EP4048759A1 - Élimination du mercure et du silicium d'une huile de pyrolyse dérivée de plastique - Google Patents
Élimination du mercure et du silicium d'une huile de pyrolyse dérivée de plastiqueInfo
- Publication number
- EP4048759A1 EP4048759A1 EP20804725.8A EP20804725A EP4048759A1 EP 4048759 A1 EP4048759 A1 EP 4048759A1 EP 20804725 A EP20804725 A EP 20804725A EP 4048759 A1 EP4048759 A1 EP 4048759A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plastic
- pyrolysis oil
- derived pyrolysis
- mercury
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 162
- 239000003921 oil Substances 0.000 title claims abstract description 158
- 239000004033 plastic Substances 0.000 title claims abstract description 158
- 229920003023 plastic Polymers 0.000 title claims abstract description 158
- 229910052753 mercury Inorganic materials 0.000 title claims abstract description 74
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 59
- 239000010703 silicon Substances 0.000 title claims abstract description 59
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 51
- 238000000034 method Methods 0.000 claims abstract description 67
- 238000004230 steam cracking Methods 0.000 claims abstract description 53
- 239000003463 adsorbent Substances 0.000 claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 230000001172 regenerating effect Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 17
- 230000008929 regeneration Effects 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 238000011144 upstream manufacturing Methods 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 11
- 239000000356 contaminant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000013502 plastic waste Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- -1 ethylene, propylene, butene Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229940100892 mercury compound Drugs 0.000 description 2
- 150000002731 mercury compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
- C10G9/36—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G53/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
- C10G53/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
- C10G53/08—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/07—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
Definitions
- the present disclosure relates to methods and systems for removing contaminants from plastic-derived pyrolysis oil.
- One proposed method of reusing plastics is pyrolyzing plastic waste to reduce the carbon number.
- the resultant product can be distilled where a pyrolyzed oil fraction can be used as feedstock for stream cracking, which further reduces the carbon number.
- the final result is a low carbon number product that can be used as a feedstock in various syntheses including polymers synthesis.
- Reprocessed Plastic v.79, pp. 595-606.
- silicon and mercury can deactivate catalysts in the downstream synthesis processes. This can result in unreliable process operation and/or off-specification products.
- mercury in addition to environmental emission issues, can weaken aluminum welds in downstream recovery and separation units, which poses process safety concerns.
- the present disclosure relates to methods and systems for removing silicon and/or mercury contaminants from plastic-derived pyrolysis oil.
- a first nonlimiting example method of the present disclosure comprises: removing silicon from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 5 wppm or less of silicon; and steam cracking the plastic-derived pyrolysis oil in the presence of steam to produce a product.
- a second nonlimiting example method of the present disclosure comprises: removing mercury from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 1 wppb or less of mercury; and steam cracking the plastic-derived pyrolysis oil in the presence of a steam to produce a product.
- a third nonlimiting example method of the present disclosure comprises: removing silicon and mercury from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 5 wppm or less of silicon and 1 wppb or less of mercury; and steam cracking the plastic-derived pyrolysis oil in the presence of a steam to produce a product.
- FIG. 1 is a diagram illustrating a process for reducing/removing silicon from a plastic-derived pyrolysis oil upstream of a steam cracking unit.
- FIG. 2 is a diagram illustrating a process for reducing/removing mercury from a plastic-derived pyrolysis oil upstream of a steam cracking unit.
- FIG. 3 is a diagram illustrating a process for reducing/removing silicon and mercury from a plastic-derived pyrolysis oil upstream of a steam cracking unit.
- the present disclosure relates to methods and systems for removing silicon and/or mercury contaminants from plastic-derived pyrolysis oil. More specifically, in the methods and systems described herein, the plastic-derived pyrolysis oil is produced from plastic waste material in a plastic pyrolyzer where the plastic material is chemically broken down and then distilled. A plastic-derived pyrolysis oil cut is the primary product of the distillation. The plastic-derived pyrolysis oil is treated to reduce/remove silicon and/or mercury contaminants and then further processed by steam cracking to further reduce the carbon number. The resultant product is further processed to produce cuts suitable for use in various syntheses including polymers synthesis.
