EP4045851B1 - Procédé de commande d'un dispositif de combustion - Google Patents
Procédé de commande d'un dispositif de combustion Download PDFInfo
- Publication number
- EP4045851B1 EP4045851B1 EP20797405.6A EP20797405A EP4045851B1 EP 4045851 B1 EP4045851 B1 EP 4045851B1 EP 20797405 A EP20797405 A EP 20797405A EP 4045851 B1 EP4045851 B1 EP 4045851B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- proportion
- fuel
- nitrogen oxides
- target value
- carbon monoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 51
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 143
- 239000000446 fuel Substances 0.000 claims description 92
- 238000002485 combustion reaction Methods 0.000 claims description 60
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 44
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 43
- 239000003344 environmental pollutant Substances 0.000 claims description 22
- 231100000719 pollutant Toxicity 0.000 claims description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/002—Regulating fuel supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
- F05D2270/082—Purpose of the control system to produce clean exhaust gases with as little NOx as possible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
- F05D2270/083—Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
- F05D2270/0831—Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions indirectly, at the exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/305—Tolerances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/306—Mass flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/311—Air humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/313—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/70—Type of control algorithm
- F05D2270/71—Type of control algorithm synthesized, i.e. parameter computed by a mathematical model
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/20—Gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2900/00—Special features of, or arrangements for controlling combustion
- F23N2900/05001—Measuring CO content in flue gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2900/00—Special features of, or arrangements for controlling combustion
- F23N2900/05003—Measuring NOx content in flue gas
Definitions
- the invention relates to a method for controlling a combustion device, with the focus being on achieving minimum performance.
- a variety of methods for controlling a combustion device are known from the prior art. These are usually adapted to the respective combustion device and differ depending on the type of combustion device and its task. However, what is being considered here is the condition in which the combustion device can be operated with the lowest possible power within the permissible range.
- the relative content of pollutants in particular the load with carbon monoxide, increases as the distance from the nominal power increases.
- the operation of the combustion device is limited to a minimum value, taking into account the specifications for the content of pollutants, at which the limit values are reliably adhered to.
- the gas turbine system comprises a gas turbine with a combustion chamber in which fuel is burned during operation of the gas turbine.
- the supply of fuel is regulated by a control device based on a power reference value.
- a detection module available, which can be used to determine the carbon monoxide concentration.
- the power reference value is adjusted depending on the carbon monoxide concentration.
- combustion device it is sometimes desirable for the combustion device to be operated with the lowest possible power, in particular in order to avoid standstill.
- the object of the present invention is therefore to enable a lower performance than was previously usual, at which the given limit values for pollutants are adhered to.
- the generic method is used to control a combustion process of a combustion device. What type of combustion device this is is initially irrelevant. At least the method can be used advantageously to control the combustion process in a combustion chamber of a gas turbine. In any case, it is necessary that the combustion device comprises at least one combustion chamber and at least one burner is arranged on this. By means of the burner, the fuel and the supply air required to burn the fuel can be conveyed into the combustion chamber for combustion. Furthermore, a control device for carrying out the method is available. For this purpose, a calculation model of the combustion process is stored in the control device. For a given performance, it can be determined based on the stored calculation model whether the pollutants are theoretically within a permissible range.
- a permissible limit value for the proportion of nitrogen oxides is stored in the calculation model of the control device. Furthermore, it is also necessary to set a permissible limit for the proportion of carbon monoxide. These two values can be defined as an unchangeable size or it can be provided that adaptation to local conditions is possible. For example, the permissible limit values may be legal requirements.
- the type and/or quality of the fuel used is known.
- the parameters it is possible for the parameters to be entered as a default in the control device.
- the type or quality of the fuel is measured or determined before it is fed to the combustion device and the result is transmitted to the control device.
- a signal for setting a minimum power is also necessary, so that the fuel supply to the combustion device is subsequently reduced.
- the combustion device has an exhaust air measuring device with which at least the actual proportion of a relevant pollutant in the exhaust air can be recorded.
- the output of the combustion device can be further reduced until the target value is reached, provided that it is ensured that other limit values are reliably adhered to.
