EP3963611B1 - Ensemble commutateur comprenant un système d'entraînement - Google Patents

Ensemble commutateur comprenant un système d'entraînement Download PDF

Info

Publication number
EP3963611B1
EP3963611B1 EP20721207.7A EP20721207A EP3963611B1 EP 3963611 B1 EP3963611 B1 EP 3963611B1 EP 20721207 A EP20721207 A EP 20721207A EP 3963611 B1 EP3963611 B1 EP 3963611B1
Authority
EP
European Patent Office
Prior art keywords
designed
switch
drive shaft
switch assembly
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20721207.7A
Other languages
German (de)
English (en)
Other versions
EP3963611A1 (fr
Inventor
Sebastian Schmid
Benjamin Dittmann
Eugen NAGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Reinhausen GmbH
Scheubeck GmbH and Co
Original Assignee
Maschinenfabrik Reinhausen GmbH
Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Reinhausen GmbH, Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG filed Critical Maschinenfabrik Reinhausen GmbH
Publication of EP3963611A1 publication Critical patent/EP3963611A1/fr
Application granted granted Critical
Publication of EP3963611B1 publication Critical patent/EP3963611B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/266Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor having control circuits for motor operating switches, e.g. controlling the opening or closing speed of the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H2009/0061Monitoring tap change switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms

Definitions

  • the invention relates to a switch arrangement, in particular a tap changer arrangement, with a switch, in particular an on-load tap changer, and a servo drive system for the switch, in particular an on-load tap changer.
  • switches for different tasks and with different requirements. In order to operate the respective switches, they must be driven by a drive system. These switches include on-load tap changers, load diverter switches, selectors, double reversers, reversers, pre-selectors, circuit breakers, load switches or isolating switches.
  • on-load tap-changers are used for uninterrupted switching between different winding taps of an electrical device, such as a power transformer or a controllable choke. This can be used to change the transformation ratio of the transformer or the inductance of the choke, for example. Double reversing switches are used to reverse the polarity of windings during power transformer operation.
  • a switch arrangement according to claim 1 is provided.
  • values for the position of the drive shaft also includes those values of measured quantities from which the position of the drive shaft can be clearly determined, if necessary within a tolerance range.
  • the control device can check the plausibility of the position determination or compare the two values, thereby increasing the reliability of the position determination and reducing the corresponding residual risk of incorrect position determination.
  • a partial failure of the feedback device such that only one value can be determined for the position of the drive shaft, does not necessarily lead to the immediate shutdown of the drive shaft.
  • At least the switch in particular the on-load tap-changer, load changer, selector, double reverser, reverser, pre-selector, circuit breaker, load switch or disconnector, can still be moved into a safe operating position in a controlled manner despite the partial failure.
  • this increases the operational reliability of the servo drive system, the switch, in particular the on-load tap-changer, load changer, selector, double reverser, reverser, pre-selector, circuit breaker, load switch or disconnector, and the equipment.
  • the switch is designed as an on-load tap changer, a load diverter switch, a selector, a double reversing switch, a reversing switch, a pre-selector, a circuit breaker, a load switch or a disconnector.
  • the servo drive system serves to drive a shaft of the switch, in particular on-load tap changer, load diverter switch, selector, double reverser, reverser, preselector, circuit breaker, load switch or disconnector, or to drive a corresponding component of the switch, in particular an on-load tap-changer, load changer, selector, double reverser, reverser, pre-selector, circuit breaker, load switch or disconnector.
  • switch in particular an on-load tap-changer, load changer, selector, double reverser, reverser, pre-selector, circuit breaker, load switch or disconnector, to carry out one or more operations, for example a switchover between two winding taps of an item of equipment or parts of the switchover, such as a load switchover, a selector operation or a pre-selector operation.
  • the drive shaft is connected directly or indirectly, in particular via one or more gears, to the switch, in particular to the shaft of the switch.
  • the drive shaft is connected directly or indirectly, in particular via one or more gears, to the motor, in particular to a motor shaft of the motor.
  • a position, in particular an absolute position, of the motor shaft corresponds to a position, in particular an absolute position, of the drive shaft. This means that the position of the drive shaft can be clearly deduced from the position of the motor shaft, possibly within a tolerance range.
  • the action includes controlling, regulating, braking, accelerating or stopping the motor.
  • the control can include, for example, position control, speed control, acceleration control or torque control.
  • the power unit is designed as a converter or servo converter or as an equivalent electronic, in particular fully electronic, unit for drive machines.
  • control device contains the feedback system in whole or in part.
  • the feedback system is designed to determine a first value of the at least two values for the position of the drive shaft according to a first method and to determine a second value of the at least two values for the position of the drive shaft according to a second method, wherein the two methods differ from one another. This creates a diverse redundancy, which further increases operational reliability.
  • the two methods may be based on different technical or physical principles or use different hardware components.
  • one of the at least two values for the position of the drive shaft is a first value for an absolute position of the drive shaft.
  • another of the at least two values for the position of the drive shaft is a second value for an absolute position of the drive shaft.
  • one of the at least two values for the position of the drive shaft is an incremental value for a position of the drive shaft or a value for a relative position of the drive shaft.
  • the first and/or second absolute position value can then be compared by the control unit with the incremental or relative value, which allows the plausibility of the first and/or second absolute position value to be checked.
  • the control unit can send the control signal to the power unit to initiate the safety measure.
  • the feedback system is configured to determine a rotor position of the motor and to determine one of the at least two values for the position of the drive shaft depending on the rotor position.
  • the rotor position is an angular range in which a rotor of the motor is located, optionally combined with a number of complete rotations of the rotor.
