EP4045851B1 - Procédé de commande d'un dispositif de combustion - Google Patents

Procédé de commande d'un dispositif de combustion Download PDF

Info

Publication number
EP4045851B1
EP4045851B1 EP20797405.6A EP20797405A EP4045851B1 EP 4045851 B1 EP4045851 B1 EP 4045851B1 EP 20797405 A EP20797405 A EP 20797405A EP 4045851 B1 EP4045851 B1 EP 4045851B1
Authority
EP
European Patent Office
Prior art keywords
proportion
fuel
nitrogen oxides
target value
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20797405.6A
Other languages
German (de)
English (en)
Other versions
EP4045851A1 (fr
Inventor
Eberhard Deuker
Benedict Kriegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP4045851A1 publication Critical patent/EP4045851A1/fr
Application granted granted Critical
Publication of EP4045851B1 publication Critical patent/EP4045851B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/083Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
    • F05D2270/0831Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions indirectly, at the exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/305Tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/311Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/313Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/71Type of control algorithm synthesized, i.e. parameter computed by a mathematical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05001Measuring CO content in flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05003Measuring NOx content in flue gas

Definitions

  • the invention relates to a method for controlling a combustion device, with the focus being on achieving minimum performance.
  • a variety of methods for controlling a combustion device are known from the prior art. These are usually adapted to the respective combustion device and differ depending on the type of combustion device and its task. However, what is being considered here is the condition in which the combustion device can be operated with the lowest possible power within the permissible range.
  • the relative content of pollutants in particular the load with carbon monoxide, increases as the distance from the nominal power increases.
  • the operation of the combustion device is limited to a minimum value, taking into account the specifications for the content of pollutants, at which the limit values are reliably adhered to.
  • the gas turbine system comprises a gas turbine with a combustion chamber in which fuel is burned during operation of the gas turbine.
  • the supply of fuel is regulated by a control device based on a power reference value.
  • a detection module available, which can be used to determine the carbon monoxide concentration.
  • the power reference value is adjusted depending on the carbon monoxide concentration.
  • combustion device it is sometimes desirable for the combustion device to be operated with the lowest possible power, in particular in order to avoid standstill.
  • the object of the present invention is therefore to enable a lower performance than was previously usual, at which the given limit values for pollutants are adhered to.
  • the generic method is used to control a combustion process of a combustion device. What type of combustion device this is is initially irrelevant. At least the method can be used advantageously to control the combustion process in a combustion chamber of a gas turbine. In any case, it is necessary that the combustion device comprises at least one combustion chamber and at least one burner is arranged on this. By means of the burner, the fuel and the supply air required to burn the fuel can be conveyed into the combustion chamber for combustion. Furthermore, a control device for carrying out the method is available. For this purpose, a calculation model of the combustion process is stored in the control device. For a given performance, it can be determined based on the stored calculation model whether the pollutants are theoretically within a permissible range.
  • a permissible limit value for the proportion of nitrogen oxides is stored in the calculation model of the control device. Furthermore, it is also necessary to set a permissible limit for the proportion of carbon monoxide. These two values can be defined as an unchangeable size or it can be provided that adaptation to local conditions is possible. For example, the permissible limit values may be legal requirements.
  • the type and/or quality of the fuel used is known.
  • the parameters it is possible for the parameters to be entered as a default in the control device.
  • the type or quality of the fuel is measured or determined before it is fed to the combustion device and the result is transmitted to the control device.
  • a signal for setting a minimum power is also necessary, so that the fuel supply to the combustion device is subsequently reduced.
  • the combustion device has an exhaust air measuring device with which at least the actual proportion of a relevant pollutant in the exhaust air can be recorded.
  • the output of the combustion device can be further reduced until the target value is reached, provided that it is ensured that other limit values are reliably adhered to.
  • the actual proportion of nitrogen oxides in the exhaust air is continuously measured. Based on the known actual proportion of nitrogen oxides, the control device now uses the calculation model to calculate whether a reduction in fuel and thus power is possible without the proportion of nitrogen oxides exceeding the target value. At the same time, the control device uses the calculation model to determine how much the amount of fuel can be reduced until the proportion of carbon monoxide theoretically reaches the target value. Due to the lack of knowledge about the actual content in the exhaust air, a greater tolerance to the permissible limit value must be observed.
  • the fuel supply is now reduced with further ongoing monitoring of the actual proportion of nitrogen oxides (in the first method) or carbon monoxide (in the second method) until the calculated minimum amount of fuel is reached. If the measured actual proportion of nitrogen oxides or carbon monoxide already reaches the target value, the reduction in fuel supply will then be stopped. In both methods, this results in an assumed minimum fuel supply and thus minimum power, at which one or both pollutants nitrogen oxides or carbon monoxide have reached the target value. It can be reliably assumed that both permissible limit values are adhered to.
  • a third method combines the first method with the second method, wherein the exhaust air measuring device can monitor both the actual proportion of nitrogen oxides and the actual proportion of carbon monoxide.
  • the control device uses the calculation model to calculate how far the fuel or the power can be reduced until one or both target values are reached. There Both values are recorded continuously, the tolerance for the permissible limit value for both pollutants can be chosen to be relatively small.
  • the fuel supply or the power is reduced until the previously calculated minimum fuel supply is reached. If the situation occurs in which one of the two measured values for the actual proportion of nitrogen oxides or carbon monoxide reaches the target value, the fuel reduction is stopped.
  • the calculation of the lowest possible fuel supply is carried out once after the signal to shut down the combustion device to a minimum output has been given.
  • the calculation is carried out repeatedly in the further course - as long as the minimum power is desired - so that a new opportunity to further reduce the fuel supply or the power - if given - can be exploited. Accordingly, when the calculation is repeated based on the given target values for the pollutants and the measured proportion of nitrogen oxides or carbon monoxide, the minimum fuel supply is recalculated at which the target values are not exceeded.
  • the fuel supply is increased. If, on the other hand, a new calculation determines that both target values are undershot, the fuel supply can be reduced again.
  • a new calculation can be planned at regular intervals.
  • the period of time can be selected such that after a change in the fuel supply and thus the power, the resulting changing proportion of pollutants has leveled off at a substantially constant value.
  • the ongoing measurement of nitrogen oxides and/or carbon monoxide can lead to a new calculation.
  • a comparison can be made continuously between the measured values and the permissible limit values and/or the target value, with a new calculation to adjust the fuel quantity being initiated when a predetermined absolute or relative difference is reached. It can be provided here that the difference is chosen to be small when the target value is exceeded and, in contrast, the difference is chosen to be larger when the target value is undershot.
  • the combustion device comprises at least one main burner and at least one secondary burner. What type of burner this is is initially irrelevant, although it is intended that they have different combustion characteristics. Similar to the use of a single burner or a single burner type, it is necessary that the main burner and the secondary burner can deliver fuel and/or supply air into the combustion chamber.
  • a minimum fuel supply can be determined as before, in which at least an actual proportion of nitrogen oxides or carbon monoxide reaches the target value for a given distribution of the fuel. Accordingly, as before, the fuel supply can be reduced to the calculated minimum fuel supply.
  • an optimal distribution of the fuel is calculated when using a main burner and a secondary burner.
  • an iterative comparison can be made between the calculated values for the proportion of nitrogen oxides and carbon monoxide and the target values by changing the distribution of the fuel and reducing the amount of fuel until the difference between the calculated proportion of pollutants and the target values is as small as possible.
  • This method is particularly advantageous if the secondary burner is a so-called pilot burner.
  • the difference between the proportion of carbon dioxide and the associated target value is greater than the difference between the proportion of nitrogen oxides and the associated target value, it is advantageous if the distribution of the fuel is changed so that the proportion for the main burner is increased and the proportion for the secondary burner is reduced.
  • the difference between the proportion of nitrogen oxides and the associated target value is greater than the difference between the proportion of carbon dioxide and the associated target value, then it is advantageous if the distribution of the fuel is changed in such a way that the proportion for the secondary burner is increased and the proportion for the main burner is reduced.
  • the fuel supply can be further reduced.
  • a further improvement of the method, in particular for reducing the necessary tolerances, is achieved if a supply air measuring device is available, by means of which at least one property of the supply air can be determined. It is particularly advantageous if the temperature and humidity of the supply air are known in the calculation model. Accordingly, these values can be taken into account when calculating the minimum amount of fuel and the optimal distribution of the fuel.
  • the calculation model is created using the known calculation bases (e.g. combustion characteristics, properties of the combustion device, type of fuel), whereby the measured actual proportion of pollutants represents the variable for the calculation.
  • known calculation bases e.g. combustion characteristics, properties of the combustion device, type of fuel
  • the calculation parameters are continuously stored together with as much existing status data as possible.
  • the status data includes the actual states of the combustion device or gas turbine (temperature data, vibration data, etc.), the type and/or quality of the fuel, the temperature and/or humidity of the supply air, the actual proportion of nitrogen oxides and/or carbon monoxide in the exhaust air. Taking the stored data into account, the calculation model can be adjusted regularly or continuously become. The methods of so-called self-learning can be used in a particularly advantageous manner.
  • this process is not limited to one type of fuel. It can also be provided that different fuels are used when the main burner and secondary burner are present. In principle, the process can be used advantageously if the fuel is gaseous.
  • a combustion device 01 according to the invention is schematically sketched in figure one. This initially includes the combustion chamber 02 with the main burner 03 arranged thereon and the secondary burner 04. Fuel 23 and supply air 21 can be supplied to the burners 03, 04. Exhaust air 25, d. H. Flue gas emerges from the combustion chamber 02.
  • a control device 11 is present, in which a calculation model 12 is stored and which, in this exemplary embodiment, includes a data memory 13.
  • Various parameters are transmitted to the control device 11.
  • the maximum proportion of nitrogen oxides 16 and the maximum proportion of carbon monoxide 17 are fixed. This can be the permissible limit value or the target value.
  • the target value can be calculated by the control device. It is also possible to transmit both the permissible limit value and the respective target value as a specification to the control device 11.
  • the type or quality 24 of the fuel 23 is known in the calculation model.
  • this 24 is continuously recorded and transmitted to the control device 11.
  • the temperature and the humidity 22 of the supply air 21 are measured and transmitted to the control device 11.
  • the method according to the invention is triggered by a signal to start up a minimum power, for which purpose the control device 11 is sent the required target power 15.
  • the control device 11 When carrying out the method in the control device 11 on the basis of the calculation model 12 stored there, the minimum fuel supply and the optimal distribution between the main burner 03 and the secondary burner 04 are calculated. Based on the calculation result, the control device 11 controls a correspondingly associated main valve 05 for controlling the fuel flow to the main burner 03 and a correspondingly associated secondary valve 06 for controlling the fuel flow to the secondary burner 04.
  • FIG. 2 A possible process sequence with various parameters over time is shown as an example.
  • the signal to start a minimum power P was given at time T1.
  • a minimum power or minimum fuel supply is now calculated in the control device 11 using the calculation model 12, in which the predetermined limit values for the proportion of nitrogen oxides and the proportion of carbon monoxide is maintained (ie at least a target value is achieved).
  • the target value NOx max is specified in the control device.
  • the fuel supply and thus the power P is now reduced.
  • the reduction in performance is usually accompanied by an increase in the proportion of pollutants, ie here the proportion of nitrogen oxides (NOx) and the proportion of carbon monoxide (not shown here) - see time T2.
  • the target value for carbon monoxide has already been reached in the calculation, but there is still a larger difference between the target value for nitrogen oxides and the measured NOx value.
  • the amount of fuel can be reduced again until the target values NOx max are essentially achieved in accordance with the calculation or the respective measurement - see time T4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (12)

  1. Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion, et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (26) réelle d'oxydes d'azote ; comprenant les stades :
    - fixation d'une valeur limite admissible de la proportion d'oxydes (16) d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - détection en continu de la proportion (26) réelle d'oxydes d'azote dans l'air (25) évacué ;
    - détection d'un signal pour le réglage d'une puissance minimum ;
    - calcul d'un apport (23) minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle il faut s'attendre de monoxyde de carbone atteint la valeur cible ;
    - lors du contrôle continu de la proportion (26) réelle d'oxydes d'azote dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible des oxydes d'azote soit atteinte.
  2. Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion, et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (27) réelle de monoxyde de carbone ; comprenant les stades :
    - fixation d'une valeur (16) limite admissible de la proportion d'oxydes d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - détection en continu de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué ;
    - détection d'un signal pour le réglage d'une puissance minimum ;
    - calcul d'un apport (23) minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle on s'attend d'oxydes d'azote atteint la valeur cible ;
    - lors du contrôle en continu de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible du monoxyde de carbone soit atteinte.
  3. Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (26) réelle d'oxydes d'azote et la proportion (27) réelle de monoxyde de carbone ; comprenant les stades :
    - fixation d'une valeur (16) limite admissible de la proportion d'oxydes d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;
    - détection en continu de la proportion (26) réelle de d'oxydes d'azote et de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué ;
    - détection d'un signal pour le réglage d'une puissance minimum ;
    - calcul d'un apport (23) total minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle on s'attend de monoxyde de carbone et la proportion à laquelle on s'attend d'oxydes d'azote atteignent respectivement la valeur cible ;
    - lors du contrôle continu de la proportion (26) réelle d'oxydes d'azote et de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible respective des oxydes d'azote et du monoxyde de carbone soit atteinte.
  4. Procédé suivant l'une des revendications 1 à 3,
    dans lequel on effectue le calcul de manière récurrente, dans lequel, lorsque l'on constate que l'on passe au-dessus de l'une des valeurs limite, on augmente l'apport (23) de combustible et lorsque l'on constate que l'on passe en-dessous des deux valeurs cibles déduction faite d'une tolérance opératoire respective, on réduit davantage l'apport (23) de combustible.
  5. Procédé suivant la revendication 4,
    dans lequel on effectue le calcul à intervalles réguliers ; ou
    dans lequel on effectue le calcul dès qu'une différence donnée à l'avance entre la proportion (26, 27) réelle mesurée de la pollution dans l'air (25) évacuée et la valeur cible données à cet effet est dépassée.
  6. Procédé suivant l'une des revendications 1 à 5,
    dans lequel le dispositif (01) de combustion comprend au moins un brûleur (03) principal et au moins un brûleur (04) secondaire, qui peuvent transporter respectivement du combustible (23) et/ou de l'air (21) d'apport dans la chambre (02) de combustion ; comprenant les stades :
    - lors du calcul de l'apport (23) minimum de combustible, détermination d'une répartition du combustible (23) entre le brûleur (03) principal et le brûleur (04) auxiliaire, pour laquelle (23) la proportion à laquelle on s'attend de monoxyde de carbone respectivement la proportion à laquelle on s'attend d'oxydes d'azote atteint la valeur cible ;
    - réduction de l'apport (23) de combustible en tenant compte de la répartition calculée auparavant du combustible (23) entre le brûleur (03) principal et le brûleur (04) auxiliaire.
  7. Procédé suivant la revendication 6,
    dans lequel le brûleur (04) auxiliaire est un brûleur pilote.
  8. Procédé suivant la revendication 6 ou 7,
    dans lequel, s'il y a une différence plus grande entre la valeur cible et la proportion (27) réelle calculée ou mesurée du dioxyde de carbone et une différence plus petite entre la valeur cible et la proportion (26) réelle calculée ou mesurée des oxydes d'azote, on modifie la répartition du combustible (23) avec une proportion plus grande pour le brûleur (03) principal et une proportion plus petite pour le brûleur (04) auxiliaire ;
    dans lequel ensuite, à la constatation que l'on passe en-dessous des deux valeurs cibles, on réduit davantage l'apport (23) de combustible.
  9. Procédé suivant l'une des revendications 6 à 8,
    dans lequel, s'il y a une différence plus grande entre la valeur cible et la proportion (26) réelle calculée ou mesurée d'oxydes d'azote et une différence plus petite entre la valeur cible et le proportion (27) réelle calculée ou mesurée du dioxyde de carbone, on modifie la répartition du combustible (23) avec une proportion plus grande pour le brûleur (04) auxiliaire et une proportion plus petite pour le brûleur (03) principal ;
    dans lequel ensuite, à la constatation que l'on passe en-dessous des deux valeurs cibles, on réduit davantage l'apport (23) de combustible.
  10. Procédé suivant l'une des revendications 1 à 9,
    dans lequel un dispositif de mesure de l'air d'apport peut déterminer au moins une propriété de l'air (21) d'apport, en particulier la température et/ou l'humidité (22) de l'air, dans lequel la propriété est prise en compte dans le dispositif (11) de commande, lors du calcul de l'apport (23) de combustible et/ou de la répartition du combustible (23).
  11. Procédé suivant l'une des revendications 1 à 10,
    dans lequel on met en mémoire en continu les paramètres de calcul et les données d'états présentes, en particulier des états réels du dispositif (01) de combustion et/ou la nature et/ou la qualité (24) du combustible (23) et/ou la température et/ou l'humidité (22) de l'air (21) d'apport et/ou la proportion (26, 27) réelle d'oxydes d'azote et/ou de monoxyde de carbone dans l'air (25) évacué et, à l'aide des données mises en mémoire, on effectue une adaptation régulière ou continue du modèle de calcul, en particulier au moyen de méthodes de ce que l'on appelle l'autoapprentissage.
  12. Procédé suivant l'une des revendications 1 à 11,
    dans lequel le combustible (23) est gazeux.
EP20797405.6A 2020-02-17 2020-10-16 Procédé de commande d'un dispositif de combustion Active EP4045851B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20157640.2A EP3865773A1 (fr) 2020-02-17 2020-02-17 Procédé de commande d'un dispositif de combustion
PCT/EP2020/079142 WO2021164897A1 (fr) 2020-02-17 2020-10-16 Procédé de commande d'un dispositif de combustion

Publications (2)

Publication Number Publication Date
EP4045851A1 EP4045851A1 (fr) 2022-08-24
EP4045851B1 true EP4045851B1 (fr) 2024-02-28

Family

ID=69631435

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20157640.2A Withdrawn EP3865773A1 (fr) 2020-02-17 2020-02-17 Procédé de commande d'un dispositif de combustion
EP20797405.6A Active EP4045851B1 (fr) 2020-02-17 2020-10-16 Procédé de commande d'un dispositif de combustion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20157640.2A Withdrawn EP3865773A1 (fr) 2020-02-17 2020-02-17 Procédé de commande d'un dispositif de combustion

Country Status (4)

Country Link
US (1) US20230046593A1 (fr)
EP (2) EP3865773A1 (fr)
CN (1) CN115135930A (fr)
WO (1) WO2021164897A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735052A (en) * 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
US8417433B2 (en) * 2010-04-30 2013-04-09 Alstom Technology Ltd. Dynamically auto-tuning a gas turbine engine
ITMI20111941A1 (it) * 2011-10-26 2013-04-27 Ansaldo Energia Spa Impianto a turbina a gas per la produzione di energia elettrica e metodo per operare detto impianto

Also Published As

Publication number Publication date
EP4045851A1 (fr) 2022-08-24
US20230046593A1 (en) 2023-02-16
WO2021164897A1 (fr) 2021-08-26
CN115135930A (zh) 2022-09-30
EP3865773A1 (fr) 2021-08-18

Similar Documents

Publication Publication Date Title
DE60311195T2 (de) Verfahren/System zum Mapping einer Brennkammer in einer Gasturbine
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102011085115B4 (de) Verfahren und Vorrichtung zur Adaption einer Lambdaregelung
DE102005000978B4 (de) Vorrichtung zur Steuerung des Schadstoffausstoßes eines selbstzündenden Verbrennungsmotors
EP3023698B1 (fr) Dispositif de détermination d'un rapport d'étagement, une turbine a gaz ou moteur d'aeronef comprenant un tel dispositif et son utilisation
DE602004004990T2 (de) Verfahren zur Verschlechterungsfeststellung eines Abgasreinigers
DE2730100A1 (de) Einrichtung zum regeln des verhaeltnisses luft/kraftstoff des betriebsgemisches einer brennkraftmaschine
EP1769139A1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne, et dispositif pour la mise en oeuvre de ce procede
DE102010000928B3 (de) Verfahren und Vorrichtung zur Einstellung des Luft-/Kraftstoffverhältnisses im Abgas eines Verbrennungsmotors
DE102006051834B4 (de) Erweiterte Gemischregelung zur Reduzierung von Abgasemissionen
EP1971804B1 (fr) Procédé de fonctionnement d'un foyer
DE10256241A1 (de) Verfahren und Vorrichtung zur Steuerung einer eine Abgasrückführung aufweisenden Brennkraftmaschine
DE102009032659A1 (de) Kombinierte Rauchbegrenzung
EP4045851B1 (fr) Procédé de commande d'un dispositif de combustion
EP1533569B1 (fr) Méthode de fonctionnement d'un appareil de combustion
EP3688295B1 (fr) Procédé permettant de faire fonctionner un dispositif d'entraînement et dispositif d'entraînement correspondant
DE102004017886B3 (de) Verfahren und Vorrichtung zur Lambdaregelung einer Brennkraftmaschine mit Abgaskatalysator
DE102018104926B4 (de) Verfahren zum Betrieb und Einrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine sowie Brennkraftmaschine
DE102005058524A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE10234849A1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1244871A1 (fr) Dispositif et procede pour commander la vitesse de reinjection de gaz d'echappement d'un dispositif de reinjection de gaz d'echappement pour moteurs a combustion interne pendant le fonctionnement en mode melange pauvre
DE102021113220A1 (de) Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium
DE102022118591A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm und Steuervorrichtung zur Durchführung eines solchen Verfahrens, Abgaspfad-Anordnung mit einer solchen Steuervorrichtung und Brennkraftmaschine mit einer solchen Abgaspfad-Anordnung
AT517665B1 (de) Dual-Fuel-Brennkraftmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231013

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007194

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240228

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228