EP4065070A1 - Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains - Google Patents

Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains

Info

Publication number
EP4065070A1
EP4065070A1 EP20772046.7A EP20772046A EP4065070A1 EP 4065070 A1 EP4065070 A1 EP 4065070A1 EP 20772046 A EP20772046 A EP 20772046A EP 4065070 A1 EP4065070 A1 EP 4065070A1
Authority
EP
European Patent Office
Prior art keywords
acid
agent
aftertreatment agent
amino
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20772046.7A
Other languages
German (de)
English (en)
Inventor
Constanze KRUCK
Sandra Hilbig
Melanie Moch
Susanne Dickhof
Daniela Kessler-Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP4065070A1 publication Critical patent/EP4065070A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits
    • A61K2800/884Sequential application

Definitions

  • the present application relates to a method for improving the feel of keratinic material which has previously been colored by using at least one pigment, a post-treatment agent being applied to the colored keratin material and being rinsed off again after an exposure time.
  • the aftertreatment agent is characterized in that it contains water, has a pH value of 2.5 to 12.5 and contains at least one fat component.
  • a second subject of this application is a method for dyeing and aftertreating keratin fibers, in particular human hair, in which a coloring agent containing at least one amino silicone and at least one pigment is first used, and then the aftertreatment agent described above is applied.
  • a third subject matter of the present application is a multi-component packaging unit (kit-of-parts) which contains the previously described colorant and aftertreatment agent in separately packaged containers.
  • Oxidation dyes are usually used for permanent, intensive dyeings with good fastness properties and good gray coverage. Such colorants contain oxidation dye precursors, so-called developer components and coupler components, which, under the influence of oxidizing agents such as hydrogen peroxide, form the actual dyes with one another. Oxidation dyes are characterized by very long-lasting dyeing results.
  • Coloring with pigments offers several major advantages. Since the pigments only attach themselves to the keratin materials, in particular to the hair fibers, from the outside, the damage associated with the coloring process is particularly low. Furthermore, colorations that are no longer desired can be removed quickly and easily without leaving any residue and in this way offer the user the possibility of being able to return to his original hair color immediately and without great effort. This coloring process is therefore particularly attractive for consumers who do not want to dye their hair regularly.
  • the pigment-based coloring system still has some disadvantages. Since both the pigments and the aminosilicones, which immobilize the pigments, are deposited on the surface of the hair fiber, its surface structure is modified by the formation of a film. Depending on the thickness of the film formed, this modification can also change the haptic impression of the hair fibers that ranges from feeling heavy or greasy hair to a rough, shaggy, or straw-like feel of the hair.
  • a technology was sought that made it possible to fix colored pigments on the hair as permanently as possible without the hair feeling weighted, greasy, unnatural, strawy or covered.
  • a particular focus of the task was to achieve intense, washable color results with a good hair feel at the same time.
  • the aftertreatment agent is characterized in that it is based on an aqueous base and contains at least one fat component.
  • a first object of the present invention is a method for improving the feel of keratinic material which has been colored by using at least one pigment, a post-treatment agent being applied to the colored keratin material and rinsed off again after an exposure time, characterized in that the post-treatment agent
  • (N-2) has a pH of 2.5 to 12.5
  • (N-3) contains at least one fat component.
  • keratin fibers in particular hair
  • Particularly intensive coloring results were obtained here when the coloring was carried out with a combination of pigment and amino silicone.
  • the pigment or the mixture of pigment and amino silicone was deposited on the outside of the surface of the keratin fibers, the color result was associated with a deterioration in the haptic impression of the colored fibers.
  • the dyed hair felt covered and weighted down, and the presence of the pigments resulted in a very rough, unnatural hair feel. If larger amounts of aminosilicones were also used for coloring, they also left a greasy, weighted or oily impression on the hair.
  • the aftertreatment with the aftertreatment agent according to the invention leads to a significant improvement in the feel of the hair without the colored hair suffering major losses in terms of color intensity.
  • the fat components contained in the aftertreatment agent remove the excess amino silicone or the excess mixture of pigment and amino silicone from the hair fiber. The removal takes place in that the fat constituents emulsify the pigment / amino silicone.
  • the film built up on the surface of the keratin fiber during dyeing is smoothed in this way and / or the outermost layer of the film is removed again.
  • the fat constituents can only remove the aminosilicones / pigments in the outer layers of the film that are not completely or directly bound to the hair surface. This way, the hair fiber looks less weighted. It was surprising that it is precisely the use of a fat component that results in the colored hair leaving a less weighted or less oily impression.
  • Keratinic material is to be understood as meaning hair, the skin, and the nails (such as fingernails and / or toenails, for example). Furthermore, wool, furs and feathers also fall under the definition of keratinic material.
  • Keratinic material is preferably understood to mean human hair, human skin and human nails, in particular fingernails and toenails. Keratinic material is very particularly preferably understood to mean human hair.
  • the term “means for coloring” is used in the context of this invention for a coloring of the keratin material, in particular of the hair, caused by the use of pigments. With this coloring, the pigments are deposited as coloring compounds in a particularly homogeneous, even and smooth film on the surface of the keratin material.
  • an improvement in the feel of the hand is understood to mean that the colored keratin material, in particular human hair, leaves a more natural and softer impression when it is handled in the hair, and that the keratin material or the hair is less weighted, greasy, oily, unnatural, straw-like, rough or feel occupied.
  • amino-functionalized silicone polymer in the colorant in particular human hair, leaves a more natural and softer impression when it is handled in the hair, and that the keratin material or the hair is less weighted, greasy, oily, unnatural, straw-like, rough or feel occupied.
  • the aftertreatment agent used in the method according to the invention showed a particularly strong effect when a combination of pigments with aminosilicones was used to color the keratin material or the keratin fibers.
  • a method according to the invention is therefore characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one amino-functionalized silicone polymer and at least one pigment.
  • the amino-functionalized silicone polymer can alternatively also be referred to as aminosilicone or amodimethicone.
  • Silicone polymers are generally macromolecules with a molecular weight of at least 500 g / mol, preferably at least 1000 g / mol, more preferably at least 2500 g / mol, particularly preferably at least 5000 g / mol, which comprise repeating organic units.
  • the maximum molecular weight of the silicone polymer depends on the degree of polymerisation (number of polymerised monomers) and the batch size and is also determined by the polymerisation method. For the purposes of the present invention, it is preferred if the maximum molecular weight of the silicone polymer is not more than 10 7 g / mol, preferably not more than 10 6 g / mol and particularly preferably not more than 10 5 g / mol.
  • the silicone polymers comprise many Si — O repeating units, it being possible for the Si atoms to carry organic radicals such as, for example, alkyl groups or substituted alkyl groups.
  • a silicone polymer is therefore also referred to as a polydimethylsiloxane.
  • the silicone polymers are based on more than 10 Si-O repeat units, preferably more than 50 Si-O repeat units and particularly preferably more than 100 Si-O repeat units, very particularly preferably more than 500 Si-O repeat units .
  • An amino-functionalized silicone polymer is understood to mean a functionalized silicone which carries at least one structural unit with an amino group.
  • the amino-functionalized silicone polymer preferably carries a plurality of structural units, each with at least one amino group.
  • An amino group is understood to mean a primary amino group, a secondary amino group and a tertiary amino group. All of these amino groups can be protonated in an acidic medium and are then in their cationic form.
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one amino-functionalized silicone polymer with at least one secondary amino group.
  • the secondary amino group (s) can be located at various positions on the amino-functionalized silicone polymer. Very particularly good color results were obtained when an amino-functionalized silicone polymer was used that has at least one, preferably several, structural units of the formula (Si-amino). -Amino)
  • ALK1 and ALK2 stand independently of one another for a linear or branched, divalent Ci-C2o-alkylene group.
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one amino-functionalized silicone polymer which comprises at least one structural unit of the formula (Si-amino), -Amino) where
  • ALK1 and ALK2 independently of one another represent a linear or branched, divalent Ci- C2o-alkylene group.
  • the positions marked with an asterisk (*) indicate the bond to further structural units of the silicone polymer.
  • the silicon atom adjacent to the star can be bonded to a further oxygen atom
  • the oxygen atom adjacent to the star can be bonded to a further silicon atom or to a Ci-C6-alkyl group.
  • a divalent Ci-C2o-alkylene group can alternatively also be referred to as a divalent or double-bonded Ci-C2o-alkylene group, which means that each grouping ALK1 or AK2 can form two bonds.
  • ALK1 there is a bond from the silicon atom to the ALK1 group, and the second bond is between ALK1 and the secondary amino group.
  • one bond is from the secondary amino group to the ALK2 moiety, and the second bond is between ALK2 and the primary amino group.