  • the position or absolute position of the motor shaft can be determined with an accuracy of at least 180°, for example by the control unit.
  • the evaluation by the control unit corresponds to a virtual encoder function in a way. Even if an absolute encoder in the feedback system fails completely, at least emergency operation can be maintained and/or the switch can be moved to a safe position.
  • the feedback system includes an absolute value encoder that is designed and arranged to detect the absolute position of the drive shaft or an absolute position of another shaft that is connected to the drive shaft and to generate at least one output signal based on the detected position.
  • the feedback system is designed to determine one of the at least two values for the position of the drive shaft, in particular the first and/or the second value for the absolute position, based on the at least one output signal.
  • the absolute encoder is attached directly or indirectly to the motor shaft, the drive shaft or a shaft coupled thereto.
  • the absolute encoder has a first output for outputting the first or second value for the absolute position and a second output for outputting the incremental or relative value for the position.
  • absolute encoder includes both devices that determine two values for the position in different ways and devices that contain two separate encoders, at least one of which is an absolute encoder.
  • the absolute encoder comprises a multi-turn encoder.
  • the absolute encoder is configured to detect the position of the drive shaft or the position of the further shaft using a first scanning method.
  • the absolute encoder is configured to additionally detect the position of the drive shaft or the position of the further shaft using a second scanning method which is independent of the first scanning method.
  • the first or second sensing method includes an optical, a magnetic, a capacitive, a resistive or an inductive sensing method.
  • the first scanning method differs from the second scanning method.
  • the absolute encoder is positively connected to the drive shaft, the motor shaft or the other shaft.
  • the absolute encoder is additionally connected to the drive shaft, the motor shaft or the other shaft in a force-fitting or material-fitting manner, for example by an adhesive connection.
  • the positive and additional material or force-fitting connection further increases the fastening of the absolute encoder and ultimately the operational reliability.
  • the programmable safety controller refers to a controller that contains two processor units, in particular two programmable logic controllers (PLCs).
  • the two processor units use the same process image of inputs and outputs of the control unit, which processes a user program stored in the control unit in parallel.
  • the user program contains a plurality of instructions.
  • the instructions When the instructions are executed by the control unit, this results in the control of the power section depending on the setpoint.
  • This drives the motor and ultimately the switch to carry out one or more operations, for example a switchover between two winding taps of an operating device or parts of the switchover, such as a load switchover, a selector operation or a preselector operation in the case of a switch that is designed as an on-load tap changer.
  • control unit includes a first and a second processor unit.
  • the control unit is designed to execute a program, in particular the user program, in order to implement a switching command for the switch, the first and the second processor unit executing the program in parallel.
  • the use of the programmable safety controller as a control unit and the associated redundancy increases the operational reliability of the switch arrangement.
  • control unit is designed to carry out at least one comparison between the first and the second processor unit during the execution of the program, in particular a continuous comparison.
  • the comparison includes a comparison, in particular a cyclic comparison, of a process image of the first processor unit with a process image of the second processor unit.
  • control unit is configured to initiate a further security measure depending on a result, in particular in the case of a negative result of the at least one adjustment or comparison of the process images.
  • the safety measure or the further safety measure includes a safe shutdown of the motor, a blocking or shutdown of the power section or a triggering of a circuit breaker that connects or disconnects the equipment to a power network.
  • the safe shutdown of the motor takes place in particular in such a way that the switch is in a safe position after the safe shutdown.
  • Initiating the safety measure includes the output of at least one safety signal.
  • the safe stopping of the engine includes a safety function corresponding to a stop category according to the industry standard EN 60204-1:2006, the content of which is hereby incorporated by reference.
  • the safe stopping of the motor includes a safe torque off, STO, safety function, a safe stop 1, SS1, safety function, a safe stop 2, SS2, safety function, or a safe operation stop, SOS, safety function.
  • a hardware of the first processor unit differs from a hardware of the second processor unit.
  • control unit is configured to check a locking condition of two or more components of the switch arrangement.
  • the components of the switch arrangement can comprise components of the switch, for example, in the case of a switch which is designed as an on-load tap-changer, a selector, a preselector, a polarity circuit or a load changeover switch of the on-load tap-changer.
  • the components of the switch assembly may also include components that are not Part of the switch are, in particular, components of another switch in the switch arrangement or another switching component in the switch arrangement.
