EP4065749B1 - Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation - Google Patents

Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation Download PDF

Info

Publication number
EP4065749B1
EP4065749B1 EP20807405.4A EP20807405A EP4065749B1 EP 4065749 B1 EP4065749 B1 EP 4065749B1 EP 20807405 A EP20807405 A EP 20807405A EP 4065749 B1 EP4065749 B1 EP 4065749B1
Authority
EP
European Patent Office
Prior art keywords
particularly preferably
aqueous solution
acid
mmol
colloidal aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20807405.4A
Other languages
German (de)
English (en)
Other versions
EP4065749A1 (fr
Inventor
Ralf POSNER
Christina ANGENENDT
Jan-Willem Brouwer
Frank-Oliver Pilarek
Ulrike Schmidt-Freytag
Kristof WAPNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP4065749A1 publication Critical patent/EP4065749A1/fr
Application granted granted Critical
Publication of EP4065749B1 publication Critical patent/EP4065749B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process

Definitions

  • the present invention relates to a method for the layer-forming phosphating of metallic surfaces using a colloidal, aqueous solution as an activation stage containing a dispersed particulate component, the particulate component containing, in addition to dispersed inorganic compounds of phosphates of polyvalent metal cations, polymeric organic compounds as dispersing aids, which at least in part are composed of styrene and/or an ⁇ -olefin with not more than 5 carbon atoms and are partly composed of maleic acid, its anhydride and/or its imide, the polymeric organic compounds additionally having polyoxyalkylene units.
  • the cleaning and rinsing stages preceding the activation stage as well as the activation stage itself can be operated in a resource-saving manner without loss of activation performance using process water, whereby the colloidal, aqueous solution contains at least 0.5 mmol/L of alkaline earth metal ions dissolved in water.
  • Layer-forming phosphating is a process that has been practiced and intensively studied for decades for the application of crystalline anti-corrosion coatings to metallic surfaces, especially to materials made of iron, zinc and aluminum.
  • Zinc phosphating which is particularly well established for corrosion protection, is carried out in a layer thickness of a few micrometers and is based on a corrosive pickling of the metallic material in an acidic aqueous composition containing zinc ions and phosphates. During the pickling process, an alkaline diffusion layer is created on the metal surface, which extends into the interior of the solution and within which poorly soluble crystallites form, which precipitate directly at the interface to the metallic material and continue to grow there.
  • Zinc phosphating is always initiated by activating the metallic surfaces of the component to be phosphated.
  • the wet chemical activation is carried out conventionally by bringing it into contact with colloidal, aqueous solutions of phosphates
  • Activation stage which immobilizes on the metal surface, serves as a growth nucleus for the formation of the crystalline coating within the alkaline diffusion layer in the subsequent phosphating.
  • Suitable dispersions are colloidal, mostly neutral to alkaline, aqueous compositions based on phosphate crystallites, which have only slight crystallographic deviations in their crystal structure from the type of zinc phosphate layer to be deposited. That's how she teaches WO 98/39498 A1 in this context, in particular bi- and trivalent phosphates of the metals Zn, Fe, Mn, Ni, Co, Ca and Al, with technically preferred phosphates of the metal zinc being used for activation for subsequent zinc phosphating.
  • An activation stage based on dispersions of bi- and trivalent phosphates requires a high level of process control in order to keep the activation performance constant at an optimal level, especially when treating a series of metallic components.
  • aqueous solution must lead to a deterioration in the activation performance. Deterioration is initially noticeable in increasing layer weights in the subsequent phosphating and ultimately leads to the formation of defect-rich or inhomogeneous phosphate layers.
  • EP1566466 A1 describes a further process for corrosion-protective pretreatment, the pretreatment having polymeric, organic compounds containing maleic acid and styrene units.
  • This complex task profile is surprisingly solved by using a specific polymeric dispersing aid to stabilize the colloidal component of an activation stage based on particulate phosphates. Due to the extremely efficient stabilization of the particulate component causing the activation, the special dispersing aid ensures that even comparatively low proportions of colloids can produce homogeneous, closed phosphate coatings without a significant decrease in the activation performance after the stationary state of a pretreatment line has been reached while maintaining a constant colloid proportion can be determined. The use of the specific dispersing aid therefore makes it possible to completely dispense with additivation with condensed phosphates and thus the process engineering effort when carrying out a phosphating process in continuous operation can be significantly reduced.
  • the dispersed particulate component (a) of the colloidal, aqueous solution in the activation (i) of the process according to the invention is that solid fraction which, after drying of the retentate, is subject to ultrafiltration of a defined partial volume of the aqueous dispersion with a nominal exclusion limit of 10 kD (NMWC, Nominal Molecular Weight Cut Off) remains.
  • the ultrafiltration is carried out with the addition of deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ) until a conductivity below 10 ⁇ Scm -1 is measured in the filtrate.
  • an organic compound is polymeric if its weight-average molecular weight is greater than 500 g/mol.
  • the molar mass is determined using the molecular mass distribution curve of a sample of the respective reference size, which was determined experimentally using size exclusion chromatography with a concentration-dependent refractive index detector at 30 ° C and calibrated against polyethylene glycol standards. The evaluation of the average molecular weight values is carried out computer-aided using the strip method with a 3rd order calibration curve. Hydroxylated polymethacrylate is suitable as column material and an aqueous solution of 0.2 mol/L sodium chloride, 0.02 mol/L sodium hydroxide, 6.5 mmol/L ammonium hydroxide is suitable as eluent.
  • the high tolerance of the method according to the invention towards imported foreign ions also makes it possible for the cleaning stages, rinsing stages upstream of the activation stages and also the activation stage itself to be run with process water instead of deionized water. In this way, the method according to the invention is operated in a particularly resource-saving manner. It is therefore preferred according to the invention that the colloidal, aqueous solution contains at least 1.0 mmol/L, particularly preferably at least 1.5 mmol/L, of alkaline earth metal ions dissolved in water during activation.
  • This advantage over conventional activation baths is particularly important when phosphating components in series, i.e. during ongoing operation of a pre-treatment line for phosphating.
  • a large number of specific components which at least partially consist of zinc, iron or aluminum, are treated in series.