- the product (or a fraction thereof) from the steam cracker may be treated to reduce/remove silicon and/or mercury contaminants ⁇
- a reference to a “C x ” fraction, stream, portion, feed, or other quantity is defined as a fraction (or other quantity) where 50 wt% or more of the fraction corresponds to hydrocarbons having “x” number of carbons.
- a range is specified, such as “C x -Cy”
- 50 wt% or more of the fraction corresponds to hydrocarbons having a number of carbons from “x” to “y”.
- a specification of “C x+ ” corresponds to a fraction where 50 wt% or more of the fraction corresponds to hydrocarbons having the specified number of carbons or more (or the specified number of carbons or less).
- plastic-derived pyrolysis oil refers to pyrolysis oil where at least 50 wt% of the pyrolysis oil is derived from a plastic source. That is, the feedstock (also referred to as plastic feedstock) that is pyrolyzed comprises at least 50 wt% plastic.
- plastic sources include, but are not limited to, plastic waste (e.g., plastic straws, plastic utensils, plastic bags, food containers, and the like), composite materials (e.g., composite packaging), and the like, and any combination thereof.
- plastic waste e.g., plastic straws, plastic utensils, plastic bags, food containers, and the like
- composite materials e.g., composite packaging
- Said plastic sources may comprise one or more polymers that include, but are not limited to, polyolefins (e.g., homopolymer or copolymers of ethylene, propylene, butene, hexene, butadiene, isoprene, isobutylene, and other olefins), polystyrene, polyvinylchloride, polyamide (e.g., nylon), polyethylene terephthalate, polyurethane, ethylene vinyl acetate, and the like.
- polyolefins e.g., homopolymer or copolymers of ethylene, propylene, butene, hexene, butadiene, isoprene, isobutylene, and other olefins
- polystyrene polyvinylchloride
- polyamide e.g., nylon
- polyethylene terephthalate polyurethane
- ethylene vinyl acetate ethylene vinyl acetate
- the plastic portion of the plastic feedstock for pyrolysis may comprise polyolefin at 65 wt% to 100 wt% (or 65 wt% to 80 wt%, or 75 wt% to 90 wt%, or 80 wt% to 100 wt%) with a balance of one or more other polymers.
- Pyrolysis of the plastic feedstock may be performed by known methods and in known systems (e.g., at temperatures of 400°C to 850°C, or 400°C to 600°C, or 500°C to 850°C).
- the pyrolysis product is then distilled (or separated) into one or more cuts including a plastic-derived pyrolysis oil cut.
- the plastic-derived pyrolysis oil may be a C5 + stream (or a C5-C30 stream, or a C5-C20 stream, or a C5-C25 stream, or a C5-C20 stream).
- the plastic-derived pyrolysis oil may comprise 50 wt% or more (or 50 wt% to 100 wt%, or 50 wt% to 75 wt%, or 70 wt % to 90 wt%, or 80 wt% to 100 wt%) of C5 + hydrocarbons and less than 50 wt% (or 0 wt% to less than 50 wt%, or 25 wt% to 50 wt%, or 10 wt % to 30 wt%, or 0 wt% to 20 wt%, or 0 wt% to 5 wt%, or 0 wt% to 2 wt%) of C4. hydrocarbons.
- the plastic-derived pyrolysis oil may have a specific gravity of 0.5 to 1.0 (or 0.5 to 0.7, or 0.6 to 0.9, or 0.7 to 1.0).
- the plastic-derived pyrolysis oil may comprise 0 wt% to 60 wt% olefin content, 0 wt% to 25 wt% diolefin content, and balance other species like aromatics and paraffins for example.