  • Two switches designed as on-load tap-changers can, for example, be on-load tap-changers for different phases of the energy network.
  • the other switching components can, for example, include a tap changer, a double reversing switch or an Advanced Retard Switch, ARS.
  • the locking condition can correspond to a specification that one of the components may only be operated or may not be operated if another of the components is in a certain state, for example a certain position, a certain switching state or a certain movement state.
  • control unit is configured to initiate the security measure depending on a result, in particular in the case of a negative result of the test of the locking condition.
  • the switch arrangement e.g. if it is an on-load tap changer, a load diverter switch, a selector, a double reversing switch, a reversing switch, a preselector, a circuit breaker, a load switch or a disconnector, is assigned to an electrical equipment, for example a power transformer or a phase-shifting transformer.
  • control unit has inputs and outputs which are designed as clocked inputs and outputs, respectively.
  • control unit is configured to check the presence of a cross-circuit based on input signals present at the inputs and/or based on output signals present at the outputs.
  • a cross circuit is a short circuit between connecting cables of two adjacent inputs or outputs.
  • control unit is configured to initiate the further safety measure depending on a result of the test, in particular if a cross-circuit is present.
  • the power unit is designed to bring the motor to a standstill, in particular to a safe standstill, by means of a first of the at least one safety measures.
  • the standstill can also include a movement within a defined tolerance range.
  • the safe stopping of the engine includes a safety function corresponding to a stop category according to the industry standard EN 60204-1:2006, the content of which is hereby incorporated by reference.
  • the safe stopping of the motor includes a safe torque off, STO, safety function, a safe stop 1, SS1, safety function, a safe stop 2, SS2, safety function, or a safe operation stop, SOS, safety function.
  • the safety measure includes monitoring a movement or a position of the motor, in particular a motor shaft of the motor.
  • monitoring the movement of the motor includes a safely limited speed (SLS) safety function, a safe speed monitor (SSM) safety function, a safe speed range (SSR) safety function, a safe limit position (SLP) safety function, a safe position (SP) safety function, or a safe direction (SDI) safety function.
  • SLS safely limited speed
  • SSM safe speed monitor
  • SSR safe speed range
  • SLP safe limit position
  • SP safe position
  • SDI safe direction
  • the first safety measure includes an uncontrolled shutdown of the engine.
  • the power unit is designed to completely interrupt the power supply to the motor depending on the control signal.
  • the first safety measure involves interrupting the power supply immediately or without delay. The power supply remains in place even in the The motor is stopped so that it can no longer provide torque (corresponds to STO).
  • the power unit is designed to brake the motor in a controlled manner or to stop it in a controlled manner depending on the control signal.
  • the energy supply to the motor is maintained during this time.
  • the power unit is designed to completely interrupt the energy supply to the motor after the controlled braking or stopping, depending on the control signal, so that the motor can no longer provide torque (corresponds to SS1).
  • the power unit is designed to maintain the energy supply to the motor after the controlled braking or stopping and to regulate a position of the motor, in particular the motor shaft, to a desired position (corresponds to SS2) depending on the control signal.
  • the power unit is designed to initiate a further safety measure if a tolerance range with respect to the target position is violated, in particular comprising an STO or an SS1 safety function.
  • the power unit is configured to limit a speed or rotational speed of the motor shaft by a second of the at least one safety measure.
  • the power unit is configured to restrict the speed such that the speed is less than or equal to a predetermined maximum speed (corresponds to SLS or SSR).
  • the power unit is configured to restrict the speed such that the speed is greater than or equal to a predetermined minimum speed (corresponds to SSM or SSR).
  • the power unit is configured to initiate a further safety measure, in particular comprising an STO or an SS1 safety function, if the maximum speed is exceeded or the minimum speed is undercut.
  • the at least one safety-relevant event comprises a deviation of a direction of rotation of the motor, the motor shaft or another shaft of the switch arrangement from a predetermined target direction of rotation (corresponds to SDI).
  • the direction of rotation is detected by the feedback system, in particular a sensor device of the feedback system, for example the absolute value sensor.
  • control unit is configured to generate the control signal depending on the feedback signal.
  • the at least one safety-relevant event occurs when the absolute position of the motor shaft or the further shaft falls below a predetermined minimum position or exceeds a predetermined maximum position (corresponds to SLP).
  • the at least one safety-relevant event occurs when the first and the second value for the absolute position of the drive shaft differ significantly from one another.
  • the control unit can compare the first and the second value for the absolute position of the drive shaft with one another.
  • FIG. 1 shows a schematic representation of an exemplary embodiment of a switch arrangement 1 according to the improved concept with a switch 17 and a Servo drive system 2, which is connected to the switch 17 via a drive shaft 16.
