EP4059678B1 - Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger - Google Patents

Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger Download PDF

Info

Publication number
EP4059678B1
EP4059678B1 EP21163050.4A EP21163050A EP4059678B1 EP 4059678 B1 EP4059678 B1 EP 4059678B1 EP 21163050 A EP21163050 A EP 21163050A EP 4059678 B1 EP4059678 B1 EP 4059678B1
Authority
EP
European Patent Office
Prior art keywords
cutting
drive motor
cutting blade
machine
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21163050.4A
Other languages
German (de)
English (en)
Other versions
EP4059678C0 (fr
EP4059678A1 (fr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krug and Priester GmbH and Co KG
Original Assignee
Krug and Priester GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krug and Priester GmbH and Co KG filed Critical Krug and Priester GmbH and Co KG
Priority to EP21163050.4A priority Critical patent/EP4059678B1/fr
Priority to CA3148070A priority patent/CA3148070C/fr
Priority to US17/654,588 priority patent/US11745373B2/en
Publication of EP4059678A1 publication Critical patent/EP4059678A1/fr
Application granted granted Critical
Publication of EP4059678C0 publication Critical patent/EP4059678C0/fr
Publication of EP4059678B1 publication Critical patent/EP4059678B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates
    • B26D1/08Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates of the guillotine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/08Means for actuating the cutting member to effect the cut
    • B26D5/086Electric, magnetic, piezoelectric, electro-magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/22Safety devices specially adapted for cutting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/22Safety devices specially adapted for cutting machines
    • B26D7/24Safety devices specially adapted for cutting machines arranged to disable the operating means for the cutting member