- the actual proportion of nitrogen oxides in the exhaust air is continuously measured. Based on the known actual proportion of nitrogen oxides, the control device now uses the calculation model to calculate whether a reduction in fuel and thus power is possible without the proportion of nitrogen oxides exceeding the target value. At the same time, the control device uses the calculation model to determine how much the amount of fuel can be reduced until the proportion of carbon monoxide theoretically reaches the target value. Due to the lack of knowledge about the actual content in the exhaust air, a greater tolerance to the permissible limit value must be observed.
- the fuel supply is now reduced with further ongoing monitoring of the actual proportion of nitrogen oxides (in the first method) or carbon monoxide (in the second method) until the calculated minimum amount of fuel is reached. If the measured actual proportion of nitrogen oxides or carbon monoxide already reaches the target value, the reduction in fuel supply will then be stopped. In both methods, this results in an assumed minimum fuel supply and thus minimum power, at which one or both pollutants nitrogen oxides or carbon monoxide have reached the target value. It can be reliably assumed that both permissible limit values are adhered to.
- a third method combines the first method with the second method, wherein the exhaust air measuring device can monitor both the actual proportion of nitrogen oxides and the actual proportion of carbon monoxide.
- the control device uses the calculation model to calculate how far the fuel or the power can be reduced until one or both target values are reached. There Both values are recorded continuously, the tolerance for the permissible limit value for both pollutants can be chosen to be relatively small.
- the fuel supply or the power is reduced until the previously calculated minimum fuel supply is reached. If the situation occurs in which one of the two measured values for the actual proportion of nitrogen oxides or carbon monoxide reaches the target value, the fuel reduction is stopped.
- the calculation of the lowest possible fuel supply is carried out once after the signal to shut down the combustion device to a minimum output has been given.
- the calculation is carried out repeatedly in the further course - as long as the minimum power is desired - so that a new opportunity to further reduce the fuel supply or the power - if given - can be exploited. Accordingly, when the calculation is repeated based on the given target values for the pollutants and the measured proportion of nitrogen oxides or carbon monoxide, the minimum fuel supply is recalculated at which the target values are not exceeded.
- the fuel supply is increased. If, on the other hand, a new calculation determines that both target values are undershot, the fuel supply can be reduced again.
- a new calculation can be planned at regular intervals.
- the period of time can be selected such that after a change in the fuel supply and thus the power, the resulting changing proportion of pollutants has leveled off at a substantially constant value.
- the ongoing measurement of nitrogen oxides and/or carbon monoxide can lead to a new calculation.
- a comparison can be made continuously between the measured values and the permissible limit values and/or the target value, with a new calculation to adjust the fuel quantity being initiated when a predetermined absolute or relative difference is reached. It can be provided here that the difference is chosen to be small when the target value is exceeded and, in contrast, the difference is chosen to be larger when the target value is undershot.
- the combustion device comprises at least one main burner and at least one secondary burner. What type of burner this is is initially irrelevant, although it is intended that they have different combustion characteristics. Similar to the use of a single burner or a single burner type, it is necessary that the main burner and the secondary burner can deliver fuel and/or supply air into the combustion chamber.
- a minimum fuel supply can be determined as before, in which at least an actual proportion of nitrogen oxides or carbon monoxide reaches the target value for a given distribution of the fuel. Accordingly, as before, the fuel supply can be reduced to the calculated minimum fuel supply.
- an optimal distribution of the fuel is calculated when using a main burner and a secondary burner.
- an iterative comparison can be made between the calculated values for the proportion of nitrogen oxides and carbon monoxide and the target values by changing the distribution of the fuel and reducing the amount of fuel until the difference between the calculated proportion of pollutants and the target values is as small as possible.
- This method is particularly advantageous if the secondary burner is a so-called pilot burner.
- the difference between the proportion of carbon dioxide and the associated target value is greater than the difference between the proportion of nitrogen oxides and the associated target value, it is advantageous if the distribution of the fuel is changed so that the proportion for the main burner is increased and the proportion for the secondary burner is reduced.
