléfines linéaires et particulièrement d’alpha-oléfines linéaires par la mise en contact d’oléfine(s), en particulier d’éthylène et d’un système catalytique, éventuellement en présence d’un additif et/ou d’un solvant, et par la mise en œuvre dudit réacteur gaz/liquide selon l’invention.
Tous les systèmes catalytiques connus de l’Homme du métier et aptes à être mis en œuvre dans les procédés de dimérisation, de trimérisation, de tétramérisation et plus généralement dans les procédés d’oligomérisation selon l’invention, font partie du domaine de l’invention. Lesdits systèmes catalytiques ainsi que leurs mises en œuvres sont notamment décrits dans les demandes FR2984311, FR2552079, FR3019064, FR3023183, FR3042989 ou encore dans la demande FR3045414.
De préférence, les systèmes catalytiques comprennent, de préférence sont constitués de :
- un précurseur métallique de préférence à base de nickel, de titane, ou de chrome,
- un agent activateur,
- optionnellement un additif, et optionnellement un solvant.
Le précurseur métallique utilisé dans le système catalytique est choisi parmi les composés à base de nickel, de titane ou de chrome.
Dans un mode de réalisation, le précurseur métallique est à base de nickel et préférentiellement comprend du nickel de degré d’oxydation (+11). De préférence, le précurseur de nickel est choisi parmi les carboxylates de nickel(ll) tel que par exemple le 2- éthylhexanoate de nickel, les phénates de nickel(ll), les naphténates de nickel(ll), l'acétate de nickel(ll), le trifluoroacétate de nickel(ll), le triflate de nickel(ll), l'acétylacétonate de nickel(ll), l'hexafluoroacétylacétonate de nickel(ll), le chlorure de TT-allylnickel(ll), le bromure de TT-allylnickel(ll), le dimère du chlorure de methallylnickel(ll), l'hexafluorophosphate de h3- allylnickel(ll), l'hexafluorophosphate de r|3-methallylnickel(ll) et le 1,5-cyclooctadiényle de nickel(ll), sous leur forme hydratée ou non, pris seul ou en mélange.
Dans un second mode de réalisation, le précurseur métallique est à base de titane et préférentiellement comprend un composé aryloxy ou alcoxy du titane.
Le composé alcoxy du titane répond avantageusement à la formule générale [Ti(OR)4] dans laquelle R est un radical alkyle linéaire ou ramifié. Parmi les radicaux alcoxy préférés, on peut citer à titre d’exemple non limitatifs : le tétraéthoxy, le tétraisopropoxy, le tétra-n-butoxy et le tétra-2-éthyl-hexyloxy.
Le composé aryloxy du titane répond avantageusement à la formule générale [Ti(OR’)4] dans laquelle R’ est un radical aryle substitué ou non par des groupements alkyle ou aryle. Le radical R’ peut comporter des substituants à base d’hétéroatome. Les radicaux aryloxy préférés sont choisis parmi le phénoxy, le 2-méthylphénoxy, le 2,6-diméthylphénoxy, le
2.4.6-triméthylphénoxy, le 4-méthylphénoxy, le 2-phénylphénoxy, le 2,6-diphénylphénoxy, le
2.4.6-triphénylphénoxy, le 4-phénylphénoxy, le 2-tert-butyl-6-phénylphénoxy, le 2,4- ditertbutyl-6-phénylphénoxy, le 2,6-diisopropylphénoxy, le 2,6-ditert-butylphénoxy, le 4- méthyl-2,6-ditert-butylphénoxy, le 2,6-dichloro-4-tert-butylphénoxy et le 2,6-dibromo-4-tert- butylphénoxy, le radical biphénoxy, le binaphtoxy, le 1 ,8-naphtalène-dioxy.
Selon un troisième mode de réalisation, le précurseur métallique est à base de chrome et préférentiellement comprend un sel de chrome (II), un sel de chrome (III), ou un sel de degré d'oxydation différent pouvant comporter un ou plusieurs anions identiques ou différents, tels que par exemple des halogénures, des carboxylates, des acétylacétonates, des anions alcoxy ou aryloxy. De préférence, le précurseur à base de chrome est choisi parmi CrCI3, CrCI3(tétrahydrofurane)3, Cr(acétylacétonate)3, Cr(naphténate)3, Cr(2-éthylhexanoate)3, Cr(acétate)3.
La concentration en nickel, en titane ou en chrome, est comprise entre 0,01 et 300,0 ppm en masse de métal atomique par rapport à la masse réactionnelle, de préférence entre 0,02 et 100,0 ppm, préférentiellement entre 0,03 et 50,0 ppm, plus préférentiellement entre 0,5 et 20,0 ppm et encore plus préférentiellement entre 2,0 et 50,0 ppm en masse de métal atomique par rapport à la masse réactionnelle.
L’aqent activateur
Quel que soit le précurseur métallique, le système catalytique comprend en outre un ou plusieurs agents activateurs choisis parmi les composés à base d’aluminium tels que, le dichlorure de méthylaluminium (MeAICI2), le dichloroéthylaluminium (EtAICI2), le sesquichlorure d'éthylaluminium (Et3AI2CI3), le chlorodiéthylaluminium (Et2AICI), le chlorodiisobutylaluminium (i-Bu2AICI), le triéthylaluminium (AIEt3), le tripropylaluminium (Al(n- Pr)3), le triisobutylaluminium (Al(i-Bu)3), le diéthyl-éthoxyaluminium (Et2AIOEt), le méthylaluminoxane (MAO), l'éthylaluminoxane et les méthylaluminoxanes modifiés (MMAO).