  • the servo drive system 2 contains a motor 12, which can drive the drive shaft 16 via a motor shaft 14 and optionally via a gear 15.
  • a control device 3 of the servo drive system 2 comprises a power section 11, which contains, for example, a servo converter, for the controlled or regulated energy supply of the motor 12, as well as a control unit 10 for controlling the power section 11, for example via a bus 18.
  • the servo drive system 2 can have a sensor system 13, which serves as a feedback system 4 or is part of the feedback system and is connected to the power unit 11. Furthermore, the sensor system 13 is coupled directly or indirectly to the drive shaft 16.
  • the encoder system 13 is designed to detect a value for a position, in particular an angular position, for example an absolute angular position, of the drive shaft 16 and to generate a feedback signal based thereon.
  • the encoder system 13 can comprise, for example, an absolute encoder, in particular a multi-turn absolute encoder, which is attached to the drive shaft 16, the motor shaft 14 or another shaft whose position is clearly linked to the absolute position of the drive shaft 16.
  • the position of the drive shaft 16 can be clearly determined from the position of the motor shaft 14, for example via a transmission ratio of the gear 15.
  • the fastening of the absolute encoder is designed, for example, as a combination of a positive connection with a force-fitting or material-fitting connection.
  • the feedback system is also configured to detect a second value for the position of the drive shaft 16.
  • the sensor system 13 can be configured to detect the second value, in particular using a method which differs from a method by which the first value for the position of the drive shaft 16 is detected.
  • control device 3 can be set up to determine the second value from a rotor position of the motor 12, effectively thus having a virtual sensor for detecting the second value.
  • a rotor position of the motor 12 can be used. Since the strength of the feedback varies periodically, the rotor position can be determined approximately, in particular by means of signal analysis, for example FFT analysis. Since a full revolution of the drive shaft 16 corresponds to a large number of revolutions of the rotor, the position of the drive shaft 16 can be determined with much greater accuracy.
  • the control device 3 in particular the control unit 10 and/or the power unit 11, is designed to control or regulate the motor 12 depending on a feedback signal which the feedback system 4 generates based on the first and the second value.
  • the control device 3 for example the control unit 10, can, for example, compare the two values for the position of the drive shaft 16 and/or carry out a plausibility check of the position determination.
  • the control unit 10 is designed as a programmable safety controller and includes a first and a second programmable logic controller 6, 7. To implement a switching command for the switch, the programmable logic controllers 6, 7, for example, execute a program in parallel.
  • the programmable logic controllers 6, 7 compare themselves with one another, in particular cyclically or continuously.
  • the comparison can, for example, include a comparison of calculation results, checksums or the like.
  • programmable logic controllers 6, 7 contain different hardware components or are designed as different types or models.
  • Inputs and outputs of the control unit 10 can be designed as clocked inputs and outputs. This allows the control unit 10 to detect clock deviations by comparing an input signal with an output signal, for example deviations in period lengths or edges of the signals. Based on the clock deviations, cross-circuits can be detected, for example.
  • the control unit 10 can identify the presence of a safety-relevant event, for example a malfunction or error in the switch 17 or the drive system. If a safety-relevant event occurs, the control unit 10 transmits a control signal to the power unit 11, which then initiates or executes a safety measure.
  • a safety-relevant event for example a malfunction or error in the switch 17 or the drive system.
  • FIG 2 shows a schematic representation of another exemplary embodiment a switch arrangement 1 according to the improved concept, which is based on the embodiment according to Figure 1 based on.
  • the switch arrangement 1 optionally has a control cabinet 21 within which the control unit 10, the power unit 11 and an optional human-machine interface 19 are arranged.
  • the human-machine interface 19 is connected to the control unit 10 and can be used for control, maintenance or configuration purposes, for example.
  • the motor 12, the motor shaft 14, the encoder system 13 and/or the gear 15 can be arranged inside or outside the control cabinet 21.
  • the switch arrangement 1, in particular the control unit 10, is coupled to a safety device 20, which comprises, for example, a circuit breaker, in order to disconnect the switch arrangement 1 or an electrical device to which the switch arrangement 1 is assigned from a power network, for example in the event of an error or a malfunction of the switch arrangement 1.
  • a safety device 20 which comprises, for example, a circuit breaker, in order to disconnect the switch arrangement 1 or an electrical device to which the switch arrangement 1 is assigned from a power network, for example in the event of an error or a malfunction of the switch arrangement 1.
  • a switch arrangement 1 increases the operational reliability of the servo drive system, the switch and the equipment. This is achieved in particular by using the programmable safety controller as a control unit and the associated redundancy, the initiation of the safety measure by the power unit and the double position determination.

