EP4061587A1 - Robot autonome - Google Patents

Robot autonome

Info

Publication number
EP4061587A1
EP4061587A1 EP20803227.6A EP20803227A EP4061587A1 EP 4061587 A1 EP4061587 A1 EP 4061587A1 EP 20803227 A EP20803227 A EP 20803227A EP 4061587 A1 EP4061587 A1 EP 4061587A1
Authority
EP
European Patent Office
Prior art keywords
robot
autonomous robot
elongated body
wheels
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20803227.6A
Other languages
German (de)
English (en)
Inventor
Guillemin RAYMOND
William GUITTON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meropy
Original Assignee
Meropy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meropy filed Critical Meropy
Publication of EP4061587A1 publication Critical patent/EP4061587A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/02Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with two road wheels in tandem on the longitudinal centre line of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/06Wheels with compression spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B15/00Wheels or wheel attachments designed for increasing traction
    • B60B15/18Wheels with ground-engaging plate-like shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/022Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members consisting of members having both rotational and walking movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/04Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means

Definitions

  • the invention relates to an autonomous robot provided with a multispectral sensor.
  • the invention finds particular application in the agricultural field, and in particular precision agriculture.
  • Such robots are used in particular to establish and share a mapping of plots of land in order to carry out a diagnosis of the plot.
  • Autonomous robots are currently used in agriculture to detect the nutritional needs of plants within a plot as well as the presence of pests such as weeds, diseases or pests.
  • the robots are equipped with detectors or imagers making it possible to carry out a diagnosis of the plot in the form of mapping, in order to allow the farmer to carry out precision interventions and to save on inputs and limit the impact on the environment while increasing the productivity of the crops in place.
  • drones equipped with multispectral imaging devices are known. These remotely piloted drones fly over agricultural plots to collect data and generate maps relating to the state of agricultural crops overflown.
  • Document WO 2014/111387 also discloses an automated agricultural robot making it possible to collect precision agricultural data comprising displacement optimization means for moving non-randomly between the rows of plantation.
  • Robots configured to carry out maps of agricultural plots are also presented in document RU 2633 431.
  • the configuration of these robots leads to a deterioration of the crops which they pass through.
  • document WO 2017/002093 relates to a robot designed for automatic treatment of weeds, comprising an image acquisition system for collecting data.
  • Document WO 2006/063314 also describes a robot equipped with sensors for measuring parameters of the plot. However, the size and bulkiness of these robots also cause crop deterioration as they pass.
  • Document WO 2019/040866 describes an autonomous robot for phenotyping the terrain comprising a multispectral sensor, designed to avoid damaging the plantations.
  • the mode of implementation described in the document proposes a robot comprising four wheels, which is only suitable for row crops, in particular corn, between which it can move.
  • this robot is not suitable for crops that are not in a row in which it necessarily causes crop damage.
  • the object of the present invention is therefore to remedy the drawbacks of the prior art, by proposing an autonomous robot capable of scanning a plot completely with a view to carrying out a diagnosis, which is suitable for numerous types and phenological stages of crops, especially for crops that are not in row, by limiting as much as possible its impact on the crops.
  • the present invention provides an autonomous robot comprising an elongated body along an axis transverse to a direction of movement of the robot and, connected to the elongated body:
  • a stabilization device to control the pitch of the elongated body when the wheels are in motion.
  • the wheels consist of spoked wheels.
  • Such a robot therefore has the advantage, compared to robots of the state of the art, of having only two wheels, which makes it possible to limit the impact on the crops as it passes as much as possible. This impact is all the less great as the shape of the wheels, in spokes, makes it possible to minimize the contact surface between the robot and the ground and allows the robot to step over the plants without laying them down.
  • the imbalance generated by the two-wheel limitation is compensated by the presence of the stabilization device.
  • the elongated body has a substantially parallelepipedal or cylindrical shape, with an axis transverse to the direction of movement of the robot;
  • the autonomous robot also comprises at least one motor configured to set the wheels in motion
  • the motor is integrated in the elongated body
  • the autonomous robot comprises two motors, each motor being associated with a wheel;
  • the autonomous robot also comprises energy storage means for supplying the motor;
  • the energy storage means are integrated in a sealed box provided with a cover and fixed to the elongated body;
  • the autonomous robot has a direction of movement in the direction of movement, and a center of gravity located at the rear of the transverse axis with respect to the direction of movement;
  • the stabilization device is formed of a cane
  • the cane is a curved cane comprising a rectilinear proximal part and a curved distal part, the proximal part being connected to the elongated body, the distal part being intended to be in contact with the ground when the wheels are in motion; - the distal part of the cane includes a camera;
  • the cane is a rotating cane around the axis of the proximal part
  • the stabilization device comprises means for moving the center of gravity of the autonomous robot on either side of the transverse axis;
  • the stabilization device is formed of a rack-and-pinion system allowing the displacement of the rack in the direction of movement of the robot, the pinion being fixed to the elongated body, the rack being formed of an elongated rod;
  • each spoke is fitted with a shoe to reduce the impact of the wheel on the ground.
  • FIG. la shows an isometric perspective view of an autonomous robot according to a first embodiment of the invention
  • Figure lb shows a side view of an autonomous robot according to the first embodiment of the invention
  • FIG. Figure 1c shows an isometric perspective view of an autonomous robot according to a second embodiment of the invention.
  • Figure 2 shows an isometric perspective view of the interior of an elongated body of an autonomous robot according to the invention.
  • Figures 1a, 1b and 1c respectively show an isometric perspective view and a side view of an autonomous robot according to a first embodiment of the invention, and an isometric perspective view of an autonomous robot according to a second. embodiment of the invention.
  • Such a robot 1 can in particular be used in the agricultural field to collect data from an agricultural plot.
  • it can be data making it possible to characterize the nutritional needs of the plants in the plot, or to detect the presence of pests (weeds, diseases, pests, etc.) within the plot.
  • autonomous is meant in this description that the robot 1 is able to perform a certain number of automated tasks without requiring human, physical or remote-controlled intervention.
  • the robot can in particular be programmed to move alone within a plot, and to find its way, for example by means of an integrated geolocation system, so as not to exceed the perimeter of this plot.
  • the robot can also be programmed to locate itself in relation to surrounding objects and to avoid collisions, for example with other robots, humans or vehicles. For this purpose, it can include proximity sensors of sonar, lidar or other well known instruments. It can also be programmed to collect data at regular time intervals.
  • the autonomous robot 1 is provided with an on-board computer system 2, visible in FIG. 2, comprising in particular a processor, a memory unit, and all the other computer resources making it capable of interpreting and executing instructions which can be used. have been pre-established by the user.
  • an on-board computer system 2 and such instructions are customary for those skilled in the art and will not be developed in this description.
  • the autonomous robot 1 is designed to minimize the impact of its passage on crops and to travel long distances, typically covering 20 hectares per day, while benefiting from sufficient stability to carry out the instructions on all terrains.
  • the autonomous robot 1 has a low mass, advantageously less than 20 kilograms, or even less than 15 kilograms or even 10 kilograms.
  • a low mass has the advantage of limit both plant damage and soil compaction, responsible for smothering microbial life.
  • an autonomous robot 1 according to the invention comprises an elongated body 3 along an axis transverse to a direction of movement of the robot 1.
  • the elongated body 3 has a substantially parallelepipedal or cylindrical shape, the axis of which is the axis transverse to the direction of movement, in order to minimize its volume and its bulk.
  • the robot 1 also comprises, connected to the elongated body 3, two wheels 4 arranged on either side of the elongated body 3 along the transverse axis.
  • the robot 1 comprises exactly two wheels, that is to say it does not have a third wheel or additional wheels liable to increase the deterioration of the ground as it passes.
  • the wheels 4 consist of spoked wheels.
  • a spoke wheel consists of a hub 4a directly connected to the elongate body 3, a plurality of spokes 4b fixed to the hub 4a and extending radially from the hub 4a.
  • the spoked wheel 4 is devoid of any element joining the spokes 4b with the exception of the hub 4a, such as a strapping or a tire.
  • This form of wheel 4 is advantageous over the wheels usually described in the documents of the state of the art in that they limit the contact surface between the robot and the ground and avoid laying the plants under the passage of the robot. , the rays spanning the plants when robot 1 is in motion.
  • the number of spokes 4b can be variable, and can advantageously be between six and twenty, advantageously eight, ten or twelve spokes.
  • the size of the shelves 4b can be adjusted according to the needs and the nature of the plot, and can advantageously be between 20 cm and 1 meter.
  • All the spokes 4b can be of the same size in order to give a generally circular shape to the wheel 4. However, such a choice is in no way limiting of the invention, and it may appear advantageous to provide spokes 4b of different size. from each other, for example by alternating a longer spoke and a shorter one, in order to give a different shape to the wheel 4.
  • the number and size of the combs 4b determine the space between two points of contact with the soil as well as the spanning of the plants. They can thus be adjusted according to the user's needs and the nature of the plot and the plants, as well as the phenological stage of the crop in progress on the plot. This gives the robot 1 significant modularity as well as great adaptability to different types of terrain.
  • each spoke 4 can be provided with a shoe 4c to reduce the impact of the wheel 4 on the ground.
  • Such pads 4c are thus shaped to minimize their sinking into loose soil, as shown in Figures la to le. It is also possible to provide more sophisticated pads, such as those described in document WO 94/20313.
  • the size of the pads 4c is also preferably chosen to limit the contact surface with the ground while avoiding to sink into the ground.
  • the surface of the pads may be between 10 and 20 cm 2, for example with a width of 2 cm for a length of 6 cm.
  • the material for forming the spokes 4b is advantageously chosen from lightweight and inexpensive materials, for example carbon fiber, glass fiber or, preferably, aluminum.
  • the material is also relatively flexible, such as aluminum, for example, in order to absorb and dampen the shocks associated with crossing obstacles. Such flexibility thus makes it possible to avoid the risk of the spoke bending or breaking as a result of an impact.
  • FIG. 2 represents an isometric perspective view of the interior of the elongated body 3 according to a preferred embodiment of the invention.
  • the robot 1 can include a motor 5 configured to set the wheels 4 in motion. When it advances, the robot 1 thus moves in a direction of movement, in a direction of movement.
  • the motor can be integrated into the elongated body 3, as can be seen in FIG. 2, which allows the motor 5 to be protected from external attacks (water, dust, etc.)
