EP3963613B1 - Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur - Google Patents

Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur Download PDF

Info

Publication number
EP3963613B1
EP3963613B1 EP20721211.9A EP20721211A EP3963613B1 EP 3963613 B1 EP3963613 B1 EP 3963613B1 EP 20721211 A EP20721211 A EP 20721211A EP 3963613 B1 EP3963613 B1 EP 3963613B1
Authority
EP
European Patent Office
Prior art keywords
drive shaft
motor
switch
drive
travel profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20721211.9A
Other languages
German (de)
English (en)
Other versions
EP3963613C0 (fr
EP3963613A1 (fr
Inventor
Sebastian Schmid
Jürgen Schimbera
Kathrin Prüßing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Reinhausen GmbH
Scheubeck GmbH and Co
Original Assignee
Maschinenfabrik Reinhausen GmbH
Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Reinhausen GmbH, Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG filed Critical Maschinenfabrik Reinhausen GmbH
Publication of EP3963613A1 publication Critical patent/EP3963613A1/fr
Application granted granted Critical
Publication of EP3963613C0 publication Critical patent/EP3963613C0/fr
Publication of EP3963613B1 publication Critical patent/EP3963613B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/266Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor having control circuits for motor operating switches, e.g. controlling the opening or closing speed of the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H2009/0061Monitoring tap change switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms

Definitions

  • the invention relates to a drive system for a switch and a method for driving a switch.
  • switches for regulating voltage in different transformers for different tasks and with different requirements. In order to operate the respective switches, they must be driven via a drive system. These switches include on-load tap changers, diverter switches, selectors, double turners, turners or preselectors.
  • a drive for one of the switches mentioned above is off DE 20 2010 011 521 U1 known.
  • a motor is arranged in this on-load tap changer drive, which is rigidly connected to the corresponding on-load tap changers via a linkage.
  • the actuation is done by wiring, i.e. the motor is switched on or off by actuating motor contactors.
  • the on-load tap changers are then actuated via the drive shaft.
  • functional changes to the drive are not possible. This makes the drive rigid and inflexible. The simplest adjustments require complex conversion measures.
  • the patent specification WO 00/36621 A1 describes an actuating device for operating and controlling an electrical switching device for use in a high or medium voltage transmission network.
  • the actuating device comprises a rotating electrical machine, which is connected to a movable contact via a coupling without having a mechanical spring.
  • the clutch converts the rotational movement of the rotating electrical machine into a translational movement of the movable contact.
  • a further object of the invention is a method for driving at least one To provide a switch, which provides an improved concept for driving a switch, which increases the flexibility of the drive and the safety of the switching.
  • the drive system according to the invention is suitable for at least one switch and comprises a drive shaft which connects the drive system to the at least one switch. At least one motor is provided which is coupled to the drive shaft. A feedback system is provided which is set up to determine a position of the drive shaft. A feedback signal is generated based on this position. A control device is set up to select a stored driving profile from several driving profiles depending on the feedback signal. The selected driving profile affects the engine accordingly.
  • the control device comprises a control unit and a power section, wherein the power section serves to supply energy to the at least one motor.
  • the saved driving profiles are stored in a memory of the power unit. Alternatively, the driving profiles are stored in a memory of the control device or the control unit.
  • the feedback system includes at least one absolute value encoder and an auxiliary contact, which, in combination with the absolute value encoder, is set up and arranged to detect an absolute position of the drive shaft or an absolute position of another shaft.
  • the other shaft is connected to the drive shaft.
  • At least one output signal is generated based on the detected position.
  • the position of the drive shaft is determined based on the at least one output signal.
  • the absolute encoder can be designed as a single-turn encoder, an incremental encoder or a virtual encoder.
  • the auxiliary switch can be designed as at least one microswitch or resolver.
  • the driving profile is defined by two variables and mapped as an nth-order polynomial function in a two-dimensional Cartesian coordinate system.
  • the drive system can be designed such that the control device acts on two motors.
  • the control device comprises at least one, optionally two power sections, with each motor interacting with a common power section or each motor with its own power section.
  • control device is designed such that it interacts with one of the two motors.
  • This motor follows the driving profile of the actual value of the feedback system of the other motor.
  • the method according to the invention for driving at least one switch is characterized in that a drive system has a drive shaft connected to at least one motor.
  • a driving profile is selected that describes operation of the drive system for switching from a current switching position to an achievable switching position.
  • a position of the drive shaft of the at least one motor is recorded using a feedback system.
  • a feedback signal is generated from the recorded actual value of the position of the drive shaft.
  • the advantage of the method according to the invention is that a high degree of flexibility and variability can be achieved when switching in a switch by using the driving profiles. Mechanical changes in the switch that can influence the switching are compensated for by using the driving profiles; It is therefore possible to adapt the driving profiles accordingly.
  • At least one driving profile is determined for the drive shaft to drive the switch. As a rule, a large number of driving profiles are determined for a switch. The at least one specific driving profile is saved for use in a circuit.
  • An absolute position of the drive shaft or an absolute position of another shaft is determined with at least one absolute value encoder of the feedback system. Based on the detected position, at least one output signal is generated, with which the position of the drive shaft is determined.
  • a control device comprises a control unit and/or a power unit with which the at least one motor is controlled or regulated in such a way that the switching position to be achieved by the driving profile is reached within a time predetermined by the driving profile.
  • Each of the driving profiles is defined by two variables and represents a two-dimensional polynomial function of the nth order.
  • the polynomial function is mapped in a two-dimensional Cartesian coordinate system.
  • the driving profile specifies a speed or a torque of the at least one motor.
  • the driving profile also specifies at what time or at what position of the drive shaft, which torque or speed is implemented by the motor on the drive shaft.
  • the improved concept is based on the idea of equipping a drive system for driving a switch with a feedback system and a control device, thereby enabling the switch to be actuated via a specific driving profile.