Landscapes

  • Control Of Electric Motors In General (AREA)

Claims (13)

  1. Arrangement commutateur comprenant un commutateur (17) et un système de servomoteur (2) pour le commutateur (17), le système de servomoteur (2) comprenant
    - un arbre d'entraînement (16), lequel relie le système de servomoteur (2) au commutateur (17) ;
    - un moteur (12) destiné à entraîner le commutateur (17) ;
    - une partie de puissance (11) destinée à l'alimentation en énergie du moteur (12) ; et
    - un système de rétroaction (4), lequel est conçu pour
    - déterminer au moins deux valeurs pour une position absolue de l'arbre d'entraînement (16)
    - générer un signal de rétroaction en se basant sur les au moins deux valeurs ; et
    - une unité de commande (10), laquelle est réalisée sous la forme d'une commande de sécurité programmable et conçue pour
    - commander la partie de puissance (11) en fonction d'au moins une valeur de consigne ;
    - agir sur un fonctionnement du moteur (12) en fonction du signal de rétroaction ; et
    - identifier la présence d'au moins un événement important pour la sécurité et, dans le cas de l'événement important pour la sécurité, communiquer au moins un signal de commande à la partie de puissance (11) ; la partie de puissance (11) étant conçue pour, en fonction du signal de commande, initier ou exécuter au moins une mesure de sécurité ;
    - caractérisé en ce que l'unité de commande (10) comprend une première et une deuxième unité à processeur (6, 7) ; et
    - est conçue pour exécuter un programme en vue de mettre en œuvre une instruction de commutation pour le commutateur (17), la première et la deuxième unité à processeur (6, 7) exécutant le programme en parallèle ;
    - est conçue pour, pendant l'exécution du programme, effectuer au moins un rapprochement entre la première et la deuxième unité à processeur (6, 7) ;
    - est conçue pour, en fonction d'un résultat de l'au moins un rapprochement, initier une mesure de sécurité, la mesure de sécurité comprenant
    - une immobilisation sécurisée du moteur (12) ou
    - une immobilisation ou un blocage de la partie de puissance (11) ou
    - le déclenchement d'un commutateur de puissance destiné à déconnecter d'un réseau d'énergie un moyen opérationnel associé au commutateur (17).
  2. Arrangement commutateur (1) selon la revendication 1,
    - le système de rétroaction (4) étant conçu pour déterminer chacune des au moins deux valeurs de la position de l'arbre d'entraînement (16) conformément à une méthode associée,
    - toutes les méthodes destinées à déterminer les au moins deux valeurs se différenciant les unes des autres.
  3. Arrangement commutateur (1) selon l'une des revendications 1 ou 2, l'une des au moins deux valeurs de la position de l'arbre d'entraînement (16) étant une première valeur pour une position absolue de l'arbre d'entraînement (16).
  4. Arrangement commutateur (1) selon l'une des revendications 1 à 3, le système de rétroaction (4)
    - comprenant un transmetteur de valeur absolu, lequel est conçu et disposé pour détecter la position absolue de l'arbre d'entraînement (16) ou une position absolue d'un arbre supplémentaire, lequel est relié à l'arbre d'entraînement (16) et, en se basant sur la position détectée, générer au moins un signal de sortie ; et
    - étant conçu pour déterminer l'une des au moins deux valeurs de la position de l'arbre d'entraînement (16) à l'aide de l'au moins un signal de sortie.
  5. Arrangement commutateur (1) selon l'une des revendications 1 à 4, le transmetteur de valeur absolu étant relié par complémentarité de formes à l'arbre d'entraînement (16) ou à l'arbre supplémentaire et étant en plus relié par liaison de force ou par liaison de matières à l'arbre d'entraînement (16) ou à l'arbre supplémentaire.
  6. Arrangement commutateur (1) selon la revendication 1, l'unité de commande (10) étant conçue pour, pendant l'exécution du programme, effectuer une comparaison d'une représentation du processus de la première unité à processeur (6) avec une représentation du processus de la deuxième unité à processeur (7).
  7. Arrangement commutateur (1) selon l'une des revendications 1 à 6, l'unité de commande (10) étant conçue pour vérifier une condition de verrouillage de deux composants ou plus de l'arrangement commutateur.
  8. Arrangement commutateur (1) selon l'une des revendications 1 à 7, l'unité de commande (10) possédant des entrées et des sorties qui sont réalisées sous la forme d'entrées ou de sorties cadencées.
  9. Arrangement commutateur (1) selon la revendication 8, l'unité de commande (10) étant conçue pour, à l'aide de signaux d'entrée et/ou de signaux de sortie qui sont présents aux entrées ou aux sorties, vérifier la présence d'un court-circuit transversal.
  10. Arrangement commutateur (1) selon l'une des revendications 1 à 9, la partie de puissance (11) étant conçue pour mettre le moteur (12) à l'arrêt par une première de l'au moins une mesure de sécurité.
  11. Arrangement commutateur (1) selon l'une des revendications 1 à 10, la partie de puissance (11) étant conçue pour, en fonction du signal de commande, freiner le moteur (12) de manière commandée ou pour l'immobiliser de manière commandée.
  12. Arrangement commutateur (1) selon l'une des revendications 1 à 11, la partie de puissance (11) étant conçue pour restreindre une vitesse d'un arbre de moteur (14) du moteur (12) par une deuxième de l'au moins une mesure de sécurité.
  13. Arrangement commutateur (1) selon l'une des revendications 1 à 12, le commutateur (17) étant un changeur de prise de charge ou un permutateur de charge ou un sélecteur ou un double inverseur ou un inverseur ou un présélecteur ou un commutateur de puissance ou un commutateur de charge ou un sectionneur.
EP20721207.7A 2019-05-15 2020-04-23 Ensemble commutateur comprenant un système d'entraînement Active EP3963611B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019112710.6A DE102019112710A1 (de) 2019-05-15 2019-05-15 Schalteranordnung mit antriebssystem
PCT/EP2020/061274 WO2020229119A1 (fr) 2019-05-15 2020-04-23 Ensemble commutateur comprenant un système d'entraînement