  • the on-board computer system 2 is also integrated into the elongated body 3, it can be electrically connected to the motor 5 in order to provide it with instructions relating to the setting in motion of the wheels 4.
  • the invention is in no way limited to such configurations, and the motor 5 can be placed outside the elongated body 5, and can for example be fixed to the wheel 4.
  • the robot 1 can contain a single motor 5, which simultaneously drives the two wheels 4.
  • the robot 1 comprises two motors 5, each motor 5 being associated with a wheel 4.
  • the two motors 5 can drive independently.
  • the wheels 4 Such a configuration is of particular interest in particular for allowing the robot 1 to make a turn, since it is then possible to block a wheel 4 while continuing to advance the other wheel 4, the first wheel serving pivot around which the robot will rotate 1. It is also possible for the robot 1 to make a U-turn on itself, since it is possible to rotate a wheel 4 in one direction while rotating the other wheel 4 in the other direction. Such a possibility allows the robot 1 to occupy a minimum of space to change direction, which is particularly useful in the case of crops which are not in a row.
  • the robot 1 can also include energy storage means 6, such as a battery. It may in particular be a lead battery, a nickel battery, or a lithium battery.
  • the battery 6 can advantageously be integrated into a sealed box 7 provided with a cover 7a allowing access to the battery 6, the sealed box 7 being fixed to the elongated body 3. Alternatively, the battery 6 can also itself form the battery. cover 7a.
  • the sealed box 7 is fixed to the rear of the elongated body 3 in the direction of movement, in order to shift the center of gravity of the robot 1 behind the transverse axis relative to the direction of movement. The advantage of such a characteristic will be developed in the remainder of the description.
  • the battery 6 makes it possible to supply the entire electrical system, and in particular the on-board computer system 2 and the engine (s) 5 with electricity.
  • the robot 1 can be fitted with photovoltaic panels (not shown in the figures) to supply electrical energy to the battery 6 and to recharge it, and to make it possible to increase the autonomy and the operating time of the robot 1.
  • photovoltaic panels can be placed on the elongated body 3, on the sealed box 7 or on a central zone outside the wheels 4.
  • the robot 1 can also include a switch 8, placed outside the elongated body 3 and connected to the on-board computer system 2, making it possible to turn the latter on or off or more generally to interact with the electrical elements.
  • the robot 1 may include a battery monitoring system (more usually referred to by the term BMS, acronym for the English term “Battery management System”) making it possible to display the state of charge of the battery, or more generally the operating state of the device.
  • BMS Battery management System
  • This system may have an interface in the form of a display system, for example of the LED or LCD type. Stabilization device
  • the autonomous robot 1 also comprises a stabilization device 9 for controlling the pitch of the elongated body 3 when the wheels 4 are in motion.
  • the center of gravity of the autonomous robot 1 is kept fixed behind the transverse axis with respect to the direction of movement, for example by means of the fixing of the box. waterproof 7 at the back of the elongated body 3.
  • the stabilization device 9 is a passive stabilization device formed of a rod.
  • the rod 9 is preferably disposed at the rear of the elongated body 3, for example integrally attached to the waterproof box 7, and is intended to touch the ground when the robot 1 is in motion. In this way, the rod 9 opposes the torque created by the motor (s) 5 and makes it possible to block the elongated body 3 according to a determined pitch angle, imposing the rotation of the wheels 4 and preventing the elongated body 3 from turning on itself.
  • the rod 9 is a curved rod comprising a rectilinear proximal part 9a and a curved distal part 9b, that is to say the end of which is oriented and raised upwards as this is clearly visible in figure lb.
  • the proximal part 9a is connected to the elongated body 3, preferably integrally attached to the sealed box 7.
  • the distal part 9b is intended to be in contact with the ground, in particular when the wheels 4 are in motion.
  • the curved aspect of the part of the cane in contact with the ground makes it possible to limit its impact on the crops, and not to catch, scratch or tear the plants crossed by the robot 1.
  • this curved shape makes it possible to prevent the rod 9 from sinking into the ground, the contact surface with the ground of the distal end 9b increasing when the latter begins to sink therein. This property is very advantageously, in particular when the soil is loose, which is frequently the case with agricultural plots.
  • the distal part of the rod at least at the level of the curved section, has an oval or circular section in order to form a point contact (when the ground is rigid) and to slide better over obstacles.
  • the low weight of the robot 1 makes it possible to prevent the rod 9 from creating furrows on the ground, which would have been more the case with a third wheel.
  • the presence of a cane also makes it possible to eliminate the phenomena of bogging down observed with the use of an additional wheel.
  • the rod 9 is a rotary rod, capable of pivoting about the axis formed by the part. rectilinear proximal 9a of the rod 9.
  • the rod 9 is not rigid during the movement of the robot 1, and can follow the movement of the latter, in particular when it makes turns, without marking the ground.
  • the rod 9 can thus pivot freely on itself when it encounters an obstacle or when the robot 1 makes a turn instead of sliding and / or translating rigidly with the movement of the robot by mowing any plants present in its vicinity. . Stops can be provided making it possible to limit the angular movement of the rod.
  • the rotation of the rod 9 can be controlled by the on-board computer system 2 in order to control the position of the rod 9, as will be detailed in the remainder of this description.
  • the proximal part 9a can be fixed perpendicularly to the sealed casing 7 and maintained substantially vertical when the robot 1 is in motion, in order to guarantee a substantially horizontal maintenance of the casing 7 and of the elongated body 3, protecting the elements integrated inside it. too great a pitch angle and amplitude.
  • the proximal part 9a can also be tilted backwards in the direction of movement in order to soften the contact between the distal part 9b and the ground, the angle between the proximal part 9a and the elongated body 3 having to be close to 90 ° so as not to force excessively on the connecting parts, such as ball bearings in particular, between the sealed housing 7 and the rod 9.
  • the stabilization device 9 is an active stabilization device, comprising means for moving the center of gravity of the autonomous robot 1 on either side of the transverse axis, in the direction of travel.
  • This embodiment makes it possible to adjust at any time the position of the center of gravity of the robot 1 relative to the elongated body 3, in order to control the pitch of the latter.
  • the stabilization device 9 can move the center of gravity away from the transverse axis in the direction of movement to unbalance the robot 1 and allow it to move. Once set in motion, the center of gravity is reestablished backwards, towards the transverse axis, to find a new balance.
  • the stabilization device 9 forms the counterweight necessary for the spokes 4b to take the step, the dynamic offset of the counterweight allowing the setting in motion.
  • the center of gravity thus oscillates permanently between the front of the robot 1 in the direction of movement, to allow it to move forward, and the rear of the robot 1 in order to limit its runaway.
  • the offset of the counterweight towards the rear of the robot in the usual direction of movement of the robot 1, combined with a change in the direction of rotation of the wheels 4 controlled by the motor (s) 5, can also make it possible to operate a setting in motion of the robot 1 in the opposite direction. This operation allows the robot 1 to reverse on the same line, without having to make a turn, in order to reverse its direction of movement.
  • the stabilization device 9 is formed by a pinion-rack system 9 allowing the movement of the rack in the direction of movement of the robot 1.
  • the pinion is fixed to the elongated body 3.
  • the rack is formed of an elongated rod forming a counterweight.
  • the movement of the rack along the direction of movement of the robot 1 makes it possible to control the offset of the counterweight and the distance of the center of gravity from the transverse axis of the elongated body 3.
  • This movement can be mechanical in order to maintain a position of equilibrium and to keep the body stretched out in a determined pitch angle. But this movement can also be automated, the movement of the rack being controlled by the on-board computer system 2, either according to pre-established instructions, or according to the parameters of the situation.
  • the on-board computer system 2 can be instructed to control a slight imbalance of the elongated body 3 when it is set in motion and then a dynamic balance during the movement. This dynamic balance can in particular take into account the irregularities of the terrain or the slopes liable to unbalance the robot 1.
  • the on-board computer system 2 can be associated with an inertial unit (not shown), consisting of an inclinometer, d 'an accelerometer and / or a gyroscope, and attached to the elongated body 3.
  • the autonomous robot 1 is intended to collect data from the environment which surrounds it, for example to detect the presence of weeds or insects, or to capture the radiation emitted by the plants.
  • the analysis of the radiation emitted by the plants makes it possible to monitor the nutritional needs of the plant, in particular the water need and the nitrogen content. This last aspect is in particular known from document WO 99/19824 and will not be developed in more detail in the present description.
  • the autonomous robot 1 comprises at least one multispectral sensor 10.
  • This multispectral sensor 10 can be placed inside the elongated body 3, and can be connected to the on-board computer system 2 to receive instructions and to the battery 6 to be electrically powered.
  • the multispectral sensor 10 is placed on a lower face of the elongated body 3 in order to be able to analyze the canopy that it overhangs.
  • the invention is in no way limited to such a location.
  • the robot 1 can include a plurality of multispectral sensors.
  • the autonomous robot 1 can also include other data collection instruments, such as visible or infrared cameras. Cameras can thus be integrated in the elongated body 3, in the waterproof case 7, or even attached to one of the spokes 4b.
  • the stabilization device 9 is formed by a curved rod
  • the distal part 9b of the rod 9, and more particularly its free end can also include a camera 9c.
  • This location makes it possible to have a camera very close to the ground and oriented upwards, and thus to collect data from below the canopy.
  • the rotary nature of the rod 9 allows, if it is commanded by the on-board computer system 2, to carry out a very broad exploration of the environment around the robot 1.
  • the distal part 9b of the rod 9 can also include an LED or other light source in order to illuminate the underside of the canopy to improve the quality of the images acquired by the camera 9c, for example by reducing any effects. shade.
  • the robot 1 can also include a device for recording the data collected by the data collection instruments.
  • This recording device can be integrated into the elongated body 3 and coupled to the on-board computer system 2 to receive the recording instructions.
  • the recording device can be, or be associated with, a removable recording card, such as an SD card for example, that the user can remove from the robot 1 to recover the data collected and analyze them, or directly recover. data analyzed by a data analysis device.
  • the robot 1 can therefore also include a data analysis device, coupled to the recording device or to the on-board computer system 2, making it possible to analyze the data collected and recorded and to record the analysis carried out on the device. recording.
  • the recording device can include remote communication means using radio frequencies, such as Bluetooth®, Wi-Fi TM, 2G, 3G, 4G, 4G +, 5G, ZigBee TM, LoRa® means. and / or Sigfox TM for example, in order to be able to remotely transmit to the user the data collected or the data analyzed.
  • radio frequencies such as Bluetooth®, Wi-Fi TM, 2G, 3G, 4G, 4G +, 5G, ZigBee TM, LoRa® means. and / or Sigfox TM for example
  • the invention is not limited to the embodiments of the stabilization devices described. It is quite possible to envisage stabilization devices other than a rod or a rack and pinion system, such as an active gyroscope or a balance for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Robotics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