- the difference between the proportion of nitrogen oxides and the associated target value is greater than the difference between the proportion of carbon dioxide and the associated target value, then it is advantageous if the distribution of the fuel is changed in such a way that the proportion for the secondary burner is increased and the proportion for the main burner is reduced.
- the fuel supply can be further reduced.
- a further improvement of the method, in particular for reducing the necessary tolerances, is achieved if a supply air measuring device is available, by means of which at least one property of the supply air can be determined. It is particularly advantageous if the temperature and humidity of the supply air are known in the calculation model. Accordingly, these values can be taken into account when calculating the minimum amount of fuel and the optimal distribution of the fuel.
- the calculation model is created using the known calculation bases (e.g. combustion characteristics, properties of the combustion device, type of fuel), whereby the measured actual proportion of pollutants represents the variable for the calculation.
- known calculation bases e.g. combustion characteristics, properties of the combustion device, type of fuel
- the calculation parameters are continuously stored together with as much existing status data as possible.
- the status data includes the actual states of the combustion device or gas turbine (temperature data, vibration data, etc.), the type and/or quality of the fuel, the temperature and/or humidity of the supply air, the actual proportion of nitrogen oxides and/or carbon monoxide in the exhaust air. Taking the stored data into account, the calculation model can be adjusted regularly or continuously become. The methods of so-called self-learning can be used in a particularly advantageous manner.
- this process is not limited to one type of fuel. It can also be provided that different fuels are used when the main burner and secondary burner are present. In principle, the process can be used advantageously if the fuel is gaseous.
- a combustion device 01 according to the invention is schematically sketched in figure one. This initially includes the combustion chamber 02 with the main burner 03 arranged thereon and the secondary burner 04. Fuel 23 and supply air 21 can be supplied to the burners 03, 04. Exhaust air 25, d. H. Flue gas emerges from the combustion chamber 02.
- a control device 11 is present, in which a calculation model 12 is stored and which, in this exemplary embodiment, includes a data memory 13.
- Various parameters are transmitted to the control device 11.
- the maximum proportion of nitrogen oxides 16 and the maximum proportion of carbon monoxide 17 are fixed. This can be the permissible limit value or the target value.
- the target value can be calculated by the control device. It is also possible to transmit both the permissible limit value and the respective target value as a specification to the control device 11.
- the type or quality 24 of the fuel 23 is known in the calculation model.
- this 24 is continuously recorded and transmitted to the control device 11.
- the temperature and the humidity 22 of the supply air 21 are measured and transmitted to the control device 11.
- the method according to the invention is triggered by a signal to start up a minimum power, for which purpose the control device 11 is sent the required target power 15.
- the control device 11 When carrying out the method in the control device 11 on the basis of the calculation model 12 stored there, the minimum fuel supply and the optimal distribution between the main burner 03 and the secondary burner 04 are calculated. Based on the calculation result, the control device 11 controls a correspondingly associated main valve 05 for controlling the fuel flow to the main burner 03 and a correspondingly associated secondary valve 06 for controlling the fuel flow to the secondary burner 04.
- FIG. 2 A possible process sequence with various parameters over time is shown as an example.
- the signal to start a minimum power P was given at time T1.
- a minimum power or minimum fuel supply is now calculated in the control device 11 using the calculation model 12, in which the predetermined limit values for the proportion of nitrogen oxides and the proportion of carbon monoxide is maintained (ie at least a target value is achieved).
- the target value NOx max is specified in the control device.
- the fuel supply and thus the power P is now reduced.
- the reduction in performance is usually accompanied by an increase in the proportion of pollutants, ie here the proportion of nitrogen oxides (NOx) and the proportion of carbon monoxide (not shown here) - see time T2.
- the target value for carbon monoxide has already been reached in the calculation, but there is still a larger difference between the target value for nitrogen oxides and the measured NOx value.
