EP4047249B1 - Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung - Google Patents

Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung Download PDF

Info

Publication number
EP4047249B1
EP4047249B1 EP21158183.0A EP21158183A EP4047249B1 EP 4047249 B1 EP4047249 B1 EP 4047249B1 EP 21158183 A EP21158183 A EP 21158183A EP 4047249 B1 EP4047249 B1 EP 4047249B1
Authority
EP
European Patent Office
Prior art keywords
damper
hole
valve apparatus
valve seat
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21158183.0A
Other languages
English (en)
French (fr)
Other versions
EP4047249A1 (de
EP4047249C0 (de
Inventor
Alfred Gaile
Axel Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP21158183.0A priority Critical patent/EP4047249B1/de
Publication of EP4047249A1 publication Critical patent/EP4047249A1/de
Application granted granted Critical
Publication of EP4047249C0 publication Critical patent/EP4047249C0/de
Publication of EP4047249B1 publication Critical patent/EP4047249B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • B61D27/0009Means for controlling or equalizing air pressure shocks in trains, e.g. when passing or crossing in tunnels

Definitions

  • the present invention refers to a valve apparatus for controlling fluid flow through a duct or opening.
  • the valve apparatus may be used in a variety of fields, for example in an air conditioning system of a vehicle, in particular a railway vehicle like a train.
  • weight reduction and/or short valve closing time is crucial when working out the vehicle design.
  • the weight reduction requirement is in particular relevant when it comes to saving propulsion energy.
  • the short valve closing time is particular relevant for pressure wave protection in high speed trains.
  • pneumatic actuators In air conditioning systems, known and common drive systems for fresh air damper bodies utilize pneumatic actuators, torque motors or geared drives to move the damper bodies.
  • the pneumatic actuators require additional air supply infrastructure and the torque motors or geared drives are technically rather complex and heavy in weight.
  • the additional air supply infrastructure for pneumatic actuators and the complexity of the known torque motors or geared drives further results in an increased likelihood of malfunctions.
  • JP S49 92048 U teaches a valve apparatus having a damper body with a circular shape.
  • the damper body interacts with a valve seat hole also having a circular shape.
  • the circumferential sealing line between the damper edge and the hole edge is thus formed by a circle.
  • DE 23 15 626 A1 teaches a valve apparatus having the features of the preamble of claim 1.
  • a star-shaped damper body has damper protrusions extending therefrom in radial directions. Accordingly, a limited number of radially extending damper protrusions may be provided resulting in a limited increase of the length of the circumferential sealing line.
  • Another valve comprising radially extending protrusions to obtain an increased length of the circumferential sealing line is disclosed in DE 101 62 604 B4 .
  • DE 44 38 250 A1 also teaches a vale apparatus having a circular damper body interacting with a circular valve seat hole so that the circumferential sealing line between the damper edge and the hole edge is formed by a circle.
  • the present invention proposes a valve apparatus for controlling fluid flow especially through a duct or opening that may be used in a variety of fields, for example in an air conditioning system of a vehicle, in particular a railway vehicle like a train.
  • the valve apparatus comprises a valve seat body having a valve seat hole being configured to allow the fluid, especially air, to flow through it and a damper body for closing the valve seat hole thereby stopping the fluid from flowing through it.
  • the valve seat body and the damper body are movable relative to each other between an open configuration and a closed configuration. In the open configuration, the fluid may flow through the valve seat hole, and in the closed configuration, the damper body interacts with the valve seat body in a sealing manner such that the fluid may not flow through the valve seat hole.
  • the valve seat hole has a hole contour formed by a hole edge
  • the damper body has a damper contour formed by a damper edge.
  • the hole edge and the damper edge are configured to interact with each other in the sealing manner, thereby forming a circumferential sealing line having a circumferential sealing length.
  • the hole contour has a plurality of hole protuberances and the damper contour has a plurality of damper protrusions.
  • the hole protuberances and the damper protrusions correspond to each other in order to ensure effective sealing along the circumferential sealing line in the closed configuration.
  • the hole protuberances and the damper protrusions have the effect that the circumferential sealing length is larger than a reference length being defined by a length of a circumference of an equal area circle having a circle area that equals to the area of the valve seat hole.
  • the damper body in the valve apparatus according to the invention may be driven by any kind of driving unit that has the drawback of providing a limited lift only.
  • the damper body may in particular be driven by a solenoid actuator as long as a lift-depending and rather small actuator force is acceptable and the focus is on overcoming the drawback of limited lift.