  • Examples of a linear divalent Ci-C2o-alkylene group are, for example, the methylene group (-CH2-), the ethylene group (-CH2-CH2-), the propylene group (-CH2-CH2-CH2-) and the butylene group (-CH2- CH2-CH2-CH2-).
  • the propylene group (-CH2-CH2-CH2-) is particularly preferred.
  • divalent alkylene groups can also be branched.
  • Examples of branched, divalent C3-C2o-alkylene groups are (-CH2-CH (CH3) -) and (-CH2-CH (CH3) -CH2-).
  • the structural units of the formula (Si-amino) represent repeat units in the amino-functionalized silicone polymer, so that the silicone polymer comprises several structural units of the formula (Si-amino).
  • Particularly suitable amino-functionalized silicone polymers with at least one secondary amino group are listed below.
  • Dyeings with the very best wash fastness properties could be obtained if at least one agent was applied to the keratinic material in the preceding dyeing which contains at least one amino-functionalized silicone polymer which comprises structural units of the formula (Si-I) and the formula (Si-II)
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one amino-functionalized silicone polymer which contains structural units of the formula (Si-I) and the formula (Si-I I) includes
  • a corresponding amino-functionalized silicone polymer with the structural units (Si-I) and (Sill) is, for example, the commercial product DC 2-8566 or Dowsil 2-8566 Amino Fluid, which is sold commercially by the Dow Chemical Company and which has the name “Siloxanes and Silicones, 3 - [(2-Aminoethyl) amino] -2-methylpropyl Me, Di-Me-Siloxane ”and the CAS number 106842-44-8.
  • Another particularly preferred commercial product is Dowsil AP-8658 Amino Fluid, which is also sold commercially by the Dow Chemical Company.
  • the aftertreatment agent can also be used on keratin material which has previously been colored by using a colorant which contains at least one amino-functional silicone polymer of the formula of the formula (Si-III), where m and n mean numbers which are chosen so that the sum (n + m) is in the range from 1 to 1000, n is a number in the range from 0 to 999 and m is a number in the range from 1 to
  • a coloring agent on the keratinous material containing at least an amino-functional silicone polymer of the formula of the formula (Si-IV), in which p and q denote numbers which are chosen so that the sum (p + q) is in the range from 1 to 1000, p is a number in the range from 0 to 999 and q is a number in the range from 1 to
  • R1 and R2 which are different, denote a hydroxyl group or a C1-4 alkoxy group, at least one of the groups R1 to R2 denoting a hydroxyl group.
  • the silicones of the formulas (Si-III) and (Si-IV) differ in the grouping on the Si atom that carries the nitrogen-containing group:
  • R2 denotes a hydroxyl group or a C1-4 alkoxy group, while the remainder in formula (Si-IV) is a methyl group.
  • A represents a group -OH, -0-Si (CH3) 3, -0-Si (CH 3 ) 2 0H, -0-Si (CH 3 ) 2 0CH3,
  • the individual siloxane units with the indices b, c and n are randomly distributed, i.e. they do not necessarily have to be block copolymers.
  • the previously applied colorant can also contain one or more different amino-functionalized silicone polymers, which are represented by the formula (Si-VI)
  • R is a hydrocarbon or a hydrocarbon radical with 1 to about 6 carbon atoms
  • Q is a polar radical of the general formula -R 1 HZ, where R 1 is a divalent, connecting group which is bonded to hydrogen and the radical Z, composed of carbon and hydrogen atoms, carbon, hydrogen - and oxygen atoms or carbon, hydrogen and nitrogen atoms, and Z is an organic, amino-functional radical which contains at least one amino-functional group;
  • "a” takes values in the range of about 0 to about 2
  • "b” takes values in the range of about 1 to about 3
  • a” + "b” is less than or equal to 3
  • "c” is a number in the range from about 1 to about 3
  • x is a number in the range from 1 to about 2,000, preferably from about 3 to about 50, and most
  • Non-limiting examples of the groups represented by R include alkyl groups such as methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl groups such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halogenated hydrocarbon radicals such as 3-chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl and the like and sulfur-containing radicals such as mercaptoethyl, mercaptopropyl, mercap
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, - CH 2 CH (CH 3 ) CH2-, phenylene, naphthylene, -CH2CH2SCH2CH 2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH 2 CH2CH2-, - CH 2 CH (CH 3) C (0) 0CH 2 -, - (CH 2) 3 CC (0) 0CH 2 CH 2 -, -CeH 4 C 6 H 4 -, -CeH 4 CH 2 C 6 H 4 -; and - (CH 2) 3C (0) SCH 2 CH 2 - a.
  • Z is an organic, amino-functional radical containing at least one functional amino group.
  • One possible formula for Z is NH (CH2) zNH2, where z is 1 or more.
  • Another possible formula for Z is -NH (CH2) z (CH2) zzNH, where both z and zz are independently 1 or more, this structure including diamino ring structures such as piperazinyl.
  • Most preferably Z is an -NHCH2CH 2NH2 radical.
  • Another possible formula for Z is -N (CH2) z (CH2) zzNX2 or -NX2, wherein each X of X2 is independently selected from the group consisting of hydrogen and alkyl groups having 1 to 12 carbon atoms, and zz is zero.
  • Q is most preferably a polar, amine-functional radical of the formula -CH2CH2CH2NHCH2CH2NH 2.
  • "a” takes values in the range from about 0 to about 2
  • "b” takes values in the range from about 2 to about 3
  • "a "+” b is less than or equal to 3
  • " c is a number ranging from about 1 to about 3.
  • c SiO ( 4-C) / 2 units ranges from about 1: 2 to 1:65, preferably from about 1: 5 to about 1:65, and most preferably from about 1:15 to about 1:20 If one or more silicones of the above formula are used, then the various variable substituents in the above formula can be different for the various silicone components that are present in the silicone mixture.
  • a method according to the invention is characterized by the preceding use of a coloring agent on the keratinous material, the coloring agent being an amino-functional silicone polymer of the formula (Si-VII)
  • - G is -H, a phenyl group, -OH, -O-CH3, -CH 3 , -O-CH2CH3, -CH2CH3, -O-
  • n - m and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n is preferably values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular assumes from 1 to 10,
  • R ' is a monovalent radical selected from o -QN (R ") - CH 2 -CH 2 -N (R") 2 o -QN (R ") 2 o -QN + (R") 3 A- o - QN + H (R ") 2 A- o -QN + H 2 (R") A- o -QN (R ") - CH 2 -CH 2 -N + R" H 2 A-, each Q representing one chemical bond, -CH 2 -, -CH 2 -CH 2 -, -CH 2 CH 2 CH 2 -, -C (CH 3 ) 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 C ( CH 3 ) 2 -, -CH (CH 3 ) CH 2 CH 2 -,
  • R stands for identical or different radicals from the group -H, -phenyl, -benzyl, -CH 2 - CH (CH 3 ) Ph, the Ci- 2 o-alkyl radicals, preferably -CH 3 , -CH 2 CH 3 , - CH 2 CH 2 CH 3 , -CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 H 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 ) 3 , and A represents an anion, which is preferably selected from chloride, bromide, iodide or methosulfate.
  • a method according to the invention is characterized by the preceding use of a coloring agent on the keratinous material, the coloring agent containing at least one amino-functional silicone polymer of the formula (Si-VIIa),
  • m and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n is preferably values from 0 to 1999 and in particular from 49 to 149 and m preferably assumes values from 1 to 2000, in particular from 1 to 10.
  • these silicones are referred to as trimethylsilylamodimethicones.
  • a method according to the invention is characterized by the previous use of a coloring agent on the keratinous Material, wherein the colorant contains at least one amino-functional silicone polymer of the formula (Si-VI Ib)
  • n1 and n2 are numbers whose sum (m + n1 + n2) is between 1 and 2000, is preferably between 50 and 150, the sum (n1 + n2) preferably assuming values from 0 to 1999 and in particular from 49 to 149 and m preferably from 1 to 2000, in particular from 1 to 10.
  • colorants according to the invention which contain an amino-functional silicone polymer whose amine number is above 0.25 meq / g, preferably above 0.3 meq / g and in particular above 0.4 meq / g lies.
  • the amine number stands for the milli-equivalents of amine per gram of the amino-functional silicone. It can be determined by titration and can also be given in the unit mg KOH / g.
  • Colorants which contain a special 4-morpholinomethyl-substituted silicone polymer are also suitable for use in the process according to the invention.
  • This amino-functionalized silicone polymer comprises structural units of the formulas (S1-VIII) and the formula (Si-IX)
  • a corresponding amino-functionalized silicone polymer is known under the name Amodimethicone / Morpholinomethyl Silsesquioxane Copolymer and is commercially available from Wacker in the form of the raw material Belsil ADM 8301 E.
  • a silicone which has structural units of the formulas (Si-VIII), (Si-IX) and (Si-X), for example, can be used as the 4-morpholinomethyl-substituted silicone in which
  • R1 is -CH 3 , -OH, -OCHS, -0-CH 2 CH 3 , -0-CH 2 CH 2 CH 3 , or -0-CH (CH 3 ) 2 ;
  • R2 represents - CH 3 , -OH, or -OCH 3 .
  • Particularly preferred colorants contain at least one 4-morpholinomethyl-substituted silicone of the formula (Si-Xl)
  • R1 is -CH 3 , -OH, -OCH 3 , -0-CH 2 CH 3 , -0-CH 2 CH 2 CH 3 , or -0-CH (CH 3 ) 2 ;
  • R2 represents - CH 3 , -OH, or -OCH 3 .
  • B represents a group -OH, -0-Si (CH 3 ) 3 , -0-Si (CH 3 ) 2 0H, -0-Si (CH 3 ) 2 0CH 3
  • D stands for a group -H, -Si (CH3) 3, -Si (CH 3 ) 2 0H, -Si (CH 3 ) 2 0CH 3
  • a, b and c independently of one another stand for integers between 0 and 1000, with the
  • Structural formula (Si-Xl) is intended to make it clear that the siloxane groups n and m do not necessarily have to be bound directly to an end group B or D, respectively. Rather, in preferred formulas (Si-VI) a> 0 or b> 0 and in particularly preferred formulas (Si-VI) a> 0 and c> 0, ie the terminal grouping B or D is preferably attached to a dimethylsiloxy grouping bound. In formula (Si-VI) too, the siloxane units a, b, c, m and n are preferably distributed randomly.
  • one or more amino-functionalized silicone polymers can be used, for example, in a total amount of 0.1 to 8.0% by weight, preferably 0.2 to 5.0% by weight, more preferably from 0 , 3 to 3.0% by weight and very particularly preferably from 0.4 to 2.5% by weight.
  • the quantities given here are based on the total quantity of all aminosilicones used, which is related to the total weight of the colorant.
  • the impression of greasy or oily hair also depends on the amount of aminosilicones used.