  • an on-load tap changer is actuated in such a way that a motor at constant speed actuates a drive shaft, which moves selector contacts in parallel and draws up a spring energy storage device, which acts on the diverter switch after it has been triggered.
  • the drive system based on the improved concept is able to drive the drive shaft in a targeted manner, i.e. according to a previously selected driving profile.
  • the driving profile doesn't just specify a speed or a torque.
  • the driving profile also specifies at what time or at what position of the drive shaft, which torque or speed is implemented on the drive shaft.
  • specific sections of a circuit of the switch can be influenced. This makes it possible to increase the speed or torque based on the drive shaft position. Since different parts to be actuated are arranged in the switch on the drive shaft, these can be explicitly protected. For example, at the beginning of a switchover, a higher torque is required to release contacts or set them in motion. Immediately afterwards the torque can be reduced. This is explicitly possible with the driving profile.
  • the current position of the drive shaft i.e. actual value
  • the driving profile i.e. target value
  • position of the drive shaft includes measurement variables from which the position of the drive shaft can be clearly determined, if necessary within a tolerance range.
  • the drive system serves to drive a shaft of the switch, on-load tap changer or a corresponding component of the on-load tap changer to drive.
  • This causes the on-load tap changer to carry out one or more operations, for example a switch between two winding taps of a piece of equipment or parts of the switch, such as a load switch, a selector operation or a preselector operation.
  • the drive shaft is connected directly or indirectly, in particular via one or more gears, to the switch, in particular to the shaft of the switch.
  • the drive shaft is connected directly or indirectly, in particular via one or more gears, to the on-load tap changer, in particular to the shaft of the on-load tap changer.
  • the drive shaft is connected directly or indirectly, in particular via one or more gears, to the motor, in particular to a motor shaft of the motor.
  • a position, in particular an absolute position, of the motor shaft corresponds to a position of the drive shaft. This means that the position of the drive shaft can be clearly deduced from the position of the motor shaft, if necessary within a tolerance range.
  • the action includes controlling, regulating, braking, accelerating or stopping the engine.
  • the control can include, for example, position control, speed control, acceleration control or torque control.
  • the drive system represents a servo drive system.
  • the drive system comprises a monitoring unit which is designed to monitor the one or more operations of the switch based on the feedback signal.
  • the monitoring includes, in particular, monitoring as to whether individual operations or parts are carried out properly, in particular within predefined time windows.
  • the control device comprises a control unit and a power section for the controlled or regulated energy supply to the motor.
  • the control unit is set up to control the power section.
  • At least one driving profile is stored in the power section, which is formed from two variables and as an nth order polynomial function in a two-dimensional Cartesian coordinate system can be depicted.
  • the power section is designed as a converter or servo converter or as an equivalent electronic, in particular fully electronic, unit for drive machines.
  • control device contains the feedback system in whole or in part.
  • the absolute position of the drive shaft can be compared by the control device, for example. If there is a significant deviation, the control device can issue an error message or initiate a safety measure.
  • the feedback system is set up to determine a rotor position of the motor and to determine a value for the position of the drive shaft, depending on the rotor position.
  • the rotor position is an angular range in which a rotor of the motor is located, optionally combined with a number of complete rotations of the rotor.
  • the position or absolute position of the motor shaft can be determined precisely to at least 180°, for example by the control device.
  • the control device By reducing gears using one or more gears, the accuracy that can be achieved in the position of the drive shaft is significantly greater.
  • the evaluation by the control device here corresponds, so to speak, to a virtual transmitter function. Even in the event of a complete failure of an absolute value encoder in the feedback system, at least emergency operation can be maintained and/or the on-load tap changer can be brought into a safe position.
  • the feedback system includes an absolute encoder that is configured and arranged to detect the absolute position of the drive shaft or an absolute position of a further shaft connected to the drive shaft and, based on the detected position, at least one output signal to create.
  • the feedback system is set up to determine a value for the position of the drive shaft based on the at least one output signal.
  • the absolute value encoder is attached directly or indirectly to the motor shaft, the drive shaft or a shaft coupled thereto.
  • the absolute encoder comprises a multiturn encoder or singleturn encoder.
  • the absolute value encoder is set up to detect the position of the drive shaft or the position of the further shaft using a scanning method.
  • the scanning method includes an optical, a magnetic, a capacitive, a resistive or an inductive scanning method.
  • the feedback system includes a combination of a transmitter and an auxiliary contact, which in combination are designed and arranged to detect the absolute position of the drive shaft or an absolute position of a further shaft which is connected to the drive shaft and, based on the detected position to generate at least one output signal.