Definitions

  • Such a method and an associated cutting machine are, for example, by the EP 2 591 897 A1 known.
  • the known cutting machine comprises a table for receiving the material to be cut, a portal frame arranged above the table and a cutting blade mounted in the portal frame that can be raised and lowered by means of a drive.
  • An opening for the material to be cut is formed between the table and the portal frame, light barrier housings for receiving a light barrier being arranged on both sides of the opening.
  • the light barrier housings have a pivoted cover element, which is arranged outside the light barrier housing and is arranged in a first pivoted position between the two light barrier housings and thereby interrupts the light beam of the light barrier, and in a second pivoted position is pivoted out of the area between the two light barrier housings and this does not interrupt the light beam of the light barrier.
  • EP 0 723 841 A1 a cutting machine with a table for receiving material to be cut, with a cutter bar which is movably mounted in a machine stand and which accommodates a cutting blade in the region of its lower end, and with a drive for raising and lowering the cutter bar known.
  • the drive has a drive motor, a gear that can be driven by the latter, a crank drive connected to the gear outlet, and a connecting rod that is connected to the crank drive and acts on the cutter bar.
  • a rotary encoder which controls an evaluation unit, interacts with the gear output.
  • U.S. 5,488,886 A discloses a method for optimizing the cutting process in a cutting machine in which, before cutting stacked, sheet-like material to be cut on a table, a press beam is lowered onto it and a cutting knife arranged adjacent to the press beam is lowered perpendicularly to the table surface receiving the material to be cut, thereby separating the material to be cut , furthermore, after the cut, the cutting knife and the press beam are raised again.
  • the lower edge of the press beam follows the cutting edge of the cutting blade.
  • a defined distance between the cutting blade and the level of the surface of the material to be cut is recorded and the movement of the cutting blade is stopped at the height of the distance level or at a slightly higher level.
  • the smaller cutting machines occupy a certain special position, since the forces required to actuate the pressing of the cuttings are not as high as in larger machines, so that the operator's muscle strength is often sufficient and no motor support is necessary. These machines are often not production machines that the operator works with all day long. Such machines are typically used in copy shops, for example. Partial or full electrification is often used primarily for increased comfort, since the operator's effort is reduced and work can also be done faster in the long term. Since the segment of small machines is particularly price-sensitive, the focus here is on the manufacturing costs for the respective functional principle and must not be too high in relation to the manual machine variant. Therefore, only simple electrification systems are used here, sometimes only the blade drive is motor-driven. If the clippings pressing device is also driven by a motor, the pressing pressure is generally not adjustable.
  • Cutting machines of the medium machine group size have a very wide use, starting from the professional copy shop to in-house printers to professional printers. These machines are particularly suitable for small and medium-sized paper formats, which are often used in digital printing processes. For this reason, this medium-sized machine size group has gained in market importance and the required level of professionalism. The market is increasingly demanding equipment features and working speeds that were previously reserved primarily for machines in the large machine size group. However, the equipment features in the medium machine group segment can usually not be realized using the techniques of the large machine group size. Reasons for this are, for example, the size, the complexity and the price for the realization of the equipment features. Machines in medium-sized machine groups should be able to be operated on the standard secured single-phase power grid, as this is available at almost all desired locations.
  • the energy efficiency of such machines is important for several reasons.
  • One reason is that, as with all electrically operated devices, the required energy consumption should be kept as low as possible from the point of view of environmental protection and operating costs.
  • Another reason is that the desired single-phase domestic installation limits the possible power consumption and thus the performance of the machine. This means that the more energy-efficient the machine works, the more power can be used productively for the actual machine function.
  • the large machine group size includes machines that are mainly developed for large cutting material formats and almost exclusively for professional users. There are many machine features that the operator wants or demands, often even customer-specific adaptations.
  • the machines of this class are traditionally suitable for companies that, for example, process printed matter with long print runs in large formats, which are printed in offset printing machines. The manufacturing costs and the associated sales price for such machines are correspondingly high. The price, but also the mains supply to be provided for the often high connected load required are for the needs and possibilities of the user, that process smaller formats and print runs, often from the digital printing sector, are not suitable.
  • the actual pressing/cutting cycle is always similar.
  • the operator places the clippings on the machine table and positions them under the knife, which is in its safe starting position above the clippings. In this safe starting position, the cutting edge of the knife is usually covered by the press beam, which protrudes downwards in its starting position.
  • the press bar is located directly behind the knife and thus prevents the operator from injuring himself on the knife edge in this knife/press bar position. Since great forces and very sharp knives are sometimes required to cut the material to be cut, and high pressure forces are sometimes also required to fix the material to be cut, appropriately monitored protective devices must be used to ensure that the operator cannot injure himself.
  • Such protective devices can on the one hand be mechanical protective devices, which can consist of metal or plastic, for example.
  • the protective devices can be attached to the machine in a fixed or movable manner, insofar as this is necessary for loading and unloading the clippings.
  • Such movable protective devices must be monitored on the machine side to ensure that a pressing/cutting cycle can only be started if they are properly closed.
  • the necessary access for the operator can also be realized with optoelectronic safety light grids, which monitor the danger area by means of optical sensors and only allow a cut to be triggered if the light grid is not interrupted by objects or body parts.
  • the pressing/cutting cycle can often only be triggered via a two-hand switch, so that the operator's hands are stationary on the operating elements when the cycle is triggered and thus the dangerous machine movement.
  • the arrangement of the controls is designed in such a way that actuation by means of only one hand or by means of auxiliary objects is not possible or at least extremely difficult.
  • the pressing/cutting cycle stops as soon as the operator releases at least one of the operating elements, but at the latest after a cycle has been completed and the press beam and the knife have returned to the safe starting position (return control). Each cycle must be triggered individually by pressing both control elements simultaneously within 0.5 seconds (simultaneity condition).
  • the controls must be enabled between cycles.
  • the design of the safety devices and the monitoring of their various operating states are subject to strict normative specifications that ensure maximum operating safety.
  • the cutting machine should therefore be optimally adapted or be adaptable to the needs of the operator and at the same time offer maximum performance within the scope of the technical possibilities, which can be achieved with the specified, standard secured, single-phase mains supply while complying with all safety regulations. If all the points mentioned are to be optimally implemented, this has hitherto only been possible to a limited extent or requires total manufacturing costs, which have hitherto been reserved for the large machine group size.
  • safety controllers or safety controls programmable logic controllers (PLC)
  • PLC programmable logic controllers
  • programs can be written that link actions with conditions and Boolean operations (AND, OR, NOT, XOR).
  • AND, OR, NOT, XOR Boolean operations
  • all safety-related signals must be routed to the central controller, which is usually located in a control cabinet. This generally requires long assembly and commissioning times, which in turn leads to increased costs.
  • the advantages of the safety controller are that safety programs that have already been created can be copied and used several times for machines of the same type and it is relatively easy to expand the security functions.
  • the safety applications can be displayed graphically on HMIs (Human Machine Interface) and all information such as settings and statuses, etc. provided by the machine can be conveniently called up at any time.
  • Information and signals reach the controller both from the controller to the PLC and from the PLC to the controller.
  • the operators also program the control application with the help of a graphic interface and ready-made modules for classic safety components using the copy function (drag and drop) without programming code.
  • a simulation functionality is also integrated, as well as various data export options for later documentation. Programs can be copied and transferred to other controllers using mobile data carriers such as USB sticks. As a result, many of the safety programs can be designed and tested offline, ie without a cutting machine, on the PC and later uploaded to the application in the cutting machine.
  • the actual wiring must be done on site at the machine using classic point-to-point connections.
  • the complex wiring during commissioning is often one of the major disadvantages of the central safety architecture.
  • An interim solution can then be local contactor boxes in which the controllers are installed decentrally.
  • the bus cycle times must be taken into account, particularly in the case of linked systems or messages. Longer response times may have to be taken into account here.
  • the longer reaction times of the control mean that between the recognition of a dangerous situation, such as the intrusion of the operator into the protected area of the pressing/cutting functional unit while it is moving dangerously, and the necessary reaction of the machine, in this case the immediate one Stopping the dangerous movement, a longer reaction time elapses.
  • the corresponding protective devices must be attached further away from the source of danger so that the operator is not endangered. This is often technically not possible or at least not desirable, since the cutting machine usually grows in its external dimensions and working is made more difficult or no longer ergonomically possible.
  • decentralized safety installations are available which, if necessary, are also available with high IP protection levels.
  • decentralized architectures are also becoming increasingly popular in safety technology. A distinction must be made here between two types: on the one hand, decentralized concepts that collect safe signals on I/O modules and bring them to the central safety controller via fieldbuses or safe Ethernet protocols, and on the other hand, fully decentralized installations that control safety applications directly in the field on safety controllers . Which is the more suitable alternative is decided on a case-by-case basis. Both decentralized architectures offer the advantage of efficient, singular wiring using Ethernet cables and standard connectors.
  • the present invention is based on the object of further increasing the safety in a method of the type mentioned at the outset, and of specifying an associated cutting machine.
  • this object is achieved by a cutting machine having the features of claim 1 .
  • the drive motor moves the cutting knife back to the upper safety position, which does not represent a dangerous movement.
  • the invention monitors whether the cutting blade actually moves up after stopping. In the event of danger, e.g. in the event of a dangerous downward movement of the cutting blade, the movement of the cutting blade is safely stopped.
  • a height-adjustable press bar can be arranged behind the cutting blade for pressing down the material to be cut, which covers the blade edge in the upper safety position.
  • the actual travel direction of the knife is evaluated for travel direction monitoring only after a reversal time (e.g. 180 ms) required for the direction reversal of the motor control after the cutting knife has stopped moving down.
  • a reversal time e.g. 180 ms
  • the safety monitoring can take place in different ways, for example optically via a light barrier monitoring along the cutting knife travel path or via a rotary encoder on the motor shaft.
  • the actual travel direction of the cutting blade is particularly preferably determined using a rotating field of the phase currents present at the drive motor. If a downward movement of the cutting blade is determined based on the rotating field, the rotating field that generates the torque-forming currents is switched off, causing the drive motor to stop.
  • the rotary field of the phase currents present at the drive motor is generated by at least a first of at least two mutually monitoring processors by means of control signals, in particular PWM signals, that the phase currents actually present at the drive motor are detected by both processors and that in order to stop the drive motor, at least one, preferably both, processors interrupt at least some of the control signals or no longer change them over time. If the rotary field indicates a downward movement of the cutting knife, the two processors can independently trigger a separation of the control signals. As a result, the drive motor no longer receives any torque and the knife drive is in a safe state.