  • a solenoid actuator which is well known as such, for actuating a valve apparatus according to the present invention provides at the same time both a lightweight and simple design.
  • a solenoid actuator has an electromagnet and an actuator rod that is driven by the electromagnet in known manner.
  • the lift of the actuator rod that may be obtained from a solenoid actuator is limited.
  • the actuator force of a solenoid actuator significantly depends on the actual lift of the actuator rod.
  • the present invention provides a solution for using a solenoid actuator in a valve apparatus even in view of the aforementioned properties of a solenoid actuator with regard to the available extent of lift and the available actuator force.
  • the aerodynamic gap i.e. the flow cross-section, between the hole edge and the damper edge in the open configuration is approximately the length of the circumferential sealing line, i.e. the circumferential sealing length, times the lift of the actuator rod of the solenoid actuator.
  • the circumferential sealing length in the sense of the present invention in comparison to the length of the circumference of the equal area circle, the size of the aerodynamic gap is significantly enlarged while the lift of the actuator rod remains the same.
  • the solenoid actuator provides limited lift as such, the present invention ensures that, when using the same size of cross-sectional area of the duct for piping the fluid, a size of the aerodynamic gap may be reached that is comparable to the sizes of aerodynamic gaps that can be achieved in the prior art by torque motors or geared drives allowing non-limited lift in combination with commonly shaped valve seat holes and damper bodies.
  • the disadvantageous property of a limited lift of a solenoid actuator is thus overcome by the enlarged circumferential sealing length according to the present invention.
  • the equal area circle is an imaginary circle. Its circle area has the same size as the area of the valve seat hole having the hole protuberances. Accordingly, based on the same sizes but different shapes of area, the circumferential sealing length is put into relation to the circular circumference of the imaginary equal area circle.
  • the damper body may be biased relative to the valve seat body towards the open configuration or towards the closed configuration.
  • the damper body may urge the damper body towards the open configuration by the bias and let the actuator force of the solenoid actuator act against the bias when moving the damper body towards the closed configuration.
  • the bias may urge the damper body to its closed configuration and the actuator force of the solenoid actuator may act against the bias when moving the damper body towards the open configuration.
  • the actuator force of the solenoid actuator is transmitted through the actuator rod.
  • the solenoid actuator is mounted for moving the damper body relative to the valve seat body towards the closed or open configuration.
  • the solenoid actuator may apply actuator force in bidirectional manner without necessity of any bias towards one of the open and closed configurations. However, if for some reason bias towards one of the open and closed configurations is preferred the actuator force always acts against the bias.
  • Force transmission means may be arranged between the actuator rod and the damper body for acting there between.
  • the force transmission means are configured to apply a closing force to the damper body that is larger than the actuator force.
  • the ratio between the closing force and the actuator force is preferably at least 5, more preferably at least 20 and most preferably at least 50.
  • the force transmission means have the advantageous effect that a closing force considerably larger than the lift-depending actuator force may be applied to the damper body in its closed position.
  • the solenoid actuator may advantageously be operated in a hold mode with relatively small electric load thereby preventing the solenoid actuator from damage.
  • the ratio of the circumferential sealing length to the reference length is preferably at least 1,5, more preferably at least 2,0 and most preferably at least 2,5.
  • all of the hole protuberances and all of the damper protrusions may have the same shape and size.
  • the hole protuberances and the damper protrusions preferably have a finger-like shape.
  • Finger-like shape in the sense of the present invention means that the respective hole protuberance or damper protrusion is longer than wide.
  • the valve seat hole has a central region, and the hole protuberances extend from opposite sides of the central region.
  • the damper body has a central portion, and the damper protrusions extend from opposite sides of the central portion.
  • the hole protuberances on each of the opposite sides of the central region extend with their geometrical axes directed away from the central region parallel to each other.
  • the damper protrusions on each of the opposite sides of the central portion extend with their geometrical axes directed away from the central portion parallel to each other.
  • Each hole protuberance on one of the opposite sides of the central region may be aligned with one hole protuberance on the other of the opposite sides of the central region.
  • each damper protrusion on one of the opposite sides of the central portion may be aligned with one damper protrusion on the other of the opposite sides of the central portion.