L'invention présente un robot autonome (1) comprenant un corps allongé (3) selon un axe transversal à une direction de déplacement du robot (1) et, reliés au corps allongé (3), un capteur multi-spectral; exactement deux roues (4); un dispositif de stabilisation (9) pour contrôler le tangage du corps allongé (3) lorsque les roues (4) sont en mouvement, les roues (4) étant constituées de roues en rayons.

Description

DESCRIPTION TITRE : Robot autonome
DOMAINE DE L'INVENTION
L'invention concerne un robot autonome muni d'un capteur multi- spectral. L'invention trouve une application particulière dans le domaine agricole, et notamment l'agriculture de précision. De tels robots sont utilisés notamment pour établir et partager une cartographie de parcelles de terrain afin d'effectuer un diagnostic de la parcelle.
ARRIERE PLAN TECHNOLOGIQUE DE L'INVENTION
Des robots autonomes sont actuellement utilisés en agriculture pour détecter à l'intérieur d'une parcelle les besoins nutritionnels des plants ainsi que la présence de bio-agresseurs tels que les mauvaises herbes, les maladies ou les ravageurs.
Pour ce faire, les robots sont équipés de détecteurs ou d'imageurs permettant de réaliser un diagnostic de la parcelle sous forme de cartographie, afin de permettre à l'agriculteur d'effectuer des interventions de précision et de faire des économies sur les intrants et limiter l'impact sur l'environnement tout en augmentant la productivité des cultures en place.
On connaît des documents FR 3006 296 et WO 2014/202777 des drones équipés de dispositifs imageurs multi-spectraux. Ces drones télé-pilotés survolent les parcelles agricoles pour recueillir des données et générer des cartes relatives à un état des cultures agricoles survolées.
De tels robots présentent l'inconvénient de nécessiter, souvent en raison de contraintes législatives, la présence d'un opérateur formé à proximité, télécommandant le drone. Ces robots ne peuvent donc pas effectuer le diagnostic des parcelles de manière autonome. En outre, du fait de leur déplacement en altitude, les drones ne permettent pas de scanner le dessous de la canopée, limitant la nature des données acquises.
On connaît également du document WO 2014/111387 un robot agricole automatisé permettant de collecter des données d'agriculture de précision comprenant des moyens d'optimisation de déplacement pour se déplacer de façon non aléatoire entre les rangs de plantation. Des robots configurés pour réaliser des cartographies de parcelles agricoles sont également présentés dans le document RU 2633 431. Toutefois, la configuration de ces robots entraîne une détérioration des cultures qu'ils traversent.
De la même façon, le document WO 2017/002093 porte sur un robot conçu pour un traitement automatique des mauvaises herbes, comprenant un système d'acquisition d'images pour recueillir des données. Le document WO 2006/063314 décrit également un robot muni de capteurs pour mesurer des paramètres de la parcelle. Cependant, la taille et l'encombrement de ces robots provoquent également une détérioration des cultures lors de leur passage.
Le document WO 2019/040866 décrit un robot autonome de phénotypage du terrain comprenant un capteur multi-spectral, conçu pour éviter d'endommager les plantations. Toutefois, le mode de mise en œuvre décrit dans le document propose un robot comportant quatre roues, qui n'est adapté que pour les cultures en rang, notamment de maïs, entre lesquelles il peut se déplacer. Ce robot n'est en revanche pas adapté pour les cultures qui ne sont pas en rang dans lesquelles il provoque nécessairement un endommagement des cultures. OBJET DE L' INVENTION
La présente invention a donc pour but de remédier aux inconvénients de l'art antérieur, en proposant un robot autonome capable de scanner une parcelle de manière complète en vue de réaliser un diagnostic, qui soit adapté à de nombreux types et stades phénologiques de cultures, notamment pour les cultures qui ne sont pas en rang, en limitant le plus possible son impact sur les cultures.
BREVE DESCRIPTION DE L' INVENTION
Pour ce faire, la présente invention propose un robot autonome comprenant un corps allongé selon un axe transversal à une direction de déplacement du robot et, reliés au corps allongé :
- un capteur multi-spectral ; exactement deux roues ;
- un dispositif de stabilisation pour contrôler le tangage du corps allongé lorsque les roues sont en mouvement.
Selon la présente invention, les roues sont constituées de roues en rayons.
Un tel robot présente donc l'avantage, par rapport aux robots de l'état de la technique, de comporter uniquement deux roues, ce qui permet de limiter au maximum l'impact sur les cultures à son passage. Cet impact est d'autant moins grand que la forme des roues, en rayons, permet de minimiser la surface de contact entre le robot et le sol et permet au robot d'enjamber les plants sans les coucher. Le déséquilibre engendré par la limitation à deux roues est compensé par la présence du dispositif de stabilisation. Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable :
- le corps allongé présente une forme sensiblement parallélépipédique ou cylindrique, d'axe transversal à la direction de déplacement du robot ;
- le robot autonome comprend également au moins un moteur configuré pour mettre les roues en mouvement ;
- le moteur est intégré dans le corps allongé ;
- le robot autonome comprend deux moteurs, chaque moteur étant associé à une roue ;
- le robot autonome comprend également des moyens de stockage d'énergie pour alimenter le moteur ;
- les moyens de stockage d'énergie sont intégrés dans un caisson étanche muni d'un capot et fixé au corps allongé ;
- le robot autonome présente un sens de déplacement dans la direction de déplacement, et un centre de gravité situé à l'arrière de l'axe transversal par rapport au sens de déplacement ;
- le dispositif de stabilisation est formé d'une canne ;
- la canne est une canne recourbée comprenant une partie proximale rectiligne et une partie distale courbée, la partie proximale étant reliée au corps allongé, la partie distale étant destinée à être en contact avec le sol lorsque les roues sont en mouvement ; - la partie distale de la canne comprend une caméra ;
- la canne est une canne rotative autour de l'axe de la partie proximale ;
- le dispositif de stabilisation comprend des moyens pour déplacer le centre de gravité du robot autonome de part et d'autre de l'axe transversal ;
- le dispositif de stabilisation est formé d'un système pignon-crémaillère permettant le déplacement de la crémaillère selon la direction de déplacement du robot, le pignon étant fixé au corps allongé, la crémaillère étant formée d'une tige allongée ;
- les rayons des roues sont inclinés par rapport à l'axe du corps allongé ;
- chaque rayon est muni d'un patin pour diminuer l'impact de la roue sur le sol.
BREVE DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée de l'invention qui va suivre en référence aux figures annexées sur lesquelles :
[Fig. la] La figure la représente une vue en perspective isométrique d'un robot autonome conforme à un premier mode de réalisation de l'invention ; [Fig. lb] La figure lb représente une vue latérale d'un robot autonome conforme au premier mode de réalisation de l'invention ;
[Fig. le] La figure le représente une vue en perspective isométrique d'un robot autonome conforme à un deuxième mode de réalisation de l'invention.
[Fig. 2] La figure 2 représente une vue en perspective isométrique de l'intérieur d'un corps allongé d'un robot autonome conforme à l'invention.
DESCRIPTION DETAILLEE DE L' INVENTION
Par souci de simplification de la description à venir, les mêmes références sont utilisées pour des éléments identiques ou assurant la même fonction dans les différents modes de mise en œuvre de l'invention.
Description générale du robot autonome