- the plastic -derived pyrolysis oil may have an initial boiling point of 30°C or greater (or 30°C to 200°C, or 30°C to 70°C, or 50°C to 150°C, or 100°C to 200°C).
- the plastic- derived pyrolysis oil may have a final boiling point of 600°C or less (or 150°C to 600°C, or 250°C to 400°C, or 300°C to 500°C, or 400°C to 600°C).
- the plastic-derived pyrolysis oil may have properties similar to a naphtha, a distillate, a wax, an atmospheric resid, and the like.
- the plastic-derived pyrolysis oil may comprise silicon at 1 wppm to 50 wppm (or 1 wppm to 15 wppm, or 10 wppm to 30 wppm, or 25 wppm to 50 wppm) and/or mercury at 1 wppb to 500 wppb (or 1 wppb to 50 wppb, or 25 wppb to 100 wppb, or 50 wppb to 250 wppb, or 200 wppb to 350 wppb, or 250 wppb to 500 wppb, or 400 wppb to 500 wppb).
- FIGS. 1-3 provide nonlimiting example diagrams illustrating said process.
- FIG. 1 is a diagram illustrating a process 100 for reducing/removing silicon from a plastic-derived pyrolysis oil 102 upstream of a steam cracking unit 116.
- the process 100 includes treating the plastic -derived pyrolysis oil 102 in a silicon removal unit 104 to produce a purified plastic-derived pyrolysis oil 106 having a silicon concentration of 5 wppm or less
- the silicon concentration in the purified plastic derived pyrolysis oil 106 is less than the silicon concentration in the plastic-derived pyrolysis oil 102.
- the purified plastic-derived pyrolysis oil 106 is then mixed with a steam cracker feed 110 to produce a mixed feed 114.
- the purified plastic-derived pyrolysis oil 106 is admixed with the steam cracker feed 110 using a valve 108.
- the purified plastic-derived pyrolysis oil 106 and the steam cracker feed 110 may be mixed in a vessel (not shown) or by any other suitable method to produce the mixed feed 114.
- the steam cracker feed 110 and the purified plastic-derived pyrolysis oil 106 can be fed separately (not shown) steam cracking unit 116.
- the purified plastic- derived pyrolysis oil 106 can be steam cracked without use of steam cracker feed 110. That is, the purified plastic-derived pyrolysis oil 106 can be used neat as the feed for the steam cracking unit 116.
- the mixed feed 114 (or the steam cracker feed 110 and the purified plastic-derived pyrolysis oil 106 separately (not shown), or the purified plastic-derived pyrolysis oil 106 neat (not shown)) and steam 112 are fed into the steam cracking unit 116 for steam cracking to produce a product 118.
- the mixed feed 114 can comprise the purified plastic -derived pyrolysis oil 106 at 1 wt% to 80 wt% (or 1 wt% to 5 wt%, or 1 wt% to 15 wt%, or 10 wt% to 25 wt%, or 20 wt% to 50 wt%, or 25 wt% to 65 wt%, or 50 wt% to 80 wt%) based on the total weight of the mixed feed 114.
- the product 118 from the steam cracking unit 116 can then be processed in a recovery facility/unit(s) 120 to produce one or more products 122 suitable for use in various syntheses including polymer synthesis.
- the silicon removal unit 104 can include a regenerable adsorbent where a regeneration gas 124 can be passed over the regenerable adsorbent in the silicon removal unit 104 at elevated temperatures to produce a spent regeneration gas 126 comprising silicon.
- a method of the present disclosure can include: removing silicon from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 5 wppm or less of silicon; and steam cracking the plastic-derived pyrolysis oil in the presence of steam to produce a product.
- a system of the present disclosure can include: a silicon removal unit 104 upstream of and fluidly coupled to a steam cracking unit 116 configured to receive purified plastic-derived pyrolysis oil 106 from the silicon removal unit 104.
- FIG. 2 is a diagram illustrating a process 200 for reducing/removing mercury from a plastic-derived pyrolysis oil 202 upstream of a steam cracking unit 216.
- the process 200 includes treating the plastic-derived pyrolysis oil 202 in a mercury removal unit 204 to produce a purified plastic-derived pyrolysis oil 206 having a mercury concentration of 1 wppb or less ( ⁇ ? .g., 0 wppb to 1 wppb, or 0.001 wppb to 1 wppb, or 0.001 wppb to 0.5 wppb, or 0.001 wppb to 0.1 wppb).
- the purified plastic-derived pyrolysis oil 206 is then mixed with a steam cracker feed 210 (e.g., steam cracker feeds 110 described above) to produce a mixed feed 214.
- a steam cracker feed 210 e.g., steam cracker feeds 110 described above
- the purified plastic-derived pyrolysis oil 206 is admixed with the steam cracker feed 210 using a valve 208.
- the purified plastic-derived pyrolysis oil 206 and the steam cracker feed 210 may be mixed in a vessel (not shown) or by any other suitable method to produce the mixed feed 214.
- the steam cracker feed 210 and the purified plastic-derived pyrolysis oil 206 can be fed separately (not shown) steam cracking unit 216.
- the purified plastic-derived pyrolysis oil 106 can be steam cracked without use of steam cracker feed 110. That is, the purified plastic-derived pyrolysis oil 206 can be used neat as the feed for the steam cracking unit 216.
- the mixed feed 214 (or the steam cracker feed 210 and the purified plastic-derived pyrolysis oil 206 separately (not shown), or the purified plastic-derived pyrolysis oil 206 neat (not shown)) and steam 212 are fed into the steam cracking unit 216 for steam cracking to produce a product 218.
- the mixed feed 214 can comprise the purified plastic -derived pyrolysis oil 206 at 1 wt% to 80 wt% (or 1 wt% to 5 wt%, or 1 wt% to 15 wt%, or 10 wt% to 25 wt%, or 20 wt% to 50 wt%, or 25 wt% to 65 wt%, or 50 wt% to 80 wt%) based on the total weight of the mixed feed 214.
- the product 218 from the steam cracking unit 216 can then be processed in a recovery facility/unit(s) 220 to produce one or more products 222 suitable for use in various syntheses including polymer synthesis.
- the mercury removal unit 204 can include a regenerable adsorbent where a regeneration gas 224 can be passed over the regenerable adsorbent in the mercury removal unit 204 at elevated temperatures to produce a spent regeneration gas 226 comprising mercury.
- the spent regeneration gas 226 may be passed through a mercury trap bed 228 to produce a reduced- mercury gas 230 that can be vented or recycled as regeneration gas 224.
- a method of the present disclosure can include: removing mercury from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 1 wppb or less of mercury; and steam cracking the plastic-derived pyrolysis oil in the presence of a steam to produce a product.
- a system of the present disclosure can include: a mercury removal unit 204 upstream of and fluidly coupled to a steam cracking unit 216 configured to receive purified plastic-derived pyrolysis oil 206 from the mercury removal unit 204.
- FIG. 3 is a diagram illustrating a process 300 for reducing/removing silicon and mercury from a plastic-derived pyrolysis oil 302 upstream of a steam cracking unit 320.
- the process 300 includes treating the plastic-derived pyrolysis oil 302 in first in a silicon removal unit 304 to produce a partially purified plastic-derived pyrolysis oil 306 then in a mercury removal unit 308 to produce a purified plastic-derived pyrolysis oil 310 having a silicon concentration of 5 wppm or less (e.g.
- the purified plastic-derived pyrolysis oil 310 is then mixed with a steam cracker feed 314 (e.g., steam cracker feeds 110 described above) to produce a mixed feed 318.
- a steam cracker feed 314 e.g., steam cracker feeds 110 described above
- the purified plastic -derived pyrolysis oil 310 is admixed with the steam cracker feed 314 using a valve 312.
- the purified plastic-derived pyrolysis oil 310 and the steam cracker feed 314 may be mixed in a vessel (not shown) or by any other suitable method to produce the mixed feed 318.
- the steam cracker feed 314 and the purified plastic-derived pyrolysis oil 310 can be fed separately (not shown) steam cracking unit 320.
- the purified plastic-derived pyrolysis oil 106 can be steam cracked without use of steam cracker feed 110. That is, the purified plastic- derived pyrolysis oil 310 can be used neat as the feed for the steam cracking unit 320.
- the mixed feed 318 (or the steam cracker feed 314 and the purified plastic-derived pyrolysis oil 310 separately (not shown), or the purified plastic-derived pyrolysis oil 310 neat (not shown)) and steam 316 are fed into the steam cracking unit 320 for steam cracking to produce a product 322.
- the mixed feed 318 can comprise the purified plastic -derived pyrolysis oil 310 at 1 wt% to 80 wt% (or 1 wt% to 5 wt%, or 1 wt% to 15 wt%, or 10 wt% to 25 wt%, or 20 wt% to 50 wt%, or 25 wt% to 65 wt%, or 50 wt% to 80 wt%) based on the total weight of the mixed feed 318.
- the product 322 from the steam cracking unit 320 can then be processed in a recovery facility/unit(s) 324 to produce one or more products 326 suitable for use in various syntheses including polymer synthesis.
- the silicon removal unit 304 can include a regenerable adsorbent where a regeneration gas 328 can be passed over the regenerable adsorbent in the silicon removal unit 104 at elevated temperatures to produce a spent regeneration gas 330 comprising silicon.
- the mercury removal unit 308 can include a regenerable adsorbent where a regeneration gas 332 can be passed over the regenerable adsorbent in the mercury removal unit 308 at elevated temperatures to produce a spent regeneration gas 334 comprising mercury.
- the spent regeneration gas 334 may be passed through a mercury trap bed 336 to produce a reduced- mercury gas 338 that can be vented or recycled as regeneration gas 332.
- a method of the present disclosure can include: removing silicon and mercury from a plastic-derived pyrolysis oil to yield a purified plastic -derived pyrolysis oil comprising 5 wppm or less of silicon and 1 wppb or less of mercury; and steam cracking the plastic-derived pyrolysis oil in the presence of a steam to produce a product.
- a system of the present disclosure can include: a silicon removal unit 304 and a mercury removal unit 308 in series and each upstream of a steam cracking unit 320 configured to receive purified plastic-derived pyrolysis oil 310 from the silicon removal unit 304 or the mercury removal unit 308.
- the product (or a fraction thereof) from the steam cracker may be treated to reduce/remove silicon and/or mercury contaminants.
- Removal of silicon from the pyrolysis oil can be by any known method.
- removal of the silicon can be achieved by passing the plastic-derived pyrolysis oil over an adsorbent (e.g. , a mixture of a lamellar double hydroxide like hydrotalcite and a hydrogenating metal like a group VI-B or group VIII metal, preferably Mo) in the presence of hydrogen at temperatures of 80°C to 360°C and a pressure of 70 psig to 750 psig, which is described in more detail in US Patent No. 8,106,250, which is incorporated herein by reference.
- an adsorbent e.g. , a mixture of a lamellar double hydroxide like hydrotalcite and a hydrogenating metal like a group VI-B or group VIII metal, preferably Mo
- Another method of removing silicon from the plastic -derived pyrolysis oil includes passing the plastic-derived pyrolysis oil over an adsorbent (e.g. , a mixture of copper oxide and a porous, inorganic refractory oxide containing at least 10 wt% alumina) in the presence of hydrogen at temperatures of 80°C to 500°C and a pressure of atmospheric pressure to 1000 psig, which is described in more detail in US Patent No. 4,645,587, which is incorporated herein by reference.
- an adsorbent e.g. , a mixture of copper oxide and a porous, inorganic refractory oxide containing at least 10 wt% alumina
- Removal of mercury from the pyrolysis oil can be by any known method.
- Removal of mercury can be achieved by passing the plastic-derived pyrolysis oil over an adsorbent (e.g., metallic copper, gold, silver, nickel, thallium, platinum, palladium, gallium, and/or indium dispersed on an oxide support) in the presence of hydrogen at temperatures of 25°C to 100°C and a pressure of 0 psig to 300 psig, which is described in more detail in US Patent No. 5,463,167, which is incorporated herein by reference.
- an adsorbent e.g., metallic copper, gold, silver, nickel, thallium, platinum, palladium, gallium, and/or indium dispersed on an oxide support
- Another method of removing mercury from the plastic-derived pyrolysis oil includes contacting the plastic-derived pyrolysis oil with a sulfur compound (e.g., MM’S X where M is selected from a group consisting of alkali metal and ammonium radical, M’ is selected from a group consisting of alkali metal, ammonium radical, and hydrogen, and x is a number of at least 1) to produce a mercury sulfide.
- a sulfur compound e.g., MM’S X where M is selected from a group consisting of alkali metal and ammonium radical, M’ is selected from a group consisting of alkali metal, ammonium radical, and hydrogen, and x is a number of at least
- the mercury sulfide and other mercury compounds in the plastic-derived pyrolysis oil can be removed by passing the plastic- derived pyrolysis oil over an adsorbent (e.g., adsorbents described above) in the presence of hydrogen at temperatures of 25 °C to 100°C and a pressure of 0 psig to 300 psig.
- an adsorbent e.g., adsorbents described above
- Yet another method of removing mercury from the plastic-derived pyrolysis oil includes passing the plastic -derived pyrolysis oil over a sulfur-impregnated metal oxide filter or bed and/or a carbon-impregnated metal oxide filter or bed.
- filters/beds trap the mercury by reacting with the mercury compound and maintaining the mercury in the filter/bed.
- Such mechanisms are not regenerable and therefore, can be used in the mercury trap in FIGS. 2 and 3 or in the mercury removal unit of FIGS. 2 and 3 where the optional regeneration is not included.
- steam cracking is a type of a pyrolysis process.
- the feed for steam cracking can correspond to any type of liquid feed (i.e., feed that is liquid at 20°C and 100 kPa-a, as defined herein).
- suitable steam cracking feeds can include hydrocarbon gases (e.g., ethane, propane, and the like), whole and partial crudes, naphtha boiling feeds, distillate boiling range feeds, resid boiling range feeds (atmospheric or vacuum), or combinations thereof.
- a first nonlimiting example embodiment of the present disclosure is a method comprising: removing silicon from a plastic-derived pyrolysis oil to yield a purified plastic- derived pyrolysis oil comprising 5 wppm or less of silicon; and steam cracking the plastic- derived pyrolysis oil in the presence of steam to produce a product.
- Said embodiment may also include one or more of the following: Element 1: wherein steam cracking the plastic-derived pyrolysis oil is further in the presence of a steam cracker feed; Element 2: Element 1 and admixing the purified plastic-derived pyrolysis oil with the steam cracker feed to yield a mixed feed; and steam cracking the mixed feed; Element 3 : Element 2 and wherein the mixed feed comprises the plastic-derived pyrolysis oil at 1 wt% to 80 wt% based on the weight of the mixed feed; Element 4: wherein removing the silicon from the plastic-derived pyrolysis oil comprises: contacting the plastic-derived pyrolysis oil with an adsorbent; and Element 5: Element 4 and wherein contacting the plastic -derived pyrolysis oil with the adsorbent is in the presence of hydrogen. Examples of combinations include, but are not limited to, Element 1 optionally in combination with Element 2 and Element 3 in combination with Element 4 and optionally Element 5; and Elements
- a second nonlimiting example embodiment of the present disclosure is a method comprising: removing mercury from a plastic-derived pyrolysis oil to yield a purified plastic- derived pyrolysis oil comprising 1 wppb or less of mercury; and steam cracking the plastic- derived pyrolysis oil in the presence of a steam to produce a product.
- Said embodiment may also include one or more of the following: Element 1; Element 2; Element 3; Element 6: wherein removing the mercury from the plastic-derived pyrolysis oil comprises: contacting the plastic-derived pyrolysis oil with an adsorbent in the presence of hydrogen; Element 7: Element 6 and the method further comprising; regenerating the adsorbent; and Element 8: wherein removing the mercury from the plastic-derived pyrolysis oil comprises: passing the plastic-derived pyrolysis oil through a mercury trap.
- combinations include, but are not limited to, Element 1 optionally in combination with Element 2 and Element 3 in combination with Element 6 and optionally Element 7; Elements 1 and 2 in combination with Element 6 and optionally Element 7; Element 1 optionally in combination with Element 2 and Element 3 in combination with Element 8; Elements 1 and 2 in combination with 8; and Elements 6 and 8 an optionally Element 7 in combination and optionally in further combination with one or more of Elements 1-3.
- a third nonlimiting example embodiment of the present disclosure is a method comprising: removing silicon and mercury from a plastic-derived pyrolysis oil to yield a purified plastic-derived pyrolysis oil comprising 5 wppm or less of silicon and 1 wppb or less of mercury; and steam cracking the plastic -derived pyrolysis oil in the presence of a steam to produce a product.
- Said embodiment may also include one or more of the following: Element 1; Element 2; Element 3; Element 4; Element 5; Element 6; Element 7; and Element 8. Examples of combinations include, but are not limited to, two or more of Elements 1-3 in combination; two or more of Elements 4-8 in combination; and one or more of Elements 1-3 in combination with one or more of Elements 4-8.
- compositions and methods are described herein in terms of “comprising” various components or steps, the compositions and methods can also “consist essentially of’ or “consist of’ the various components and steps.
- compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of’ or “consist of’ the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962925450P | 2019-10-24 | 2019-10-24 | |
PCT/US2020/056265 WO2021080899A1 (fr) | 2019-10-24 | 2020-10-19 | Élimination du mercure et du silicium d'une huile de pyrolyse dérivée de plastique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4048759A1 true EP4048759A1 (fr) | 2022-08-31 |
Family
ID=73344142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20804725.8A Withdrawn EP4048759A1 (fr) | 2019-10-24 | 2020-10-19 | Élimination du mercure et du silicium d'une huile de pyrolyse dérivée de plastique |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240101914A1 (fr) |
EP (1) | EP4048759A1 (fr) |
CN (1) | CN114585711A (fr) |
WO (1) | WO2021080899A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11479726B2 (en) | 2020-09-28 | 2022-10-25 | Chevron Phillips Chemical Company, Lp | Circular chemicals or polymers from pyrolyzed plastic waste and the use of mass balance accounting to allow for crediting the resultant products as circular |
GB2613166B (en) * | 2021-11-25 | 2024-07-17 | Plastic Energy Ltd | A method for the removal of impurities from a pyrolysis oil |
EP4306621A1 (fr) | 2022-07-12 | 2024-01-17 | Neste Oyj | Élimination de silicium à partir d'huile dépolymérisée |