- the amount of fuel can be reduced again until the target values NOx max are essentially achieved in accordance with the calculation or the respective measurement - see time T4.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Claims (12)
- Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion, et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (26) réelle d'oxydes d'azote ; comprenant les stades :- fixation d'une valeur limite admissible de la proportion d'oxydes (16) d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- détection en continu de la proportion (26) réelle d'oxydes d'azote dans l'air (25) évacué ;- détection d'un signal pour le réglage d'une puissance minimum ;- calcul d'un apport (23) minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle il faut s'attendre de monoxyde de carbone atteint la valeur cible ;- lors du contrôle continu de la proportion (26) réelle d'oxydes d'azote dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible des oxydes d'azote soit atteinte.
- Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion, et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (27) réelle de monoxyde de carbone ; comprenant les stades :- fixation d'une valeur (16) limite admissible de la proportion d'oxydes d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- détection en continu de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué ;- détection d'un signal pour le réglage d'une puissance minimum ;- calcul d'un apport (23) minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle on s'attend d'oxydes d'azote atteint la valeur cible ;- lors du contrôle en continu de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible du monoxyde de carbone soit atteinte.
- Procédé de commande d'une opération de combustion dans un dispositif (01) de combustion, en particulier d'une turbine à gaz, comprenant une chambre (02) de combustion, dans laquelle du combustible (23) peut être brûlé avec de l'air (21) d'apport, et au moins un brûleur, qui peut transporter le combustible (23) et/ou l'air (21) d'apport dans la chambre (02) de combustion, et un dispositif (11) de commande, dans lequel est mis en mémoire un modèle (12) de calcul de l'opération de combustion et un dispositif de mesure de l'air évacué, qui permet de détecter la proportion (26) réelle d'oxydes d'azote et la proportion (27) réelle de monoxyde de carbone ; comprenant les stades :- fixation d'une valeur (16) limite admissible de la proportion d'oxydes d'azote et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- fixation d'une valeur (17) limite admissible de la proportion de monoxyde de carbone et détermination d'une valeur cible comme valeur limite déduction faite d'une tolérance ;- détection en continu de la proportion (26) réelle de d'oxydes d'azote et de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué ;- détection d'un signal pour le réglage d'une puissance minimum ;- calcul d'un apport (23) total minimum de combustible en utilisant le modèle (12) de calcul, pour lequel (23) la proportion à laquelle on s'attend de monoxyde de carbone et la proportion à laquelle on s'attend d'oxydes d'azote atteignent respectivement la valeur cible ;- lors du contrôle continu de la proportion (26) réelle d'oxydes d'azote et de la proportion (27) réelle de monoxyde de carbone dans l'air (25) évacué, réduction de l'apport (23) de combustible jusqu'à l'apport (23) de combustible minimum calculé respectivement jusqu'à ce que la valeur cible respective des oxydes d'azote et du monoxyde de carbone soit atteinte.
- Procédé suivant l'une des revendications 1 à 3,
dans lequel on effectue le calcul de manière récurrente, dans lequel, lorsque l'on constate que l'on passe au-dessus de l'une des valeurs limite, on augmente l'apport (23) de combustible et lorsque l'on constate que l'on passe en-dessous des deux valeurs cibles déduction faite d'une tolérance opératoire respective, on réduit davantage l'apport (23) de combustible. - Procédé suivant la revendication 4,dans lequel on effectue le calcul à intervalles réguliers ; oudans lequel on effectue le calcul dès qu'une différence donnée à l'avance entre la proportion (26, 27) réelle mesurée de la pollution dans l'air (25) évacuée et la valeur cible données à cet effet est dépassée.