  • a mechanical brake can be controlled at the same time as the descending cutting blade is stopped, to brake the drive motor to a standstill and to block it, provided this control is not completed within the activation time of the brake by determining that the actual travel direction of the cutting blade is upwards. will be annulled.
  • the invention also relates to a cutting machine with a horizontal cutting support for material to be cut, with a horizontal knife that can be moved vertically above the cutting support for cutting the material to be cut resting on the cutting support, with a drive motor for moving the knife vertically, with a drive motor that switches the drive motor Manual operation, in particular two-hand operation, with a protective device protecting the working area of the cutting machine and with a machine drive control that controls the cutting process and is programmed to control the drive motor according to the method described above.
  • the drive motor is particularly preferably a multi-phase three-phase motor
  • the machine drive control has at least one processor (microcontroller) which outputs the control signals required to generate the phase currents of a rotating field for the drive motor, in particular pulse width modulation (PWM) signals, and detects the phase currents actually present at the drive motor and, in order to stop the drive motor, interrupts at least some of the control signals or no longer changes them in time.
  • processor microcontroller
  • the machine drive controller can advantageously have two mutually monitoring processors, with at least one of the two processors generating the control signals, in particular PWM signals, with both processors detecting the phase currents actually present at the drive motor and with at least one of the two processors, preferably both processors, Stopping the drive motor interrupts at least some of the control signals or no longer changes in time.
  • At least one processor has a monitoring unit which uses the detected phase currents of the drive motor to determine the actual direction of travel of the blade and stops the drive motor if a downward movement of the cutting blade is detected.
  • a power driver (output stage) can be arranged downstream of the at least one processor, which generates the phase currents for the drive motor using the control signals, in particular PWM signals, of the processor.
  • the signal lines of the control signals each have a switch, in particular an optocoupler, controlled by the at least one processor, in order to switch through or interrupt the signal lines. All signal-relevant inputs and outputs of the at least one processor are preferably protected by means of galvanic isolation, in particular by means of optocouplers.
  • the machine drive control is in the form of a frequency converter with a functional and safety-oriented control.
  • a required performance level "e” (PLe) can be achieved without resorting to a combination of expensive standard individual systems, and on the other hand, the special safety and functional requirements of a cutting machine can be taken into account.
  • a cutting machine drive motor can be regulate in the desired manner.
  • a maximum performance level "d" (PLd) can be achieved without additional safety elements.
  • the performance level is a measure of the reliability of a safety function and describes the extent to which individual components or safety functions contribute to risk reduction.
  • a performance level PLe is prescribed for cutting machines of the type described, which is achieved with the frequency converter according to the invention without any additional, external safety elements that would otherwise be necessary.
  • the maximum electrical machine power is limited. It is therefore all the more important that the maximum electrical power available can be used as effectively as possible when required and that the cutting machine can also be automatically adjusted or manually adjusted within specified limits to different house installation fuses and mains voltage fluctuations and dips. For this it is necessary that the drive motor can be controlled in such a way that it does not draw high current peaks from the mains, as they typically occur when starting up and when uncontrolled capacitor motors are blocked. These current peaks may only be present for a short time (starting current), but they can already trigger the house installation fuse.
  • Such a motor-control combination could only be designed in such a way that the drive motor would have to stay below its potential at the actual operating point due to its starting current.
  • the drive motor can also be controlled gently during startup, so that there are no high current peaks.
  • the drive motor can thus be controlled in any operating state in such a way that a predetermined, adjustable maximum current or maximum power is not exceeded. If the maximum current/power value set at the factory by the respective operator cannot be provided by the respective house installation are recognized and the operator is able to adjust the value to his requirements via the HMI.
  • Voltage dips under load which can occur in unstable electrical networks due to the power required during the pressing/cutting cycle, are also recognized by the machine and compensated for by the control technology. Compensation is achieved by automatically reducing the control frequency for the three-phase motor that drives the cutting machine within defined and reasonable limits until the motor torque required for the pressing/cutting cycle can be provided. Analogously to the control frequency, the speed of the drive motor is also reduced and thus the traversing speed of the cutting knife and the press beam during the pressing/cutting cycle.
  • the customer can thus make optimum use of his individually available house installation performance and work at the maximum possible speed without the cutting machine having to be "electrically throttled” at the factory so that it can run even under poor mains connection conditions or would no longer be able to produce a complete cut compared to uncontrolled machines.
  • the machine control can also use the frequency converter with functional and safety-related control to start and stop the motor in forward and reverse motion in all other possible operating states in the desired control measure.
  • Undesirable overload peaks in the drive train, which result from a blockage, for example, can be detected and mitigated and, if necessary, communicated to the operator via the HMI.
  • a potentially dangerous, but always necessary, operation with cutting machines of the type described is changing a blunt blade for a sharp one. This is necessary after more or fewer pressing/cutting cycles, depending on the material to be cut and the requirements for the cutting result.
  • the cutting blade must be removed from the cutting machine, usually with the help of a blade changing device, and reinstalled after replacement.
  • the cutting machine can support the operator by a corresponding, programmed knife change routine is stored in the machine control system, which the operator activates when required and visualizes via the HMI.
  • the cutting machine moves the cutting knife or the press beam to the safe lower end position so that the operator is protected as best as possible from danger and injury from the knife edge when changing the cutting knife. After the knife change has been completed, the function is acknowledged by the operator.