  • the valve apparatus according to the invention may be used when the limited lift of known solenoid actuators is acceptable and only an increased closing force acting on the damper body is important.
  • the force transmission means in the sense of the present invention may be any kind of means that applies a closing force to the damper body that is larger than the actuator force.
  • gear transmission means including oval gears may be used as the force transmission means.
  • the force transmission means are formed by a knee-lever mechanism comprising at least first and second levers being rotatably connected with each other by a knee joint.
  • the actuator rod of the solenoid actuator may be rotatably connected with the first lever by a rod joint.
  • the first and second levers may be moved to a flexed relative position corresponding to the open configuration.
  • the first and second levers may be further moved to a stretched relative position corresponding to the closed configuration of the valve apparatus.
  • At least one of the first and second levers may have stop means at least for stopping further rotational movement beyond the stretched relative position of the first and second levers.
  • movement of the first and second levers are stopped at least slightly before they reach a fully stretched relative position in which they are exactly aligned.
  • suitable initiating means for initiating controlled flexing movement out of the fully stretched relative position towards the flexed relative position are provided.
  • suitable initiating means may for example be springs that need to develop just a small force for initiating the flexing movement.
  • the solenoid actuator may be pivotably mounted on a fixed supporting beam.
  • the supporting beam itself may be fixed to the valve seat body by mounting bars.
  • the damper body may be fixed to a movably guided traverse.
  • the traverse may be movably guided by the mounting bars for mounting the supporting beam.
  • the mounting bars serve a double function, namely fixing the supporting beam to the valve seat body on the one hand and movably guiding the traverse carrying the damper body on the other hand. Weight reduction is thereby achieved because no separate guiding means for guiding the traverse are necessary beyond the mounting bars.
  • Springs may be fitted to the mounting bars for urging the traverse towards the supporting beam or for urging the traverse towards the valve seat body, thereby effecting bias towards the open or the closed configuration.
  • the springs may be pressure springs acting between the valve seat body and the traverse or tension springs acting between the supporting beam and the traverse when bias towards the open configuration is intended.
  • the first lever may be rotatably connected with the supporting beam by a beam joint.
  • the second lever may be rotatably connected with the traverse by a traverse joint.
  • Figs. 1 through 15 show the same embodiment of a valve apparatus 1 according to the present invention.
  • Figs. 1 through 6 show the open configuration of valve apparatus 1 while Figs. 7 through 14 show the closed configuration of valve apparatus 1.
  • the bottom plan view according to Fig. 15 is identical for both the open configuration and the closed configuration.
  • Like reference numerals in different drawings refer to like elements of valve apparatus 1.
  • Valve apparatus 1 may be used in air conditioning systems of railway vehicles (not shown) like high speed trains. When running into a tunnel with a high speed train well known pressure surge or compression wave occurs and migrates through the interior of the train. When approaching a tunnel immediate closing of valve apparatus 1 isolates the interior of the train from the environment and thus prevents the pressure surge from entering the passenger and driver cabin as far as possible.
  • Fig. 1 shows valve apparatus 1 in a perspective view from the top. It has a rectangular valve seat body 2 suitable to be mounted in a corresponding cross-section of a duct (not shown) or opening (not shown) for piping a fluid.
  • the fluid is air.
  • a fluid other than air may flow through valve apparatus 1.
  • valve seat body 2 is shown with a rectangular outer shape, it is noted that the outer shape of valve seat body 2 may deviate from a rectangular or square shape and may for example take a circular shape for ducts or openings having a circular cross section or shape.
  • valve seat body 2 is adapted to be mounted in the cross section of a duct in a manner that seals between the outer edge of valve seat body 2 and the inner wall of the duct. Fluid is not allowed to flow between the outer edge of valve seat body 2 and the inner wall of the duct that surrounds the outer edge of valve seat body 2.
  • Valve seat body 2 has a valve seat hole 3 as marked in Fig. 4 . Fluid may flow through valve seat hole 3 when valve apparatus 1 is in its open configuration as in Figs. 1 through 6 .
  • a damper body 4 may be moved from the open configuration shown in Fig. 4 to the closed configuration shown in Fig. 10 . In the open configuration, fluid may flow through valve seat hole 3 as marked by arrows F in Fig. 4 .
  • Valve seat body 2 and damper body 4 are manufactured by deep or punch-drawing methods. Then, they have non-flat surfaces and sufficient structural stiffness. Alternatively, valve seat body 2 and damper body 4 may be obtained from other manufacturing methods resulting in flat surfaces. Structural stiffness may then be ensured by a honeycomb structure or the like.