Les figures la, lb et le représentent respectivement une vue en perspective isométrique et une vue latérale d'un robot autonome conforme à un premier mode de réalisation de l'invention, et une vue en perspective isométrique d'un robot autonome conforme à une deuxième mode de réalisation de l'invention.
Un tel robot 1 peut notamment être utilisé dans le domaine agricole pour recueillir des données d'une parcelle agricole. Par exemple, il peut s'agir de données permettant de caractériser les besoins nutritionnels des plants de la parcelle, ou de détecter la présence de bio-agresseurs (mauvaises herbes, maladies, ravageurs, ...) au sein de la parcelle. Par autonome, on entend dans cette description que le robot 1 est apte à effectuer un certain nombre de tâches automatisées sans nécessiter d'intervention humaine, physique ou télécommandée. Le robot peut notamment être programmé pour se déplacer seul au sein d'une parcelle, et se repérer, par exemple au moyen d'un système de géolocalisation intégré, pour ne pas dépasser le périmètre de cette parcelle. Le robot peut également être programmé pour se repérer par rapport aux objets l'environnant et éviter les collisions, par exemple avec d'autres robots, des humains ou des véhicules. Il peut à cet effet comprendre des capteurs de proximité de type sonar, lidar ou d'autres instruments bien connus en soi. Il peut également être programmé pour recueillir des données à intervalles de temps réguliers.
A cet effet, le robot autonome 1 est muni d'un système informatique embarqué 2, visible sur la figure 2, comprenant notamment un processeur, une unité de mémoire, et toutes les autres ressources informatiques le rendant apte à interpréter et exécuter des instructions pouvant avoir été préétablies par l'utilisateur. Un tel système informatique embarqué 2 et de telles instructions sont usuels pour l'homme du métier et ne seront pas développés dans cette description.
Le robot autonome 1 selon l'invention est conçu pour minimiser l'impact de son passage sur les cultures et parcourir des distances importantes, couvrant typiquement 20 hectares par jour, tout en bénéficiant d'une stabilité suffisante pour exécuter les instructions sur tous terrains. A cet effet, le robot autonome 1 présente une faible masse, avantageusement inférieure à 20 kilogrammes, voire inférieure à 15 kilogrammes ou même 10 kilogrammes. Une faible masse présente l'avantage de limiter à la fois l'endommagement des plants et le tassement des sols, responsable d'un étouffement de la vie microbienne.
Revenant à la description des figures la à le, un robot autonome 1 conforme à l'invention comprend un corps allongé 3 selon un axe transversal à une direction de déplacement du robot 1.
Avantageusement, le corps allongé 3 présente une forme sensiblement parallélépipédique ou cylindrique, dont l'axe est l'axe transversal à la direction de déplacement, afin de minimiser son volume et son encombrement.
Le robot 1 comprend également, reliées au corps allongé 3, deux roues 4 disposées de part et d'autre du corps allongé 3 suivant l'axe transversal. Selon l'invention, le robot 1 comprend exactement deux roues, c'est-à-dire qu'il est dépourvu d'une troisième roue ou de roues supplémentaires susceptibles d'augmenter la détérioration du terrain à son passage.
Selon l'invention, les roues 4 sont constituées de roues en rayons. Une roue en rayons est constituée d'un moyeu 4a directement relié au corps allongé 3, d'une pluralité de rayons 4b fixées au moyeu 4a et s'étendant radialement depuis le moyeu 4a. La roue en rayons 4 est dépourvue de tout élément joignant les rayons 4b à l'exception du moyeu 4a, tel qu'un cerclage ou un pneu.
Cette forme de roue 4 est avantageuse par rapport aux roues usuellement décrites dans les documents de l'état de la technique en ce qu'elles limitent la surface de contact entre le robot et le sol et évitent de coucher les plants sous le passage du robot, les rayons enjambant les plants lorsque le robot 1 est en mouvement. Le nombre de rayons 4b peut être variable, et peut avantageusement être compris entre six et vingt, avantageusement huit, dix ou douze rayons. De la même façon, la taille des rayons 4b peut être ajustée en fonction des besoins et de la nature de la parcelle, et peut être avantageusement comprise entre 20 cm et 1 mètre. On peut notamment chercher à choisir la taille des rayons, selon la nature des plans, pour que le corps allongé 3 du robot 1 soit disposé en surplomb de ces plans et ainsi minimiser l'impact de son passage sur les cultures. Tous les rayons 4b peuvent être de la même taille afin de donner une forme globalement circulaire à la roue 4. Toutefois, un tel choix n'est aucunement limitatif de l'invention, et il peut apparaître avantageux de prévoir des rayons 4b de taille différente les uns des autres, par exemple en alternant un rayon plus long et un rayon plus court, afin de donner une forme différente à la roue 4.
D'une manière générale, le nombre et la taille des rayons 4b déterminent l'espace entre deux points de contact avec le sol ainsi que l'enjambement des plants. Ils peuvent ainsi être ajustés selon le besoin de l'utilisateur et la nature de la parcelle et des plants, ainsi que le stade phénologique de la culture en cours sur la parcelle. Cela confère au robot 1 une importante modularité ainsi qu'une grande adaptabilité aux différents types de terrains.
De manière particulièrement avantageuse, chaque rayon 4 peut être muni d'un patin 4c pour diminuer l'impact de la roue 4 sur le sol. De tels patins 4c sont ainsi conformés pour minimiser leur enfoncement dans des sols meubles, comme cela est représenté sur les figures la à le. Il est également possible de prévoir des patins plus sophistiqués, tels que ceux décrits dans le document WO 94/20313.
La taille des patins 4c est également préférentiellement choisie pour limiter la surface de contact avec le sol tout en évitant de s'enfoncer dans le sol. Typiquement, la surface des patins peut être comprise entre 10 et 20 cm2, avec par exemple une largeur de 2 cm pour une longueur de 6 cm.
Il est possible de prévoir un contre-carrossage des roues 4, de telle sorte que le plan formé par les rayons 4b des roues 4 soit incliné par rapport à l'axe du corps allongé 3, et que l'angle formé entre l'intérieur des roues 4 et le sol soit un angle aigu. Un tel angle de carrossage négatif, avantageusement compris entre -1 et -20°, confère au robot 1 de meilleurs appuis sur le sol, notamment lorsqu'il réalise des virages. Préférentiellement, si les roues 4 sont entraînées par un moteur, toutes les pièces mécaniques mises en jeu dans le mouvement des roues, à savoir le moteur, le moyeu 4a et les rayons 4b sont inclinées. Cela permet de limiter l'usure de ces pièces mécaniques lorsque les roues 4 sont en mouvement.
Le matériau pour former les rayons 4b est avantageusement choisi parmi des matériaux légers et peu coûteux, par exemple de la fibre de carbone, de la fibre de verre ou, préférentiellement, de l'aluminium. Avantageusement, le matériau est également relativement souple, comme par exemple l'aluminium, afin d'absorber et amortir les chocs liés au franchissement d'obstacles. Une telle souplesse permet ainsi d'éviter le risque que le rayon ne plie ou ne se casse à la suite d'un choc.
La figure 2 représente une vue en perspective isométrique de l'intérieur du corps allongé 3 selon un mode de mise en œuvre préféré de l'invention.
Le robot 1 peut comprendre un moteur 5 configuré pour mettre les roues 4 en mouvement. Lorsqu'il avance, le robot 1 se déplace ainsi selon une direction de déplacement, dans un sens de déplacement. Avantageusement, le moteur peut être intégré dans le corps allongé 3, comme cela est visible sur la figure 2, ce qui permet au moteur 5 d'être protégé des agressions extérieures (eau, poussières, ...)· Si le système informatique embarqué 2 est également intégré dans le corps allongé 3, il peut être électriquement relié au moteur 5 afin de lui fournir des instructions relatives à la mise en mouvement des roues 4. Bien entendu, l'invention n'est nullement limitée à de telles configurations, et le moteur 5 peut être disposé hors du corps allongé 5, et peut être par exemple fixé à la roue 4.
Le robot 1 peut contenir un unique moteur 5, qui entraîne simultanément les deux roues 4.
Toutefois, selon un mode de mise en œuvre préféré de l'invention, représenté sur la figure 2, le robot 1 comprend deux moteurs 5, chaque moteur 5 étant associé à une roue 4. Dans cette situation, les deux moteurs 5 peuvent entraîner indépendamment les roues 4. Une telle configuration présente un intérêt particulier notamment pour permettre au robot 1 d'effectuer un virage, puisqu'il est alors possible de bloquer une roue 4 tout en continuant de faire avancer l'autre roue 4, la première roue servant de pivot autour duquel va tourner le robot 1. Il est également possible pour le robot 1 d'effectuer un demi-tour sur lui-même, puisqu'il est possible de faire tourner une roue 4 dans un sens tout en faisant tourner l'autre roue 4 dans l'autre sens. Une telle possibilité permet au robot 1 d'occuper un minimum d'espace pour changer de direction, ce qui est particulièrement utile dans le cas des cultures qui ne sont pas en rang.
Le robot 1 peut également comprendre des moyens de stockage d'énergie 6, tels qu'une batterie. Il peut notamment s'agir de batterie au plomb, au nickel, ou de batterie au lithium. La batterie 6 peut avantageusement être intégrée dans un caisson étanche 7 muni d'un capot 7a permettant d'accéder à la batterie 6, le caisson étanche 7 étant fixé au corps allongé 3. Alternativement, la batterie 6 peut également former elle-même le capot 7a. De préférence, le caisson étanche 7 est fixé à l'arrière du corps allongé 3 dans le sens de déplacement, afin de décaler le centre de gravité du robot 1 à l'arrière de l'axe transversal par rapport au sens de déplacement. L'avantage d'une telle caractéristique sera développé dans la suite de la description.
La batterie 6 permet d'alimenter tout le système électrique, et notamment le système informatique embarqué 2 et le (s) moteur(s) 5 en électricité.
Le robot 1 peut être muni de panneaux photovoltaïques (non représentés sur les figures) pour fournir de l'énergie électrique à la batterie 6 et la recharger, et permettre d'augmenter l'autonomie et la durée de fonctionnement du robot 1. Ces panneaux photovoltaïques peuvent être disposés sur le corps allongé 3, sur le caisson étanche 7 ou sur une zone centrale de l'extérieur des roues 4.
Le robot 1 peut également comprendre un interrupteur 8, disposé à l'extérieur du corps allongé 3 et relié au système informatique embarqué 2, permettant d'allumer ou éteindre ce dernier ou plus généralement d'interagir avec les éléments électriques. A cet égard, le robot 1 peut comporter un système de contrôle des batteries (plus habituellement désigné sous le terme BMS, acronyme du terme anglo-saxon « Battery management System ») permettant de visualiser l'état de charge de la batterie, ou plus généralement l'état de fonctionnement du dispositif. Ce système peut présenter une interface sous forme de système d'affichage, par exemple de type LED ou LCD. Dispositif de stabilisation
Revenant à la description des figures la à le, le robot autonome 1 comprend également un dispositif de stabilisation 9 pour contrôler le tangage du corps allongé 3 lorsque les roues 4 sont en mouvement.
En effet, la présence de deux roues 4, qui permet de limiter l'impact du robot 1 sur les cultures, entraîne nécessairement un déséquilibre du corps allongé 3 lorsque le robot 1 est en mouvement. En outre, la forme en rayons des roues 4 nécessite de parvenir à effectuer un pas pour chaque rayon. La Demanderesse a ainsi remarqué que le faible poids du corps allongé 3, même augmenté du poids la batterie 7, n'est pas suffisant pour permettre aux roues d'effectuer le pas. Lors du fonctionnement du (des) moteur(s) 5, la Demanderesse a constaté que c'est le corps allongé 3 et non les roues 4 qui tourne sur lui-même.
Premier mode de réalisation du dispositif de stabilisation
Selon un premier mode de réalisation, représenté sur les figures la et lb, le centre de gravité du robot autonome 1 est maintenu fixe à l'arrière de l'axe transversal par rapport au sens de déplacement, par exemple grâce à la fixation du caisson étanche 7 à l'arrière du corps allongé 3.
Dans ce mode de mise en œuvre, le dispositif de stabilisation 9 est un dispositif de stabilisation passif formé d'une canne. La canne 9 est préférentiellement disposée à l'arrière du corps allongé 3, par exemple solidairement attachée au caisson étanche 7, et est destinée à toucher le sol lorsque le robot 1 est en mouvement. De la sorte, la canne 9 s'oppose au couple créé par le (s) moteur(s) 5 et permet de bloquer le corps allongé 3 selon un angle de tangage déterminé, imposant la rotation des roues 4 et empêchant le corps allongé 3 de tourner sur lui-même.
Avantageusement, et comme cela est bien visible sur la figure lb, la canne 9 est une canne recourbée comprenant une partie proximale 9a rectiligne et une partie distale 9b courbée, c'est à dire dont l'extrémité est orientée et relevée vers le haut comme cela est bien visible sur la figure lb. La partie proximale 9a est reliée au corps allongé 3, de préférence solidairement attachée au caisson étanche 7. La partie distale 9b est destinée à être en contact avec le sol, en particulier lorsque les roues 4 sont en mouvement. L'aspect courbé de la partie de la canne en contact avec le sol permet de limiter l'impact de celle-ci sur les cultures, et de ne pas accrocher, griffer ou arracher les plants traversés par le robot 1. De plus, cette forme courbée permet d'éviter l'enfoncement de la canne 9 dans le sol, la surface de contact avec le sol de l'extrémité distale 9b augmentant lors que cette dernière commence à s'y enfoncer. Cette propriété est très avantageusement, notamment lors que le sol est meuble ce qui est fréquemment le cas des parcelles agricoles.
Avantageusement, la partie distale de la canne, au moins au niveau de la section courbée, présente une section ovale ou circulaire pour former un contact de nature ponctuel (lorsque le sol est rigide) et mieux glisser sur les obstacles.
Le faible poids du robot 1 permet d'éviter que la canne 9 n'engendre des sillons sur le sol, ce qui aurait davantage été le cas d'une troisième roue. La présence d'une canne permet en outre d'éliminer les phénomènes d'embourbement observés avec l'utilisation d'une roue supplémentaire.
Préférentiellement, la canne 9 est une canne rotative, susceptible de pivoter autour de l'axe formé par la partie proximale 9a rectiligne de la canne 9. Ainsi, la canne 9 n'est pas rigide lors du déplacement du robot 1, et peut suivre le mouvement de ce dernier notamment lorsqu'il effectue des virages, sans marquer le sol. La canne 9 peut ainsi pivoter librement sur elle-même lorsque elle rencontre un obstacle ou lorsque le robot 1 effectue un virage au lieu de glisser et/ou translater de manière rigide avec le mouvement du robot en fauchant d'éventuels plants présents dans son voisinage. On peut prévoir des butées permettant de limiter le débattement angulaire de la canne.
Alternativement à ce mode de mise en œuvre dans lequel la canne peut pivoter librement sur elle-même, la rotation de la canne 9 peut être commandée par le système informatique embarqué 2 afin de piloter la position de la canne 9, comme cela sera détaillé dans la suite de cette description.
La partie proximale 9a peut être fixée perpendiculairement au caisson étanche 7 et maintenue sensiblement verticale lorsque le robot 1 est en mouvement, afin de garantir un maintien sensiblement horizontal du caisson 7 et du corps allongé 3, protégeant les éléments intégrés à l'intérieur d'un angle et d'une amplitude de tangage trop importants. La partie proximale 9a peut également être penchée vers l'arrière dans le sens de déplacement afin d'adoucir le contact entre la partie distale 9b et le sol, l'angle entre la partie proximale 9a et le corps allongé 3 devant être proche de 90° pour ne pas forcer excessivement sur les pièces de liaison, telles que des roulements à billes notamment, entre le caisson étanche 7 et la canne 9.
Deuxième mode de réalisation du dispositif de stabilisation Selon un deuxième mode de réalisation, représenté sur la figure le, le dispositif de stabilisation 9 est un dispositif de stabilisation actif, comprenant des moyens pour déplacer le centre de gravité du robot autonome 1 de part et d'autre de l'axe transversal, dans la direction de déplacement.
Ce mode de réalisation permet d'ajuster à chaque instant la position du centre de gravité du robot 1 par rapport au corps allongé 3, afin de contrôler le tangage de ce dernier.
En particulier, au moment de la mise en mouvement du robot 1, le dispositif de stabilisation 9 peut éloigner le centre de gravité de l'axe transversal dans le sens de déplacement pour déséquilibrer le robot 1 et permettre la mise en mouvement. Une fois mis en mouvement, le centre de gravité est rétabli vers l'arrière, vers l'axe transversal, pour retrouver un nouvel équilibre.
Ensuite, lorsque le robot 1 est en mouvement, le dispositif de stabilisation 9 forme le contrepoids nécessaire aux rayons 4b pour effectuer le pas, le déport dynamique du contrepoids permettant la mise en mouvement. Au cours du mouvement, le centre de gravité oscille ainsi en permanence entre l'avant du robot 1 dans le sens de déplacement, pour lui permettre d'avancer, et l'arrière du robot 1 afin de limiter son emballement.
Le déport du contrepoids vers l'arrière du robot, dans le sens habituel de déplacement du robot 1, combiné à un changement du sens de rotation des roues 4 commandé par le (s) moteur(s) 5, peut également permettre d'opérer une mise en mouvement du robot 1 en sens inverse. Cette opération permet au robot 1 d'effectuer une marche arrière sur une même ligne, sans avoir à effectuer de virage, afin d'inverser son sens de déplacement.
Préférentiellement, le dispositif de stabilisation 9 est formé d'un système pignon-crémaillère 9 permettant le déplacement de la crémaillère selon la direction de déplacement du robot 1. Dans cette situation, le pignon est fixé au corps allongé 3. La crémaillère est formée d'une tige allongée formant contrepoids.
Le déplacement de la crémaillère le long de la direction de déplacement du robot 1 permet de contrôler le déport du contrepoids et l'éloignement du centre de gravité par rapport à l'axe transversal du corps allongé 3.
Ce déplacement peut être mécanique dans le but de conserver une position d'équilibre et maintenir le corps allongé dans un angle de tangage déterminé. Mais ce déplacement peut également être automatisé, le déplacement de la crémaillère étant commandé par le système informatique embarqué 2, soit suivant des instructions préétablies, soit en fonction des paramètres de la situation. Par exemple, le système informatique embarqué 2 peut être instruit pour commander un léger déséquilibre du corps allongé 3 lors de sa mise en mouvement puis un équilibre dynamique au cours du mouvement. Cet équilibre dynamique peut notamment prendre en compte les irrégularités du terrain ou les pentes susceptibles de déséquilibrer le robot 1. A cet effet, le système informatique embarqué 2 peut être associé à une centrale inertielle (non représentée), constituée d'un inclinomètre, d'un accéléromètre et/ou d'un gyroscope, et fixée au corps allongé 3.
Recueil de données
Le robot autonome 1 selon l'invention est destiné à recueillir des données de l'environnement qui l'entoure, par exemple détecter la présence de mauvaises herbes ou d'insectes, ou capter le rayonnement émis par les plantes. L'analyse du rayonnement émis par les plantes permet de surveiller les besoins nutritionnels de la plante, notamment le besoin hydrique et la teneur en azote. Ce dernier aspect est notamment connu du document WO 99/19824 et ne sera pas développé plus en détail dans la présente description.
Pour lui permettre le recueil des données, le robot autonome 1 comprend au moins un capteur multi-spectral 10.
L'utilisation des capteurs multi-spectraux dans le domaine de l'agriculture de précision est bien connue en soi, et ne sera par conséquent pas développée dans le cadre de cette description.
Ce capteur multi-spectral 10 peut être disposé à l'intérieur du corps allongé 3, et peut être relié au système informatique embarqué 2 pour recevoir des instructions et à la batterie 6 pour être électriquement alimenté. Avantageusement, le capteur multi-spectral 10 est disposé sur une face inférieure du corps allongé 3 afin de pouvoir analyser la canopée qu'il surplombe. Bien entendu, l'invention n'est nullement limitée à une telle localisation. En outre, le robot 1 peut comporter une pluralité de capteurs multi-spectraux.
Le robot autonome 1 peut également comporter d'autres instruments de recueil de données, telles que des caméras visible ou infra-rouge. Des caméras peuvent ainsi être intégrées dans le corps allongé 3, dans le caisson étanche 7, ou même fixées à l'un des rayons 4b.
Avantageusement, si le dispositif de stabilisation 9 est formé d'une canne recourbée, la partie distale 9b de la canne 9, et plus particulièrement son extrémité libre, peut également comprendre une caméra 9c. Cette localisation permet de disposer d'une caméra très proche du sol et orientée vers le haut, et ainsi de recueillir des données du dessous de la canopée. En outre, le caractère rotatif de la canne 9 permet, s'il est commandé par le système informatique embarqué 2, de procéder à une exploration très large de l'environnement autour du robot 1.
De manière optionnelle, la partie distale 9b de la canne 9 peut également comprendre une LED ou autre source de lumineuse afin d'éclairer le dessous de la canopée pour améliorer la qualité des images acquises par la caméra 9c, par exemple en atténuant les éventuels effets d'ombre.
Le robot 1 peut également comporter un dispositif d'enregistrement des données recueillies par les instruments de recueil de données. Ce dispositif d'enregistrement peut être intégré dans le corps allongé 3 et couplé au système informatique embarqué 2 pour recevoir les instructions d'enregistrement. Le dispositif d'enregistrement peut être, ou être associé à, une carte d'enregistrement amovible, telle qu'une carte SD par exemple, que l'utilisateur peut retirer du robot 1 pour récupérer les données recueillies et les analyser, ou directement récupérer les données analysées par un dispositif d'analyse de données.
Le robot 1 peut donc également comprendre un dispositif d'analyse de données, couplé au dispositif d'enregistrement ou au système informatique embarqué 2, permettant d'analyser les données recueillies et enregistrées et d'enregistrer l'analyse effectuée sur le dispositif d'enregistrement.
Alternativement, ou en complément, le dispositif d'enregistrement peut comprendre des moyens de communication à distance utilisant des radiofréquences, tels que des moyens Bluetooth®, Wi-Fi™, 2G, 3G, 4G, 4G+, 5G, ZigBee™, LoRa® et/ou Sigfox™ par exemple, afin de pouvoir transmettre à distance, à l'utilisateur, les données recueillies ou les données analysées. Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et l'on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.
En particulier, l'invention n'est pas limitée aux modes de réalisation des dispositifs de stabilisation décrits. Il est tout à fait possible d'envisager d'autres dispositifs de stabilisation qu'une canne ou un système pignon-crémaillère, tels qu'un gyroscope actif ou un balancier par exemple.