  • the cutter performs the next operator-triggered crimping/cutting cycle at a greatly reduced speed (set-up cycle) and with severely limited drive power, so that any errors made by the operator during the knife change, such as an incorrect depth setting of the cutting knife or a forgotten tool in the work area, cannot lead to a severe blockage with possible damage to the cutting blade or other machine parts.
  • the cutting machine In order to be able to design the cutting machine as cost-effectively and compactly as possible, it makes sense to design the built-in assemblies in such a way that they are thermally optimized for the average load profile of the operator and the average environmental conditions. At the same time, however, it must be ensured that the cutting machine is not damaged even when operated outside of the standard operating conditions with regard to the load profile and ambient temperatures and, in the best case, adapts to the corresponding requirements.
  • This is achieved with the frequency converter according to the invention with functional and safety-related control in that all temperature-critical assemblies, such as the drive motor, the power output stages, but also assemblies such as a hydraulic unit for the pressing process or a single-board computer, are temperature-monitored.
  • the corresponding temperature values are monitored in the frequency converter with functional and safety-related controls.
  • the preset temperature limit values of one or more monitored assemblies are reached, the maximum speed is reduced via the control logic long enough to ensure continuous work without interruptions to cool down. This usually happens to an extent that is not perceived negatively by the operator, and of course only until the respective load case allows the machine to be operated at optimum speed again.
  • the frequency converter according to the invention with functional and safety-related control represents the central control and logic unit of the cutting machine, where all the information from the built-in sensors and switches as well as the operator's inputs via the HMI converge, can from the large number of existing data for the Operators or information for any service or repair work that may be required can be processed and output via the HMI.
  • the frequency converter output frequency for the drive motor and thus the motor speed or the speed of the cutting cycle can be adjusted depending on the respective voltage stability of the mains supply.
  • the cutting machine 1 shown comprises a horizontal cutting support 2 for material to be cut, a cutting blade 3 that can be moved vertically above the cutting support 2 for cutting the material to be cut, a Drive motor 4 for adjusting the height of the cutting blade 3, manual operation (e.g. two-hand operation) 5 for the drive motor 4, a protective device protecting the working area of the cutting machine 1 (designed here as a light barrier, for example) 6 and a machine drive controller 7 controlling the cutting process. Behind the cutting blade 3 there is also a height-adjustable press beam 8 for pressing down the material to be cut, with a press drive (not shown here) for moving the press beam 8 in height being actuated manually or being driven electrically.
  • the machine drive control 7 is preferably formed by a frequency converter with a functional and safety-oriented control.
  • the operator places the material to be cut on the cutting support 2 and positions it under the cutting blade 3 , which is above the material to be cut in a safe, upper starting position in which the cutting edge of the blade is usually covered by the press beam 8 .
  • the cutting blade 3 moves down to the cutting support 2 .
  • the protective device 6 is interrupted in the process, the downward movement of the cutting blade 3 is stopped and immediately thereafter the cutting blade 3 is reversed in a safety-monitored manner into the non-hazardous, upper starting position.
  • the safety monitoring includes determining the actual travel direction of the cutting blade 3 and, if a downward movement of the cutting blade 3 is detected, stopping the drive motor 4.
  • the machine drive control 7 has two processors (CPUs) 9a, 9b , which monitor each other at the input and output signal level, as indicated by the dashed double arrow.
  • the two processors 9a, 9b are both connected to the manual control 5 and to the protective device 6, respectively.
  • the one, first processor 9a has the main task of controlling the drive motor 4 close to the tilting moment; the other, second processor 9b is a designated one Safety CPU with monitoring function. All security functions are evaluated and monitored by both processors 9a, 9b. Both processors 9a, 9b can initiate safety-related processes independently of one another.
  • the first processor 9a generates PWM control signals on six signal lines 10 1 to 10 6 , which are connected to a power driver (output stage) 13 via three PWM Hi optocouplers 11 and three PWM Lo optocouplers 12 .
  • the PWM-Hi optocoupler 11 is controlled by the first processor 9a and the PWM-Lo optocoupler 12 by the second processor 9b via lines 14 in order to either switch the signal lines 10 1 to 10 6 through or interrupt them.
  • the power driver 13 is connected to the drive motor 4 via three output lines 15 and generates three phase currents according to the PWM control signals, which generate a rotating field for the drive motor 4 .
  • phase currents actually applied to the drive motor 4 are tapped off at two of the three output lines 15 at 16 and routed via lines 17 to the two processors 9a, 9b.
  • the two processors 9a, 9b jointly control lines 18 --via an AND operation 19 --in each case a brake 20 in order to mechanically brake and block the drive motor 4.
  • All signal-relevant inputs and outputs of the two processors 9a, 9b are electrically isolated by means of optocouplers that are not shown.
  • the first processor 9a stops the downward movement of the cutting blade. So that the blade edge does not remain open and thus secondary injuries to the operator are avoided, the machine drive control 7 reverses so that the drive motor 4 moves the cutting blade 3 back into the upper starting position.
  • the rotating field is monitored in a monitoring unit 21a, 21b of the two processors 9a, 9b (after the timer for reversing has expired, 180 ms) by using the detected phase currents to determine the actual travel direction of the cutting blade 3 becomes.
  • the complex PWM pattern required to generate the rotating field is generated by at least one of the two processors 9a, 9b , Interrupted, so that the drive motor 4 no longer receives torque and the blade drive is in a safe state of rest.
  • the voltage of the three PWM-Hi optocouplers 11 is switched off by the first processor 9a or the voltage of the three PWM-Lo optocouplers 12 by the second processor 9b, which results in the safe STO (Safe Torque Off) for the drive motor 4 corresponds.
  • the brake 20 is activated at the same time as the descending cutting blade 3 is stopped in order to brake the drive motor 4 to a standstill and block it, provided this activation is not within the activation time of the brake 20 by determining that the actual travel direction of the cutting blade 3 is directed upwards is cancelled.