  • a pretreatment in series occurs when the large number of components are brought into contact with the colloidal, aqueous solution located in the system tank of the activation stage, the individual components being brought into contact one after the other and thus separated from one another in time, and the components then be fed to phosphating.
  • the system tank is the container in which the colloidal, aqueous solution is located in series for the purpose of activation for phosphating.
  • the tolerance of the process according to the invention reaches its limits with exceptionally high ionic strengths, for example high permanent water hardness and at the same time a high proportion of foreign ions introduced from previous cleaning stages, organic complexing agents can be used to mask the foreign substances in order to maintain a long bath life. Ions are added. In this case, it must be considered whether the economic advantage that the activation stage and any upstream cleaning stages and rinsing can be operated with process water is not counteracted by additives with organic complexing agents and their process engineering monitoring in the system tank of the activation stage.
  • Suitable organic complexing agents are selected from ⁇ -hydroxycarboxylic acids, which in turn are preferably selected from gluconic acid, tartronic acid, glycolic acid, citric acid, tartaric acid, lactic acid, most preferably gluconic acid, and / or organophosphonic acids, which in turn are preferably selected are made from etidronic acid, aminotris(methylenephosphonic acid), aminotri(methylenephosphonic acid)), phosphonobutane-1,2,4-tricarboxylic acid, Diethylenetriaminepenta(methylenephosphonic acid), hexamethylenediaminetetra-(methylenephosphonic acid) and/or hydroxyphosphonoacetic acid, particularly preferably from etidronic acid.
  • ⁇ -hydroxycarboxylic acids which in turn are preferably selected from gluconic acid, tartronic acid, glycolic acid, citric acid, tartaric acid, lactic acid, most preferably gluconic acid, and / or organophosphonic acids,
  • organic complexing agents should only be carried out to such an extent that their amount in the colloidal, aqueous solution is preferably not greater than twice, particularly preferably not greater than 1.5 times, based on the amount of alkaline earth metal ions and most preferably is not greater than equimolar to the amount of alkaline earth metal ions.
  • phosphating can be carried out stably in the activation stage up to a water hardness corresponding to 10 mmol/l alkaline earth metal ions, that is to say largely without additives with complexing agents.
  • the colloidal, aqueous solution preferably contains not more than 10 mmol/L, particularly preferably not more than 5 mmol/L, of alkaline earth metal ions dissolved in water.
  • a further advantage of the method according to the invention compared to conventional activation methods is that the addition of condensed phosphates can be dispensed with in the activation stage.
  • Condensed phosphates dissolved in the aqueous phase of activation fulfill, on the one hand, the task of masking permanent water hardness and, on the other hand, experience has shown, the specific task of stabilizing the proportion of the phosphates hopeite, phosphophylilite, scholzite and/or huralite at the colloidal level, especially in the continuous operation of a pretreatment line, and thus keep it permanently available for activation. It is noteworthy and surprising for the person skilled in the art that in processes according to the invention which are based on an activation stage based on the particulate component (a), the additivation of condensed phosphates can be dispensed with.
  • the additivation of condensed phosphates can be completely dispensed with, so that only small amounts of condensed phosphates are encountered in the activation, which come from upstream cleaning stages with the component to be pretreated, in particular during the treatment A large number of components in series reach the activation stage.
  • the proportion of condensed phosphates dissolved in water in the colloidal aqueous solution, based on the phosphate content of the at least one particulate compound (a1), in each case based on the element P is below 0.25, preferably below 0 .20, particularly preferably below 0.15 and most preferably below 0.10.
  • the proportion of condensed phosphates dissolved in water in the colloidal, aqueous solution, calculated as P, is less than 20 mg/kg, preferably less than 15 mg/kg, particularly preferably less than 10 mg/kg based on is the colloidal, aqueous solution.
  • condensed phosphates are metaphosphates and polyphosphates, preferably polyphosphates, particularly preferably pyrophosphates.
  • the condensed phosphates are preferably in the form of compounds of monovalent cations, preferably selected from Li, Na and/or K, particularly preferably Na and/or K.
  • the proportion of condensed phosphates can be determined analytically from the difference in the total phosphate content in the non-particulate component of the colloidal, aqueous solution with and without oxidative digestion, for example using peroxodisulfate, with the dissolved orthophosphate proportion being quantified using photometry.
  • polyphosphates are used as condensed phosphates
  • enzymatic digestion with a pyrophosphatase can be carried out instead of oxidative digestion.
  • the non-particulate component of the colloidal, aqueous solution is the solids content of the colloidal, aqueous solution in the permeate of the previously described ultrafiltration after it has been dried to constant mass at 105 ° C - i.e. the solids content after separation of the particulate component (a) by means of ultrafiltration.
  • the colloidal, aqueous solution in activation (i) of the process according to the invention preferably has an alkaline pH, particularly preferably a pH above 8.0, particularly preferably above 9.0, but preferably below 11.0 , whereby compounds that influence the pH value such as phosphoric acid, caustic soda, ammonium hydroxide or ammonia are used to adjust it can.
  • the "pH value" as used in the present invention corresponds to the negative logarithm of the hydronium ion activity at 20 ° C and can be determined using pH-sensitive glass electrodes.
  • the proportion of phosphates contained in the at least one particulate inorganic compound (a1), based on the dispersed particulate component (a) of the colloidal, aqueous solution is preferably at least 25% by weight, particularly preferably at least 35% by weight, particularly preferred at least 40% by weight, very particularly preferably at least 45% by weight.
  • the inorganic particulate component of the colloidal, aqueous solution is in turn the one that remains when the particulate component (a) obtained from drying the retentate of the ultrafiltration is placed in a reaction oven with the addition of a CO 2 -free oxygen stream at 900 ° C without the addition of catalysts or other additives is pyrolyzed until an infrared sensor in the outlet of the reaction furnace delivers a signal identical to the CO 2 -free carrier gas (blank value).
  • the phosphates contained in the inorganic particulate component are determined as phosphorus content using atomic emission spectrometry (ICP-OES) directly from the acid digestion.
  • ICP-OES atomic emission spectrometry
  • Activation in the sense of the present invention is therefore essentially based on the phosphates contained in the activation stage in particulate form.
  • hopeite stoichiometrically comprises Zn 3 (PO 4 ) 2 as well as the nickel and manganese-containing variants Zn 2 Mn(PO 4 ) 3 , Zn 2 Ni(PO 4 ) 3