  • the use of the aftertreatment agent according to the invention showed a particularly strong improvement in the Hair feel if a very high proportion by weight of aminosilicones was used in the previous application of the coloring agent.
  • a method according to the invention is characterized in that the coloring agent - based on the total weight of the agent - contains one or more amino-functionalized silicone polymers in a total amount of 0.1 to 8.0% by weight, preferably 0.4 to 5.0% by weight, more preferably from 0.8 to 3.0% by weight and very particularly preferably from 1.0 to 3.5% by weight.
  • an aftertreatment agent is applied to keratin material which has previously been colored by using at least one pigment.
  • Pigments in the context of the present invention are understood to mean coloring compounds which at 25 ° C. in water have a solubility of less than 0.5 g / L, preferably less than 0.1 g / L, even more preferably less than 0, 05 g / L.
  • the water solubility can for example take place using the method described below: 0.5 g of the pigment is weighed out in a beaker. A stir fry is added. Then one liter of distilled water is added. This mixture is heated to 25 ° C. for one hour while stirring on a magnetic stirrer. If undissolved constituents of the pigment are still visible in the mixture after this period, the solubility of the pigment is below 0.5 g / L.
  • the mixture is filtered. If a proportion of undissolved pigments remains on the filter paper, the solubility of the pigment is below 0.5 g / L.
  • Suitable color pigments can be of inorganic and / or organic origin.
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one inorganic and / or organic pigment.
  • Preferred color pigments are selected from synthetic or natural inorganic pigments.
  • Inorganic color pigments of natural origin can be made from chalk, ocher, umber, green earth, burnt Terra di Siena or graphite, for example.
  • black pigments such as. B. iron oxide black, colored pigments such. B. ultramarine or iron oxide red and fluorescent or phosphorescent pigments can be used.
  • Colored metal oxides, hydroxides and oxide hydrates, mixed-phase pigments, sulfur-containing silicates, silicates, metal sulfides, complex metal cyanides, metal sulfates, metal chromates and / or metal molybdates are particularly suitable.
  • Particularly preferred color pigments are black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI77289 ), Iron blue (Ferric Ferrocyanide, CI77510) and / or carmine (Cochineal).
  • Color pigments which are likewise particularly preferred according to the invention are colored pearlescent pigments. These are usually based on mica and / or mica and can be coated with one or more metal oxides. Mica is one of the layered silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite. To produce the pearlescent pigments in conjunction with metal oxides, the mica, predominantly muscovite or phlogopite, is coated with a metal oxide.
  • synthetic mica coated with one or more metal oxide (s) can also be used as a pearlescent pigment.
  • Particularly preferred pearlescent pigments are based on natural or synthetic mica (mica) and are coated with one or more of the aforementioned metal oxides. The color of the respective pigments can be varied by varying the layer thickness of the metal oxide (s).
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one inorganic pigment, the inorganic pigment preferably being selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, silicates, Metal sulfides, complex metal cyanides, metal sulfates, bronze pigments and / or from colored pigments based on mica or mica coated with at least one metal oxide and / or a metal oxychloride.
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one pigment selected from mica- or mica-based pigments with one or more metal oxides from the group from Titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and / or brown iron oxide (CI 77491, CI 77499), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, pigment Blue 29), chromium oxide hydrate (CI 77289), chromium oxide (CI 77288) and / or iron blue (Ferric Ferrocyanide, CI 77510) are coated.
  • color pigments are commercially available, for example under the trade names Rona®, Colorona®, Xirona®, Dichrona® and Timiron® from the company Merck, Ariabel® and Unipure® from Sensient, Prestige® from Eckart Cosmetic Colors and Sunshine® from Sunstar.
  • Colorona® Particularly preferred color pigments with the trade name Colorona® are, for example:
  • color pigments with the trade name Unipure® are, for example:
  • the previously applied colorant can also contain one or more organic pigments.
  • the organic pigments according to the invention are correspondingly insoluble, organic dyes or color lakes, for example from the group of nitroso, nitro, azo, xanthene, anthraquinone, isoindolinone, isoindoline, quinacridone, perinone, perylene -, diketopyrrolopyorrole, indigo, thioindido, dioxazine, and / or triarylmethane compounds can be selected.
  • Particularly suitable organic pigments are, for example, carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the color index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 11680 , CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index numbers CI 11725 , CI 15510, CI 45370, CI 71105, red pigments with the color index numbers CI 12085, CI 12120, CI 12370, CI 12420, CI 12490, CI 14700, CI 15525, CI 15580, CI 15620, CI 15630, CI 15800
  • a method according to the invention is characterized in that the aftertreatment agent is applied to keratin material which has been colored by using at least one organic pigment, the organic pigment preferably being selected from the group consisting of carmine, quinacridone, phthalo- cyanine, sorgho, blue pigments with the color index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 11680, CI 11710, CI 15985, CI 19140, CI 20040 , CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index numbers CI 11725, CI 15510, CI 45370, CI 71105, red pigments with the color index numbers CI 12085, CI 12120,
  • the organic pigment preferably
  • the organic pigment can also be a colored lacquer.
  • the term “colored lacquer” is understood to mean particles which comprise a layer of absorbed dyes, the unit of particles and dye being insoluble under the above-mentioned conditions.
  • the particles can be, for example, inorganic substrates, which can be aluminum, silica, calcium borosilicate, calcium aluminum borosilicate or also aluminum.
  • the alizarin color varnish can be used as the color varnish.
  • the use of the aforementioned pigments in the agent is very particularly preferred. It is also preferred if the pigments used have a certain particle size. It is therefore advantageous according to the invention if the at least one pigment has an average particle size D 50 of 1.0 to 50 ⁇ m, preferably 5.0 to 45 ⁇ m, preferably 10 to 40 ⁇ m, in particular 14 to 30 ⁇ m.
  • the mean particle size Dso can be determined using dynamic light scattering (DLS), for example.
  • one or more pigments can be used, for example, in a total amount of 0.01 to 10.0% by weight, preferably 0.1 to 5.0% by weight, more preferably 0, 2 to 2.5% by weight and very particularly preferably from 0.25 to 1.5% by weight.
  • the quantities given here are based on the total quantity of all pigments used, which is related to the total weight of the colorant.
  • a colorant according to the invention is characterized in that the colorant - based on the total weight of the colorant - has one or more pigments in a total amount of 0.01 to 10.0% by weight, preferably 0.1 to 5.0% by weight, more preferably from 0.2 to 2.5% by weight and very particularly preferably from 0.25 to 1.5% by weight.
  • the colorants could also contain one or more substantive dyes.
  • Substantive dyes are dyes that are absorbed directly onto the hair and do not require an oxidative process to develop the color.
  • Substantive dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones, triarylmethane dyes or indophenols.
  • the substantive dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
  • the substantive dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
  • Substantive dyes can be divided into anionic, cationic and nonionic substantive dyes.
  • an agent according to the invention can be characterized in that it additionally contains at least one coloring compound from the group of anionic, nonionic and cationic substantive dyes.
  • Suitable cationic substantive dyes are, for example, Basic Blue 7, Basic Blue 26, HC Blue 16, Basic Violet 2 and Basic Violet 14, Basic Yellow 57, Basic Red 76, Basic Blue 16, Basic Blue 347 (Cationic Blue 347 / Dystar), HC Blue No. 16, Basic Blue 99, Basic Brown 16, Basic Brown 17, Basic Yellow 57, Basic Yellow 87, Basic Orange 31, Basic Red 51 Basic Red 76.
  • Nonionic nitro and quinone dyes and neutral azo dyes can be used as nonionic substantive dyes.
  • Suitable nonionic substantive dyes are those under the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, HC Red BN, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 known compounds, as well 1,4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis- (2-hydroxyethyl) -amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) aminophenol, 2- (2-
  • Anionic substantive dyes are also referred to as acid dyes.
  • Acid dyes are taken to mean substantive dyes which have at least one carboxylic acid group (—COOH) and / or one sulfonic acid group (—SO3H).
  • carboxylic acid group —COOH
  • SO3H sulfonic acid group
  • the protonated forms (-COOH, -SO3H) of the carboxylic acid or sulfonic acid groups are in equilibrium with their deprotonated forms (-COO-, -S03 _). The proportion of protonated forms increases with decreasing pH.
  • the carboxylic acid groups or sulfonic acid groups are in deprotonated form and are neutralized with corresponding stoichiometric equivalents of cations in order to maintain electrical neutrality.
  • Acid dyes according to the invention can also be used in the form of their sodium salts and / or their potassium salts.
  • the acid dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
  • the acid dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
  • alkaline earth salts such as calcium salts and magnesium salts
  • aluminum salts of acid dyes often have poorer solubility than the corresponding alkali salts. If the solubility of these salts is below 0.5 g / L (25 ° C, 760 mmHg), they do not fall under the definition of a substantive dye.
  • An essential feature of the acid dyes is their ability to form anionic charges, the carboxylic acid or sulfonic acid groups responsible for this usually being linked to different chromophoric systems.
  • Suitable chromophoric systems are found, for example, in the structures of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes, triarylmethane dyes, xanthene dyes, rhodamine dyes, oxazine dyes and / or indophenol dyes.