L’additif
Optionnellement, le système catalytique comprend un ou plusieurs additifs.
Lorsque le système catalytique est à base de nickel, l’additif est choisi parmi,
- les composés de type azoté, tels que la triméthylamine, la triéthylamine, le pyrrole, le 2,5-diméthylyrrole, la pyridine, la 2-méthylpyridine, la 3-méthylpyridine, la 4- méthylpyridine, la 2-méthoxypyridine, la 3-méthoxypyridine, la 4-méthoxypyridine, la
2-fluoropyridine, la 3-fluoropyridine, la 3-tri f I u ro m éthy I py ri dîne, la 2-phénylpyridine, la
3-phénylpyridine, la 2-benzylpyridine, la 3,5-diméthylpyridine, la 2,6-diterbutylpyridine et la 2,6-diphénylpyridine, la quinoline, la 1,10-phénanthroline, N-méthylpyrrole, N- butylpyrrole N-méthylimidazole, le N-butylimidazole, la 2,2’-bipyridine, la N,N'- diméthyl-éthane-1,2-diimine, la N,N'-di-t-butyl-éthane-1 ,2-diimine, la N, N'-di-t-butyl- butane-2,3-diimine, la N,N'-diphényl-éthane-1 ,2-diimine, la N,N'-bis-(diméthyl-2,6- phényl)-éthane-1 ,2-diimine, la N,N'-bis-(diisopropyl-2,6-phényl)-éthane-1,2-diimine, la N,N'-diphényl-butane-2,3-diimine, la N,N'-bis-(diméthyl-2,6-phényl)-butane-2,3- diimine, la N,N'-bis-(diisopropyl-2,6-phényl)-butane-2,3-diimine, ou - les composés de type phosphine choisi indépendamment parmi la tributylphosphine, la triisopropylphosphine, la tricyclopentylphosphine, la tricyclohexylphosphine, la triphénylphosphine, la tris(o-tolyl)phosphine, le bis(diphénylphosphino)éthane, l’oxyde de trioctylphosphine, l’oxyde de triphénylphosphine, la triphénylphosphite, ou
- les composés répondant à la formule générale (I) ou un des tautomères dudit composé : dans laquelle
* A et A’, identiques ou différents, sont indépendamment un oxygène ou une liaison simple entre l’atome de phosphore et un atome de carbone,
* les groupements R1a et R1b sont indépendamment choisis parmi les groupements méthyle, trifluorométhyle, éthyle, n-propyle, i-propyle, n-butyle, i-butyle, t-butyle, pentyle, cyclohexyle, adamantyle, substitués ou non, contenant ou non des hétéroéléments; les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5- diméthylphényle, 4-n-butylephényle, 2-méthylephényle, 4-méthoxyphényle, 2- méthoxyphényle, 3-méthoxyphényle, 4-méthoxyphényle, 2-isopropoxyphényle, 4- méthoxy-3,5-diméthylphényle, 3,5-ditert-butyl-4-méthoxyphényle, 4-chlorophenyle, 3,5-di(trifluorométhyl)phényle, benzyle, naphthyle, bisnaphthyle, pyridyle, bisphényle, furanyle, thiophényle,
* le groupement R2 est choisi indépendamment parmi les groupements méthyle, trifluorométhyle, éthyle, n-propyle, i-propyle, n-butyle, i-butyle, t-butyle, pentyle, cyclohexyle, adamantyle, substitués ou non, contenant des hétéroéléments ou non ; les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5-diméthylphényle, 4-n-butylephényle, 4-méthoxyphényle, 2-méthoxyphényle, 3-méthoxyphényle, 4- méthoxyphényle, 2-isopropoxyphényle, 4-méthoxy-3,5-diméthylphényle, 3,5-ditert- butyl-4-méthoxyphényle, 4-chlorophenyle, 3,5-bis(trifluorométhyl)phényle, benzyle, naphthyle, bisnaphthyle, pyridyle, bisphényle, furanyle, thiophényle.
Lorsque le système catalytique est à base de titane, l’additif est choisi parmi l'éther diéthylique, le diisopropyléther, le dibutyléther, le diphényléther, le 2-méthoxy-2- méthylpropane, 2-methoxy-2-méthylbutane, le diméthoxy-2,2 propane, le di(2-éthylhexyloxy)- 2,2 propane, le 2,5-dihydrofurane, le tétrahydrofurane, le 2-méthoxytétrahydrofurane, le 2- méthyltétrahydrofurane, le 3-méthyltétrahydrofurane, le 2,3-dihydropyrane, le tétrahydropyrane, le 1,3-dioxolane, le 1,3-dioxane, le 1,4-dioxane, le diméthoxyéthane, di(2- méthoxyéthyl)éther, le benzofurane, le glyme et le diglyme pris seuls ou en mélange.