- Procédé suivant l'une des revendications 1 à 5,
dans lequel le dispositif (01) de combustion comprend au moins un brûleur (03) principal et au moins un brûleur (04) secondaire, qui peuvent transporter respectivement du combustible (23) et/ou de l'air (21) d'apport dans la chambre (02) de combustion ; comprenant les stades :- lors du calcul de l'apport (23) minimum de combustible, détermination d'une répartition du combustible (23) entre le brûleur (03) principal et le brûleur (04) auxiliaire, pour laquelle (23) la proportion à laquelle on s'attend de monoxyde de carbone respectivement la proportion à laquelle on s'attend d'oxydes d'azote atteint la valeur cible ;- réduction de l'apport (23) de combustible en tenant compte de la répartition calculée auparavant du combustible (23) entre le brûleur (03) principal et le brûleur (04) auxiliaire. - Procédé suivant la revendication 6,
dans lequel le brûleur (04) auxiliaire est un brûleur pilote. - Procédé suivant la revendication 6 ou 7,dans lequel, s'il y a une différence plus grande entre la valeur cible et la proportion (27) réelle calculée ou mesurée du dioxyde de carbone et une différence plus petite entre la valeur cible et la proportion (26) réelle calculée ou mesurée des oxydes d'azote, on modifie la répartition du combustible (23) avec une proportion plus grande pour le brûleur (03) principal et une proportion plus petite pour le brûleur (04) auxiliaire ;dans lequel ensuite, à la constatation que l'on passe en-dessous des deux valeurs cibles, on réduit davantage l'apport (23) de combustible.
- Procédé suivant l'une des revendications 6 à 8,dans lequel, s'il y a une différence plus grande entre la valeur cible et la proportion (26) réelle calculée ou mesurée d'oxydes d'azote et une différence plus petite entre la valeur cible et le proportion (27) réelle calculée ou mesurée du dioxyde de carbone, on modifie la répartition du combustible (23) avec une proportion plus grande pour le brûleur (04) auxiliaire et une proportion plus petite pour le brûleur (03) principal ;dans lequel ensuite, à la constatation que l'on passe en-dessous des deux valeurs cibles, on réduit davantage l'apport (23) de combustible.
- Procédé suivant l'une des revendications 1 à 9,
dans lequel un dispositif de mesure de l'air d'apport peut déterminer au moins une propriété de l'air (21) d'apport, en particulier la température et/ou l'humidité (22) de l'air, dans lequel la propriété est prise en compte dans le dispositif (11) de commande, lors du calcul de l'apport (23) de combustible et/ou de la répartition du combustible (23). - Procédé suivant l'une des revendications 1 à 10,
dans lequel on met en mémoire en continu les paramètres de calcul et les données d'états présentes, en particulier des états réels du dispositif (01) de combustion et/ou la nature et/ou la qualité (24) du combustible (23) et/ou la température et/ou l'humidité (22) de l'air (21) d'apport et/ou la proportion (26, 27) réelle d'oxydes d'azote et/ou de monoxyde de carbone dans l'air (25) évacué et, à l'aide des données mises en mémoire, on effectue une adaptation régulière ou continue du modèle de calcul, en particulier au moyen de méthodes de ce que l'on appelle l'autoapprentissage. - Procédé suivant l'une des revendications 1 à 11,
dans lequel le combustible (23) est gazeux.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20157640.2A EP3865773A1 (fr) | 2020-02-17 | 2020-02-17 | Procédé de commande d'un dispositif de combustion |
PCT/EP2020/079142 WO2021164897A1 (fr) | 2020-02-17 | 2020-10-16 | Procédé de commande d'un dispositif de combustion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4045851A1 EP4045851A1 (fr) | 2022-08-24 |
EP4045851B1 true EP4045851B1 (fr) | 2024-02-28 |
Family
ID=69631435
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20157640.2A Withdrawn EP3865773A1 (fr) | 2020-02-17 | 2020-02-17 | Procédé de commande d'un dispositif de combustion |
EP20797405.6A Active EP4045851B1 (fr) | 2020-02-17 | 2020-10-16 | Procédé de commande d'un dispositif de combustion |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20157640.2A Withdrawn EP3865773A1 (fr) | 2020-02-17 | 2020-02-17 | Procédé de commande d'un dispositif de combustion |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230046593A1 (fr) |
EP (2) | EP3865773A1 (fr) |
CN (1) | CN115135930A (fr) |
WO (1) | WO2021164897A1 (fr) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735052A (en) * | 1985-09-30 | 1988-04-05 | Kabushiki Kaisha Toshiba | Gas turbine apparatus |
US8417433B2 (en) * | 2010-04-30 | 2013-04-09 | Alstom Technology Ltd. | Dynamically auto-tuning a gas turbine engine |
ITMI20111941A1 (it) * | 2011-10-26 | 2013-04-27 | Ansaldo Energia Spa | Impianto a turbina a gas per la produzione di energia elettrica e metodo per operare detto impianto |
-
2020
- 2020-02-17 EP EP20157640.2A patent/EP3865773A1/fr not_active Withdrawn
- 2020-10-16 US US17/792,049 patent/US20230046593A1/en active Pending
- 2020-10-16 WO PCT/EP2020/079142 patent/WO2021164897A1/fr unknown
- 2020-10-16 EP EP20797405.6A patent/EP4045851B1/fr active Active
- 2020-10-16 CN CN202080096776.1A patent/CN115135930A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4045851A1 (fr) | 2022-08-24 |
US20230046593A1 (en) | 2023-02-16 |
WO2021164897A1 (fr) | 2021-08-26 |
CN115135930A (zh) | 2022-09-30 |
EP3865773A1 (fr) | 2021-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60311195T2 (de) | Verfahren/System zum Mapping einer Brennkammer in einer Gasturbine | |
EP1621811B1 (fr) | Procédé de fonctionnement pour un dispositif de combustion | |
DE102008001569B4 (de) | Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde | |
DE102011085115B4 (de) | Verfahren und Vorrichtung zur Adaption einer Lambdaregelung | |
DE102005000978B4 (de) | Vorrichtung zur Steuerung des Schadstoffausstoßes eines selbstzündenden Verbrennungsmotors | |
EP3023698B1 (fr) | Dispositif de détermination d'un rapport d'étagement, une turbine a gaz ou moteur d'aeronef comprenant un tel dispositif et son utilisation | |
DE602004004990T2 (de) | Verfahren zur Verschlechterungsfeststellung eines Abgasreinigers | |
DE2730100A1 (de) | Einrichtung zum regeln des verhaeltnisses luft/kraftstoff des betriebsgemisches einer brennkraftmaschine | |
EP1769139A1 (fr) | Procede permettant de faire fonctionner un moteur a combustion interne, et dispositif pour la mise en oeuvre de ce procede | |
DE102010000928B3 (de) | Verfahren und Vorrichtung zur Einstellung des Luft-/Kraftstoffverhältnisses im Abgas eines Verbrennungsmotors | |
DE102006051834B4 (de) | Erweiterte Gemischregelung zur Reduzierung von Abgasemissionen | |
EP1971804B1 (fr) | Procédé de fonctionnement d'un foyer | |
DE10256241A1 (de) | Verfahren und Vorrichtung zur Steuerung einer eine Abgasrückführung aufweisenden Brennkraftmaschine | |
DE102009032659A1 (de) | Kombinierte Rauchbegrenzung | |
EP4045851B1 (fr) | Procédé de commande d'un dispositif de combustion | |
EP1533569B1 (fr) | Méthode de fonctionnement d'un appareil de combustion | |
EP3688295B1 (fr) | Procédé permettant de faire fonctionner un dispositif d'entraînement et dispositif d'entraînement correspondant | |
DE102004017886B3 (de) | Verfahren und Vorrichtung zur Lambdaregelung einer Brennkraftmaschine mit Abgaskatalysator | |
DE102018104926B4 (de) | Verfahren zum Betrieb und Einrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine sowie Brennkraftmaschine | |
DE102005058524A1 (de) | Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems | |
DE10234849A1 (de) | Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine | |
EP1244871A1 (fr) | Dispositif et procede pour commander la vitesse de reinjection de gaz d'echappement d'un dispositif de reinjection de gaz d'echappement pour moteurs a combustion interne pendant le fonctionnement en mode melange pauvre | |
DE102021113220A1 (de) | Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium | |
DE102022118591A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm und Steuervorrichtung zur Durchführung eines solchen Verfahrens, Abgaspfad-Anordnung mit einer solchen Steuervorrichtung und Brennkraftmaschine mit einer solchen Abgaspfad-Anordnung | |
AT517665B1 (de) | Dual-Fuel-Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231013 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020007194 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240228 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240304 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240528 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240528 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240228 |