WO2024013424A1 (fr) | 2022-07-12 | 2024-01-18 | Neste Oyj | Élimination de silicium d'une huile dépolymérisée |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645587A (en) | 1984-12-07 | 1987-02-24 | Union Oil Company Of California | Process for removing silicon compounds from hydrocarbon streams |
WO1991015559A2 (fr) | 1990-04-04 | 1991-10-17 | Exxon Chemical Patents Inc. | Procede d'elimination de mercure a l'aide d'adsorbants de metal disperse |
US8038869B2 (en) * | 2008-06-30 | 2011-10-18 | Uop Llc | Integrated process for upgrading a vapor feed |
BRPI0802431B1 (pt) | 2008-07-28 | 2017-02-07 | Petróleo Brasileiro S/A - Petrobras | processo de remoção de compostos de silício de correntes de hidrocarbonetos |
CN104984743B (zh) * | 2015-05-04 | 2017-10-13 | 华中科技大学 | 一种用于脱汞的废弃物衍生吸附剂制备方法及产品 |
JP7130632B2 (ja) * | 2016-10-11 | 2022-09-05 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | 種々のスチームクラッカ構成を使用する、混合プラスチックからの高価値化学物質の最大化 |
RU2692082C1 (ru) * | 2018-12-20 | 2019-06-21 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) | Катализатор защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья |
-
2020
- 2020-10-19 CN CN202080074184.XA patent/CN114585711A/zh active Pending
- 2020-10-19 EP EP20804725.8A patent/EP4048759A1/fr not_active Withdrawn
- 2020-10-19 US US17/766,586 patent/US20240101914A1/en active Pending
- 2020-10-19 WO PCT/US2020/056265 patent/WO2021080899A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20240101914A1 (en) | 2024-03-28 |
CN114585711A (zh) | 2022-06-03 |
WO2021080899A1 (fr) | 2021-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240101914A1 (en) | Mercury and silicon removal from plastic-derived pyrolysis oil | |
JP7130632B2 (ja) | 種々のスチームクラッカ構成を使用する、混合プラスチックからの高価値化学物質の最大化 | |
JP6956187B2 (ja) | 廃棄プラスチックのプロピレンおよびクメンへの変換 | |
JP6942178B2 (ja) | 熱分解、水添分解、水添脱アルキル化およびスチームクラッキングのステップを含む統合プロセス構成 | |
JP7051873B2 (ja) | 廃棄プラスチックのプロピレンおよびクメンへの変換 | |
US10865348B2 (en) | Process which does simultaneous dehydrochlorination and hydrocracking of pyrolysis oils from mixed plastic pyrolysis while achieving selective hydrodealkylation of C9+ aromatics | |
KR20230004713A (ko) | 열분해 오일의 여과 및 금속 산화물 처리가 있는 오일 정제를 통한 플라스틱 폐기물의 폴리에틸렌으로의 순환 경제 | |
KR20220119411A (ko) | 정제 원유장치를 통한 플라스틱 폐기물의 폴리에틸렌으로의 순환 경제 | |
KR20220117902A (ko) | 정제 fcc 및 알킬화 장치를 통한 플라스틱 폐기물의 폴리에틸렌으로의 순환 경제 | |
KR20230004715A (ko) | 열분해 오일의 여과 및 금속 산화물 처리가 있는 오일 정제를 통한 플라스틱 폐기물의 폴리프로필렌으로의 순환 경제 | |
KR102387332B1 (ko) | 혼합 폐 플라스틱 (mwp)을 가치있는 석유화학제품으로 전환하는 방법 | |
US20160264874A1 (en) | Robust Integrated Process for Conversion of Waste Plastics to Final Petrochemical Products | |
CN116096840A (zh) | 由废塑料原料制备化学产物的方法 | |
CN115989305A (zh) | 由废塑料原料制备丁烯和丁二烯的方法 | |
CN115989307A (zh) | 由废塑料原料制备丁烯和丁二烯的方法 | |
JP7466067B2 (ja) | 液化廃棄物ポリマーを処理するための方法 | |
JP7466066B2 (ja) | 液化廃棄物ポリマーを処理するための方法 | |
US20240218257A1 (en) | Systems and methods for processing mixed plastic waste | |
KR20240099401A (ko) | 폐-플라스틱 기반의 열 분해 공급물 및 이를 업그레이드하는 방법 | |
JP2007119648A (ja) | プラスチック分解油の処理方法 | |
WO2024129223A1 (fr) | Processus pour mélange stable de déchets plastiques avec une charge de pétrole pour l'approvisionnement d'unités de raffinerie de pétrole et son processus de préparation | |
CN118974213A (zh) | 通过精炼厂fcc装置从塑料废物到聚乙烯的循环经济 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220503 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20221122 |