  • phosphophyllite consists of Zn 2 Fe(PO 4 ) 3
  • Scholzite consists of Zn 2 Ca(PO 4 ) 3
  • Hureaulite consists of Mn 3 (PO 4 ) 2 .
  • the aqueous dispersion according to the invention can be used after separation of the particulate component (a) by means of ultrafiltration with a nominal exclusion limit of 10 kD (NMWC, Nominal Molecular Weight Cut Off) as described above and drying of the retentate to constant mass at 105 ° C using X-ray diffraction methods (XRD). be detected.
  • NMWC Nominal Molecular Weight Cut Off
  • phosphates that include zinc ions and have a certain crystallinity
  • a further advantage of the method according to the invention is that even small proportions of the particulate inorganic compound (a1) in the activation (i) are sufficient to achieve the full activation performance on the materials zinc, aluminum and iron.
  • the proportion of the dispersed particulate component (a) of the colloidal, aqueous solution is at least 0.05 g/kg, preferably at least 0.1 g/kg, particularly preferably at least 0.2 g/kg, but preferably is not greater than 10 g/kg, particularly preferably not greater than 2 g/kg, most preferably not greater than 1 g/kg, in each case based on the colloidal, aqueous solution.
  • activation in the sense of the present invention should preferably not be achieved by means of colloidal solutions of titanium phosphates, since otherwise the layer-forming zinc phosphating on iron, in particular steel, cannot be achieved reliably.
  • the proportion of titanium in the inorganic particulate component of the colloidal, aqueous solution is less than 0.01% by weight, particularly preferably less than 0.001% by weight, based on the colloidal, aqueous solution.
  • the colloidal, aqueous solution of activation (i) contains a total of less than 10 mg/kg, particularly preferably less than 1 mg/kg, of titanium.
  • the activation stage in the method according to the invention can additionally be characterized via its D50 value, above which the activation power decreases significantly.
  • the D50 value of the colloidal, aqueous solution is preferably below 1 ⁇ m, particularly preferably below 0.4 ⁇ m.
  • the D50 value refers to the particle diameter that does not exceed 50% by volume of the particulate components contained in the colloidal, aqueous solution.
  • the polymeric organic compounds (a2) used as dispersing aids and which have polyoxyalkylene units are at least partly composed of styrene and/or an ⁇ -olefin with not more than 5 carbon atoms and of maleic acid, its anhydride and/or or its imide, and cause the extremely high stability of the colloidal, aqueous solution in the activation stage of the method according to the invention.
  • the ⁇ -olefin is preferably selected from ethene, 1-propene, 1-butene, isobutylene, 1-pentene, 2-methyl-but-1-ene and/or 3-methyl-but-1-ene and is particularly preferably selected from isobutylene. It is clear to the person skilled in the art that the polymeric organic compounds (a2) contain these monomers as structural units in unsaturated form, covalently linked to one another or to other structural units.
  • Suitable commercially available representatives are, for example, Dispex® CX 4320 (BASF SE), a maleic acid-isobutylene copolymer modified with polypropylene glycol, Tego® Dispers 752 W (Evonik Industries AG), a maleic acid-styrene copolymer modified with polyethylene glycol, or Edaplan® 490 (Münzing Chemie GmbH) modified a maleic acid-styrene copolymer with EO/PO and imidazole units.
  • polymeric organic compounds (a2) which are at least partly composed of styrene are preferred.
  • the polymeric organic compounds (a2) used as dispersing aids have polyoxyalkylene units which are preferably composed of 1,2-ethanediol and/or 1,2-propanediol, particularly preferably both 1,2-ethanediol and 1,2 -Propanediol, whereby the proportion of 1,2-propanediols in the total number of polyoxyalkylene units is preferably at least 15% by weight, but particularly preferably does not exceed 40% by weight based on the totality of the polyoxyalkylene units.
  • the polyoxyalkylene units are preferably contained in the side chains of the polymeric organic compounds (a2).
  • a proportion of the polyoxyalkylene units in the total of the polymeric organic compounds (a2) of preferably at least 40% by weight, particularly preferably of at least 50% by weight, but preferably not more than 70% by weight is advantageous for this Dispersing ability.
  • the organic polymeric compounds (a2) contain preferably additionally also N-heterocycle units, which in turn are preferably selected from pyridine, imidazole, imidazoline, morpholine, pyrrole and/or pyrrolidone units, particularly preferably from imidazole and/or imidazoline units, in particular preferably from imidazole units.
  • N-heterocycle units are each preferably part of the side chains of the polymeric organic compound (a2) and within the side chain are preferably connected aliphatically to the main chain via preferably at least 3 carbon atoms, particularly preferably in such a way that the polyoxyalkylene units of the polymeric organic compounds (a2 ) are at least partially end-capped with an N-heterocycle, so that in the preferred embodiment terminal N-heterocyclic groups are present in the polyoxyalkylene side chain.
  • the covalent linkage of the N-heterocycle units in the side chains of the polymeric organic compound (a2), preferably the side chains which have polyoxyalkylene units, preferably takes place via a nitrogen atom of the heterocycle.
  • the N-heterocycle units are preferably at least partially quaternized, particularly preferably as N-alkylated quaternary N-heterocycle units.
  • the amine number of the organic polymeric compounds (a2) is at least 25 mg KOH/g, particularly preferably at least 40 mg KOH/g, but preferably less than 125 mg KOH/g, particularly preferably less than 80 mg KOH /g, so that in a preferred embodiment also the The entirety of the polymeric organic compounds in the particulate component (a) has these preferred amine numbers.
  • the amine number is determined in each case using a weight of approximately 1 g of the respective reference quantity - organic polymeric compounds (a2) or total of the polymeric organic compounds in the particulate component - in 100 ml of ethanol, with 0.1 N HCl standard solution against the indicator Bromophenol blue is titrated until the color changes to yellow at a temperature of the ethanolic solution of 20 ° C.
  • the amount of HCl standard solution used in milliliters multiplied by a factor of 5.61 divided by the exact mass of the sample in grams corresponds to the amine number in milligrams of KOH per gram of the respective reference size.
  • the presence of maleic acid, insofar as it is part of the organic polymeric compound (a2) as a free acid and not in the form of the anhydride or imide, can provide an increased water solubility of the dispersing aid, especially in the alkaline range.
  • the polymeric organic compounds (a2) preferably also the entirety of the polymeric organic compounds in the particulate component (a), have an acid number according to DGF C-V 2 (06) (as of April 2018) of at least 25 mg KOH/g have, but preferably less than 100 mg KOH/g, particularly preferably less than 70 mg KOH/g, in order to ensure a sufficient number of polyoxyalkylene units.
  • the polymeric organic compounds (a2) preferably also the entirety of the polymeric organic compounds in the particulate component (a), have a hydroxyl number of less than 15 mg KOH/g, particularly preferably less than 12 mg KOH/g, particularly preferably less than 10 mg KOH/g, each determined according to method A of 01/2008:20503 from European Pharmacopoeia 9.0.
  • the proportion of the polymeric organic compounds (a2), preferably the totality of the polymeric organic compounds in the particulate component (a), based on the particulate component (a ) is at least 3% by weight, particularly preferably at least 6% by weight, but preferably does not exceed 15% by weight.
  • dispersed particulate component (A) and the at least one particulate inorganic compound (A1) or polymeric organic compound (A2) as those previously stated for the colloidal, aqueous solution.
  • dilution is preferably carried out with deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ), particularly preferably with process water, in order to make the process according to the invention as resource-efficient as possible .
  • Industrial water in the light of the underlying technical application contains at least 0.5 mmol/L of alkaline earth metal ions.
  • a thickener according to component (B) gives the aqueous dispersion in combination with its particulate component a thixotropic flow behavior and thus helps to counteract the irreversible formation of agglomerates in the particulate component of the dispersion, from which primary particles can no longer be removed.
  • the addition of the thickener is preferably controlled so that the aqueous dispersions have a maximum dynamic viscosity at a temperature of 25 ° C of at least 1000 Pa s, but preferably below 5000 Pa s, in the shear rate range of 0.001 to 0.25 reciprocal seconds and preferably at shear rates above that which is present at the maximum dynamic viscosity, shows shear-thinning behavior at 25 ° C, i.e.
  • the viscosity over the specified shear rate range can be determined using a plate/cone viscometer with a cone diameter of 35 mm and a gap width of 0.047 mm.
  • the mixture with water must be prepared in such a way that the appropriate amount of the polymeric chemical compound is added to the water phase with stirring at 25 ° C and the homogenized mixture is then freed of air bubbles in an ultrasonic bath and left to rest for 24 hours. The viscosity reading is then read immediately within 5 seconds of applying 60 rpm shear through spindle number 2.
  • An aqueous dispersion according to the invention preferably contains a total of at least 0.5% by weight, but preferably not more than 4% by weight, particularly preferably not more than 3% by weight, of one or more thickeners according to component (B), with further preference being given the total proportion of polymeric organic compounds in the non-particulate component of the aqueous dispersion does not exceed 4% by weight (based on the dispersion).
  • the non-particulate component is the solids content of the aqueous dispersion in the permeate of the ultrafiltration already described after it has been dried to constant mass at 105 ° C - i.e. the solids content after the particulate component has been separated off by means of ultrafiltration.
  • the thickener according to component (B) is initially preferably selected from polymeric organic compounds, which in turn are preferably selected from polysaccharides, cellulose derivatives, aminoplasts, polyvinyl alcohols, polyvinylpyrrolidones, polyurethanes and / or urea-urethane resins, and particularly preferably from urea-urethane resins.
  • a urea-urethane resin as a thickener according to component (B) of the preferred method according to the invention for providing a colloidal, aqueous solution starting from the aqueous dispersion represents a mixture of polymeric compounds resulting from the reaction of a polyvalent isocyanate with a polyol and a mono- and/or diamine emerges.
  • the ureaurethane resin is made from a polyvalent isocyanate, preferably selected from 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2(4),4-trimethyl-1,6-hexamethylene diisocyanate, 1,10- decamethylene diisocyanate, 1,4,-cyclohexylene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate and mixtures thereof, p- and m-xylylene diisocyanate, and 4-4',-diisocyanatodicyclohexylmethane, particularly preferably selected from 2,4-toluene diisocyanate and/or m-xylylene diisocyanate.
  • a polyvalent isocyanate preferably selected from 1,4-tetramethylene di
  • the ureaurethane resin is made from a polyol selected from polyoxyalkylene diols, particularly preferably from polyoxyethylene glycols, which in turn are preferably composed of at least 6, particularly preferably at least 8, particularly preferably at least 10, but preferably less than 26, particularly preferably less as 23 oxyalkylene units.
  • Urea-urethane resins that are particularly suitable and therefore preferred according to the invention are obtainable by a first reaction of a diisocyanate, for example toluene-2,4-diisocyanate, with a polyol, for example a polyethylene glycol, to form NCO-terminated urethane prepolymers, then with a primary monoamine and / or with a primary diamine , for example m-xylylenediamine, is further implemented.
  • Urea-urethane resins that have neither free nor blocked isocyanate groups are particularly preferred.
  • Such urea-urethane resins as part of the aqueous dispersion from which the colloidal, aqueous solution of the process according to the invention is obtainable by dilution, promote the formation of loose agglomerates of primary particles, which, however, are stabilized in the aqueous phase and protected against further agglomeration to such an extent that the sedimentation of the particulate component in the aqueous dispersion is largely prevented.
  • urea-urethane resins which have neither free or blocked isocyanate groups nor terminal amine groups are preferably used as component (B).
  • the thickener is essentially dissolved in the aqueous phase and can therefore be assigned to the non-particulate component of the aqueous dispersion, while component (A2) is essentially bound in the particulate component (A), an aqueous dispersion is accordingly required to be provided the colloidal, aqueous solution of activation is preferred, in which the totality of the polymeric organic compounds in the non-particulate component preferably has an amine number of less than 16 mg KOH/g, particularly preferably of less than 10 mg KOH/g, particularly preferably of less than 4 mg KOH/g.
  • the urea-urethane resin has a hydroxyl number in the range from 10 to 100 mg KOH/g, particularly preferably in the range from 20 to 60 mg KOH/g, determined according to method A of 01/2008:20503 from European Pharmacopoeia 9.0.
  • a weight-average molecular weight of the urea-urethane resin in the range from 1000 to 10,000 g/mol, preferably in the range from 2000 to 6000 g/mol is advantageous according to the invention and therefore preferred, in each case determined experimentally as previously in connection with the definition of a polymeric compound according to the invention described.
  • a metallic material selected from zinc, iron or aluminum this includes all materials that contain more than 50 at.% of the respective element.
  • Anti-corrosive pretreatment always affects the surfaces of the material or component.
  • the material can be a uniform material or a coating.
  • galvanized steel types consist of both the material steel and the material zinc, whereby surfaces of iron can be exposed on the cut edges and ground-through points, for example of an automobile body that is made of galvanized steel, and according to the invention there is then a pretreatment of the material iron.
  • a rinsing step serves exclusively for the complete or partial removal of soluble residues, particles and active components that are carried over from a previous wet-chemical treatment step on the component from the component to be treated, without the rinsing liquid itself containing active components based on metallic or semi-metallic elements, the are consumed simply by bringing the metallic surfaces of the component into contact with the flushing liquid.
  • the rinsing liquid can simply be city water or deionized water or, if necessary, a rinsing liquid that contains surface-active compounds to improve wettability with the rinsing liquid.
  • the phosphating in process step (ii) be carried out by bringing the surfaces into contact with an acidic aqueous composition containing 5-50 g/ kg of phosphates dissolved in water calculated as PO 4 and preferably additionally contains at least one source of free fluoride.
  • the amount of phosphate ions includes the orthophosphoric acid and the anions of the salts of orthophosphoric acid dissolved in water, calculated as PO 4 .
  • the subsequent phosphating is a zinc phosphating and the phosphating in process step (ii) is based on an acidic aqueous composition containing 0.3 - 3 g / kg of zinc ions, preferably on an acidic aqueous composition containing 5 - 50 g/l of phosphate ions, 0.3 - 3 g/l of zinc ions and a quantity of free fluoride.
  • a source of free fluoride ions is essential for the process of layer-forming zinc phosphating, insofar as layer formation is sought on all metallic materials selected from zinc, iron or aluminum and is required, for example, in the zinc phosphating of automobile bodies, which are at least partially made of aluminum . If all surfaces of the metallic materials of a component are to be provided with a phosphate coating, the amount of particulate components in the activation often has to be adjusted to the amount of free fluoride required for layer formation in zinc phosphating.
  • a closed and defect-free phosphate coating if the amount of free fluoride in the acidic aqueous composition is at least 0.5 mmol/kg.
  • the concentration of free fluoride should not exceed values above which the phosphate coatings predominantly have adhesions that can be easily wiped off, since these cannot be avoided even by a disproportionately increased amount of particulate components in the colloidal, aqueous solution of the activation. Therefore, it is also advantageous for economic reasons and therefore preferred if, in the process according to the invention based on activation (i) followed by zinc phosphating (ii), the concentration of free fluoride in the acidic aqueous composition of the zinc phosphating is below 15 mmol/kg, especially is preferably below 10 mmol/kg and particularly preferably below 8 mmol/kg.
  • the amount of free fluoride is to be determined potentiometrically at 20 °C in the respective acidic aqueous composition using a fluoride-sensitive measuring electrode.
  • Suitable sources of free fluoride are hydrofluoric acid and its water-soluble salts, such as ammonium bifluoride and sodium fluoride, as well as complex fluorides of the elements Zr, Ti and/or Si, in particular complex fluorides of the element Si.
  • the source of free fluoride in a phosphating according to the present invention is therefore selected from hydrofluoric acid and its water-soluble salts and/or complex fluorides of the elements Zr, Ti and/or Si. Salts of hydrofluoric acid are water-soluble in the sense of the present invention if their solubility in deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ) at 60°C is at least 1 g/L, calculated as F.
  • the source of free fluoride is at least partially selected from complex ones Fluorides of the element Si, in particular from hexafluorosilicic acid and its salts.
  • the expert in phosphating understands speck formation as the phenomenon of local deposition of amorphous, white zinc phosphate in an otherwise crystalline phosphate layer on the treated zinc surfaces or on the treated galvanized or alloy-galvanized steel surfaces. The speck formation is caused by a locally increased pickling rate of the substrate.
  • the concentration of silicon dissolved in water in the acidic aqueous composition of zinc phosphating in process step (ii) is at least 0.5 mmol/kg, particularly preferably at least 1 mmol/kg, particularly preferably at least 2 mmol/kg is, but preferably less than 15 mmol/kg, particularly preferably less than 12 mmol/kg, particularly preferably less than 10 mmol/kg and most preferably less than 8 mmol/kg.
  • concentration of silicon are preferred because above these values, phosphate coatings are favored that predominantly have loose adhesions, which cannot be avoided even by a disproportionately increased amount of particulate components in the colloidal, aqueous solution of the activation stage.
  • concentration of silicon in the acidic aqueous composition in dissolved form in water is to be determined in the filtrate of a membrane filtration of the acidic aqueous composition, which is carried out using a membrane with a nominal pore size of 0.2 ⁇ m, by means of atomic emission spectrometry (ICP-OES).
  • the preferred pH value of the acidic aqueous composition causing the zinc phosphating is above 2.5, particularly preferably above 2.7, but preferably is below 3.5, particularly preferably below 3.3.
  • the proportion of free acid in points in the acidic aqueous composition of the zinc phosphating in process step (ii) is preferably at least 0.4, but preferably not more than 3.0, particularly preferably not more than 2.0.
  • the proportion of free acid in points is determined by diluting 10 ml sample volume of the acidic aqueous composition to 50 ml and titrating with 0.1 N sodium hydroxide solution to a pH of 3.6. The consumption of ml of caustic soda indicates the free acid score.
  • the acidic aqueous composition in process step (ii) contains the usual accelerators such as hydrogen peroxide, nitrite, hydroxylamine, nitroguanidine and/or N-methylmorpholine-N-oxide and may additionally contain cations of the metals manganese, calcium and/or iron in the form of water-soluble salts, which have a positive influence on layer formation.
  • the usual accelerators such as hydrogen peroxide, nitrite, hydroxylamine, nitroguanidine and/or N-methylmorpholine-N-oxide
  • cations of the metals manganese, calcium and/or iron in the form of water-soluble salts which have a positive influence on layer formation.
  • a total of less than 10 ppm of nickel and/or cobalt ions are contained in the acidic aqueous composition of zinc phosphating in process step (ii).
  • an immersion coating particularly preferably an electrocoating, particularly preferably a cathodic electrocoating, which is preferably in addition to the dispersed resin, which is preferably an amine modified polyepoxide contains water-soluble or water-dispersible salts of yttrium and/or bismuth.
  • Table 1 summarizes the results of zinc phosphating in terms of layer weight and after aging in the corrosion test. It turns out that when activating with city water (B) compared to an approach with deionized water (A) Homogeneous, closed zinc phosphate coatings with a lower layer weight and also improved corrosion protection results can be achieved.
  • Tabel. 1 Substrate Layer weight 1 / gm -2 Corrosion 2.3 / mm A b A b CRS 1.9 1.5 0.5 2 0.5 2 HDG 2.4 1.6 2.5 2 1.9 2 AA6014 1.6 1.4 3.3 3 2.4 3 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Claims (16)

  1. Procédé pour le prétraitement de protection contre la corrosion d'un matériau métallique choisi parmi le zinc, le fer ou l'aluminium ou d'une pièce qui est composée au moins partiellement de tels matériaux métalliques, dans lequel le matériau métallique ou la pièce est soumis, dans des étapes de procédé successives, d'abord à une activation (i) et ensuite à une phosphatation (ii), en particulier à une phosphatation au zinc, dans lequel l'activation dans l'étape de procédé (i) est effectuée par la mise en contact du matériau métallique ou de la pièce avec une solution colloïdale aqueuse contenant, dans le composant particulaire dispersé (a) de la solution,
    (a1) au moins un composé inorganique particulaire, lequel est composé de phosphates de cations métalliques polyvalents au moins partiellement choisis parmi l'hopéite, la phosphophyllite, la scholzite et/ou l'huréaulite, et
    (a2) au moins un composé organique polymère, lequel est composé au moins partiellement de styrène et/ou d'une α-oléfine comportant pas plus de 5 atomes de carbone et est composé partiellement d'acide maléique, de son anhydride et/ou de son imide, dans lequel le composé organique polymère présente en outre des motifs polyoxyalkylène,
    dans lequel la solution colloïdale aqueuse contient au moins 0,5 mmol/L d'ions de métaux alcalino-terreux dissous dans l'eau.
  2. Procédé selon la revendication 1, caractérisé en ce que la solution colloïdale aqueuse contient au moins 1,0 mmol/L, de préférence au moins 1,5 mmol/L, toutefois de préférence pas plus de 10 mmol/L, d'ions de métaux alcalino-terreux dissous dans l'eau.
  3. Procédé selon l'une ou les deux des revendications précédentes, caractérisé en ce que, dans la solution colloïdale aqueuse, la proportion de phosphates condensés dissous dans l'eau par rapport à la teneur en phosphates de l'au moins un composé particulaire, respectivement par rapport à l'élément P, est inférieure à 0,25, de préférence inférieure à 0,20, de manière particulièrement préférée inférieure à 0,15 et de manière tout particulièrement préférée inférieure à 0,10.
  4. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la solution colloïdale aqueuse contient au moins 0,5 mmol/L, de préférence au moins 1 mmol/L, de manière particulièrement préférée au moins 1,5 mmol/L, toutefois pas plus de 10 mmol/L, d'ions de métaux alcalino-terreux dissous dans l'eau.
  5. Procédé selon la revendication 4, caractérisé en ce que la solution colloïdale aqueuse contient au moins un agent complexant, lequel est choisi de préférence parmi les acides α-hydroxycarboxyliques, lesquels sont à leur tour choisis de préférence parmi l'acide gluconique, l'acide tartronique, l'acide glycolique, l'acide citrique, l'acide tartrique, l'acide lactique, de manière tout particulièrement préférée l'acide gluconique, et/ou des acides organophosphoniques, lesquels sont à leur tour choisis de préférence parmi l'acide étidronique, l'acide aminotris(méthylènephosphonique), l'acide aminotri(méthylènephosphonique)), l'acide phosphonobutane-1,2,4-tricarboxylique, l'acide diéthylènetriaminepenta(méthylènephosphonique), l'acide hexaméthylènediaminetétra-(méthylènephosphonique) et/ou l'acide hydroxyphosphonoacétique, de manière particulièrement préférée l'acide étidronique.
  6. Procédé selon la revendication 5, caractérisé en ce que la quantité d'agents complexants dans la solution colloïdale aqueuse n'est pas supérieure à deux fois, de préférence pas supérieure à 1,5 fois, la quantité molaire d'ions de métaux métaux alcalino-terreux et de manière particulièrement préférée ne dépasse pas la quantité équimolaire des ions de métaux métaux alcalino-terreux.
  7. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la solution colloïdale aqueuse présente lors de l'activation (i) un pH alcalin, de préférence un pH supérieur à 8,0, de manière particulièrement préférée supérieur à 9,0, toutefois de préférence inférieur à 11,0.
  8. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la proportion des phosphates calculés en PO4 contenue dans l'au moins un composé inorganique particulaire (a1), par rapport au composant particulaire inorganique dispersé de la solution colloïdale aqueuse, est d'au moins 25 % en poids, de préférence d'au moins 35 % en poids, de manière très particulièrement préférée d'au moins 40 % en poids, de manière tout particulièrement préférée d'au moins 45 % en poids.
  9. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que les composés organiques polymères (a2) de la solution colloïdale aqueuse contiennent les motifs polyoxyalkylène dans leurs chaînes latérales, dans lequel la proportion de motifs polyoxyalkylène dans la totalité des composés organiques polymères (a2) est de préférence d'au moins 40 % en poids, de manière particulièrement préférée d'au moins 50 % en poids, toutefois de manière très particulièrement préférée ne dépasse pas 70 % en poids.
  10. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que les composés organiques polymères (a2) de la solution colloïdale aqueuse présentent en outre également des motifs N-hétérocyclique, lesquels sont choisis de préférence parmi des motifs pyridine, imidazole, imidazoline, morpholine, pyrrole et/ou pyrrolidone, de manière particulièrement préférée parmi des motifs imidazole et/ou imidazoline, de manière très particulièrement préférée parmi des motifs imidazole, lesquels sont respectivement de préférence des composants des chaînes latérales du composé organique polymère (a2) et sont à leur tour, dans la chaîne latérale, liés, de préférence de manière aliphatique par l'intermédiaire de préférence d'au moins 3 atomes de carbone, à la chaîne principale, de manière particulièrement préférée de telle façon que les motifs polyoxyalkylène des composés organiques polymères (a2) sont au moins partiellement fermés au niveau des groupes terminaux par un motif N-hétérocyclique.
  11. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la solution colloïdale aqueuse contient au moins un épaississant comme autre constituant b), lequel est de préférence choisi parmi des résines d'uréthane urée, de préférence parmi des résines d'uréthane urée qui présentent un indice d'amine inférieur à 8 mg KOH/g, de manière particulièrement préférée inférieur à 5 mg KOH/g, de manière tout particulièrement préférée inférieur à 2 mg KOH/g.
  12. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la totalité des composés organiques polymères dans et par rapport au composant particulaire de la solution colloïdale aqueuse est d'au moins 3 % en poids, de préférence d'au moins 6 % en poids, toutefois de préférence ne dépasse pas 15 % en poids.
  13. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la solution colloïdale aqueuse présente une valeur D50 inférieure à 1 µm, de préférence inférieure à 0,4 µm.
  14. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la proportion des composants particulaires de la solution colloïdale aqueuse est d'au moins 0,05 g/kg, de préférence d'au moins 0,1 g/kg, de manière particulièrement préférée d'au moins 0,2 g/kg, toutefois de préférence n'est pas supérieure à 10 g/kg, de manière particulièrement préférée n'est pas supérieure à 2 g/kg, respectivement par rapport à la solution colloïdale aqueuse.
  15. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la solution colloïdale aqueuse est disponible en tant que dispersion aqueuse diluée d'un facteur 20 à 100 000 comprenant
    - par rapport à la dispersion aqueuse, au moins 5 % en poids d'un composant particulaire dispersé (A), lequel contient à son tour
    A1) au moins un composé inorganique particulaire, lequel est composé de phosphates de cations métalliques polyvalents au moins partiellement choisis parmi l'hopéite, la phosphophyllite, la scholzite et/ou l'huréaulite,
    (A2) au moins un composé organique polymère, lequel est composé au moins partiellement de styrène et/ou d'une α-oléfine comportant pas plus de 5 atomes de carbone et est composé au moins partiellement d'acide maléique, de son anhydride et/ou de son imide, dans lequel le composé organique polymère présente en outre des motifs polyoxyalkylène, et
    - éventuellement au moins un épaississant (B), lequel est choisi de préférence parmi des résines d'uréthane urée, de manière particulièrement préférée parmi des résines d'uréthane urée qui présentent un indice d'amine inférieur à 8 mg KOH/g, de préférence inférieur à 5 mg KOH/g, de manière particulièrement préférée inférieur à 2 mg KOH/g,
    dans lequel la dilution est effectuée avec de l'eau qui contient au moins 0,5 mmol/L, de préférence au moins 1 mmol/L, de manière particulièrement préférée au moins 1,5 mmol/L, d'ions de métaux alcalino-terreux dissous dans l'eau.
  16. Procédé selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que la phosphatation dans l'étape de procédé (ii) est effectuée par la mise en contact avec une composition aqueuse acide contenant 5 à 50 g/kg de phosphates dissous dans l'eau calculés en PO4, 0,3 à 3 g/kg d'ions de zinc ainsi qu'une quantité de fluorure libre, laquelle composition contient éventuellement au total moins de 0,1 g/kg d'ions des éléments nickel et cobalt.
EP20807405.4A 2019-11-26 2020-11-19 Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation Active EP4065749B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19211407.2A EP3828307A1 (fr) 2019-11-26 2019-11-26 Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation
PCT/EP2020/082618 WO2021104976A1 (fr) 2019-11-26 2020-11-19 Procédé d'économie de ressources pour activer une surface métallique avant un processus de phosphatation

Publications (2)

Publication Number Publication Date
EP4065749A1 EP4065749A1 (fr) 2022-10-05
EP4065749B1 true EP4065749B1 (fr) 2024-01-03

Family

ID=68696283

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19211407.2A Withdrawn EP3828307A1 (fr) 2019-11-26 2019-11-26 Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation
EP20807405.4A Active EP4065749B1 (fr) 2019-11-26 2020-11-19 Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19211407.2A Withdrawn EP3828307A1 (fr) 2019-11-26 2019-11-26 Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation

Country Status (7)

Country Link
US (1) US20220282381A1 (fr)
EP (2) EP3828307A1 (fr)
JP (1) JP2023505069A (fr)
KR (1) KR20220106125A (fr)
CN (1) CN114729457B (fr)
MX (1) MX2022006302A (fr)
WO (1) WO2021104976A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174211A1 (fr) * 2021-11-02 2023-05-03 Henkel AG & Co. KGaA Traitement en plusieurs étages permettant d'activer le phosphatation au zinc des composants métalliques pourvus de surfaces en zinc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3954805A1 (fr) * 2020-08-11 2022-02-16 Henkel AG & Co. KGaA Procédé efficace dans l'utilisation des ressources destiné à la phosphatation au zinc d'une surface métallique
EP3964606A1 (fr) * 2020-09-04 2022-03-09 Henkel AG & Co. KGaA Procédé en une étape de phosphation du zinc

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL275308A (fr) * 1961-03-07
DE19621184A1 (de) * 1996-05-28 1997-12-04 Henkel Kgaa Zinkphosphatierung mit integrierter Nachpassivierung
JP3451334B2 (ja) 1997-03-07 2003-09-29 日本パーカライジング株式会社 金属のりん酸塩皮膜化成処理前の表面調整用前処理液及び表面調整方法
JP2005264326A (ja) * 2004-02-20 2005-09-29 Nippon Paint Co Ltd 表面調整剤及び表面調整方法
ES2364405T3 (es) * 2004-02-20 2011-09-01 Chemetall Gmbh Acondicionador de superficie y método de acondicionamiento de superficie.
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
JP5166157B2 (ja) * 2008-07-29 2013-03-21 日本曹達株式会社 無機系粒子水性分散液およびその製造方法
US20130177768A1 (en) * 2010-09-10 2013-07-11 Mike Krüger Method for coating metallic surfaces with a coating agent containing a polymer, the coating agent, and use thereof
US9255332B2 (en) * 2013-09-05 2016-02-09 Ppg Industries Ohio, Inc. Activating rinse and method for treating a substrate
US20170306497A1 (en) * 2016-04-25 2017-10-26 Ppg Industries Ohio, Inc. System for nickel-free zinc phosphate pretreatment
EP3392376A1 (fr) * 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Procédé formant des couches de phosphatate de zinc sur des composants métalliques en série
WO2019238573A1 (fr) * 2018-06-11 2019-12-19 Henkel Ag & Co. Kgaa Dispersion aqueuse pour l'activation d'une surface métallique et son procédé de phosphatation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3954805A1 (fr) * 2020-08-11 2022-02-16 Henkel AG & Co. KGaA Procédé efficace dans l'utilisation des ressources destiné à la phosphatation au zinc d'une surface métallique
EP3964606A1 (fr) * 2020-09-04 2022-03-09 Henkel AG & Co. KGaA Procédé en une étape de phosphation du zinc

Also Published As

Publication number Publication date
JP2023505069A (ja) 2023-02-08
EP4065749A1 (fr) 2022-10-05
MX2022006302A (es) 2022-06-09
CN114729457B (zh) 2024-04-30
US20220282381A1 (en) 2022-09-08
KR20220106125A (ko) 2022-07-28
WO2021104976A1 (fr) 2021-06-03
CN114729457A (zh) 2022-07-08
EP3828307A1 (fr) 2021-06-02

Similar Documents

Publication Publication Date Title
DE102005059314B4 (de) Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
EP3802915A1 (fr) Dispersion aqueuse pour l'activation d'une surface métallique et son procédé de phosphatation
EP3612663B1 (fr) Procédé formant des couches de phosphatate de zinc sur des composants métalliques en série
WO2022048963A1 (fr) Procédé en une étape pour la phosphatation du zinc
EP4065749B1 (fr) Procédé économe en ressources permettant d'activer une surface métallique avant une phosphatation
EP4065748A1 (fr) Procédé d'économie de ressources pour activer une surface métallique avant un processus de phosphatation
EP4196625A1 (fr) Procédé de conservation de ressources pour la phosphatation au zinc d'une surface métallique
EP3392375B1 (fr) Procédé de formation d'une couche de phosphatate de zinc sans formation de boue pour des composants métalliques en série
EP2893054B1 (fr) Procédé de traitement de surface anticorrosion d'éléments métalliques en série
EP2255028A1 (fr) Peinture électrophorétique par immersion optimisée d'éléments assemblés et partiellement préphosphatés
WO2023078791A1 (fr) Traitement en plusieurs étapes pour la phosphatation activée du zinc de composants métalliques avec surfaces de zinc

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 22/73 20060101ALI20230607BHEP

Ipc: C23C 22/36 20060101ALI20230607BHEP

Ipc: C23C 22/78 20060101AFI20230607BHEP

INTG Intention to grant announced

Effective date: 20230703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006644

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 43648

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240103