  • the feedback system is set up to determine a value for the position of the drive shaft based on the at least one output signal.
  • the encoder and the auxiliary contact are attached directly or indirectly to the motor shaft, the drive shaft or a shaft coupled thereto.
  • the encoder is designed as a single-turn rotary encoder or incremental encoder or virtual encoder and the auxiliary switch is designed as at least one microswitch or resolver or sin-cos encoder.
  • the driving profile can be formed from two variables and mapped as an nth-order polynomial function in a two-dimensional Cartesian coordinate system.
  • the variables are direct variables or indirect variables of the drive system, such as, for example, time, angle of rotation of the drive shaft, current, voltage, speed, torque or acceleration.
  • a variable can be represented by one axis of the coordinate system.
  • control device can act on a second motor.
  • control device can have a second power part which acts on a second motor.
  • control device can act on a second motor in such a way that it follows the driving profile of the actual value of the feedback system of the first motor.
  • the switch can be designed as an on-load tap changer or a diverter switch or selector or a double turner or a turner or a preselector.
  • a method of driving a switch includes determining and selecting a drive profile for the drive shaft to drive the switch by the control device, generating a feedback signal based on the position of the drive shaft, and controlling a motor to drive the switch depending on the feedback signal and the drive profile.
  • FIG. 1 shows a schematic representation of an exemplary embodiment of a drive system 3 for a switch 1.
  • the drive system 3 is connected to the switch 1 via a drive shaft 16.
  • the drive system 3 includes a motor 12, which can drive the drive shaft 16 via a motor shaft 14 and optionally via a gear 15.
  • a control device 2 of the drive system 3 comprises a power section 11, which contains, for example, a converter (not shown) for the controlled or regulated energy supply of the motor 12, and a control unit 10 for controlling the power section 11, for example via a bus (not shown).
  • the drive system 3 has a sensor system 13, which serves as a feedback system 4 or is part of the feedback system 4 and is connected to the power section 11. Furthermore, the encoder system 13 is coupled directly or indirectly to the drive shaft 16.
  • the encoder system 13 is set up to detect at least a first value for a position, in particular an angular position, for example an absolute angular position of the drive shaft 16.
  • the encoder system 13 can include, for example, an absolute encoder, in particular a multi-turn absolute encoder, which is attached to the drive shaft 16, the motor shaft 14 or another shaft whose position is clearly linked to the absolute position of the drive shaft 16.
  • the encoder system 13 can also include a single-turn absolute encoder and/or a virtual encoder and/or auxiliary switch.
  • the position of the drive shaft 16 can be from the position of the motor shaft 14 can be clearly determined, for example, via a transmission ratio of the transmission.
  • the feedback system 4 is set up to record a value for the position of the drive shaft 16.
  • the control device 2 and in particular the control unit 10 and/or the power section 11 are set up to control or regulate the motor 12 depending on a feedback signal based on the value that the feedback system 4 generates.
  • the power unit 11 has a memory 5 with stored driving profiles 22 (not shown).
  • the driving profiles 22 can also be stored in the control device 2 or control unit.
  • driving profiles 22 are stored in the power section 11. One of the driving profiles 22 is selected via the control unit 10.
  • Figure 2a shows a possible driving profile 22 of the motor 12 for a switching operation of the switch 1.
  • the exemplary driving profile 22 is an nth-order polynomial function with two variables, which are plotted in a two-dimensional Cartesian coordinate system 20.
  • the time t i.e. how long the drive shaft 16 actuates the motor 12
  • the angle of rotation ⁇ of the drive shaft 16 is plotted on the Y axis 25.
  • Sizes plotted on axes 24, 25 are merely examples and should not be construed as a limitation of the invention.
  • the variables plotted on the X-axis 24 and the Y-axis 25 can be direct variables or indirect variables of the drive system 3.
  • Direct variables can be, for example, time t, an angle of rotation of the drive shaft 16, current or voltage.
  • Indirect variables can be speed, torque, acceleration or similar.
  • Figure 2b shows a possible driving profile 22 of the motor 12 for a switching operation of the switch 1, which is plotted in a two-dimensional Cartesian coordinate system 20.
  • the indirect magnitude of the torque M(t) is plotted as a function of the angle of rotation ⁇ and shown as an nth order polynomial function.
  • the angle of rotation ⁇ is plotted on the X-axis 24.
  • the torque M(t) acting on the drive shaft 16 is plotted on the Y axis 25.
  • the driving profile 22 specifies a target value that the drive shaft 16 has to travel.
  • the actual value which is recorded via the feedback system 4
  • the action on the motor 12 can either be canceled or continued.
  • the deviation can either be set manually or determined using a teach-in process.
  • Figure 3 shows the drive system 3, which drives two switches 1, 30.
  • the two motors 12, 32 can either follow the specified driving profile 22 or one of the motors 12 follows the specified driving profile 22 and the second motor 32 follows the actual value of the first motor 12, i.e. in a kind of “master-slave” function .
  • the second motor 32 receives the data for this from the power section 11. This ensures that both switches 1, 30 run the same driving profile 22 in the same time t, with only a slight time delay.
  • the second switch can be completed more quickly, so that there is no synchronous driving and therefore no synchronous switching. However, in some cases this may be necessary.