  • an agent for coloring keratinic material can be characterized in that it contains at least one anionic substantive dye selected from the group consisting of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes, triarylmethane dyes and xanthene dyes , the rhodamine dyes, the oxazine dyes and / or the indophenol dyes, the dyes from the aforementioned group at least one carboxylic acid group (-COOH), one sodium carboxylate group (-COONa), one potassium carboxylate group (-COOK), one sulfonic acid group (- SO3H) one sodium sulfonate group (-SOsNa) and / or one potassium sulfonate group (-SO3K) have.
  • anionic substantive dye selected from the group consisting of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes
  • Suitable acid dyes are, for example, one or more compounds from the following group: Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA No. B001), Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (C1 13015), Acid Yellow 17 (C1 18965), Acid Yellow 23 (COLIPA n ° C 29 , Covacap Jaune W 1100 (LCW), Sicovit Tartrazine 85 E 102 (BASF), Tartrazine, Food Yellow 4, Japan Yellow 4, FD&C Yellow No.
  • Acid Yellow 1 D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA No. B001
  • Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (C
  • Acid Yellow 36 (CI 13065), Acid Yellow 121 (CI 18690) , Acid Orange 6 (CI 14270), Acid Orange 7 (2-naphthol orange, Orange II, CI 15510, D&C Orange 4, COLIPA n ° C015), Acid Orange 10 (Cl 16230; Orange G sodium salt), Acid Orange 11 (CI 45370), Acid Orange 15 (CI 50120), Acid Orange 20 (CI 14600), Acid Orange 24 (BROWN 1; CI 20170; KATSU201; nosodiumsalt; Brown No.201; RESORCIN BROWN; ACID ORANGE 24; Japan Brown 201 ; D & C Brown No.1), Acid Red 14 (Cl14720), Acid red 18 (E124, red 18; CI 16255), Acid Red 27 (E 123, CI 16185, C-Red 46, Echtrot D, FD&C Red Nr.2, Food Red 9, Naphtholrot S), Acid Red 33 (Red 33, Fuchsia Red, D&C Red 33, CI
  • Acid Green 50 (Brillantklare indispensable BS, Cl 44090, Acid Brilliant Green BS, E 142), Acid Black 1 (Black n ° 401, Naphthalene Black 10B, Amido Black 10B, CI 20470, COLIPA n ° B15), Acid Black 52 (CI 15711), Food Yellow 8 (CI 14270), Food Blue 5, D&C Yellow 8, D&C Green 5, D&C Orange 10, D&C Orange 11, D&C Red 21, D&C Red 27, D&C Red 33, D&C Violet 2 and / or D&C Brown 1.
  • the water solubility of the anionic substantive dyes can be determined, for example, in the following way. 0.1 g of the anionic substantive dye are placed in a beaker. A stir bar is added. Then 100 ml of water are added. This mixture is heated to 25 ° C. on a magnetic stirrer while stirring. It is stirred for 60 minutes. The aqueous mixture is then assessed visually. If there are still undissolved residues, the amount of water is increased - for example in steps of 10 ml. It will as long as water was added until the amount of dye used has completely dissolved. If the dye-water mixture cannot be assessed visually due to the high intensity of the dye, the mixture is filtered.
  • the solubility test is repeated with a larger amount of water. If 0.1 g of the anionic substantive dye dissolves in 100 ml of water at 25 ° C., the solubility of the dye is 1.0 g / l.
  • Acid Yellow 1 is called 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid disodium salt and has a solubility in water of at least 40 g / L (25 ° C).
  • Acid Yellow 3 is a mixture of the sodium salts of mono- and sisulfonic acids of 2- (2-quinolyl) -1 H-indene-1,3 (2H) -dione and has a water solubility of 20 g / L (25 ° C).
  • Acid Yellow 9 is the disodium salt of 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid, its water solubility is above 40 g / L (25 ° C).
  • Acid Yellow 23 is the trisodium salt of 4,5-dihydro-5-oxo-1 - (4-sulfophenyl) -4 - ((4-sulfophenyl) azo) -1H-pyrazole-3-carboxylic acid and is good at 25 ° C soluble in water.
  • Acid Orange 7 is the sodium salt of 4 - [(2-Hydroxy-1-naphthyl) azo] benzene sulfonate. Its water solubility is more than 7 g / L (25 ° C).
  • Acid Red 18 is the trinity salt of 7-hydroxy-8 - [(E) - (4-sulfonato-1-naphthyl) -diazenyl)] - 1,3-naphthalenedisulfonate and has a very high solubility in water of more than 20 wt. %.
  • Acid Red 33 is the diantrium salt of 5-amino-4-hydroxy-3- (phenylazo) -naphthalene-2,7-disulphonate, its water solubility is 2.5 g / L (25 ° C).
  • Acid Red 92 is the disodium salt of 3,4,5,6-tetrachloro-2- (1,4,5,8-tetrabromo-6-hydroxy-3-oxoxanthen-9-yl) benzoic acid, its water solubility is specified with more than 10 g / L (25 ° C).
  • Acid Blue 9 is the disodium salt of 2 - ( ⁇ 4- [N-ethyl (3-sulfonatobenzyl] amino] phenyl ⁇ ⁇ 4 - [(N-ethyl (3-sulfonatobenzyl) imino] -2,5-cyclohexadiene-1- ylidene ⁇ methyl) benzene sulfonate and has a water solubility of more than 20% by weight (25 ° C).
  • a colorant according to the invention is therefore characterized in that it contains at least one substantive dye selected from the group of Acid Yellow 1, Acid Yellow 3, Acid Yellow 9, Acid Yellow 17, Acid Yellow 23, Acid Yellow 36 , Acid Yellow 121, Acid Orange 6, Acid Orange 7, Acid Orange 10, Acid Orange 11, Acid Orange 15, Acid Orange 20, Acid Orange 24, Acid Red 14, Acid Red, Acid Red 27, Acid Red 33, Acid Red 35, Acid Red 51, Acid Red 52, Acid Red 73, Acid Red 87, Acid Red 92, Acid Red 95, Acid Red 184, Acid Red 195, Acid Violet 43, Acid Violet 49, Acid Violet 50, Acid Blue 1, Acid Blue 3, Acid Blue 7, Acid Blue 104, Acid Blue 9, Acid Blue 62, Acid Blue 74, Acid Blue 80, Acid Green 3, Acid Green 5, Acid Green 9, Acid Green 22, Acid Green 25, Acid Green 50, Acid Black 1, Acid Black 52, Food Yellow 8, Food Blue 5, D&C Yellow 8, D&C Green 5, D&C Orange 10, D&C Orange 11, D&C Red 21, D&C Red 27, D&C Red 33, D&C Violet 2 and / or D&C
  • the substantive dye or dyes can be used in the colorant in various amounts, depending on the desired color intensity. Good results could be obtained if the colorant - based on the total weight of the colorant - has one or more substantive dyes in a total amount of 0.01 to 10.0% by weight, preferably 0.1 to 8.0% by weight. %, more preferably from 0.2 to 6.0% by weight and very particularly preferably from 0.5 to 4.5% by weight.
  • the agent can also contain a coloring compound from the group of photochromic or thermochromic dyes.
  • Photochromic dyes are dyes that react to exposure to UV light (sunlight or black light) with a reversible change in color.
  • the UV light changes the chemical structure of the dyes and thus their absorption behavior (photochromism).
  • Thermochromic dyes are dyes that react to changes in temperature with a reversible change in color. The change in temperature changes the chemical structure of the dyes and thus their absorption behavior (thermochromism).
  • the colorant can - based on the total weight of the colorant - one or more photochromic and / or thermochromic dyes in a total amount of 0.01 to 10.0% by weight, preferably 0.1 to 8.0% by weight, more preferably from 0.2 to 6.0% by weight and very particularly preferably from 0.5 to 4.5% by weight.
  • an aftertreatment agent is applied to the keratin material, in particular to human hair, which has been colored as described above.
  • the aftertreatment agent is applied to the colored keratin material and rinsed off again after an exposure time. This application of the aftertreatment agent is associated with a significant improvement in hair feel.
  • the point in time at which the aftertreatment agent is applied depends on the needs of the user and can be adapted to his habits.
  • aftertreatment agent it is possible to apply aftertreatment agent to the freshly colored, still wet or damp keratin material, so that there is a period of only a few minutes to a few hours between rinsing out the coloring agent and applying the aftertreatment agent.
  • the user can also decide to dye the hair the day before and do not use the curing agent until the next day.
  • the aftertreatment agent can be applied to the already colored, dry hair.
  • the requirement applies that the aftertreatment agent is applied to colored keratin material, which means that the keratin material must still be colored by the application of the pigments.
  • the aftertreatment agent is characterized in that it contains water (N-1), has a pH value of 2.5 to 12.5 (N-2) and contains at least one fat component (N-3).
  • the aftertreatment agent contains water (N-1) or comprises an aqueous carrier.
  • the water content in the aftertreatment agent is particularly preferably set to a certain range of values.
  • the excess pigments or aminosilicones could be removed particularly well if the aftertreatment agent - based on the total weight of the aftertreatment agent - had a water content (N-1) of 50 to 99% by weight, preferably 55 to 98% by weight, more preferably from 60 to 97% by weight, and particularly preferably from 70 to 96% by weight.
  • a method according to the invention is therefore characterized in that the aftertreatment agent - based on the total weight of the aftertreatment agent - has a water content (N-1) of 50 to 99% by weight, preferably 55 to 98% by weight. , more preferably from 60 to 97% by weight, and particularly preferably from 70 to 96% by weight. pH value in the aftertreatment agent
  • the pH of the aftertreatment agent (N-2) can be in a range from 2.5 to 12.5.
  • the excess aminosilicones or pigments can be successfully removed in a very wide pH range.
  • a strong improvement in hair feel could be achieved with both acidic and alkaline aftertreatment agents.
  • the aftertreatment agent is preferably adjusted to acidic to neutral, particularly preferably acidic, pH values. Particularly good results could be obtained when that Aftertreatment agent has a pH (N-2) of 2.5 to 10.5, preferably from 2.6 to 8.5, more preferably from 2.7 to 6.5 and very particularly preferably from 2.8 to 4, 8 owned.
  • a method according to the invention is therefore characterized in that the aftertreatment agent has a pH (N-2) of 2.5 to 10.5, preferably 2.6 to 8.5, more preferably 2, 7 to 6.5 and very particularly preferably from 2.8 to 4.8.
  • a characteristic of the aftertreatment agent is in particular its content of at least one fat component (N-3). It has been found that the use of at least one fat component leads to the excess pigment / aminosilicones being removed from the colored keratin material or hair, so that the disadvantageous greasy or oily impression that the colored hair leaves behind without after-treatment is minimized or even prevented becomes.
  • the fat components are hydrophobic substances which, in the presence of water, can form emulsions with the formation of micellar systems.
  • fat constituents are organic compounds with a solubility in water at room temperature (22 ° C) and atmospheric pressure (760 mmHg) of less than 1% by weight, preferably less than 0.1% by weight Roger that.
  • the definition of fat components explicitly only includes uncharged (i.e. non-ionic) compounds.