Lorsque le système catalytique est à base de chrome, l’additif est choisi parmi,
- les composés de type azoté, tels que la triméthylamine, la triéthylamine, le pyrrole, le 2,5-diméthylyrrole, la pyridine, la 2-méthylpyridine, la 3-méthylpyridine, la 4- méthylpyridine, la 2-méthoxypyridine, la 3-méthoxypyridine, la 4-méthoxypyridine, la
2-fluoropyridine, la 3-fluoropyridine, la 3-tri f I u ro m éthy I py ri dîne, la 2-phénylpyridine, la
3-phénylpyridine, la 2-benzylpyridine, la 3,5-diméthylpyridine, la 2,6-diterbutylpyridine et la 2,6-diphénylpyridine, la quinoline, la 1,10-phénanthroline, N-méthylpyrrole, N- butylpyrrole N-méthylimidazole, le N-butylimidazole, la 2,2’-bipyridine, la N,N'- diméthyl-éthane-1,2-diimine, la N,N'-di-t-butyl-éthane-1,2-diimine, la N, N'-di-t-butyl- butane-2,3-diimine, la N,N'-diphényl-éthane-1,2-diimine, la N,N'-bis-(diméthyl-2,6- phényl)-éthane-1,2-diimine, la N,N'-bis-(diisopropyl-2,6-phényl)-éthane-1,2-diimine, la N,N'-diphényl-butane-2,3-diimine, la N,N'-bis-(diméthyl-2,6-phényl)-butane-2,3- diimine, la N,N'-bis-(diisopropyl-2,6-phényl)-butane-2,3-diimine, et/ou
- les composés aryloxy de formule générale [M(R30)2-nXn]y dans laquelle
* M est choisi parmi le magnésium, le calcium, le strontium et le baryum, de préférence le magnésium,
* R3 est un radical aryl contenant de 6 à 30 atomes de carbone, X est un halogène ou un radical alkyl contenant de 1 à 20 atomes de carbone,
* n est un nombre entier qui peut prendre les valeurs de 0 ou 1, et
* y est un nombre entier compris entre 1 et 10, de préférence y est égal à 1, 2, 3 ou 4.
De préférence, le radical aryloxy RsO est choisi parmi le 4-phénylphénoxy, le 2- phénylphénoxy, le 2,6-diphénylphénoxy, le 2,4,6-triphénylphénoxy, le 2, 3,5,6- tétraphénylphénoxy, le 2-tert-butyl-6-phénylphénoxy, le 2,4-ditertbutyl-6-phénylphénoxy, le 2,6-diisopropylphénoxy, le 2,6-diméthylphénoxy, le 2,6-ditert-butylphénoxy, le 4-méthyl-2,6- ditert-butylphénoxy, le 2,6-dichloro-4-tert-butylphénoxy et le 2,6-dibromo-4-tert-butylphénoxy. Les deux radicaux aryloxy peuvent être portés par une même molécule, comme par exemple le radical biphénoxy, le binaphtoxy ou le 1 ,8-naphtalène-dioxy, De préférence, le radical aryloxy RsO est le 2,6-diphénylphénoxy, le 2-tert-butyl-6-phénylphénoxy ou le 2,4-ditert- butyl-6-phénylphénoxy. Le solvant
Dans un autre mode de réalisation selon l’invention, le système catalytique comprend optionnellement un ou plusieurs solvants.
Le solvant est choisi parmi le groupe formé par les hydrocarbures aliphatiques et cycloaliphatiques tels que l'hexane, le cyclohexane, l'heptane, le butane ou l'isobutane.
De manière préférée, le solvant utilisé est le cyclohexane.
Dans un mode de réalisation, un solvant ou un mélange de solvants peut être utilisé durant la réaction d’oligomérisation. Ledit solvant est avantageusement choisi indépendamment parmi le groupe formé par les hydrocarbures aliphatiques et cycloaliphatiques tels que l'hexane, le cyclohexane, l'heptane, le butane ou l'isobutane.
De préférence, les alpha oléfines linéaires obtenues comprennent de 4 à 20 atomes de carbone, de préférence de 4 à 18 atomes de carbones, de préférence de 4 à 10 atomes de carbones, et de préférence de 4 à 8 atomes de carbone. De manière préférée, les oléfines sont des alpha-oléfines linéaires, choisi parmi le but-1-ène, le hex-1-ène ou l’oct-1-ène.
Avantageusement, le procédé d’oligomérisation est mis en œuvre à une pression comprise entre 0,1 et 10,0 MPa, de préférence entre 0,2 et 9,0 MPa et préférentiellement entre 0,3 et 8,0 MPa, à une température comprise entre 30 et 200°C, de préférence entre 35 et 150°C et de manière préférée entre 45 et 140°C.
De préférence, la concentration en catalyseur est comprise entre 0,01 et 500,0 ppm en masse de métal atomique par rapport à la masse réactionnelle, de préférence entre 0,05 et 100,0 ppm, de préférence entre 0,1 et 50,0 ppm et de préférence entre 0,2 et 30,0 ppm en masse de métal atomique par rapport à la masse réactionnelle.
Selon un autre mode de réalisation, le procédé d’oligomérisation est mise en œuvre en continu. Le système catalytique, constitué comme décrit ci-dessus, est injecté en même temps que l'éthylène dans un réacteur agité par les moyens mécaniques classiques connus de l'homme du métier ou par une recirculation extérieure, et maintenu à la température souhaitée. On peut aussi injecter séparément les composants du système catalytique dans le milieu réactionnel. L'éthylène gazeux est introduit par une vanne d'admission asservie à la pression, qui maintient celle-ci constante dans le réacteur. Le mélange réactionnel est soutiré au moyen d'une vanne asservie au niveau liquide de façon à maintenir celui-ci constant. Le catalyseur est détruit en continu par tout moyen habituel connu de l'homme du métier, puis les produits issus de la réaction ainsi que le solvant sont séparés, par exemple par distillation. L'éthylène qui n'a pas été transformé peut être recyclé dans le réacteur. Les résidus de catalyseur inclus dans une fraction lourde peuvent être incinérés.