Claims

REVENDICATIONS
1.Robot autonome (1) comprenant un corps allongé (3) selon un axe transversal à une direction de déplacement du robot (1) et, reliés au corps allongé (3) :
- un capteur multi-spectral (10) ;
- exactement deux roues (4), les roues comprenant des rayons et étant dépourvues de tout élément joignant ces rayons à l'exception du moyeu ;
- un dispositif de stabilisation (9) pour contrôler le tangage du corps allongé (3) lorsque les roues (4) sont en mouvement .
2.Robot autonome (1) selon la revendication précédente, comprenant également au moins un moteur (5) configuré pour mettre les roues (4) en mouvement.
3.Robot autonome (1) selon la revendication précédente dans lequel le moteur (5) est intégré dans le corps allongé (3).
4.Robot autonome (1) selon l'une des revendications 2 et 3 comprenant deux moteurs (5), chaque moteur (5) étant associé à une roue (4).
5.Robot autonome (1) selon l'une des revendications 2 à 4 comprenant également des moyens de stockage d'énergie (6) pour alimenter le (s) moteur(s) (5), les moyens de stockage d'énergie (6) étant intégrés dans un caisson étanche (7) muni d'un capot (7a) et fixé au corps allongé (3).
6.Robot autonome (1) selon l'une des revendications précédentes présentant un sens de déplacement dans la direction de déplacement, et un centre de gravité situé à l'arrière de l'axe transversal par rapport au sens de déplacement .
7.Robot autonome (1) selon la revendication précédente dans lequel le dispositif de stabilisation (9) est formé d'une canne.
8.Robot autonome (1) selon la revendication précédente dans laquelle la canne (9) est une canne recourbée comprenant une partie proximale (9a) rectiligne et une partie distale (9b) courbée, la partie proximale (9a) étant reliée au corps allongé (3), la partie distale (9b) étant destinée à être en contact avec le sol lorsque les roues (4) sont en mouvement .
9.Robot autonome (1) selon la revendication précédente dans lequel la partie distale (9b) de la canne (9) comprend une caméra (9c).
10. Robot autonome (1) selon l'une des revendications 7 à
9 dans lequel la canne (9) est une canne rotative autour de l'axe de la partie proximale (9a).
11. Robot autonome (1) selon l'une des revendications 1 à
5 dans lequel le dispositif de stabilisation (9) comprend des moyens pour déplacer le centre de gravité du robot autonome (1) de part et d'autre de l'axe transversal.
12. Robot autonome (1) selon la revendication précédente dans lequel le dispositif de stabilisation (9) est formé d'un système pignon-crémaillère permettant le déplacement de la crémaillère selon la direction de déplacement du robot (1), le pignon étant fixé au corps allongé (3), la crémaillère étant formée d'une tige allongée.
13. Robot autonome (1) selon l'une des revendications précédentes dans lequel le plan formé par les rayons (4b) des roues (4) est incliné par rapport à l'axe du corps allongé (3).
14. Robot autonome (1) selon l'une des revendications précédentes dans lequel chaque rayon (4b) est muni d'un patin (4c) pour diminuer l'impact de la roue (4) sur le sol.
EP20803227.6A 2019-11-19 2020-10-16 Robot autonome Pending EP4061587A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912919A FR3103128B1 (fr) 2019-11-19 2019-11-19 Robot autonome
PCT/FR2020/051873 WO2021099705A1 (fr) 2019-11-19 2020-10-16 Robot autonome

Publications (1)

Publication Number Publication Date
EP4061587A1 true EP4061587A1 (fr) 2022-09-28

Family

ID=69903313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20803227.6A Pending EP4061587A1 (fr) 2019-11-19 2020-10-16 Robot autonome

Country Status (8)

Country Link
US (1) US20220410991A1 (fr)
EP (1) EP4061587A1 (fr)
CN (1) CN114981044A (fr)
AU (1) AU2020385657A1 (fr)
BR (1) BR112022009720A2 (fr)
CA (1) CA3158224A1 (fr)
FR (1) FR3103128B1 (fr)
WO (1) WO2021099705A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210129617A1 (en) * 2019-10-30 2021-05-06 The Florida State University Research Foundation, Inc. Systems and methods for multi-axially force/torque controlled rotating leg assemblies for a vehicle drive and suspension
CN114161404B (zh) * 2021-11-09 2023-07-21 绍兴文理学院 一种太阳能供电滑块的6杆曲杆张拉整体机器人

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2037431C1 (ru) 1993-03-03 1995-06-19 Магомет Салиханович Сагов Способ повышения проходимости колеса транспортного средства и колесо транспортного средства
US6160902A (en) 1997-10-10 2000-12-12 Case Corporation Method for monitoring nitrogen status using a multi-spectral imaging system
US7765780B2 (en) 2003-12-12 2010-08-03 Vision Robotics Corporation Agricultural robot system and method
WO2010068704A2 (fr) * 2008-12-09 2010-06-17 Reconrobotics, Inc. Robot à deux roues doté de caractéristiques d'escalade améliorées
US20120059520A1 (en) * 2010-09-03 2012-03-08 Kossett Alex J Systems and methods to robotize payload equipment
EP2646204A2 (fr) * 2010-11-30 2013-10-09 Reconrobotics, Inc. Dispositif robotisé de livraison de charge utile
FR3001101B1 (fr) 2013-01-18 2015-07-17 Naio Technologies Dispositif agricole automatise autonome
FR3006296B1 (fr) 2013-05-31 2016-11-11 Airinov Drone comprenant un dispositif imageur multispectral pour la generation de cartes representant un etat vegetal d'une culture
FR3007295A1 (fr) 2013-06-21 2014-12-26 Airinov Drone equipe d'un dispositif imageur et de moyens de protection du dispositif imageur
ES2846786T3 (es) 2015-07-02 2021-07-29 Ecorobotix Sa Vehículo robot y procedimiento que utiliza un robot para un tratamiento automático de organismos vegetales
RU2633431C2 (ru) 2016-03-01 2017-10-12 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Беспилотный робот для картирования урожайности
US10124483B1 (en) * 2016-04-26 2018-11-13 Sebastien Cotton All terrain ground robot with compliant leg system, energy recycling features and zero turn capabilities
FR3059272B1 (fr) * 2016-11-28 2020-11-13 Univ Versailles Saint Quentin En Yvelines Vehicule a gyropode
US10100968B1 (en) * 2017-06-12 2018-10-16 Irobot Corporation Mast systems for autonomous mobile robots
WO2019040866A2 (fr) 2017-08-25 2019-02-28 The Board Of Trustees Of The University Of Illinois Appareil et procédé de collecte de données agricoles et opérations agricoles

Also Published As

Publication number Publication date
BR112022009720A2 (pt) 2022-09-06
CA3158224A1 (fr) 2021-05-27
FR3103128A1 (fr) 2021-05-21
FR3103128B1 (fr) 2022-07-29
AU2020385657A1 (en) 2022-07-07
US20220410991A1 (en) 2022-12-29
CN114981044A (zh) 2022-08-30
WO2021099705A1 (fr) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021099705A1 (fr) Robot autonome
EP2689651B1 (fr) Dispositif de coupe de végétaux
FR3082169A1 (fr) Chassis de vehicule agricole de largeur reglable et vehicule agricole
EP2852521A1 (fr) Machine tractée munie d'un dispositif d'attelage déporté
FR2760934A1 (fr) Dispositif d'orientation de la boite a engrenages d'une moissonneuse conditionneuse
EP3601015A1 (fr) Tracteur multitache electrique
FR3112120A1 (fr) Ensemble de capture d'image et de detection d'obstacle destine a ëtre monte sur une plateforme telle qu'un drone et drone muni d'un tel ensemble de capture d'image et de detection d'obstacle
EP0358563A1 (fr) Machine à recolter les baies et notamment à vendanger
FR3097528A1 (fr) Drone équipé d’un capteur à ultrasons
EP3359870B1 (fr) Chariot modulaire pour l'enregistrement de donnees magnetique de terrain notamment pour le controle non invasif de pipelines ou similaires
EP3935935B1 (fr) Vibreur électroportatif pour la récolte de fruits
FR2996981A1 (fr) Engin agricole motorise destine a etre utilise notamment dans les metiers du maraichage
EP3427117A1 (fr) Robot motorisé autonome pour le transport de charges
WO2021014071A1 (fr) Système d'inventaire en entrepôt
EA044171B1 (ru) Автономный робот
EP4401926A1 (fr) Nouvelle architecture de système robotisé mobile
CA2038373C (fr) Systeme de detection pour aeronef stabilise en roulis
EP1533214A1 (fr) Porte-outils à trois roues
EP2397395B1 (fr) véhicule porte-outil automoteur à 4 roues dissymétriques
WO2023062317A1 (fr) Dispositif et procede d'entretien mecanique d'un sol enherbe pour limiter la proliferation d'adventices
EP0098824A1 (fr) Machine agricole
EP1201116A1 (fr) Dispositif de coupe destiné notamment à l'épamprage
EP0650662B1 (fr) Arracheuse-chargeuse de betteraves ou autres tubercules
FR2573278A1 (fr) Porte-outil automoteur interligne a coupleur trapezoidal articule sur le porte-outil d'une part et sur un module, notamment vendangeur d'autre part
EP4410095A1 (fr) Robot agricole autonome de coupe de drageons et procédé associé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
19U Interruption of proceedings before grant

Effective date: 20230927

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20241001