  • Fat components have at least one saturated or unsaturated alkyl group with at least 12 carbon atoms.
  • the molecular weight of the fat constituents is a maximum of 5000 g / mol, preferably a maximum of 2500 g / mol and particularly preferably a maximum of 1000 g / mol.
  • the fat components are neither polyoxyalkylated nor polyglycerylated compounds.
  • the fat constituents (N- 3) contained in the aftertreatment agent are very particularly preferably selected from the group of the Ci 2 -C30 fatty alcohols, the Ci 2 -C3o fatty acid triglycerides, the C12- C30 fatty acid monoglycerides, the Ci 2 -C3o fatty acid diglycerides and / or the hydrocarbons, particularly preferably the Ci 2 -C30 fatty alcohols.
  • a method according to the invention is characterized in that the aftertreatment agent has at least one fat component (N-3) from the group of the Ci 2 -C30 fatty alcohols, the Ci 2 -C3o fatty acid triglycerides, the Ci 2 -C3o fatty acid - Monoglycerides, the Ci 2 -C3o fatty acid diglycerides and / or the hydrocarbons, particularly preferably the Ci 2 -C30 fatty alcohols.
  • Very particularly preferred fat constituents in this context are the constituents from the group of C 2 -C 30 fatty alcohols.
  • nonionic substances are explicitly considered as fat constituents. Charged compounds such as fatty acids and their salts are not understood as a fat component.
  • the work leading to this invention has shown that aftertreatment agents which contain one or more C12-C30 fatty alcohols are particularly capable of removing excess aminosilicones or pigments.
  • the Ci 2 -C30 fatty alcohols can be saturated, mono- or polyunsaturated, linear or branched fatty alcohols with 12 to 30 carbon atoms.
  • Ci 2 -C30 fatty alcohols examples include dodecan-1-ol (dodecyl alcohol, lauryl alcohol), tetradecan-1-ol (tetradecyl alcohol, myristyl alcohol), hexadecan-1-ol (hexadecyl alcohol, cetyl alcohol, palmityl alcohol), Octadecan-1-ol (octadecyl alcohol, stearyl alcohol), arachyl alcohol (eicosan-1-ol), heneicosyl alcohol (heneicosan-1-ol) and / or behenyl alcohol (docosan-1-ol).
  • dodecan-1-ol dodecyl alcohol, lauryl alcohol
  • tetradecan-1-ol tetradecyl alcohol, myristyl alcohol
  • hexadecan-1-ol hexadecyl alcohol, cetyl alcohol, palmityl alcohol
  • Octadecan-1-ol o
  • Preferred linear, unsaturated fatty alcohols are (9Z) -Octadec-9-en-1-ol (oleyl alcohol), (9 £) -Octadec-9-en-1-ol (elaidyl alcohol), (9Z, 12Z) -Octadeca-9 , 12-dien-1-ol (linoleyl alcohol), (9Z, 12Z, 15Z) -octadeca-9,12,15-trien-1-ol (linolenoyl alcohol), gadoleyl alcohol ((9Z) -Eicos-9-en-1 - ol), arachidonic alcohol ((5Z, 8Z, 11Z, 14Z) -Eicosa-5,8,11, 14-tetraen-1-ol), erucyl alcohol ((13Z) -Docos-13-en-1-ol) and / or brassidyl alcohol ((13E) -docosen-1-ol).
  • the preferred representatives of branched fatty alcohols are 2-octyl-dodecanol, 2-hexyl-dodecanol and / or 2-butyl-dodecanol.
  • the aftertreatment product contained one or more Ci 2 -C30 fatty alcohols (N-3) from the group of dodecan-1-ol (dodecyl alcohol, lauryl alcohol), tetradecan-1-ol (tetradecyl alcohol , Myristyl alcohol), hexadecan-1-ol (hexadecyl alcohol, cetyl alcohol, palmityl alcohol), octadecan-1-ol
  • a method according to the invention is characterized in that the aftertreatment agent contains one or more Ci 2 -C30 fatty alcohols (N-3) from the group of dodecan-1-ol (dodecyl alcohol, lauryl alcohol),
  • Tetradecan-1-ol tetradecyl alcohol, myristyl alcohol
  • Hexadecan-1-ol hexadecyl alcohol, cetyl alcohol, palmityl alcohol
  • Octadecan-1-ol octadecyl alcohol, stearyl alcohol
  • Arachyl alcohol eicosan-1-ol
  • Gadoleyl alcohol ((9Z) -Eicos-9-en-1-ol)
  • Arachidonic alcohol ((5Z, 8Z, 11Z, 14Z) -Eicosa-5,8,11, 14-tetraen-1-ol),
  • Ci 2 -C30 fatty alcohols (N-3) in very specific quantity ranges in the aftertreatment agent.
  • the aftertreatment agent - based on the total weight of the aftertreatment agent - one or more Ci 2 -C30 fatty alcohols in a total amount of 0.1 to 12.0 wt .-%, preferably from 0.5 to 10 , 0% by weight, more preferably from 1.0 to 8.0% by weight and very particularly preferably from 3.0 to 7.0% by weight.
  • the agent can also contain at least one C12-C30 fatty acid triglyceride, the Ci 2 -C30 fatty acid monoglyceride and / or Ci 2 -C30 fatty acid diglyceride.
  • a Ci 2 -C 30 fatty acid triglyceride is understood to mean the triester of the trihydric alcohol glycerol with three equivalents of fatty acid. Both structurally identical and different fatty acids within a triglyceride molecule can be involved in the ester formation.
  • fatty acids are to be understood as meaning saturated or unsaturated, unbranched or branched, unsubstituted or substituted C 2 -C 3 carboxylic acids.
  • Unsaturated fatty acids can be monounsaturated or polyunsaturated. In the case of an unsaturated fatty acid, its CC double bond (s) can have the cis or trans configuration.
  • the fatty acid triglycerides are characterized by suitability in which at least one of the ester groups is formed starting from glycerol with a fatty acid selected from dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), tetracosanoic acid (lignoceric acid), octadecanoic acid (Stearic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), petroselinic acid [(Z) -6-octadecenoic acid], palmitoleic acid [(9Z) - hexadec-9-enoic acid], oleic acid [(9Z) -octadec-9-enoic acid] , Elaidic acid [(9E) -octadec-9-enoic acid], erucic acid [(13Z)
  • the fatty acid triglycerides can also be of natural origin.
  • the fatty acid triglycerides or mixtures thereof occurring in soybean oil, peanut oil, olive oil, sunflower oil, macadamia nut oil, moringa oil, apricot kernel oil, marula oil and / or optionally hydrogenated castor oil are suitable for use in the product according to the invention.
  • Ci 2 -C30 fatty acid monoglyceride is understood to mean the monoester of the trihydric alcohol glycerol with one equivalent of fatty acid. Either the middle hydroxyl group of the glycerol or the terminal hydroxyl group of the glycerol can be esterified with the fatty acid.
  • the Ci 2 -C30 fatty acid monoglyceride is characterized by suitability in which a hydroxyl group of the glycerol is esterified with a fatty acid, the fatty acids being selected from dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), tetracosanoic acid (lignoceric acid) ), Octadecanoic acid (stearic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), petroselinic acid [(Z) -6-octadecenoic acid], palmitoleic acid [(9Z) -hexadec-9-enoic acid], oleic acid [(9Z) -octadec-9 -enoic acid], elaidic acid [(9E) - octadec-9-enoic acid],
  • Ci 2 -C 30 fatty acid diglyceride is understood to mean the diester of the trihydric alcohol glycerol with two equivalents of fatty acid. Either the middle and one terminal hydroxyl group of the glycerol can be esterified with two equivalents of fatty acid, or both terminal hydroxyl groups of the glycerol are esterified with one fatty acid each.
  • the glycerin can be esterified with two structurally identical as well as with two different fatty acids.
  • the fatty acid diglycerides are characterized by suitability in which at least one of the ester groups is formed starting from glycerol with a fatty acid selected from dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), tetracosanoic acid (lignoceric acid), octadecanoic acid (Stearic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), petroselinic acid [(Z) -6-octadecenoic acid], palmitoleic acid [(9Z) - hexadec-9-enoic acid], oleic acid [(9Z) -octadec-9-enoic acid] , Elaidic acid [(9E) -octadec-9-enoic acid], erucic acid [(13Z) -Do
  • the aftertreatment agent contained at least one C12-C30 fatty acid monoglyceride, which is selected from the monoesters of glycerol with one equivalent of fatty acid from the group of dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), tetracosanoic acid ( Lignoceric acid), octadecanoic acid (stearic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), petroselinic acid [(Z) -6-octadecenoic acid], palmitoleic acid [(9Z) -hexadec-9-enoic acid], oleic acid [(9Z) - octadec- 9-enoic acid], elaidic acid [(9E) -octadec-9-enoic
  • a method according to the invention is characterized in that the aftertreatment agent contains at least one Ci 2 - ⁇ 30 fatty acid monoglyceride, which is selected from the monoesters of glycerol with one equivalent of fatty acid from the group of dodecanoic acid, tetradecanoic acid, hexadecanoic acid, tetracosanoic acid, octadecanoic acid , Eicosanoic acid and / or docosanoic acid.
  • Ci 2 - ⁇ 30 fatty acid monoglyceride which is selected from the monoesters of glycerol with one equivalent of fatty acid from the group of dodecanoic acid, tetradecanoic acid, hexadecanoic acid, tetracosanoic acid, octadecanoic acid , Eicosanoic acid and / or docosanoic acid.
  • the aftertreatment agent can also contain at least one hydrocarbon as very suitable fat constituents (N-3).
  • Hydrocarbons are compounds with 8 to 80 C atoms consisting exclusively of the atoms carbon and hydrogen.
  • preference is given in particular to aliphatic hydrocarbons such as mineral oils, liquid paraffin oils (eg paraffinium Liquidum or Paraffinum Perliquidum), isoparaffin oils, semi-solid paraffin oils, paraffin waxes, hard paraffin (Paraffinum Solidum), Vaseline and Polydecene.
  • Paraffinum Liquidum and Paraffinium Perliquidum have proven to be particularly suitable in this context.
  • the hydrocarbon is very particularly preferably Paraffinum Liquidum, also called white oil.
  • Paraffinum Liquidum is a mixture of purified, saturated, aliphatic hydrocarbons, which for the most part consists of hydrocarbon chains with a carbon chain distribution of 25 to 35 carbon atoms.
  • Ester oils are understood to be esters of Ci 2 -O30 fatty acids with aliphatic Ci-C 24 alcohols which are liquid at room temperature (25 ° C).
  • ester oils according to the invention are characterized in that they have a melting point below 25 ° C. at normal pressure (1013 mbar).
  • a particularly strong improvement in the feel of the hair could be obtained if a post-treatment agent was applied to the previously colored hair, which contained at least one ester oil selected from the group consisting of the monoesters of Ci 2 - ⁇ 24 fatty acids with aliphatic, monovalent Ci-C 24 -Alcohols is selected.
  • the method according to the invention characterized in that the aftertreatment agent contains at least one fat component (N-3) from the group of esters of a Ci 2 -O30 fatty acid and an aliphatic, monohydric Ci-C 24 alcohol.
  • Ci 2 - ⁇ 24 fatty acids are particularly well suited.
  • Examples of Ci 2 - ⁇ 24 -fatty acids which are suitable for the formation of the ester oils (N-3) are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, Elaidic acid, petroselinic acid, linoleic acid, linolenic acid, eleostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • fatty alcohol content in the ester oils are isopropyl alcohol, caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, Palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, eleostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures.
  • Ci 2 -C 24 fatty acids are esterified by reaction with an aliphatic Ci-C 24 alcohol, which is particularly preferably a mono-alcohol, so that a mono-ester is formed during the esterification.
  • an aliphatic Ci-C 24 alcohol which is particularly preferably a mono-alcohol, so that a mono-ester is formed during the esterification.
  • the aliphatic Ci-C 24 alcohols can be linear or branched, saturated or mono- or polyunsaturated.
  • the aliphatic saturated Ci-C 24 alcohol can be used, for example, from the group consisting of methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, 2-ethylhexanol, n-hexanol , n-octanol, n-decanol and n-dodecanol is selected.
  • Ci-C 24 alcohol examples include oleyl alcohol (octadec-9-en-1-ol), palmitoleyl alcohol (c / s-9-hexadecen-1-ol), elaidyl alcohol (irans-9-octadecen-1 -ol) and c / s-11-octadecen-1-ol.
  • esters (N-3) the C 2 -C 24 fatty acids and the C 1 -C 12 alcohols are selected so that the ester formed from both reactants by esterification is an ester oil, ie it has a melting point of 1013 mbar below 25 ° C.
  • ester oils according to the invention can be used in the form of commercially available raw materials which are mixtures of the esters obtained from fatty acids of different chain lengths and / or alcohols of different chain lengths. These raw materials can have a melting range. In the case of these raw materials, a melting point below 25 ° C means that the melting process begins at a temperature below 25 ° C.
  • this raw material having a melting range of 16 to 27 ° C, then this raw material contains at least one ester oil with a melting point below 25 ° C.
  • This ester oil is thus according to the invention.
  • 2-ethylhexyl palmitate (Cegesoft ® 24), isopropyl myristate (IPM Rilanit ®), isononanoic acid C16-18 alkyl ester (Cetiol ® SN), stearic acid-2-ethylhexyl ester (Cetiol ® 868), cetyl oleate, glycerol tricaprylate, Kokosfettalkohol- caprinate / caprylate (Cetiol ® LC), n-butyl stearate, oleyl eucate (Cetiol ® J 600), isopropyl palmitate (Rilanit ® IPP), oleyl oleate (Cetiol ® ), Laurate (Cetiol ® A), di-n-butyl adipate (Cetiol ® B), Cetearyl I
  • the ester oil (N-3) is very particularly preferably selected from the group consisting of isopropyl myristate, 2-ethylhexyl palmitate, C16-18-alkyl isonanoate, 2-ethylhexyl stearate, cetyl oleate, coconut fatty alcohol caprate, coconut fatty alcohol caprylate, n-butyl stearate, Oleylerucate, isopropyl palmitate, oleyl oleate, lauric acid hexyl ester, cetearyl isononanoate and oleic acid decyl ester.
  • a method according to the invention is characterized in that the aftertreatment agent
  • (N-3) at least one ester oil from the group of isopropyl myristate, 2-ethylhexyl palmitate, isononanoic acid C16-18-alkyl ester, stearic acid-2-ethylhexyl ester, cetyl oleate, coconut fatty alcohol caprylate, coconut fatty alcohol caprylate, nopropyl stearate, oleyl palmitate, Contains oleyl oleate, lauric acid hexyl ester, cetearyl isononanoate and oleic acid decyl ester.
  • Isopropyl myristate is also known as isopropyl myristate and has the CAS number 110-27-0. Isopropyl myristate is a colorless and odorless liquid. The melting point is between 0 and 1 ° C.
  • 2-ethylhexyl palmitate is also known as hexadecanoic acid 2-ethylhexyl ester and has the CAS number 29806-73-3
  • 2-ethylhexyl palmitate is a branched, saturated ester oil made from palmitic acid and ethylhexyl alcohol.
  • 2-ethylhexyl palmitate is in the form of a clear, colorless liquid with a slightly greasy odor.
  • Isononanoic acid C16-18-alkyl ester is alternatively referred to as cetearyl isononanoate, this ester has the CAS numbers 84878-33-1 and 84878-34-2.
  • C16-18-alkyl isononanoate is a clear, slightly yellowish liquid.
  • 20 ° C isononanoic acid-C16-18-alkyl ester has a viscosity of 19-22 mPas.
  • 2-ethylhexyl ester is alternatively referred to as ethylhexyl stearate and has the CAS number 91031-48-0.
  • 2-ethylhexyl stearate is in the form of a clear, slightly yellowish, thin oil.
  • 2-ethylhexyl stearate has a viscosity of 14-16 mPas and is accordingly an oil at room temperature.
  • Cetyl oleate has the CAS number 22393-86-8.
  • coconut fatty alcohol caprylate / caprate has the CAS number 95912-86-0.
  • n-butyl stearate is also known as butyl stearate and has the CAS numbers 85408-76-0 (C16-18) and 123-95-5 (C18).
  • n-Butyl stearate is a yellowish liquid and begins to melt at 16 ° C.
  • Oleylerucat has the CAS number 17673-56-2. Oleylerucat is a yellow liquid. At 20 ° C, Oleylerucat one has a viscosity of 40 - 50 mpas and is an oil at room temperature.
  • Isopropyl palmitate is alternatively known as propan-2-yl hexadecanoate and has the CAS number 142-91-6.
  • the melting point of isopropyl palmitate is 13.5 ° C.
  • Oleyl Oleate is alternatively also known as Cis-9,10-octadecenyl-cis-9,10-octadecanoate or as Oleic acid oleyl ester and has the CAS number 3687-45-4.
  • Oleyl oleate is a clear, slightly yellowish oil that has a viscosity of 25-30 mPas at 20 ° C and is an oil at room temperature.
  • Hexyl laurate is alternatively referred to as hexyl laurate and has the CAS number 34316-64-8. Hexyl laurate is a clear, yellowish, odorless oil at room temperature. At 20 ° C, lauric acid hexyl ester has a viscosity of 5-7 mpas and is accordingly an oil at room temperature.
  • Cetearyl Isononanoate is alternatively referred to as Isononanoic acid C16-18 alkyl ester and has the CAS numbers 84878-33-1 and 84878-34-2. Cetearyl Isononanoate is a yellowish liquid with a melting point of 16-22 ° C.
  • Oleic acid decyl ester is alternatively referred to as decyl oleate and has the CAS number 3687-46-5. Decyl oleic ester is a slightly yellowish liquid that has a viscosity of 15-20 mPas at 20 ° C. Decyl oleic acid is accordingly an oil at room temperature.
  • the aftertreatment agent - based on the total weight of the agent - has one or more ester oils in a total amount of 0.1 to 10.0% by weight, preferably 0.2 to 7.0% by weight, more preferably from 0.3 to 5.0% by weight and very particularly preferably from 0.4 to 1.5% by weight.
  • Explicitly very particularly preferred is a method for improving the feel of the keratin material which has been colored by using at least one pigment, a post-treatment agent being applied to the colored keratin material and rinsed off again after an exposure time, characterized in that the post-treatment agent (N- 1) contains water,
  • (N-2) has a pH of 2.5 to 12.5
  • N-31) contains at least one fat component from the group of dodecan-1-ol, tetradecan-1-ol, hexadecan-1-ol, octadecan-1-ol, eicosan-1-ol and behenyl alcohol, and (N-32 ) at least one second fat component from the group of isopropyl myristate, 2-ethylhexyl palmitate, isononanoic acid C16-18 alkyl ester, 2-ethylhexyl stearate, cetyl oleate, coconut fatty alcohol caprate, coconut fatty alcohol caprylate, n-butyl stearate, oleyl palucate, isopropyl Contains lauric acid hexyl ester, cetearyl isononanoate and oleic acid decyl ester.
  • the aftertreatment agents according to the invention should produce a good hair feel without an excessive loss of the color intensity of the dyed hair occurring when they are used.
  • the aftertreatment agent particularly preferably contains - based on the total weight of the aftertreatment agent - one or more fat components (N-3) in a total amount of 0.1 to 10.0% by weight, preferably 0.5 to 8.0% by weight , preferably 1.5 to 6.5% by weight and very particularly preferably 1.8 to 4.5% by weight.
  • a method according to the invention is characterized in that the aftertreatment agent - based on the total weight of the aftertreatment agent - has one or more fat constituents (N-3) in a total amount of 0.1 to 10.0% by weight, preferably 0.5 to 8.0% by weight, preferably 1.5 to 6.5% by weight and very particularly preferably 1.8 to 4.5% by weight.
  • the aftertreatment agent contains at least one cationic, nonionic and / or anionic surfactant as an additional optional component.
  • a method according to the invention is characterized in that the aftertreatment agent contains at least one cationic, nonionic and / or anionic surfactant.
  • surfactants T is understood to mean surface-active substances which form adsorption layers on surfaces and interfaces or which can aggregate in volume phases to form micellar colloids or lyotropic mesophases.
  • anionic surfactants consisting of a hydrophobic residue and a negatively charged hydrophilic head group
  • amphoteric surfactants which carry both a negative and a compensating positive charge
  • cationic surfactants which have a positively charged hydrophilic group in addition to a hydrophobic residue
  • nonionic surfactants which have no charges but rather strong dipole moments and are strongly hydrated in aqueous solution.
  • Cationic surfactants are understood as meaning surfactants, that is to say surface-active compounds, each with one or more positive charges. Cationic surfactants only contain positive charges. These surfactants are usually composed of a hydrophobic part and a hydrophilic head group, the hydrophobic part usually consisting of a hydrocarbon structure (e.g. consisting of one or two linear or branched alkyl chains), and the positive charge (s) are located in the hydrophilic head group. Examples of cationic surfactants are examples of cationic surfactants.
  • Quaternary ammonium compounds which can carry one or two alkyl chains with a chain length of 8 to 28 carbon atoms as hydrophobic radicals,
  • the cationic charge can also be part of a heterocyclic ring (e.g. an imidazolium ring or a pyridinium ring) in the form of an onium structure.
  • the cationic surfactant can also contain other uncharged functional groups, as is the case, for example, with ester quats.
  • the cationic surfactants are used in a total amount of 0.1 to 45% by weight, preferably 1 to 30% by weight and very particularly preferably 1 to 15% by weight, based on the total weight of the respective agent.
  • Nonionic surfactants contain, for example, a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether groups as the hydrophilic group. Such connections are for example
  • Hydroxy mixed ethers as described for example in DE-OS 19738866, sorbitan fatty acid esters and addition products of ethylene oxide with sorbitan fatty acid esters, such as the polysorbates,
  • the alkyl and alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably from glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • the alkyl or alkenyl radical R 4 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxo synthesis.
  • the alkyl or alkenyl radical R 15 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and technical mixtures thereof which can be obtained as described above.
  • Alkyl oligoglucosides based on hardened C12 / 14 coconut alcohol with a DP of 1 to 3 are preferred.
  • R 5 CO-NR 6 - [Z] (Tnio-3) in which R 5 CO stands for an aliphatic acyl radical with 6 to 22 carbon atoms, R 6 stands for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for is a linear or branched polyhydroxyalkyl radical having 3 to 12 carbon atoms and 3 to 10 hydroxyl groups.
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the fatty acid N-alkyl polyhydroxyalkylamides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the preferred fatty acid N- alkyl polyhydroxyalkylamides are therefore fatty acid N-alkylglucamides, as represented by the formula (Tnio-4):
  • Glucamides of the formula (Tnio- 4), in which R 8 stands for hydrogen or an alkyl group and R 7 CO for the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palm oleic acid, are preferably used as fatty acid N-alkyl polyhydroxyalkylamides.
  • Fatty acid N-alkyl glucamides of the formula (Tnio-4), which are obtained by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or C12 / 14 coconut fatty acid or a corresponding derivative, are particularly preferred.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • nonionic surfactants are fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, mixed ethers or mixed formals, protein hydrolyzates (in particular vegetable products based on wheat) and polysorbates.
  • alkylene oxide addition products with saturated linear fatty alcohols and fatty acids with 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid and the sugar surfactants have proven to be preferred nonionic surfactants. Preparations with excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • anionic surfactants according to the invention are, in each case in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts with 2 to 4 carbon atoms in the alkanol group, linear and branched fatty acids with 8 to 30 carbon atoms (Soap),
  • Sulfosuccinic acid mono- and dialkyl esters with 8 to 24 carbon atoms in the alkyl group and sulfosuccinic acid mono-alkyl polyoxyethyl esters with 8 to 24 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups.
  • Sulfosuccinic acid mono- and dialkyl esters can be prepared by reacting maleic anhydride with a fatty alcohol with 8-24 carbon atoms to form the maleic acid monoester of the fatty alcohol and further reaction with sodium sulfite to form the sulfosuccinic acid ester.
  • Particularly suitable sulfosuccinic acid esters are derived from fatty alcohol fractions with 12-18 carbon atoms, as z. B. from coconut fatty acid or coconut fatty acid methyl ester are accessible by hydrogenation, linear alkanesulfonates with 8 to 24 carbon atoms, linear alpha-olefin sulfonates with 8 to 24 carbon atoms,
  • Alpha-sulfofatty acid methyl esters of fatty acids with 8 to 30 carbon atoms are alpha-sulfofatty acids methyl esters of fatty acids with 8 to 30 carbon atoms,
  • Alkyl sulfates and alkyl polyglycol ether sulfates of the formula R-0 (CH 2 -CH 2 0) X -OSC> 3H, in which R is a preferably linear alkyl group with 8 to 30 carbon atoms and x 0 or 1 to 12, hydroxysulfonates essentially correspondingly at least one of the following two formulas or their mixtures and their salts,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols with 8 to 22 carbon atoms, alkyl and / or alkenyl ether phosphates of the formula,
  • R 1 (0CH 2 CH 2 ) n-0- (P0-0X) -0R 2 , in which R 1 preferably stands for an aliphatic hydrocarbon radical with 8 to 30 carbon atoms
  • R 2 for hydrogen, a radical (CFbCFhO ⁇ R 2 or X, n for numbers from 1 to 10 and X for hydrogen, an alkali or alkaline earth metal or NR 3 R 4 R 5 R 6 , with R 3 to R 6 independently of one another for hydrogen or a Ci to C4 hydrocarbon radical
  • Alk stands for CH2CH2, CHCH3CH2 and / or CH2CHCH3
  • n stands for numbers from 0.5 to 5
  • M stands for a metal, such as alkali metal, in particular sodium
  • Typical examples of monoglyceride (ether) sulfates which are suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride, as well as their ethylene sulfonic acid monoglyceride adducts or their sodium sulfonic acid adducts.
  • R 8 CO stands for a linear acyl radical with 8 to 18 carbon atoms
  • R 1 -C0-NR 2 -CH 2 CH 2 -0- (CH 2 CH 2 0) n CH 2 C00M with R 1 as a straight-chain or branched alkyl or alkenyl radical with a number of carbon atoms in the chain of 2 to 30, n stands for an integer from 1 to 20 and R 2 stands for hydrogen, a methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl or iso-butyl radical and M stands for hydrogen or a metal such as alkali metal, in particular sodium, potassium, lithium, alkaline earth metal, in particular magnesium, calcium, zinc, or an ammonium ion, such as + NR 3 R 4 R 5 R 6 , with R 3 to R 6 independently representing hydrogen or a C1 to C4 hydrocarbon radical.
  • Such products are obtainable, for example by the company Chem Y under the product name Akypo ®, and
  • the surfactants described above are preferably used in the suitable quantity ranges in the
  • the aftertreatment agent can also contain other optional ingredients, such as, for example, solvents, anionic, nonionic, zwitterionic and / or cationic polymers; Structurants such as glucose, maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example lecithin and cephalins; Perfume oils, dimethyl isosorbide and cyclodextrins; fiber structure-improving active ingredients, in particular mono-, di- and oligosaccharides such as, for example, glucose, galactose, fructose, fruit sugar and lactose; Dyes for coloring the agent; Anti-dandruff ingredients such as Piroctone Olamine, Zinc Omadine and Climbazole; Amino acids and oligopeptides; Protein hydrolysates based on animals and / or plants, and in the form of their fatty acid condensation products or optionally anionically or cationically modified derivatives; vegetable oils
  • the person skilled in the art will select these additional substances in accordance with the desired properties of the agents. With regard to further optional components and the amounts of these components used, express reference is made to the relevant manuals known to the person skilled in the art.
  • the additional active ingredients and auxiliaries are preferably used in the preparations according to the invention in amounts of from 0.0001 to 25% by weight, in particular from 0.0005 to 15% by weight, based on the total weight of the respective agent.
  • the agent particularly preferably consists essentially of the ingredients and, if appropriate, solvents. If the agent should therefore contain one of the further optional ingredients described above, these are particularly preferably used on average only in very small amounts.
  • the point in time at which the aftertreatment agent is applied to the colored hair can be freely selected depending on the preferences of the user. It can be particularly convenient for the user to color the hair and apply the aftertreatment agent in directly successive steps within an application process.
  • a second subject of the present invention is therefore a method for coloring keratin fibers, in particular human hair, comprising the following steps:
  • step (1) of the method according to the invention a colorant which contains at least one amino-functionalized silicone polymer and at least one pigment, in particular the preferred and particularly preferred representatives described above, is applied to the hair.
  • the previously applied dye is allowed to act on the hair.
  • a great advantage of the dyeing system according to the invention is that an intense color result can be achieved even in very short periods of time after short exposure times. For this reason it is advantageous if the application mixture remains on the keratin material for comparatively short periods of time from 30 seconds to 15 minutes, preferably from 30 seconds to 10 minutes, and particularly preferably from 1 to 5 minutes after its application.
  • a method according to the invention is characterized by (2) Action of the coloring agent applied in step (1) on the keratinic fibers for a period of 30 seconds to 15 minutes, preferably from 30 seconds to 10 minutes, and particularly preferably from 1 to 5 minutes
  • the coloring agent After the coloring agent has acted on the keratin material, it is finally rinsed out with water in step (3).
  • the colorant is washed out only with water, i.e. without the aid of an aftertreatment agent or a shampoo that is not according to the invention.
  • step (4) This is followed by the application of the aftertreatment agent, in particular in its preferred and particularly preferred embodiments described above, in step (4).
  • the aftertreatment agent is applied to the hair within a period of a maximum of 3 hours after the coloring agent has been washed out.
  • the aftertreatment agent is particularly preferably applied to the still damp hair after step (3).
  • the aftertreatment agent can act on the keratin fibers in step (5), for example, for a period of 15 seconds to 10 minutes, preferably for a period of 30 seconds to 5 minutes.
  • the aftertreatment agent is then finally rinsed out with water in step (6).
  • the aftertreatment agent is washed out only with water, i.e. without the aid of an aftertreatment agent not according to the invention or a shampoo.
  • a method for coloring keratin fibers, in particular human hair comprising the following steps in the order given:
  • step (4) allowing the aftertreatment agent applied in step (4) to act on the keratin fibers, and (6) Rinse out the aftertreatment agent with water.
  • kits-of-parts In order to increase user comfort, all the necessary means are preferably made available to the user in the form of a multi-component packaging unit (kit-of-parts).
  • a second subject of the present invention is therefore a multicomponent packaging unit (kit-of-parts) for dyeing and post-treating keratinic fibers, in particular human hair, comprising a first container with a dye, which is at least one amino-functionalized, separately from one another Contains silicone polymer and at least one pigment, as already disclosed in detail in the description of the first subject matter of the invention, and a second container with an aftertreatment agent, the aftertreatment agent having already been disclosed in detail in the description of the first subject matter of the invention.
  • kit-of-parts for dyeing and post-treating keratinic fibers, in particular human hair
  • a reference strand was allowed to dry and then measured colorimetrically using a Spectraflash 450 color measuring device from Datacolor.
  • the aftertreatment agent was applied to a strand of hair that was still damp, allowed to act for 2 minutes and then rinsed out with water.
  • the hair post-treated in this way was allowed to dry and then also measured colorimetrically.
  • the feel of the dry hair was evaluated by trained persons.
  • dE color difference compared to untreated hair