  • the “master-slave” operation ensures safe parallel operation.
  • Figure 4 shows an embodiment of the drive system 3, in which a second power part 40 with a separate motor 32 and a feedback system 4 are provided.
  • the two motors 12, 32 can either follow the specified driving profile 22 or one motor 12 follows the driving profile 22 and the second motor 32 follows the actual value of the first motor 12, which is provided by the first feedback system 4, i.e in a kind of "master-slave" function.
  • This advantageous embodiment allows the parallel operation of several switches that are spatially far apart from each other.
  • the power parts 11, 40 are connected to one another with a fieldbus 6, such as a Powerlink. There is only data exchange and no energy transfer. Furthermore, for economic reasons it can be advantageous to use several smaller power units instead of one large power unit.
  • FIG. 5 shows a schematic structure of a drive concept of a switch 1, 30, which is designed as an on-load tap changer 170.
  • the switching positions N 1 , N 2 ,..., N N are approached, which are connected to the various stages of a control winding 19 of a transformer 180.
  • the concept of an on-load tap changer 170 was chosen for the description of the individual switching position N 1 , N 2 ,..., N N of the switch 1, 30, this should not be construed as a limitation of the invention. It goes without saying for an expert that the drive concept can also be used for diverter switches, selectors, double turners, turners or preselectors.
  • a motor 12 which acts via a gear 15 on the on-load tap changer 170 with the selector 18 and the diverter switch 17.
  • the motor 12 acts on the on-load tap changer 170 via a motor shaft 14 and a drive shaft 16 in order to move in an upward direction N+ from one switching position N N to the next higher switching position N N+1 or in a downward direction N- from one switching position N N to the next to switch to the lower switching position N N-1 .
  • the selector is used to preselect the switching position (tap position) to be connected and the diverter switch carries out the actual load transfer.
  • FIG. 6 a flowchart of the method according to the invention for driving at least one switch 1, 30 is shown.
  • the at least one switch 1, 30 comprises at least one drive system 3, which has a drive shaft 16 connected to at least one motor 12.
  • the switching from a current switching position N A (see Fig. 5 ) to an accessible switching position N E (see Fig. 5 ) can be described with a driving profile 22, which can be described and/or represented by an nth order polynomial.
  • the switching can take place both in the upward direction N+ and in a downward direction N-.
  • a driving profile 22 is selected, which describes an operation of the drive system 3 for switching from the current switching position N A to the achievable switching position N E.
  • a position of the drive shaft 16 of the at least one motor 1, 30 is detected using a feedback system 4.
  • the detected position of the drive shaft 16 is defined by an actual value of the position of the drive shaft 16.
  • a feedback signal is generated from the recorded actual value of the position of the drive shaft 16.
  • the selected driving profile 22 represents a target value (a series of target values) that the drive system 3 should use in order to achieve the shift from the current switching position N A to the switching position N E to be achieved, for example in the specified time .
  • a comparison of the actual value of the position of the drive shaft 16 with the driving profile 22 (target value) is carried out, ideally in real time or slightly delayed.
  • a control device 2 intervenes, which controls the at least one motor 12 in such a way that the deviation of the actual value from the driving profile 22 is minimized. While the driving profile is running, the comparison between the actual value and the driving profile 22 (target value) is always carried out. If a deviation is detected, the control device 2 counteracts accordingly (eg increase/decrease the torque of the motor 12; increase/decrease the speed of the motor 12, etc.). When the achievable switching position N E is reached, the drive system 3 stops. A further switching can then, if necessary, be initiated with a different driving profile 22. If the deviation rises above a certain level that was previously defined, the switchover can be aborted.
  • the drive shaft and thus the switch are moved back to a defined safe position and moved back to the starting position.
  • the initially selected driving profile 22 can be traveled backwards or a further driving profile can be selected and traveled by the control device 2 or control unit 10.
  • the driving profiles are determined for the respective switch, with which the drive shaft 16 is to be driven with the motor in an ideal manner.
  • the at least one specific driving profile is saved for use in a circuit.
  • a corresponding storage device can be provided for this purpose.
  • An absolute position of the drive shaft 16 or an absolute position of another shaft is determined with at least one encoder system 13 of the feedback system 4.
  • the control device 2 comprises a control unit 10 and/or a power section 11, with which the at least one motor 12 is controlled or regulated in such a way that the switching position N E to be achieved by the driving profile 22 is reached within a time specified by the driving profile 22 and the The switching position N E to be achieved is approximately achieved with the predefined driving profile 22.
  • a speed or a torque of the at least one motor 13 is specified by the driving profile 22.
  • the driving profile 22 thus specifies at what time or at what position of the drive shaft 16, which torque or which speed should be implemented by the motor 13 on the drive shaft 16.
  • the control device now serves to control the motor 13 accordingly so that the specifications are met the driving profile 22 can be implemented.