Claims (13)

  1. Procédé de sectionnement d'un matériau à découper, au moyen d'une machine de découpe (1) comprenant un support horizontal de découpe (2) dévolu à un matériau à découper ; une lame horizontale de découpe (3), déplaçable en hauteur au-dessus dudit support de découpe (2) et destinée au sectionnement du matériau à découper reposant sur ledit support de découpe (2) ; un moteur d'entraînement (4) affecté au déplacement en hauteur de ladite lame de découpe (3) ; un actionneur manuel (5), en particulier un actionneur à deux mains destiné audit moteur d'entraînement (4) ; et un dispositif de protection (6) assigné à la sécurisation de la zone de travail de ladite machine de découpe (1), incluant les étapes opératoires suivantes :
    - abaissement de la lame de découpe (3) à l'état non interrompu du dispositif de protection (6), par manoeuvre de l'actionneur manuel (5), et
    - immobilisation de ladite lame de découpe (3) en phase descendante, lorsque ledit dispositif de protection (6) est interrompu,
    caractérisé par le fait
    que le moteur d'entraînement (4) est activé moyennant surveillance de la sécurité, immédiatement après l'immobilisation de la lame de découpe (3) en phase descendante, afin d'inverser la course de ladite lame de découpe (3) vers une position supérieure de sécurité n'exposant à aucun danger ;
    que la surveillance de la sécurité englobe la détermination de la direction effective de déplacement de la lame de découpe (3), et la mise à l'arrêt sûre du moteur d'entraînement (4) lorsqu'un mouvement descendant de ladite lame de découpe (3) est constaté ; et
    que ladite direction effective de déplacement de ladite lame de découpe (3) est surveillée uniquement à l'expiration d'un temps d'inversion, nécessaire à l'inversion directionnelle de l'activation dudit moteur et succédant à l'immobilisation de ladite lame de découpe (3) en phase descendante.
  2. Procédé selon la revendication 1, caractérisé par le fait que la direction effective de déplacement de la lame de découpe (3) est déterminée sur la base d'un champ tournant des courants de phase appliqués au moteur d'entraînement (4) et, lorsqu'un mouvement descendant de ladite lame de découpe (3) est constaté sur la base dudit champ tournant, le champ tournant engendrant les courants générateurs de couples est désactivé et ledit moteur d'entraînement (4) est ainsi mis à l'arrêt.
  3. Procédé selon l'une des revendications précédentes, caractérisé par le fait que le champ tournant des courants de phase appliqués au moteur d'entraînement (4) est engendré au moyen de signaux de commande, notamment de signaux MLI, par au moins un premier processeur au sein d'au moins deux processeurs (9a, 9b) se surveillant mutuellement ; par le fait que les courants de phase effectivement appliqués audit moteur d'entraînement (4) sont détectés par les deux processeurs (9a, 9b) ; et par le fait que, pour mettre ledit moteur d'entraînement (4) à l'arrêt, au moins l'un desdits processeurs (9a, 9b), de préférence les deux, interromp(en)t au moins quelques-uns desdits signaux de commande, ou ne les modifie(nt) plus dans le temps.
  4. Procédé selon l'une des revendications précédentes, caractérisé par le fait que, concomitamment à l'immobilisation de la lame de découpe (3) en phase descendante, un frein (20) est piloté pour décélérer le moteur d'entraînement (4) jusqu'à fin de course, et pour le bloquer, pour autant que ce pilotage ne soit pas annulé, dans les limites du temps d'activation dudit frein (20), par la constatation suivant laquelle la direction effective de déplacement de ladite lame de découpe (3) est orientée vers le haut.
  5. Machine de découpe (1) comprenant un support horizontal de découpe (2) dévolu à un matériau à découper ; une lame horizontale de découpe (3), déplaçable en hauteur au-dessus dudit support de découpe (2) et destinée au sectionnement du matériau à découper reposant sur ledit support de découpe (2) ; un moteur d'entraînement (4) affecté au déplacement en hauteur de ladite lame de découpe (3) ; un actionneur manuel (5), en particulier un actionneur à deux mains destiné audit moteur d'entraînement (4) ; un dispositif de protection (6) assigné à la sécurisation de la zone de travail de ladite machine de découpe (1) ; et une commande (7) de l'entraînement de ladite machine, qui pilote le processus de découpe et est programmée pour activer ledit moteur d'entraînement (4) en conformité avec le procédé selon l'une des revendications précédentes.