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne un procédé pour améliorer la sensation tactile de matière kératinique colorée à l'aide d'au moins un pigment, une composition de post-traitement étant appliquée sur la matière kératinique colorée et qui, après un temps de pose, est rincée à nouveau, caractérisé en ce que la composition de post-traitement (N-1) comprend de l'eau, (N-2) a un pH de 2,5 à 12,5 et (N-3) comprend au moins un constituant gras.
EP20772046.7A 2019-11-26 2020-09-14 Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains Pending EP4065070A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019218236.4A DE102019218236A1 (de) 2019-11-26 2019-11-26 Verfahren zur Verbesserung des Griffgefühls von gefärbtem keratinischem Material, insbesondere menschlichen Haaren
PCT/EP2020/075597 WO2021104702A1 (fr) 2019-11-26 2020-09-14 Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains

Publications (1)

Publication Number Publication Date
EP4065070A1 true EP4065070A1 (fr) 2022-10-05

Family

ID=72517252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20772046.7A Pending EP4065070A1 (fr) 2019-11-26 2020-09-14 Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains

Country Status (5)

Country Link
EP (1) EP4065070A1 (fr)
JP (1) JP2023503492A (fr)
CN (1) CN114727925A (fr)
DE (1) DE102019218236A1 (fr)
WO (1) WO2021104702A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209926A1 (de) * 2021-09-08 2023-03-09 Henkel Ag & Co. Kgaa Verfahren zur Verbesserung des Griffgefühls von gefärbten keratinischen Fasern, insbesondere menschlichen Haaren
DE102022200858A1 (de) * 2022-01-26 2023-07-27 Henkel Ag & Co. Kgaa Verfahren zur Verbesserung des Griffgefühls von gefärbten keratinischen Fasern, insbesondere menschlichen Haaren

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738866A1 (de) 1997-09-05 1999-03-11 Henkel Kgaa Schaumarme Tensidmischungen mit Hydroxymischethern
FR2831813B1 (fr) * 2001-11-08 2004-10-01 Oreal Utilisation de silicones aminees particulieres en pre-traitement de colorations directes ou d'oxydation de fibres keratiniques
FR2958161B1 (fr) * 2010-04-02 2012-04-27 Oreal Procede de traitement des cheveux mettant en oeuvre une emulsion directe comprenant un agent oxydant et une emulsion directe contenant un agent alcalin
US20130129648A1 (en) * 2010-08-10 2013-05-23 L'oreal Silicone based cosmetic compositions and uses thereof
FR2968940B1 (fr) * 2010-12-21 2013-04-19 Oreal Composition cosmetique comprenant un sel de zinc particulier et une silicone aminee
FR2968944B1 (fr) * 2010-12-21 2013-07-12 Oreal Composition comprenant un sel de zinc non azote et un agent tensioactif cationique particulier
DE102011082898A1 (de) * 2011-09-16 2013-03-21 Henkel Ag & Co. Kgaa Haarpflegemittel mit gesteigerten Pflegeleistungen
JP6257535B2 (ja) * 2012-06-29 2018-01-10 ロレアル ケラチン繊維のための化粧用組成物
EP3058987B1 (fr) * 2015-02-17 2020-09-30 Noxell Corporation Composition pour former un film sur des fibres de kératine
CN107278148B (zh) * 2015-02-17 2021-03-30 诺赛尔股份有限公司 用于在角蛋白纤维上形成薄膜的组合物

Also Published As

Publication number Publication date
WO2021104702A1 (fr) 2021-06-03
CN114727925A (zh) 2022-07-08
DE102019218236A1 (de) 2021-05-27
JP2023503492A (ja) 2023-01-30

Similar Documents

Publication Publication Date Title
WO2020126137A1 (fr) Procédé de coloration d'une matière kératinique au moyen d'un agent colorant et d'un agent de post-traitement acide
EP4065070A1 (fr) Procédé d'amélioration de la sensation tactile de matières kératiniques colorées, en particulier des cheveux humains
WO2021058240A1 (fr) Produit pour colorer une matière kératinique, contenant de l'aminosilicone, un composé chromophore et de l'huile d'ester
EP4034074A1 (fr) Kit et procédé pour la coloration de matières kératiniques faisant appel à une silicone aminée et un composé chromophore
EP4065077A1 (fr) Agent de coloration de matière kératinique, contenant de l'aminosilicone, un composé chromophore et un tensioactif contenant du phosphore
WO2021104709A1 (fr) Procédé de décoloration de matière kératinique ayant été colorée par l'application d'un pigment
WO2021104700A1 (fr) Procédé d'amélioration de la rétention de couleur de matières kératiniques colorées, en particulier des cheveux humains
WO2021254685A1 (fr) Substance pour colorer des fibres de kératine, contenant des émulsifiants non ioniques spécifiques, des pigments et des aminosilicones
EP4034075A1 (fr) Kit et procédé de coloration de matières kératiniques au moyen d'aminosilicone et d'un composé chromophore
EP3986362A1 (fr) Procédé de coloration d'une matière kératinique par mélange préalable d'un composée aminosilicone et d'un composée colorant
EP3986373A1 (fr) Produit de coloration d'une matière kératinique comprenant des aminosilicones et des pigments dans des rapports pondéraux spécifiques
EP3986372A1 (fr) Procédé de coloration d'une matière kératinique
EP4065075A1 (fr) Procédé de décoloration de matière kératinique qui a été colorée à l'aide d'une amino silicone et d'un pigment
EP4034260A1 (fr) Procédé de coloration de matières kératiniques au moyen d'un prémélange d'aminosilicone et d'un composé chromophore
EP4034259A1 (fr) Produit pour colorer une matière kératinique, contenant de l'aminosilicone, un composé chromophore et un ester d'acide carbonique organique
EP4167947A1 (fr) Agent de coloration de fibres kératiniques contenant des pigments et des alkylméthicones en c2-c30
WO2021058206A1 (fr) Nécessaire et procédé de coloration de matières kératiniques au moyen d'aminosilicone et d'un composé chromophore
EP4167948A1 (fr) Agent de coloration de matière kératinique, en particulier de cheveux humains, contenant des aminosilicones, des pigments et des alkylpolyglycosides
EP4034258A1 (fr) Produit pour colorer une matière kératinique, contenant de l'aminosilicone, un composé chromophore et un ester d'acide gras éthoxylé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530