  • valve seat hole 3 and the damper body 4 have a double-comb like shape.
  • Valve seat hole 3 is composed of an elongated central region 12 from which a total number of twelve hole protuberances extend away (see Figs. 5 and 11 ).
  • all of the hole protuberances 7 have the same finger-like shape and size.
  • the six hole protuberances 7 extending on one side of central region 12 are aligned with the six hole protuberances 7 extending on the other side of central region 12. All hole protuberances 7 have rounded tips as shown in the drawings.
  • damper body 4 has an elongate central portion 13 from which twelve damper protrusions 8 extend away. As shown, six damper protrusions 8 extend on one side of central portion 13 and six damper protrusions 8 extend on the opposite side of central portion 13. As the hole protuberances 7 in valve seat hole 3, in the present embodiment, damper protrusions 8 have a corresponding finger-like shape and size with rounded tips. As in case of the hole protuberances 7, each of the six damper protrusions 8 extending on one side of central region 13 is aligned with a respective one of the six damper protrusions 8 extending on the other side of central region 13.
  • hole protuberances 7 and damper protrusions 8 have exemplary character only. It is noted that other numbers, shapes and sizes of hole protuberances 7 and damper protrusions 8 may be applied in the sense of the present invention.
  • Valve seat hole 3 is surrounded by its hole contour having a surrounding hole edge 5 as shown in Figs. 1 and 5 .
  • Damper body 4 has its damper contour formed by a surrounding damper edge 6 as shown in Figs. 1 and 5 .
  • surrounding damper edge 6 is spaced apart from surrounding hole edge 5 so that fluid may flow through a surrounding aerodynamic gap formed between damper edge 6 and hole edge 5.
  • surrounding damper edge 6 abuts against surrounding hole edge 5 thereby forming a circumferential sealing line that has a circumferential sealing length.
  • This circumferential sealing length corresponds to the length of the circumference of the double-comb shaped valve seat hole 3 or damper body 4.
  • the sealing between hole edge 5 and damper edge 6 may be improved by sealing material applied to one ot both of them (coating or other application).
  • the mass flow that may flow through a given aerodynamic gap depends on its size, i.e. the size of the cross-sectional area of the aerodynamic gap.
  • the size of the aerodynamic gap may approximately be calculated as the product of the circumferential sealing length times the lift of damper body 4.
  • the lift of damper body 4 is the distance by which damper body 4 has been moved in Fig. 10 upwards in vertical direction in order to arrive at its position corresponding to the open configuration shown in Fig. 4 .
  • the size of the aerodynamic gap is significantly enlarged because the circumferential sealing length, i.e. the length of hole edge 5 or damper edge 6, is significantly enlarged. This is explained in the following more closely with reference to Fig. 15 .
  • Fig. 15 depicts a bottom plan view of valve apparatus 1 with two additional circles that are no structural features of valve apparatus 1 but serve explanatory and comparative purposes. Damper body 4 with its central portion 13 and damper protrusions 8 may be seen through valve seat hole 3 in valve seat body 2.
  • a smaller circle is marked as equal area circle EAC in Fig. 15 .
  • the circle area of equal area circle EAC has the same size as the hole area enclosed by double-comb shaped hole contour of valve seat hole 3. Assuming that equal area circle EAC would form a damper contour of a damper body, the size of the area of the aerodynamic gap would be calculated as the circumferential length of equal area circle EAC times the lift of the damper body.
  • the aerodynamic gap may be significantly larger than the one calculated on the basis of a circular damper contour according to equal area circle EAC.
  • the circumferential sealing length of the double-comb like shaped hole or damper contour of the present embodiment is much longer than the circumferential length of equal area circle EAC.
  • the circumferential sealing length of the double-comb like shape is as long as the circumference of comparative circle CC included in Fig. 15 for comparative purposes.
  • the circumferential sealing length as with the double-comb shaped valve seat hole 3 and damper body 4 according to the present invention by means of a circular valve seat hole and damper body, it would be necessary to cover considerably more cross-sectional area and thus space because the duct or opening for piping the fluid would have to be enlarged in proportional manner.
  • the increased cross-sectional area would require a higher closing force because the pressure difference acts on an increased area of the damper body.
  • the present invention achieves much more circumferential sealing length while at the same time not covering more hole area than the one enclosed by equal area circle EAC.
  • the circumferential sealing length of the double-comb shaped valve seat hole 3 and damper body 4, i.e. the circumference of comparative circle CC is approximately 3,5 times longer than the circumference of equal area circle EAC.
  • the length of the circumference of equal area circle EAC serves as a reference parameter for the present invention. Number, shape and size of hole protuberances 7 and damper protrusions 8 may widely vary within the context of the present invention.
  • the size of equal area circle EAC only varies in dependence of the hole size of valve seat hole 3 regardless of any specific shape of valve seat hole 3 under the present invention.
  • damper protrusions 8 in Fig. 15 may have the same length.
  • every second damper protrusion may be only half as long as the respective neighbored damper protrusion 8.
  • each of the six upper damper protrusions 8 in Fig. 15 could have different lengths in such a way that their rounded tip portions are located along an arc of a circle.
  • damper body 4 is linearly movable between the open and the closed configurations.
  • damper body 4 it would be alternatively feasible under the present invention to rotatably move damper body 4 between its open and closed configurations.
  • the rotational lift (lift resulting from the angle of rotation) of damper body 4 would be rather small and the principle of calculating the size of the aerodynamic gap as discussed herein before could still be applied. It could be assumed that the lift of damper body 4 along the complete circumferential sealing line is constant for approximating the size of the aerodynamic gap.
  • bias towards the open or closed configuration is preferred in this context for example a leaf or plate spring could be employed for effecting the bias.
  • damper body 4 For linear movement of damper body 4 relative to valve seat body 2, damper body 4 is fixed to a traverse 21 that is movably guided along two mounting bars 20 as can be best seen in Figs. 1 , 3 , 7 , 9 and 13 .
  • the two mounting bars 20 are fixed to valve seat body 2 by suitable means like screws or the like.
  • Pressure springs 22 in the form of coil springs act between valve seat body 2 and traverse 21 in order to urge or bias traverse 21 together with damper body 4 away from the closed configuration according to Figs. 7 through 14 towards the open configuration according to Figs. 1 through 6 .
  • Mounting bars 20 extend through opposite ends of traverse 21 and carry on their upper free ends a supporting beam 19.
  • the supporting beam 19 is fixed at the upper ends of mounting bars 20 by suitable means like screws or the like. Accordingly, supporting beam 19 is not movable relative to valve seat body 2.
  • Supporting beam 19 supports a solenoid actuator 9 having an actuator rod 10 best seen in Fig. 14 .
  • Solenoid actuator 9 is mounted to support beam 19 by an actuator joint 25 as marked in Figs. 13 and 14 .
  • Actuator joint 25 effects sufficient degree of rotational freedom for solenoid actuator 9 when traverse 21 and damper body 4 are moved between the open and closed configurations.
  • force transmission means in the form of a knee-lever mechanism 11 are arranged between actuator rod 10 and traverse 21.
  • Force transmission means at this place of valve apparatus 1 have the function to convert the relatively small actuator force delivered by actuator rod 10 into a relatively large closing force acting on traverse 21 and thus damper body 4 for reliably and safely pressing damper edge 6 against hole edge 5 in the closed configuration.
  • solenoid actuator 9 is electrically activated actuator rod 10 extends and forces traverse 21 through knee-lever mechanism 11 against the bias of pressure springs 22 into the closed configuration. Switching solenoid actuator 9 currentless results in not applying a closing force to traverse 21 and the action of pressure springs 22 lifts traverse 21 together with damper body 4 thereby moving them to the open configuration.
  • knee-lever mechanism 11 comprises a first lever 14 and a second lever 15.
  • the first and second levers 14, 15 are rotatably connected with each other by knee joint 16.
  • the lower free end of actuator rod 10 is rotatably connected with first lever 14 through rod joint 17.
  • first lever 14 is rotatably mounted to support beam 19 through beam joint 23.
  • Second lever 15 is rotatably mounted to traverse 21 by traverse joint 24.
  • solenoid actuator 9 When solenoid actuator 9 is currentless, the action of pressure springs 22 urges first and second levers 14, 15 of knee-lever mechanism 11 to a flexed relative position as can be seen in Figs. 1 and 3 showing the situation of knee-lever mechanism 11 in the open configuration.
  • Loading solenoid actuator 9 with current results in extending actuator rod 10 thereby pivoting first lever 14 clockwise around knee joint 23 and second lever 15 anticlockwise around traverse joint 24 to a stretched relative position in which first and second levers 14, 15 are not fully or exactly aligned as can be seen in Fig. 14 .
  • second lever 15 transfers a closing force to traverse 21 and damper body 4 that sealingly presses damper edge 6 against hole edge 5 against the bias of pressure springs 22.
  • first lever 14 has at its lower end in Fig. 14 a stop means 18 in the form of a bolt or the like.
  • the bolt protrudes into the plane of projection of Fig. 14 so that it abuts against the right side edge of second lever 15 when knee-lever mechanism 11 reaches the stretched relative position according to Fig. 14 .
  • Stop means 18 thereby provides for a collision between first and second levers 14, 15 and stops further rotational movement beyond the shown stretched relative position by positive locking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)

Claims (17)

  1. Ventilvorrichtung zur Steuerung einer Fluidströmung durch eine Leitung oder Öffnung, wobei die Ventilvorrichtung (1) aufweist:
    • einen Ventilsitzkörper (2) mit einem Ventilsitzloch (3), das konfiguriert ist, um Durchfluss des Fluids durch es hindurch zu erlauben, und
    • einen Dämpferkörper (4) zum Schließen des Ventilsitzlochs (3),
    • wobei der Ventilsitzkörper (2) und der Dämpferkörper (4) relativ zueinander zwischen einer offenen Konfiguration und einer geschlossenen Konfiguration bewegbar sind, wobei in der offenen Konfiguration das Fluid durch das Ventilsitzloch (3) hindurchfließen kann und in der geschlossenen Konfiguration der Dämpferkörper (4) mit dem Ventilsitzkörper (2) dichtend interagiert, sodass das Fluid nicht durch das Ventilsitzloch (3) hindurchfließen kann,
    • wobei das Ventilsitzloch (3) eine durch einen Lochrand (5) gebildete Lochkontur hat, und der Dämpferkörper (4) eine durch einen Dämpferrand (6) gebildete Dämpferkontur hat, wobei der Lochrand (5) und der Dämpferrand (6) konfiguriert sind, um in der abdichtenden Weise miteinander zu interagierend, um hierdurch eine Umfangsdichtlinie mit einer Umfangsdichtlänge zu bilden, und
    • wobei die Lochkontur mehrere Lochvorsprünge (7) hat und die Dämpferkontur mehrere Dämpfervorsprünge (8) hat, sodass die Umfangsdichtlänge größer ist als eine Referenzlänge, die durch eine Länge eines Umfangs eines Gleichflächenkreises (EAC) definiert ist, deren Fläche gleich einer Fläche des Ventilsitzlochs (3) ist,
    dadurch gekennzeichnet, dass
    • das Ventilsitzloch (3) einen zentralen Bereich (12) hat und sich die Lochvorsprünge (7) von entgegengesetzten Seiten des zentralen Bereichs (12) erstrecken, und der Dämpferkörper (4) einen zentralen Abschnitt (13) hat und sich die Dämpfervorsprünge (8) von entgegengesetzten Seiten des zentralen Abschnitts (13) erstrecken, und
    • die Lochvorsprünge (7) an jeder der entgegengesetzten Seiten des zentralen Bereichs (12) sich parallel zueinander erstrecken und sich die Dämpfervorsprünge (8) an jeder der entgegengesetzten Seiten des zentralen Abschnitts (13) parallel zueinander erstrecken.
  2. Ventilvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    ein Verhältnis der Umfangsdichtlänge zur Referenzlänge wenigstens 1,5 beträgt.
  3. Ventilvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    ein Verhältnis der Umfangsdichtlänge zur Referenzlänge wenigstens 2,0 beträgt.
  4. Ventilvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    ein Verhältnis der Umfangsdichtlänge zur Referenzlänge wenigstens 2,5 beträgt.
  5. Ventilvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    alle der Lochvorsprünge (7) und alle der Dämpfervorsprünge (8) die gleiche Form und Größe haben.
  6. Ventilvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Lochvorsprünge (7) und die Dämpfervorsprünge (8) eine fingerartige Form haben.
  7. Ventilvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    jeder Lochvorsprung (7) in einer der entgegengesetzten Seiten des zentralen Bereichs (12) mit einem Lochvorsprung (7) an der anderen der entgegengesetzten Seiten des zentralen Bereichs (12) fluchtet, und jeder Dämpfervorsprung (8) an einer der entgegengesetzten Seiten des zentralen Abschnitts (13) mit einem Dämpfervorsprung (8) an der anderen der entgegengesetzten Seiten des zentralen Abschnitts (13) fluchtet.
  8. Ventilvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ventilvorrichtung (1) einen Solenoidaktuator (9) mit einer Aktuatorstange (10) zum Übertragen einer Aktuatorkraft aufweist, wobei der Solenoidaktuator (9) angebracht ist, um den Dämpferkörper (4) relativ zu dem Ventilsitzkörper (2) zur geschlossenen oder offenen Konfiguration zu bewegen, wobei Kraftübertragungsmittel (11) zwischen der Aktuatorstange (10) und dem Dämpferkörper (4) angeordnet sind, wobei die Kraftübertragungsmittel (11) konfiguriert sind, um auf den Dämpferkörper (4) eine Schließkraft auszuüben, die größer ist als die Aktuatorkraft.
  9. Ventilvorrichtung nach Anspruch 8,
    dadurch gekennzeichnet, dass
    die Kraftübertragungsmittel durch einen Kniehebelmechanismus (11) ausgebildet sind, der einen ersten Hebel (14) und einen zweiten Hebel (15) aufweist, die durch ein Kniegelenk (16) miteinander drehbar verbunden sind, und die Aktuatorstange (10) mit dem ersten Hebel (14) durch ein Stangengelenk (17) drehbar verbunden ist, wobei die ersten und zweiten Hebel (14, 15) zu einer geknickten Relativposition entsprechend der offenen Konfiguration bewegt werden können und zu einer gestreckten Relativposition entsprechend der geschlossenen Konfiguration bewegt werden können.
  10. Ventilvorrichtung nach Anspruch 9,
    dadurch gekennzeichnet, dass
    zumindest einer der ersten und zweiten Hebel (14, 15) Stoppmittel (18) aufweist, um eine weitere Drehbewegung über die gestreckte Relativposition hinaus zu stoppen.
  11. Ventilvorrichtung nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass
    der Solenoidaktuator (9) an einem Stützträger (19) schwenkbar gelagert ist.
  12. Ventilvorrichtung nach Anspruch 11,
    dadurch gekennzeichnet, dass
    der Stützträger (19) an dem Ventilsitzkörper (2) durch Lagerstangen (20) befestigt ist.
  13. Ventilvorrichtung nach einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet, dass
    der Dämpferkörper (4) an einer beweglich geführten Traverse (21) befestigt ist.
  14. Ventilvorrichtung nach Anspruch 13, wenn von Anspruch 12 abhängig,
    dadurch gekennzeichnet, dass
    die Traverse (21) von den Lagerstangen (20) zum Lagern des Stützbalkens (19) beweglich geführt ist.
  15. Ventilvorrichtung nach einem der Ansprüche 8 bis 14,
    dadurch gekennzeichnet, dass
    der Dämpferkörper (4) relativ zu dem Ventilsitzkörper (2) zu der offenen Konfiguration oder zu der geschlossenen Konfiguration hin vorgespannt ist.
  16. Ventilvorrichtung nach Anspruch 15, wenn von einem der Ansprüche 11 oder 12 abhängig und auch von einem der Ansprüche 13 oder 14 abhängig,
    dadurch gekennzeichnet, dass
    Federn (22) an den Lagerstangen (20) sitzen, um die Traverse (21) zu dem Stützträger (19) hin vorzuspannen oder um die Traverse (21) zu dem Ventilsitzkörper (2) vorzuspannen, um hierdurch die Vorspannung zu bewirken.
  17. Ventilvorrichtung nach einem der Ansprüche 13 bis 16, wenn von Anspruch 11 abhängig und auch von einem der Ansprüche 9 bis 10 abhängig,
    dadurch gekennzeichnet, dass
    der erste Hebel (14) mit dem Stützträger (19) durch ein Trägergelenk (23) drehbar verbunden ist und der zweite Hebel (15) mit der Traverse (21) durch ein Traversengelenk (24) drehbar verbunden ist.
EP21158183.0A 2021-02-19 2021-02-19 Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung Active EP4047249B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21158183.0A EP4047249B1 (de) 2021-02-19 2021-02-19 Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21158183.0A EP4047249B1 (de) 2021-02-19 2021-02-19 Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung

Publications (3)

Publication Number Publication Date
EP4047249A1 EP4047249A1 (de) 2022-08-24
EP4047249C0 EP4047249C0 (de) 2024-05-08
EP4047249B1 true EP4047249B1 (de) 2024-05-08

Family

ID=74672192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21158183.0A Active EP4047249B1 (de) 2021-02-19 2021-02-19 Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung

Country Status (1)

Country Link
EP (1) EP4047249B1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992048U (de) * 1972-11-25 1974-08-09
DE2315626A1 (de) * 1973-03-29 1974-10-10 Braukmann Armaturen Armatur
US4557185A (en) * 1984-07-26 1985-12-10 Harriman Ronald M Solenoid operated exhaust air damper
FR2723713B1 (fr) * 1994-08-17 1996-09-27 Faiveley Transport Organe d'obturation a clapet d'un circuit d'air pour vehicules de chemin de fer
DE4438250A1 (de) * 1994-10-26 1996-05-02 Bosch Gmbh Robert Abgasrückführventil
DE10162604B4 (de) * 2001-12-20 2004-02-26 Danfoss A/S Heizkörperventil
DE102014204160A1 (de) * 2014-03-06 2015-09-10 Robert Bosch Gmbh Ventil mit mindestens zwei Kniehebeln
CN108386585B (zh) * 2018-03-13 2024-06-14 浙江盾安人工环境股份有限公司 电子膨胀阀及空调器

Also Published As

Publication number Publication date
EP4047249A1 (de) 2022-08-24
EP4047249C0 (de) 2024-05-08

Similar Documents

Publication Publication Date Title
KR101697810B1 (ko) 소형 액츄에이터 기어 세트
CN1113767C (zh) 运输车辆的车门系统
US20190390681A1 (en) Fan with shut-off valve and method of operating
US6464201B2 (en) Valve for a motor vehicle air spring having an ancillary volume
JP2008528385A5 (de)
WO2017060079A1 (de) Druckverteiler für ein kraftfahrzeug
JP2013511006A (ja) 電動アクチュエータとともに使用するための結合装置
EP4047249B1 (de) Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung
EP3998210B1 (de) Ventilvorrichtung zur steuerung eines fluidstroms durch einen kanal oder eine öffnung einer klimaanlage eines flugzeuges
JPH10315435A (ja) 吸引空気を制御する方法および装置
CN108700200B (zh) 阀门系列
US7185852B2 (en) Actuator with helical cam guides
EP3784531B1 (de) Blattanordnungsstruktur für ein stossfängergitter
US4055954A (en) Damper actuator for a ventilation system
EP3997372B1 (de) Ausfallsicherer aktuator und montageeinheit
GB2533576A (en) Actuator
DE102016119812B4 (de) Elektromotorische Stellvorrichtung
US11401858B2 (en) Exhaust turbocharger with an exhaust control device, exhaust control device for an exhaust turbocharger, and method for operating an exhaust turbocharger
US10900588B2 (en) Actuator and method for setting an actuator
EP3112771B1 (de) Elektrischer stellantrieb für heizungs-, lüftungs- und klimaanlage
WO2014139500A2 (de) Ventileinheit, wie abgasklappeneinheit für kraftfahrzeuge
WO2020041080A1 (en) Air vent for a vehicle
EP3357771B1 (de) Bremssystem und -verfahren
US7011287B2 (en) Motor vehicle pinch valve
EP3835201B1 (de) Hydraulisches betätigungssystem zur verminderung der rotation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220928

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230719

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021012913

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240527

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240809