  6. Machine de découpe selon la revendication 5, caractérisée par le fait que le moteur d'entraînement (4) est un moteur multiphasé à courant triphasé, et la commande (7) de l'entraînement de ladite machine est munie d'au moins un processeur (9a, 9b) qui délivre les signaux de commande, notamment des signaux MLI requis pour engendrer les courants de phase d'un champ tournant affecté au moteur d'entraînement (4) ; qui détecte les courants de phase effectivement appliqués audit moteur d'entraînement (4) ;
    et qui, en vue de la mise à l'arrêt dudit moteur d'entraînement (4), interrompt au moins quelques-uns desdits signaux de commande, ou ne les modifie plus dans le temps.
  7. Machine de découpe selon la revendication 5 ou 6, caractérisée par le fait que la commande (7) de l'entraînement de ladite machine compte deux processeurs (9a, 9b) se surveillant mutuellement, sachant qu'au moins l'un des deux processeurs (9a, 9b) engendre les signaux de commande, notamment des signaux MLI, sachant que lesdits deux processeurs (9a, 9b) détectent les courants de phase effectivement appliqués au moteur d'entraînement (4) et sachant que, pour mettre ledit moteur d'entraînement (4) à l'arrêt, au moins l'un desdits processeurs (9a, 9b), de préférence les deux, interromp(en)t au moins quelques-uns desdits signaux de commande, ou ne les modifie(nt) plus dans le temps.
  8. Machine de découpe selon la revendication 6 ou 7, caractérisée par le fait que le processeur (9a, 9b), à présence minimale, est pourvu d'une unité de surveillance (21a, 21b) qui détermine la direction effective de déplacement de la lame de découpe (3) sur la base des courants de phase détectés du moteur d'entraînement (4), et qui met ledit moteur d'entraînement (4) à l'arrêt lorsqu'un mouvement descendant de ladite lame de découpe (3) est constaté.
  9. Machine de découpe selon l'une des revendications 6 à 8, caractérisée par le fait qu'un pilote de puissance (13), installé en aval du processeur (9a, 9b) à présence minimale, engendre sur la base des signaux de commande, notamment des signaux MLI dudit processeur (9a, 9b), les courants de phase destinés au moteur d'entraînement (4).
  10. Machine de découpe selon l'une des revendications 6 à 9, caractérisée par le fait que les lignes (101-106) des signaux de commande sont respectivement dotées d'un commutateur (11), en particulier d'un optocoupleur piloté par le processeur (9a, 9b) à présence minimale, en vue de la commutation directe ou de l'interruption desdites lignes de signaux (101-106).
  11. Machine de découpe selon l'une des revendications 6 à 10, caractérisée par le fait que toutes les entrées et sorties du processeur (9a, 9b) à présence minimale, pertinentes pour les signaux, sont respectivement protégées au moyen d'une séparation galvanique, en particulier au moyen d'optocoupleurs.
  12. Machine de découpe selon l'une des revendications 5 à 11, caractérisée par le fait que la commande (7) de l'entraînement de ladite machine est réalisée sous la forme d'un convertisseur de fréquence à commande fonctionnelle et axée, également, sur la sécurité.
  13. Machine de découpe selon l'une des revendications 5 à 12, caractérisée par un frein (20) piloté par la commande (7) de l'entraînement de ladite machine, en vue de décélérer et de bloquer le moteur d'entraînement (4).
EP21163050.4A 2021-03-17 2021-03-17 Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger Active EP4059678B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21163050.4A EP4059678B1 (fr) 2021-03-17 2021-03-17 Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger
CA3148070A CA3148070C (fr) 2021-03-17 2022-02-04 Methode et machine de coupe avec controle de securite pour renverser le mouvement dangereux de la lame de coupe en cas de danger
US17/654,588 US11745373B2 (en) 2021-03-17 2022-03-12 Method and cutting machine with safety-monitored reversing of the dangerous cutting blade movement in the event of danger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21163050.4A EP4059678B1 (fr) 2021-03-17 2021-03-17 Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger

Publications (3)

Publication Number Publication Date
EP4059678A1 EP4059678A1 (fr) 2022-09-21
EP4059678C0 EP4059678C0 (fr) 2023-06-07
EP4059678B1 true EP4059678B1 (fr) 2023-06-07

Family

ID=74947101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21163050.4A Active EP4059678B1 (fr) 2021-03-17 2021-03-17 Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger

Country Status (3)

Country Link
US (1) US11745373B2 (fr)
EP (1) EP4059678B1 (fr)
CA (1) CA3148070C (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117021789B (zh) * 2023-10-10 2023-12-01 珠海芯烨电子科技有限公司 一种切刀保护机构及打印设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560800A (en) * 1967-12-28 1971-02-02 Morris Weidenfeld Electrical safety structure
ES8201716A1 (es) * 1979-09-10 1981-12-16 Gordon Ambler Kenneth Un metodo y un aparato de deteccion de miembros opacos que se hallan dentro de un espacio de deteccion.
DE4228651A1 (de) * 1992-08-28 1994-03-03 Wolfgang Mohr Verfahren und Vorrichtung zum Optimieren des Schneidevorganges bei einer Schneidemaschine
DE19502300A1 (de) * 1995-01-26 1996-08-01 Mohr Adolf Maschf Vorrichtung zum Schneiden von blättrigem Gut
DE19516953B4 (de) * 1995-05-12 2007-04-12 Hohner Maschinenbau Gmbh Vorrichtung zum Seitenschneiden von Papier
US5880954A (en) * 1995-12-04 1999-03-09 Thomson; Robert Continous real time safety-related control system
DE19604900C2 (de) * 1996-02-10 2000-02-03 Hermann Wegener Sicherungseinrichtung für handbediente Werkzeugmaschinen, insbesondere für Abkantpressen
WO2002024418A1 (fr) * 2000-09-21 2002-03-28 Marsh Jeffrey D Appareil et procede de rognage de livre
DE10342431A1 (de) * 2003-09-13 2005-04-07 Fiessler Elektronik Ohg Schutzeinrichtung für Maschinen, wie Abkantpressen, Schneidemaschinen, Stanzmaschinen oder dergleichen
JP2006159385A (ja) * 2004-12-10 2006-06-22 Horizon International Inc 厚み検出器付断裁機
AT502038B1 (de) * 2005-07-06 2007-01-15 Trumpf Maschinen Austria Gmbh Sicherheitseinrichtung für eine abkantpresse und ein lamellenwerkzeug
US7976001B2 (en) * 2007-12-28 2011-07-12 Seiko Ltd. Sheet stack cutter and finisher having the same
EP2591897B1 (fr) * 2011-11-11 2014-04-30 Adolf Mohr Maschinenfabrik GmbH & Co. KG Machine de découpage pour découper des produits empilés en forme de feuilles à l'aide d'une barrière lumineuse
JP2014213407A (ja) * 2013-04-24 2014-11-17 株式会社セーコウ 切断刃ユニット及びこれを用いた紙葉類切断装置
DE102016100445A1 (de) * 2016-01-12 2017-07-13 Pilz Gmbh & Co. Kg Sicherheitseinrichtung und Verfahren zum Überwachen einer Maschine
CN107803858A (zh) * 2017-11-28 2018-03-16 徐达宏 电动裁切机
NL2021520B1 (en) * 2018-08-30 2020-06-26 Sdd Holding B V Cutting device and method for cutting paper
NL2021522B1 (en) * 2018-08-30 2020-04-24 Sdd Holding B V Cutting device and method for cutting paper
CN110281289A (zh) * 2019-07-31 2019-09-27 爱邦(南京)包装印刷有限公司 一种自动连续断张机及其使用方法
CN210574037U (zh) * 2019-08-07 2020-05-19 杭州川山甲物资供应链有限公司 一种全区域防夹手安全防盗存取货口装置
CN111730682B (zh) * 2020-08-03 2020-12-29 山东华滋自动化技术股份有限公司 一种多工位轮转模切机及其安全监控系统

Also Published As

Publication number Publication date
EP4059678C0 (fr) 2023-06-07
EP4059678A1 (fr) 2022-09-21
US20220297327A1 (en) 2022-09-22
CA3148070C (fr) 2022-12-06
CA3148070A1 (fr) 2022-05-02
US11745373B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
DE102016118069B4 (de) Werkzeugmaschine
EP2916191B1 (fr) Appareil de régulation et/ou de commande de chauffage
EP2093642B1 (fr) Table rotative avec une unité de contrôle ou regulation associée
EP2839934A2 (fr) Procédé de commande d'un robot
EP4059678B1 (fr) Procédé et machine de coupe avec inversement par contrôle sécuritaire du mouvement dangereux de la lame de coupe en cas de danger
EP3554772B2 (fr) Surveillance anticollision d'un robot
DE102015009007A1 (de) Robotersteuerungssystem mit Stoppfunktion
DE102014116257A1 (de) Motorsteuerung für einen Schutz des Werkzeugs und des zu bearbeitenden Objekts bei einem Schnellstopp
EP3137948B1 (fr) Dispositif et procédé de surveillance d'une partie de machine mobile avec protection contre les erreurs
EP3963613B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
WO2020002610A1 (fr) Machine-outil comprenant un dispositif de commande
DE102008026465A1 (de) Anordnung, Modul und Verfahren zum sicheren Betreiben einer Anlage
DE102006061310B4 (de) Vorrichtung zum Bewegen von Massen mittels einer Welle oder Walze, die über einen motorischen Antrieb antreibbar ist
EP2835699B1 (fr) Dispositif et procédé de configuration et/ou de programmation d'un contrôleur de sécurité
DE102020203598A1 (de) Steuersystem für eine industriemaschine
WO2020229119A1 (fr) Ensemble commutateur comprenant un système d'entraînement
DE102008051779A1 (de) Fertigungseinheit sowie Verfahren zum Betreiben der Fertigungseinheit
EP0086432B1 (fr) Circuit de sécurité pour robot industriel librement programmable
EP3963609A1 (fr) Ensemble commutateur comprenant un système d'entraînement et procédé pour faire fonctionner un ensemble commutateur de manière sûre
EP1050708B1 (fr) Dispositif de contrôle de fonctions relatives à la sécurité d'une machine présentant des dangers
DE102017117604B4 (de) Verfahren zum Betreiben wenigstens eines Elektromotors und/oder einer damit gekoppelten, nichtfahrenden Arbeitsmaschine sowie eine nichtfahrende Arbeitsmaschine
DE102017119275B4 (de) Lichtvorhang
EP1736842B1 (fr) Commande de machine pour une machine réalisant des actions dangereuses, comme une presse, ayant au moins un circuit pour se déconnecter
EP3689555A1 (fr) Procédé à limitation de la force d'au moins un élément d'une machine de production en fonctionnement manuel
WO1983003219A1 (fr) Machine a decouper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B26D 7/24 20060101ALI20221116BHEP

Ipc: B26D 1/08 20060101AFI20221116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1573634

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000751

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230607

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000751

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240326