Etape a) d’introduction du système catalytique
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape a) d’introduction d’un système catalytique comprenant un catalyseur métallique et un agent activateur, et éventuellement d’un solvant ou d’un mélange de solvants, dans une enceinte réactionnelle comprenant une phase liquide dans une partie inférieure et un ciel gazeux dans une partie supérieure.
De préférence, l’introduction du système catalytique est réalisée dans la phase liquide dans la partie inférieure de l’enceinte réactionnelle et de préférence dans le fond de l’enceinte réactionnelle.
De préférence, la pression d’introduction dans l’enceinte réactionnelle est comprise entre 0,1 et 10,0 MPa, de préférence entre 0,2 et 9,0 MPa et préférentiellement entre 0,3 et 8,0 MPa.
De préférence la température d’introduction dans l’enceinte réactionnelle est entre 30 et 200°C, de préférence entre 35 et 150°C et de manière préférée entre 45 et 140°C.
Etape b) de mise en contact avec de l’éthylène gazeux
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape b) de mise en contact du système catalytique introduit à l’étape a) avec de l’éthylène gazeux. Ledit éthylène gazeux est introduit dans la phase liquide au niveau de la partie inférieure de l’enceinte réactionnelle, de préférence sur la partie inférieure latérale de l’enceinte réactionnelle. L’éthylène gazeux introduit comprend de l’éthylène gazeux frais, et de préférence, ledit éthylène gazeux frais est combiné avec de l’éthylène gazeux recyclé à une étape de séparation ultérieure au procédé d’oligomérisation.
Lors de la mise en œuvre du procédé selon l’invention, suite à l’étape l’introduction de l’éthylène gazeux, la phase liquide comprend de l’éthylène gazeux non dissous, ainsi selon les zones de l’enceinte réactionnelle, la phase liquide correspond à un mélange gaz-liquide entre notamment la phase liquide et l’éthylène gazeux. De préférence, la zone dans le fond de l’enceinte réactionnelle sous le niveau d’introduction de l’éthylène gazeux comprend, de préférence est constituée, de la phase liquide sans éthylène gazeux.
De préférence, l’éthylène gazeux est distribué par dispersion lors de son introduction dans la phase liquide inférieure de l’enceinte réactionnelle par un moyen apte à réaliser ladite dispersion de manière uniforme sur toute la section du réacteur. De préférence, le moyen de dispersion est choisi parmi un réseau distributeur avec une répartition homogène des points d’injection d’éthylène sur toute la section du réacteur.
De préférence, la vitesse de l’éthylène gazeux en sortie des orifices est comprise entre 1 ,0 et 30,0 m/s. Sa vitesse superficielle (vitesse volumique de gaz divisée par la section de l’enceinte réactionnelle) est comprise entre 0,5 et 10,0 cm/s et de préférence entre 1,0 et 8,0 cm/s.
De préférence, l’éthylène gazeux est introduit à un débit compris entre 1 et 250 t/h, de préférence entre 3 et 200 t/h, de préférence entre 5 et 150 t/h et de préférence entre 10 et 100 t/h.
De préférence, le débit d’éthylène gazeux introduit à l’étape b) est asservi à la pression dans l’enceinte réactionnelle.
Selon un mode particulier de mise en œuvre de l’invention, un flux d’hydrogène gazeux peut également être introduit dans l’enceinte réactionnelle, avec un débit représentant 0,2 à 1,0 % en masse du débit d’éthylène entrant. De préférence, le flux d’hydrogène gazeux est introduit par la conduite mise en œuvre pour l’introduction de l’éthylène gazeux.
Etape c) de soutirage d’une fraction de la phase liquide
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape c) de soutirage d’une fraction de la phase liquide de préférence dans la partie inférieure de l’enceinte réactionnelle.
Le soutirage mis en œuvre à l’étape c) est, de préférence, réalisé dans la partie inférieure de l’enceinte réactionnelle, de préférence sous le niveau de l’injection d’éthylène gazeux, et de préférence dans le fond de l’enceinte. Le soutirage est mis en œuvre par tout moyen apte à réaliser le soutirage et de préférence par une pompe.
De préférence, le débit de soutirage est compris entre 500 et 10000 t/h, et de préférence entre 800 et 7000 t/h.
Dans un mode de réalisation, un second flux est soutiré de la phase liquide. Ledit second flux correspond à l’effluent obtenu à l’issue du procédé d’oligomérisation et peut être envoyé vers une section de séparation située en aval du dispositif mis en œuvre dans le procédé selon l’invention. Selon un mode préféré de réalisation, la fraction liquide soutirée de la phase liquide est divisée en deux flux. Le premier flux dit principal est envoyé vers l’étape d) de refroidissement, et le second flux correspond à l’effluent et est envoyé vers la section aval de séparation.
Avantageusement, le débit dudit second flux est régulé pour maintenir un niveau liquide constant dans le réacteur. De préférence, le débit dudit second flux est de 5 à 200 fois inférieur au débit liquide envoyé à l’étape de refroidissement. De préférence, le débit dudit effluent est de 5 à 150 fois inférieur, de préférence de 10 à 120 fois inférieur et de manière préférée de 20 à 100 fois inférieur.
Etape d) de refroidissement de la fraction liquide
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape d) de refroidissement de la fraction liquide soutirée à l’étape c).
De préférence, l’étape de refroidissement est mise en œuvre par la circulation du flux principal liquide soutiré à l’étape c), à travers un ou plusieurs échangeurs thermiques situés à l’intérieur ou à l’extérieur de l’enceinte réactionnelle et de préférence à l’extérieur.
L’échangeur thermique permet de diminuer la température de la fraction liquide de 1,0 à 30,0°C, de préférence entre 2,0 et 20°C, de préférence entre 2,0 et 15,0°C, de préférence entre 2,5 et 10,0°C, de préférence de 3,0 à 9,0°C, de préférence de 4,0 à 8,0°C. Avantageusement le refroidissement de la fraction liquide permet de maintenir la température du milieu réactionnel dans les gammes de température souhaitées.
Avantageusement, la mise en œuvre de l’étape de refroidissement du liquide, par l’intermédiaire de la boucle de recirculation permet également d’effectuer l’agitation du milieu réactionnel, et ainsi d'homogénéiser les concentrations des espèces réactives dans tout le volume liquide de l’enceinte réactionnelle.
Etape e) d’introduction de la fraction liquide refroidie
Le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape e) d’introduction de la fraction liquide refroidie à l’étape d).
L’introduction de la fraction liquide refroidie issue de l’étape d) est réalisée dans la phase liquide de l’enceinte réactionnelle, de préférence dans la partie supérieure de ladite enceinte, par tout moyen connu de l’Homme du métier. Avantageusement, lorsque la fraction refroidie est introduite dans la partie supérieure de la phase liquide contenue dans l’enceinte réactionnelle, un sens de circulation de ladite phase liquide est induite du sommet vers le fond de ladite enceinte ce qui ralenti la montée de l’éthylène gazeux dans la phase liquide et donc améliore dissolution de l’éthylène dans la phase liquide. Ainsi la combinaison de ce mode de réalisation et du réacteur comprenant des internes transversaux selon l’invention permet de limiter encore mieux le phénomène de perçage.
De préférence, le débit d’introduction de la fraction liquide refroidie est compris entre 500 et 10000 t/h, et de préférence entre 800 et 7000 t/h.
Les étapes c) à e) constituent une boucle de recirculation. Avantageusement, la boucle de recirculation permet d’effectuer l’agitation du milieu réactionnel, et ainsi d'homogénéiser les concentrations des espèces réactives dans tout le volume liquide de l’enceinte réactionnelle.
Etape f) optionnelle de recyclage d’une fraction gazeuse soutirée du ciel gazeux
Avantageusement, le procédé mettant en œuvre le réacteur gaz/liquide selon l’invention comprend une étape f) de recyclage d’une fraction gazeuse soutirée du ciel gazeux de l’enceinte réactionnelle et introduite au niveau de la partie inférieure de l’enceinte réactionnelle dans la phase liquide, de préférence sur la partie inférieure latérale de l’enceinte réactionnelle, de préférence en fond de l’enceinte réactionnelle.
L’étape f) optionnelle de recyclage de la fraction gazeuse est encore appelée boucle de recycle. Le soutirage de la fraction gazeuse mis en œuvre à l’étape f) est réalisé par tout moyen apte à réaliser le soutirage et de préférence par un compresseur.
Un avantage de l’étape f) optionnelle de recyclage est de permettre de compenser de façon simple et économique le phénomène de perçage de l’éthylène gazeux dans le ciel gazeux dans un procédé d’oligomérisation quelles que soient les dimensions du réacteur selon l’invention.
Le phénomène de perçage correspond à l’éthylène gazeux qui traverse la phase liquide sans se dissoudre et qui passe dans le ciel gazeux. Lorsque le débit d’éthylène gazeux injecté et le volume de ciel sont fixés à une valeur donnée, le perçage entraîne alors une augmentation de pression dans l’enceinte réactionnelle. Dans un réacteur gaz/liquide mis en œuvre selon un procédé préféré, le débit d’introduction de l’éthylène à l’étape b) est asservi à la pression dans l’enceinte réactionnelle. Ainsi, en cas d’augmentation de la pression dans le réacteur du fait d’un fort taux de perçage de l’éthylène dans le ciel gazeux, le débit d’éthylène gazeux introduit à l’étape b) diminue ce qui entraîne une diminution de la quantité d’éthylène dissous dans la phase liquide et donc de la saturation. La diminution de la saturation est préjudiciable pour la conversion de l’éthylène et s’accompagne d’une diminution de la productivité du réacteur. L’étape optionnelle de recyclage d’une fraction gazeuse permet avantageusement d’optimiser la saturation de l’éthylène dissous et donc d’améliorer la productivité volumique du procédé.
La fraction gazeuse soutirée à l’étape f) peut être introduite dans l’enceinte réactionnelle seule ou en mélange avec l’éthylène gazeux introduit à l’étape b). De préférence, la fraction gazeuse est introduite en mélange avec l’éthylène gazeux introduit à l’étape b).
Dans un mode de réalisation particulier, la fraction gazeuse soutirée à l’étape f) est introduite dans l’enceinte réactionnelle par dispersion dans la phase liquide inférieure de l’enceinte réactionnelle par un moyen apte à réaliser ladite dispersion de manière uniforme sur toute la section du réacteur. De préférence, le moyen de dispersion est choisi parmi un réseau distributeur avec une répartition homogène des points d’injection de la fraction gazeuse soutirée à l’étape f) sur toute la section du réacteur.
De préférence, la vitesse de la fraction gazeuse soutirée en sortie des orifices est comprise entre 1,0 et 30,0 m/s. Sa vitesse superficielle (vitesse volumique de gaz divisée par la section de l’enceinte réactionnelle) est comprise entre 0,5 et 10,0 cm/s et de préférence entre 1,0 et 8,0 cm/s.
De préférence, le débit de soutirage de la fraction est compris entre 0,1 et 100 % du débit d’éthylène gazeux introduit à l’étape b), de préférence 0,5 et 90,0 %, de préférence 1,0 et 80,0 %, de préférence entre 2,0 et 70,0 %, de préférence entre 4,0 et 60,0 %, de préférence entre 5,0 et 50,0 %, de préférence entre 10,0 et 40,0 % et de manière préférée entre 15,0 et 30,0 %.
Avantageusement, le débit de soutirage de la fraction gazeuse à l’étape f) est asservi à la pression au sein de l’enceinte réactionnelle ce qui permet de maintenir la pression à une valeur ou une gamme de souhaitée et donc de compenser le phénomène de perçage de l’éthylène gazeux dans le ciel.
Dans un mode de réalisation particulier, la fraction gazeuse soutirée à l’étape f) est divisée en deux flux, un premier flux gazeux dit principal est recyclé directement dans l’enceinte réactionnelle, et un second flux gazeux. Dans un mode de réalisation préféré, ledit second flux gazeux correspond à une purge du ciel gazeux, qui permet d’éliminer une partie des gaz incondensables.
De préférence, le débit de du second flux gazeux est compris entre 0,005 et 1,00 % du débit d’éthylène introduit à l’étape b), de préférence entre 0,01 et 0,50 %. EXEMPLES
Les exemples ci-dessous illustrent l’invention sans en limiter la portée.
Exemple 1 (comparatif)
L’exemple 1 illustre le cas de référence correspondant à la Figure 1, dans lequel le procédé d’oligomérisation met en œuvre un réacteur gaz-liquide, selon l’art antérieur. Un réacteur gaz/liquide d’oligomérisation selon l’art antérieur, comprenant une enceinte réactionnelle de forme cylindrique ayant un diamètre de 1,8 m et une hauteur de liquide de 6 m, est mis en œuvre à une pression de 7,0 MPa et à une température de 120°C.
Le système catalytique introduit dans l’enceinte réactionnelle est un système catalytique à base de chrome, tel que décrit dans le brevet FR3019064, en présence de cyclohexane comme solvant.
Ledit système catalytique est mis en contact avec de l’éthylène par introduction dudit éthylène gazeux dans la partie inférieure de ladite enceinte. L’effluent est ensuite récupéré en fond de réacteur.
La productivité volumique de ce réacteur est de 17 kg d’alpha-oléfine produite par heure et par m3 de volume réactionnel.
Les performances de ce réacteur permettent de convertir 77,4 % de l’éthylène injecté, pour un taux de saturation en dissous dans la phase liquide de 61,0% et d’atteindre une sélectivité de 83,1 % en hexène-1, pour un taux massique de solvant de 1,6. Ledit taux de solvant est calculé comme le ratio massique du débit de solvant injecté sur le débit d’éthylène gazeux injecté.
Exemple 2 : selon l’invention correspondant à la figure 2
Un réacteur selon l’invention ayant deux plateaux perforés comme internes transversaux est mis en œuvre dans les mêmes conditions que l’exemple 1.
Chacun des plateaux perforés ayant les caractéristiques suivantes - pluralité d’ouvertures 11 de diamètre hydraulique 0,44 mètre,
- la somme des ouvertures 11 occupant 30 % de la surface totale d’une section transversale de l’enceinte pour chacun des plateaux perforés 11.
La productivité volumique de ce réacteur est de 38,3 kg d’alpha-oléfine produite par heure et par m3 de volume réactionnel.
Les performances de ce réacteur permettent de convertir 57,8 % de l’éthylène injecté, pour un taux de saturation en éthylène dissous dans la phase liquide de 89,0% et d’atteindre une sélectivité de 87,5 % en l’alpha-oléfine recherchée, pour un taux massique de solvant de 1,6. Ledit taux de solvant est calculé comme le ratio massique du débit de solvant injecté sur le débit d’éthylène gazeux injecté.
Dans cet exemple, le réacteur selon l’invention permet d’augmenter la saturation de l’éthylène de 28 %, d’augmenter la sélectivité en alpha-oléfine de 4,3 % et de multiplier la productivité par 2,25, par rapport au cas selon l’art antérieur de l’exemple 1.

Claims

REVENDICATIONS
1. Réacteur gaz/liquide d’oligomérisation d’éthylène gazeux pouvant contenir une phase liquide et un ciel gazeux, ledit réacteur comprenant :
- une enceinte (1) de forme allongée le long de l’axe vertical,
- un moyen d’introduction d’éthylène gazeux (2), situé dans la partie inférieure de l’enceinte réactionnelle,
- un moyen de soutirage (5) d’un effluent liquide réactionnel situé dans la partie inférieure l’enceinte réactionnelle,
- un moyen de purge (4) d’une fraction gazeuse situé au sommet dudit réacteur, dans lequel
- ladite enceinte (1) comprend au moins deux internes transversaux (11) disposés sur au moins une partie d’une section de l’enceinte (1) dudit réacteur de manière à augmenter le temps de séjour de l’éthylène gazeux dans la phase liquide,
- chacun desdits internes présentant au moins une ouverture (12) de diamètre hydraulique compris entre 21 et 500 mm, et
- ladite ouverture (12) ou la somme des ouvertures pour un interne occupant entre 20 et 80 % de la surface totale d’une section transversale de l’enceinte réactionnelle sur laquelle se situe ledit interne.
2. Réacteur selon la revendication 1 dans lequel les internes transversaux présentent au moins une ouverture (12) de diamètre hydraulique compris entre 25 et 450 mm, de préférence entre 30 et 400 mm.
3. Réacteur selon l’une quelconque des revendications précédentes dans lequel les internes transversaux (11) présentent une pluralité d’ouvertures de diamètre hydraulique compris entre 21 et 500 mm, préférentiellement entre 25 et 450 mm, de préférence entre 30 et 400 mm.
4. Réacteur selon l’une quelconque des revendications précédentes dans lequel ladite une ouverture ou la somme des ouvertures (12) occupe(nt) entre 25 et 75 % de la surface totale d’une section transversale de l’enceinte sur laquelle se situe ledit interne, de préférence entre 40 et 70 %, de préférence entre 40 et 60% et de manière préférée entre 45 et 55%.
5. Réacteur selon l’une quelconque des revendications précédentes dans lequel les internes transversaux (11) s’étendent radialement sur toute la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide.
6. Réacteur selon la revendication précédente dans lequel les internes transversaux (11) sont choisis parmi une plaque perforée, un plateau à fentes tel qu’une grille, plateau à clapets, disques et couronnes.
7. Réacteur selon l’une quelconque des revendications 1 à 4 dans lequel les internes transversaux (11) s’étendent radialement sur une partie de la section de l’enceinte 1 dudit réacteur, de manière à pouvoir ralentir l’ascension de l’éthylène gazeux dans la phase liquide.
8. Réacteur selon la revendication précédente dans lequel les internes transversaux (11) sont choisis parmi des plaques latérales planes, courbes ou pyramidales, ou tout autre interne apte à jouer le rôle de chicane.
9. Réacteur selon l’une des revendications 7 ou 8 comprenant au moins deux internes transversaux (11) s’étendant partiellement sur une partie de la section de ladite enceinte, lesdites internes étant positionnés alternativement sur les parois de l’enceinte (1)
10. Réacteur selon l’une quelconque des revendications précédentes dans lequel l’enceinte comprend un nombre d’internes transversaux compris entre 2 et 30, de préférence entre 2 et 20, de préférence entre 2 et 15
11. Réacteur selon l’une quelconque des revendications précédentes comprenant en outre un moyen de soutirage d’une fraction gazeuse au niveau du ciel gazeux de l’enceinte réactionnelle et un moyen d’introduction de ladite fraction gazeuse soutirée dans la phase liquide dans la partie inférieure de l’enceinte réactionnelle.
12. Réacteur selon l’une quelconque des revendications précédentes comprenant en outre une boucle de recirculation comprenant un moyen de soutirage sur la partie inférieure de l’enceinte réactionnelle, de préférence au fond, de manière à soutirer une fraction liquide vers un ou plusieurs échangeur(s) thermique(s) apte au refroidissement de ladite fraction liquide, et un moyen d’introduction de ladite fraction refroidie dans la partie supérieure de l’enceinte réactionnelle.
13. Procédé d’oligomérisation d’éthylène gazeux mettant en œuvre le réacteur selon l’une des revendications 1 à 12, ledit procédé étant mis en œuvre à une pression comprise entre 0,1 et 10,0 MPa, à une température comprise entre 30 et 200°C comprenant les étapes suivantes : - une étape a) d’introduction d’un système catalytique d’oligomérisation comprenant un catalyseur métallique et un agent activateur, dans une enceinte réactionnelle,
- une étape b) de mise en contact dudit système catalytique avec de l’éthylène gazeux par l’introduction dudit éthylène gazeux dans la zone inférieure de l’enceinte réactionnelle, - une étape c) de soutirage d’une fraction liquide,
- une étape d) de refroidissement de la fraction soutirée à l’étape c) par le passage de ladite fraction dans un échangeur thermique,
- une étape e) d’introduction de la fraction refroidie à l’étape d) dans la partie supérieure de la zone inférieure de l’enceinte réactionnelle
- une étape optionnel de recyclage d’une fraction gazeuse soutirée au niveau du ciel gazeux de l’enceinte réactionnelle et introduite au niveau de la partie inférieure de l’enceinte réactionnelle dans la phase liquide.
EP20817034.0A 2019-12-18 2020-12-08 Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux Pending EP4076720A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914760A FR3105018B1 (fr) 2019-12-18 2019-12-18 Reacteur gaz/liquide d’oligomerisation comprenant des internes transversaux
PCT/EP2020/085018 WO2021122139A1 (fr) 2019-12-18 2020-12-08 Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux

Publications (1)

Publication Number Publication Date
EP4076720A1 true EP4076720A1 (fr) 2022-10-26

Family

ID=70008739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20817034.0A Pending EP4076720A1 (fr) 2019-12-18 2020-12-08 Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux

Country Status (7)

Country Link
US (1) US20230042372A1 (fr)
EP (1) EP4076720A1 (fr)
KR (1) KR20220110766A (fr)
CN (1) CN114761114A (fr)
CA (1) CA3158098A1 (fr)
FR (1) FR3105018B1 (fr)
WO (1) WO2021122139A1 (fr)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242531A (en) * 1978-08-14 1980-12-30 Phillips Petroleum Company Olefin dimerization
US4456504A (en) * 1980-04-30 1984-06-26 Chevron Research Company Reactor vessel and process for thermally treating a granular solid
FR2552079B1 (fr) 1983-09-20 1986-10-03 Inst Francais Du Petrole Procede ameliore de synthese du butene-1 par dimerisation de l'ethylene
DE4338414C1 (de) * 1993-11-10 1995-03-16 Linde Ag Verfahren zur Herstellung linearer Olefine
US6029956A (en) * 1998-02-06 2000-02-29 Foster Wheeler Usa Corporation Predominantly liquid filled vapor-liquid chemical reactor
DE602005019239D1 (de) * 2005-10-20 2010-03-25 Linde Ag Verfahren zur Oligomerisierung von Ethylen und Reaktorsystem dafür mit Kühlvorrichtung
FR2984311B1 (fr) 2011-12-20 2015-01-30 IFP Energies Nouvelles Procede de production d'octenes mettant en oeuvre la dimerisation de l'ethylene en butenes et la dimerisation des butenes en octenes
SG11201407233RA (en) * 2012-05-11 2014-12-30 Saudi Arabian Oil Co Ethylene oligomerization process
US9340802B2 (en) * 2013-06-20 2016-05-17 Lanzatech New Zealand Limited Fermentation of gaseous substrates
FR3019064B1 (fr) 2014-03-25 2020-02-28 IFP Energies Nouvelles Nouvelle composition catalytique et procede pour l'oligomerisation de l'ethylene en hexene-1
FR3023183A1 (fr) 2014-07-04 2016-01-08 IFP Energies Nouvelles Composition catalytique et procede de dimerisation selective de l'ethylene en butene-1
DE102014112792A1 (de) * 2014-09-05 2016-03-10 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Anlage zur Herstellung von Olefinen aus Oxygenaten
US10513473B2 (en) * 2015-09-18 2019-12-24 Chevron Phillips Chemical Company Lp Ethylene oligomerization/trimerization/tetramerization reactor
FR3042989A1 (fr) 2015-10-30 2017-05-05 Ifp Energies Now Nouvelle composition catalytique a base de nickel en presence d'un activateur specifique et son utilisation dans un procede d'oligomerisation des olefines
FR3045414B1 (fr) 2015-12-18 2019-12-27 IFP Energies Nouvelles Nouvelle composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines
EP3562584B1 (fr) * 2016-12-30 2021-04-07 SABIC Global Technologies B.V. Procédé de préparation d'une solution de catalyseur pour la production sélective de 1-hexène
FR3068620B1 (fr) * 2017-07-10 2020-06-26 IFP Energies Nouvelles Procede d’oligomerisation mettant en oeuvre un dispositf reactionnel comprenant un moyen de dispersion
FR3068621B1 (fr) 2017-07-10 2020-06-26 IFP Energies Nouvelles Procede d’oligomerisation mettant en oeuvre un vortex
US10486131B2 (en) * 2017-10-26 2019-11-26 Chevron U.S.A. Inc. Integrated reactor system for ionic liquid-catalyzed hydrocarbon conversion
CN209237914U (zh) * 2018-10-31 2019-08-13 西北民族大学 一种用于生物质热解催化加氢制备烯烃的反应器
CN109821495B (zh) * 2019-03-01 2021-02-09 清华大学 烃制乙烯和/或乙炔的多级反应装置及制备方法

Also Published As

Publication number Publication date
FR3105018A1 (fr) 2021-06-25
CN114761114A (zh) 2022-07-15
FR3105018B1 (fr) 2021-12-10
CA3158098A1 (fr) 2021-06-24
KR20220110766A (ko) 2022-08-09
WO2021122139A1 (fr) 2021-06-24
US20230042372A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2019011806A1 (fr) Procede d'oligomerisation mettant en œuvre un dispositf reactionnel comprenant un moyen de dispersion
WO2019011609A1 (fr) Procede d'oligomerisation mettant en œuvre un vortex
EP0860411A1 (fr) Composition catalyque améliorée pour la conversion de l'éthylène en oléfines alpha légères
FR3083129A1 (fr) Procede d'oligomerisation d'ethylene avec enchainement reacteur agite gaz/liquide et reacteur piston
EP1968918B1 (fr) Procede pour la fabrication de 2,3-dimethylbut-1-ene
FR3086288A1 (fr) Procede d'oligomerisation d'ethylene dans un reacteur gaz/liquide compartimente
EP4076723A1 (fr) Reacteur gaz/liquide d'oligomerisation a zones successives de diametre variable
EP4076720A1 (fr) Reacteur gaz/liquide d'oligomerisation comprenant des internes transversaux
EP4003942A1 (fr) Procede d'oligomerisation mettant en oeuvre un recycle du ciel gazeux
FR3112342A1 (fr) Procede d’oligomerisation mettant en œuvre un echangeur gaz/liquide
FR3112775A1 (fr) Procédé d’oligomérisation mettant en oeuvre un recycle du ciel gazeux
WO2022248449A1 (fr) Procede d'oligomerisation dans un reacteur a zones de diametres variables comprenant une etape de recyclage d'un solvant prealablement refroidi
CA3103346A1 (fr) Procede d'oligomerisation en cascade de reacteurs gaz liquide agites avec injection etagee d'ethylene
FR3117891A1 (fr) Reacteur gaz/liquide d’oligomerisation comprenant une conduite centrale
EP4267290A2 (fr) Procede d'oligomerisation dans un reacteur comprenant un double distributeur gaz/liquide
FR3121439A1 (fr) Procede d'oligomerisation comprenant une etape de recyclage d'un solvant prealablement refroidi
WO2021185706A1 (fr) Installation d'oligomerisation d'ethylene pour produire des alpha-olefines
EP4065541A1 (fr) Procédé de séparation d'un effluent issu d'une étape d'oligomérisation
FR3102685A1 (fr) Procédé d’oligomérisation d’oléfines dans un réacteur d’oligomérisation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231011