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Lock And Its Accessories (AREA)
  • Control Of Ac Motors In General (AREA)

Claims (14)

  1. Système d'entraînement (3) pour au moins un commutateur (1, 30), comprenant :
    un arbre d'entraînement (16), lequel relie le système d'entraînement (3) à l'au moins un commutateur (1, 30), au moins un moteur (12) qui est couplé à l'arbre d'entraînement (16),
    - un système de rétroaction (4), qui est conçu pour déterminer une position de l'arbre d'entraînement (16) et générer un signal de rétroaction en se basant sur cette position,
    - un dispositif de commande (2), lequel sélectionne, en fonction du signal de rétroaction, un profil de conduite (22) mémorisé à partir de plusieurs profils de conduite et agit sur le moteur (12) conformément au profil de conduite (22) mémorisé,
    caractérisé en ce que
    - le système de rétroaction (4) contient au moins un système transmetteur (13) et un contact auxiliaire qui, combinés, sont conçus et disposés pour acquérir une position absolue de l'arbre d'entraînement (16) ou une position absolue d'un arbre supplémentaire qui est relié à l'arbre d'entraînement (16) et, en se basant sur la position acquise, générer au moins un signal de sortie ; et il est conçu pour identifier la position de l'arbre d'entraînement (16) à l'aide de l'au moins un signal de sortie.
  2. Système d'entraînement (3) selon la revendication 1, le dispositif de commande (2) comportant une unité de commande (10) et une partie de puissance (11), la partie de puissance (11) servant à l'alimentation en énergie de l'au moins un moteur (12) et le profil de conduite (22) mémorisé étant stocké dans une mémoire (5) de la partie de puissance (11).
  3. Système d'entraînement (3) selon la revendication 1 à 2, le système transmetteur (13) étant configuré en tant que transmetteur de valeur absolue (13), lequel est réalisé sous la forme d'un transmetteur rotatif monotour ou d'un transmetteur incrémental ou d'un transmetteur rotatif virtuel et le contact auxiliaire étant réalisé sous la forme d'au moins un microrupteur ou un résolveur.
  4. Système d'entraînement (3) selon l'une des revendications 1 à 3, le profil de conduite (22) étant défini par deux variables et étant représenté sous la forme d'une fonction polynomiale du n-ième ordre dans un système de coordonnées cartésiennes (20) bidimensionnel.
  5. Système d'entraînement selon l'une des revendications 1 à 4, le dispositif de commande (2) agissant sur deux moteurs (12).
  6. Système d'entraînement selon la revendication 5, le dispositif de commande (2) comportant deux parties de puissance (4, 40), l'une coopérant respectivement avec l'un des deux moteurs (12).
  7. Système d'entraînement selon l'une des revendications 5 ou 6, le dispositif de commande (2) coopérant avec l'un des deux moteurs (12) de telle sorte que celui-ci suit le profil de conduite (22) de la valeur réelle du système de rétroaction (4) de l'autre moteur (12) .
  8. Système d'entraînement (3) selon l'une des revendications 1 à 7, le commutateur (1) étant un commutateur de niveau de charge ou un permutateur de charge ou un sélecteur ou un double inverseur ou un inverseur ou un commutateur de présélection.
  9. Procédé pour entraîner au moins un commutateur (1, 30), comprenant un système d'entraînement (3) selon l'une des revendications 1 à 8, lequel possède un arbre d'entraînement (16) relié à au moins un moteur (12), comprenant les étapes suivantes :
    - qu'un profil de conduite (22) est sélectionné avant le début de la permutation, lequel décrit un fonctionnement du système d'entraînement (3) destiné à une permutation d'une position de commutation actuelle (NA) à une position de commutation accessible (NE) ;
    - que pendant le fonctionnement du système d'entraînement (3), une position de l'arbre d'entraînement (16) de l'au moins un moteur (12) est acquise avec un système de rétroaction (4), la position acquise de l'arbre d'entraînement (16) définissant une valeur réelle de la position de l'arbre d'entraînement (16) ;
    - qu'un signal de rétroaction est généré à partir de la valeur réelle acquise de la position de l'arbre d'entraînement (16) ;
    - que la présence d'un écart entre la valeur réelle et le profil de conduite (22) est identifiée à partir d'une comparaison de la valeur réelle de la position de l'arbre d'entraînement (16) avec le profil de conduite (22) ;
    - qu'en cas de présence d'un écart, l'au moins un moteur (12) est commandé de telle sorte que l'écart entre la valeur réelle et le profil de conduite (22) est réduit au minimum ; et
    caractérisé en ce que
    - que le système d'entraînement (3) s'arrête lorsque la position de commutation accessible (NE) est atteinte.
  10. Procédé selon la revendication 9, au moins un profil de conduite (22) étant défini pour l'arbre d'entraînement (16) servant à l'entraînement du commutateur (1, 30) et l'au moins un profil de conduite (22) déterminé étant mémorisé pour l'utilisation lors d'un changement de rapport.
  11. Procédé selon les revendications 9 - 10, une position absolue de l'arbre d'entraînement (16) ou une position relative d'un arbre supplémentaire étant déterminées avec au moins un système transmetteur (13) du système de rétroaction (4).
  12. Procédé selon l'une des revendications 9 à 11, un dispositif de commande (2) comportant une unité de commande (10) et/ou une partie de puissance (11) avec laquelle l'au moins un moteur (12) est commandé ou régulé de telle sorte que la position de commutation (NE) à atteindre par le profil de conduite (22) est atteinte au sein d'un temps prédéfini par le profil de conduite (22).
  13. Procédé selon l'une des revendications 9 à 12, le profil de conduite (22) étant défini par deux variables et représentant une fonction polynomiale du n-ième ordre qui est représentée dans un système de coordonnées cartésiennes (20) bidimensionnel.
  14. Procédé selon l'une des revendications 9 à 13 précédentes, une vitesse ou un couple de l'au moins un moteur (12) étant prédéfinis par le profil de conduite (22), et le profil de conduite (22) prédéfinissant à quel moment ou à quelle position de l'arbre d'entraînement (16) quel couple ou quelle vitesse est transféré par le moteur (12) à l'arbre d'entraînement (16).
EP20721211.9A 2019-05-15 2020-04-23 Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur Active EP3963613B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019112717.3A DE102019112717A1 (de) 2019-05-15 2019-05-15 Antriebssystem für einen Schalter und ein Verfahren zum Antreiben eines Schalters
PCT/EP2020/061281 WO2020229122A1 (fr) 2019-05-15 2020-04-23 Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur

Publications (3)

Publication Number Publication Date
EP3963613A1 EP3963613A1 (fr) 2022-03-09
EP3963613C0 EP3963613C0 (fr) 2024-03-20
EP3963613B1 true EP3963613B1 (fr) 2024-03-20

Family

ID=70456778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20721211.9A Active EP3963613B1 (fr) 2019-05-15 2020-04-23 Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur

Country Status (8)

Country Link
US (1) US20220262581A1 (fr)
EP (1) EP3963613B1 (fr)
JP (1) JP2022533323A (fr)
KR (1) KR20220005586A (fr)
CN (1) CN113811968A (fr)
BR (1) BR112021021132A2 (fr)
DE (1) DE102019112717A1 (fr)
WO (1) WO2020229122A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021101237B3 (de) * 2021-01-21 2022-06-09 Maschinenfabrik Reinhausen Gmbh Schalteranordnung mit laststufenschalter und antriebssystem
DE102021116421A1 (de) * 2021-06-25 2022-12-29 Maschinenfabrik Reinhausen Gmbh Schaltereinheit
DE102022123571B3 (de) * 2022-09-15 2023-10-26 Maschinenfabrik Reinhausen Gmbh System zur betätigung eines stufenschalters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004671C1 (en) * 1990-02-15 1991-09-19 Maschinenfabrik Reinhausen Gmbh, 8400 Regensburg, De Automatically identifying installation configuration - using computer to cover stepped transformers coupled to bus=bars as desired and for regulation
EP1147531B1 (fr) * 1998-12-16 2005-07-06 Abb Ab Dispositif d'actionnement pour commander et controler un appareil de commutation electrique
WO2006120919A1 (fr) * 2005-05-09 2006-11-16 Mitsubishi Denki Kabushiki Kaisha Dispositif de surveillance d’action de changement pour graduateurs en charge
DE202010011521U1 (de) 2010-08-18 2011-11-23 Maschinenfabrik Reinhausen Gmbh Laststufenschalter
MX2013011089A (es) * 2011-03-27 2014-05-01 Abb Technology Ag Cambiador de toma con un sistema de activación mejorado.
US8988020B1 (en) * 2013-03-12 2015-03-24 Cleaveland/Price, Inc. Motor operator system for a power switch with travel set with three positions for ground or double-throw type switch
CN109216058B (zh) * 2018-11-13 2023-08-01 国网重庆市电力公司璧山供电分公司 一种开关柜隔离开关电动操作机构
DE102019112715B3 (de) * 2019-05-15 2020-10-01 Maschinenfabrik Reinhausen Gmbh Verfahren zum Durchführen einer Umschaltung eines Laststufenschalters mittels eines Antriebssystems und Antriebssystem für einen Laststufenschalter
DE102021101237B3 (de) * 2021-01-21 2022-06-09 Maschinenfabrik Reinhausen Gmbh Schalteranordnung mit laststufenschalter und antriebssystem

Also Published As

Publication number Publication date
EP3963613C0 (fr) 2024-03-20
CN113811968A (zh) 2021-12-17
WO2020229122A1 (fr) 2020-11-19
EP3963613A1 (fr) 2022-03-09
KR20220005586A (ko) 2022-01-13
BR112021021132A2 (pt) 2021-12-14
DE102019112717A1 (de) 2020-11-19
JP2022533323A (ja) 2022-07-22
US20220262581A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
EP3963613B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
DE3109780A1 (de) Steuergeraet, insbesondere schubbedarfs-steuergeraet fuer flugzeuge
EP0624541A2 (fr) Unité de commande de porte
EP0116904A1 (fr) Dispositif d'entraînement d'un clapet pour véhicules automobiles
EP3963611B1 (fr) Ensemble commutateur comprenant un système d'entraînement
EP3963614B1 (fr) Procédé de mise en oeuvre d'une commutation de changeur de prises en charge au moyen d'un système d'entraînement et système d'entraînement pour un changeur de prises en charge
EP3963618A1 (fr) Procédé pour effectuer une commutation d'au moins un moyen de commutation d'un moyen d'exploitation et système d'entraînement pour au moins un moyen de commutation d'un moyen d'exploitation
DE102020119344A1 (de) Laststufenschalter und verfahren zur betätigung eines laststufenschalters
EP3963617B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
DE1463229A1 (de) Werkzeugmaschine
DE102021101237B3 (de) Schalteranordnung mit laststufenschalter und antriebssystem
EP3963612B1 (fr) Ensemble commutateur comprenant un système d'entraînement et procédé pour faire fonctionner un commutateur
WO2020229127A1 (fr) Procédé pour effectuer une commutation d'au moins deux moyens de commutation d'un moyen d'exploitation et système d'entraînement pour au moins deux moyens de commutation d'un moyen d'exploitation
DE3731469A1 (de) Elektromotorischer steuerantrieb
DE102019112720A1 (de) Verfahren zum Durchführen einer Umschaltung eines Schalters und Antriebssystem für einen Schalter
DE3824547C2 (de) Verfahren zur Steuerung eines auf Handbetrieb umschaltbaren motorischen Antriebs, Motorsteuerung mit Umschaltung auf Handbetrieb und deren Verwendung
DE102019112712A1 (de) Schalteranordnung mit antriebssystem und verfahren zum sicheren betrieb einer schalteranordnung
DE737724C (de) Steuerung fuer vollelektrisch geschaltete Fraesmaschine, insbesondere Konsolfraesmaschine
DE10305332B4 (de) Verfahren zur Steuerung von Ventilklappen in Klimaregeleinrichtungen
WO2020229131A1 (fr) Ensemble commutateur comprenant un système d'entraînement et procédé pour entraîner un ensemble commutateur
DE1477173C (de) Einspindeldrehautomat
DE1141005B (de) Elektrische Schaltungsanordnung zur Einstellung der Lage eines bewegbaren Gegenstandes
DE102022128460A1 (de) Regelung einer elektrischen Maschine mit zwei getrennten Wicklungssystemen und Betrieb eines Aktuators eines Steer-By-Wire-Systems
WO1994003848A1 (fr) Dispositif pour commande de transition entre regimes de processeur instantane et sequentiel
DE1477173B1 (de) Einspindeldrehautomat

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40062052

Country of ref document: HK

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230414

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230718

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007410

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240320

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240410