Publications (2)

Publication Number Publication Date
EP3963611A1 EP3963611A1 (fr) 2022-03-09
EP3963611B1 true EP3963611B1 (fr) 2024-06-05

Family

ID=70456774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20721207.7A Active EP3963611B1 (fr) 2019-05-15 2020-04-23 Ensemble commutateur comprenant un système d'entraînement

Country Status (5)

Country Link
US (1) US11894204B2 (fr)
EP (1) EP3963611B1 (fr)
CN (1) CN113853664A (fr)
DE (1) DE102019112710A1 (fr)
WO (1) WO2020229119A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019220444B4 (de) * 2019-12-20 2021-08-05 Siemens Aktiengesellschaft Fernantrieb und Parametrier-Verfahren
GB2609423A (en) * 2021-07-29 2023-02-08 Nortech Man Ltd Switch gear controller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69911410D1 (de) * 1998-04-03 2003-10-23 Energyline Systems Inc Motorbetätigung für einen luftschalter in einer elektrischen oberleitungsenergieverteilung
JP2002532842A (ja) 1998-12-16 2002-10-02 エービービー エービー 電気開閉器の駆動及び制御装置
DE19963256C1 (de) * 1999-12-17 2001-05-23 Siemens Ag Hochspannungs-Leistungsschalter
DE10235502C1 (de) * 2002-08-02 2003-12-24 Siemens Ag Vorrichtung und Verfahren zur sicheren Schalterstellungserkennung eines Drehschalters
EP1719141A1 (fr) * 2004-01-30 2006-11-08 ABB Technology Ltd Moniteur d'etat destine a un dispositif de distribution electrique
EP1744338B1 (fr) * 2005-07-13 2010-03-31 Siemens Aktiengesellschaft Méchanisme de commande und procédé de commutation pour un appareil de commutation
EP2054902B1 (fr) 2006-08-25 2016-07-27 ABB Technology Ltd Unité d'entraînement de moteur électrique pour des changeurs de prise en charge
CN103563032B (zh) * 2011-03-27 2017-05-10 Abb技术有限公司 具有改进驱动系统的抽头变换器

Also Published As

Publication number Publication date
CN113853664A (zh) 2021-12-28
DE102019112710A1 (de) 2020-11-19
US11894204B2 (en) 2024-02-06
US20220216015A1 (en) 2022-07-07
WO2020229119A1 (fr) 2020-11-19
EP3963611A1 (fr) 2022-03-09

Similar Documents

Publication Publication Date Title
EP3963611B1 (fr) Ensemble commutateur comprenant un système d'entraînement
EP2093642B1 (fr) Table rotative avec une unité de contrôle ou regulation associée
EP3963613B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
EP0658832B1 (fr) Dispositif pour commander une machine-outil ou un robot
EP3137948B1 (fr) Dispositif et procédé de surveillance d'une partie de machine mobile avec protection contre les erreurs
EP3963612B1 (fr) Ensemble commutateur comprenant un système d'entraînement et procédé pour faire fonctionner un commutateur
EP3963617B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
DE102019112712A1 (de) Schalteranordnung mit antriebssystem und verfahren zum sicheren betrieb einer schalteranordnung
WO2020229131A1 (fr) Ensemble commutateur comprenant un système d'entraînement et procédé pour entraîner un ensemble commutateur
EP3963614B1 (fr) Procédé de mise en oeuvre d'une commutation de changeur de prises en charge au moyen d'un système d'entraînement et système d'entraînement pour un changeur de prises en charge
EP0824969A2 (fr) Système de commande pour centrifugeuse pour laboratoire
DE102021101237B3 (de) Schalteranordnung mit laststufenschalter und antriebssystem
DE10344070B4 (de) Antriebsmodul für eine Druckmaschine
DE102022123571B3 (de) System zur betätigung eines stufenschalters
DE102019112713A1 (de) Schalteranordnung und verfahren zum sicheren betrieb einer schalteranordnung
DE102011117646A1 (de) Elektromotor mit gesteuerter Stillsetzung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40060298

Country of ref document: HK

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230328

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP