EP4043603A1 - Flat steel product and method for its production - Google Patents

Flat steel product and method for its production Download PDF

Info

Publication number
EP4043603A1
EP4043603A1 EP22159990.5A EP22159990A EP4043603A1 EP 4043603 A1 EP4043603 A1 EP 4043603A1 EP 22159990 A EP22159990 A EP 22159990A EP 4043603 A1 EP4043603 A1 EP 4043603A1
Authority
EP
European Patent Office
Prior art keywords
flat
steel
flat steel
product
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22159990.5A
Other languages
German (de)
French (fr)
Inventor
Richard Georg THIESSEN
Manuela Irnich
Bernd Linke
Jan-hendrik RUDOLPH
Rainer FECHTE-HEINEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP22159990.5A priority Critical patent/EP4043603A1/en
Publication of EP4043603A1 publication Critical patent/EP4043603A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the invention relates to a high-strength flat steel product suitable for bake-hardening treatment and a method for producing such a flat steel product.
  • BH steel flats suitable for bake hardening (BH) treatment are also referred to as bake hardening (BH) steel flats and are commonly used in automotive applications such as body panels.
  • BH steel flat products have a lower strength level before BH treatment than after BH treatment. This circumstance is used to carry out the forming of flat steel products to be formed before the BH treatment and thus with lower yield points and better forming capacity.
  • the strength level is increased by the BH treatment, in which the material is subjected to heat treatment.
  • the BH treatment is typically performed for 3 to 40 minutes within a temperature range of 120 to 250°C.
  • the BH treatment stimulates atoms of interstitially dissolved elements to diffuse, whereby they can attach to dislocations. This hinders the dislocations in their movement, which leads to an increase in the yield point.
  • This effect of the increase in yield point is also referred to as the bake hardening effect (BH effect) and the difference in the yield points before and after the BH treatment is also referred to as the bake hardening value (BH value).
  • BH effect bake hardening effect
  • BH value bake hardening value
  • yield point is the characteristic value referred to as the upper yield point ReH meant.
  • BH steel flat products often do not have a pronounced yield point before the BH treatment, but only a yield point. If the increase in yield point or the BH value is discussed here, this means the difference between the yield point Rp0.2 before the BH treatment and the yield point for steel flat products that do not have a pronounced yield point before the BH treatment, but rather a yield point ReH understood after BH treatment.
  • a high BH value has a positive effect on the buckling resistance of components made from BH flat steel products. As a result, it is possible to reduce the thickness of the component by using flat steel products, which have a high BH value, while maintaining the rigidity of the components.
  • the BH effect has so far been used for soft steels, which often have a predominantly ferritic matrix, only low martensite content and tensile strengths below 700 MPa.
  • the sheets should consist of a steel which, in addition to iron and unavoidable impurities, contains 0.0010 - 0.0040% by mass C, 0.005 - 0.05% by mass Si, 0.1 - 0.8% by mass Mn, 0.
  • the value of the quotient of the proportions of Mn and P [Mn%]/[P%] should be between 1.6 and 45, and the amount present in solid solution Carbon, which is obtained from [C%]-(12/95) ⁇ [Nb%], should be between 0.0005 and 0.0025% by mass.
  • the cold-rolled sheets suitable for bake-hardening should satisfy the equation X(222)/ ⁇ X(119)+X(200) ⁇ > 3.0.
  • X(222), X(110) and X(200) are the integrated X-ray diffraction intensity of the ⁇ 222 ⁇ plane, the ⁇ 110 ⁇ plane and the ⁇ 200 ⁇ plane which are parallel to a plane which starting from the sheet surface is 1 ⁇ 4 of the sheet thickness.
  • the sheets should have good deep-drawing properties and tensile strengths of 300 to 450 MPa.
  • High-strength flat steel products are usually used for body parts in order to be able to realize small component thicknesses with good dent resistance.
  • High-strength steels are characterized by a high proportion of martensite in the structure. Martensite is a carbon-rich structural component from which carbon can diffuse into other structural components when thermally activated. The higher the proportion of martensite in the structure, the more pronounced the BH effect is typically. However, high proportions of martensite go hand in hand with poor deformability.
  • the sheets should contain 0.05 - 0.30% by mass C, 0.5 - 3.0% by mass Si, 0.2 - 3.0% by mass Mn, up to 0.10% by mass P, up to 0.010% by mass S, up to 0.010% by mass N and 0.001 - 0.10% by mass Al, the rest iron and unavoidable impurities.
  • the structure should contain 50 - 85% by area martensite, less than 5% by area ferrite and the rest bainite and have a dislocation density of at least 5.0 x 10 15 m -2 and at least 0.08% by mass of dissolved carbon.
  • the sheets should be suitable for bake-hardening and have good bending properties and tensile strengths of 1180 MPa or more.
  • the sheets are produced using conventional continuous casting, hot rolling and cold rolling.
  • the cold-rolled sheets should be heated to annealing temperatures of Ac3+50°C up to 930°C, held at this annealing temperature for 30 to 1200 s, then at an average speed of 15°C/s or more to a cooling stop temperature between 450° C to 550 °C, then immersed in a molten bath for 10 to 60 s at 480 to 525 °C within 30 s or less from reaching the cooling stop temperature and then to 200 ° at an average cooling rate of 15 °C/s or more C to be cooled.
  • the object of the invention was to specify a high-strength flat steel product with optimized properties, in particular very good bake-hardening properties and very good forming properties both before and after a BH treatment.
  • the object was achieved in that at least the method steps specified in claim 10 are completed in the production of a flat steel product according to the invention.
  • ferrite is spoken of here, then polygonal ferrite is spoken of in each case.
  • at least 90% of the martensite has a martensite lancet length of no more than 7.5 ⁇ m and a martensite lancet width of no more than 1000 nm.
  • a flat steel product according to the invention is characterized in that, before a BH treatment, it has a yield point Rp0.2 of over 700 MPa or a yield point ReH of over 700 MPa, a tensile strength Rm of 950-1500 MPa and an elongation A80 of 7-25% and has a high bake hardening (BH) potential.
  • the BH potential is expressed in the flat steel product having an increase in yield point of at least 80 MPa after a BH treatment and an elongation A80_BH which is at least half as high as the elongation A80 before the BH treatment.
  • the carbon content of the steel of a flat steel product according to the invention is 0.1-0.5% by weight.
  • carbon contributes to the formation and stabilization of austenite.
  • C contents of at least 0.1 wt. %, preferably at least 0.12 wt is, on the invention Flat steel product to ensure a residual austenite content of at least 5% by volume.
  • the residual austenite can be stabilized particularly reliably if the C content is at least 0.14% by weight.
  • the C content has a strong influence on the strength of the martensite. This applies to both the strength of the martensite formed during the first quench and the strength of the martensite formed during the second quench that begins after the partitioning anneal.
  • the C content should be at least 0.1% by weight.
  • a minimum content of 0.1% by weight is required in order to provide sufficient carbon atoms for diffusion to the dislocations present in the material during a later BH treatment and thus to ensure a pronounced BH effect.
  • Particularly high BH values are obtained when the C content is at least 0.14% by weight.
  • the martensite start temperature Ms is also shifted to lower temperatures.
  • a C content above 0.5% by weight could therefore lead to insufficient martensite formation during quenching.
  • the workability, in particular the weldability is also impaired at higher C contents, which is why the C content should be at most 0.5% by weight, preferably at most 0.4% by weight.
  • the Mn content of the steel of a flat steel product according to the invention is therefore at least 1.0% by weight, preferably at least 1.9% by weight, in order to provide a pearlite-free structure for the further process steps after the first quenching.
  • the Mn content increases, the weldability deteriorates and the risk of severe segregation occurring increases. Segregations are chemical inhomogeneities in the composition formed during the solidification process in the form of macroscopic or microscopic demixing.
  • the Mn content of the steel of a flat steel product according to the invention is limited to a maximum of 3.0% by weight, preferably a maximum of 2.7% by weight.
  • the Si content of the steel of a flat steel product according to the invention is limited to 0.5-2.0% by weight.
  • Si as an alloying element helps to suppress cementite formation.
  • Cementite is an iron carbide.
  • the formation of cementite binds carbon in the form of iron carbide and is no longer available in atomic form for solution in the iron lattice.
  • atomic carbon which is interstitially dissolved in the iron lattice, contributes significantly to the stabilization of retained austenite on the one hand and to the improvement of the BH effect on the other.
  • retained austenite helps improve formability, especially elongation, both before and after BH treatment.
  • a similar effect in terms of stabilizing the retained austenite can also be achieved by alloying aluminum.
  • the minimum Si content required to obtain a flat steel product according to the invention can be reduced to 0.5% by weight.
  • the Si content should preferably be at least 0.9% by weight.
  • the steel should contain no more than 2.0% by weight, preferably no more than 1.6% by weight.
  • Aluminum is present in the steel of a flat steel product according to the invention in contents of 0.01-1.5% by weight.
  • Al is added for deoxidation and grain refinement. Grain refinement occurs through the formation of AlN clusters and AlN precipitations, each of which inhibits grain growth during austenitizing annealing, which is also referred to as austenitizing for short.
  • AlN clusters are generally understood to be accumulations of aluminum and nitrogen atoms which, in contrast to AlN precipitations, do not have a sharp phase boundary to the matrix.
  • the Al content should be at least 0.01% by weight. Particularly fine austenite grains can thus be set by the addition of Al and N to lattice defects and their subsequent cluster formation or precipitation.
  • the finer austenite grain size results in fine martensite with a small lancet length being formed during the first quench.
  • increased Al contents are required of at least 0.02% by weight is particularly advantageous.
  • a further advantage for the formation of AlN clusters and AlN precipitations is a high number of lattice defects that are available during heating to the austenitizing temperature (THZ). These lattice defects can be introduced into the material before austenitizing, for example in the form of dislocations.
  • THZ austenitizing temperature
  • Aluminum, like silicon, contributes to the suppression of cementite formation.
  • Al is not as effective as Si in suppressing cementite formation.
  • Si has a negative effect on scaling and coatability and thus on the surface quality of the steel flat products
  • Al can be used as a substitute for Si when selecting the alloy composition.
  • Al contents of at least 0.1% by weight have proven to be particularly effective for the steel composition according to the invention. At lower Al contents, the influence of Al on cementite suppression is not significant.
  • aluminum contributes to increasing the carbon activity in martensite. This applies both to the martensite formed after the first quench, which takes place after austenitizing, and to the martensite formed after the second quench, which takes place after partitioning annealing.
  • the increase in carbon activity also shows a positive effect on the BH effect.
  • high carbon activity also increases the driving force for attachment of carbon atoms to dislocations, resulting in the increase in BH value.
  • Al contents of at least 0.02% by weight have proven to be particularly advantageous for increasing the carbon activity in the martensite. Since aluminum has the required for complete austenitizing If the annealing temperature is increased and complete austenitization is only possible with difficulty at Al contents above 1.5% by weight, the Al content of the steel of the flat steel product according to the invention is limited to a maximum of 1.5% by weight. If a low austenitizing temperature is to be set in order to improve energy efficiency, Al contents of at most 0.2% by weight have proven to be expedient.
  • the sum of the Si content and half of the Al content is at least 0.9% by weight.
  • Values of less than 0.9% by weight increase the risk of cementite forming, through which carbon is bound and is no longer available for diffusion into the retained austenite during partitioning annealing and is therefore no longer available for stabilization of the retained austenite.
  • the N content in the steel of a flat steel product according to the invention is limited to 0.001-0.008% by weight.
  • nitrogen forms nitrides, for example with aluminum or titanium.
  • the steel should contain at least 0.001% by weight of N.
  • a preferred N content of at least 0.002% by weight can be set. Increasing N contents tend to lead to the formation of larger precipitates.
  • the N content is limited to a maximum of 0.008% by weight.
  • Phosphorus has a negative effect on the weldability in flat steel products according to the invention. For this reason, the P content should be as low as possible and in particular should not exceed 0.02% by weight.
  • chromium can be present in the steel in contents of up to 1.0% by weight.
  • Chromium is an effective inhibitor of pearlite and contributes to strength. This applies in particular to Cr contents of at least 0.01% by weight. With Cr contents of more than 1.0% by weight, however, the risk of pronounced grain boundary oxidation, which leads to a deterioration in the surface quality, is increased.
  • Molybdenum can likewise optionally be contained in the steel of a steel flat product according to the invention in amounts of at least 0.01% by weight in order to prevent the formation of pearlite. For reasons of cost, the Mo content is limited to levels of up to 0.2% by weight.
  • Boron can be contained as an optional alloying element in amounts of 0.001 to 0.01% by weight in the steel of a flat steel product according to the invention. Boron segregates onto the phase boundaries and thus blocks their movement. This supports the formation of a fine-grain structure, which improves the mechanical properties of the steel flat product.
  • alloying boron sufficient aluminum should be available so that AlN forms preferentially.
  • an Al/B ratio of at least 10 is therefore set. However, no further improvement can be achieved by adding boron in excess of 0.01% by weight.
  • steels of flat steel products according to the invention can also contain one or more micro-alloying elements from the group Ti, Nb and V.
  • Micro-alloying elements can be combined with carbon or nitrogen carbides, form nitrides or carbonitrides. In the form of very finely distributed precipitations, these contribute to greater strength.
  • the sum of the micro-alloying elements should be at least 0.005% by weight, so that the precipitation of carbides, nitrides or carbonitrides can lead to the freezing of grain and phase boundaries during austenitizing and thus counteract grain coarsening.
  • carbon which in atomic form is favorable for stabilizing the retained austenite, is bound as carbide or carbonitride.
  • the total concentration of the micro-alloying elements should not exceed 0.2% by weight. To avoid coarse titanium nitride precipitation, the titanium concentration should not be more than 0.10%.
  • a flat steel product according to the invention preferably has a yield strength Rp02 of more than 700 MPa or a yield strength ReH of more than 700 MPa, a tensile strength Rm of 950-1500 MPa and an elongation A80 of 7-25%, with the yield strength Rp02 or the yield strength ReH the tensile strength Rm and the elongation A80 are determined according to DIN EN ISO 6892:2009.
  • a flat steel product according to the invention preferably has a high bake-hardening potential (BH potential).
  • a measure of the BH potential is the BH2 value, which is determined after pre-deformation of 2% and tempering for 20 minutes at 170° C.
  • the elongation A80_BH present after a BH treatment for 20 minutes at 170° C. on flat steel products according to the invention preformed by 2% is at least half as high as the elongation A80 before the BH treatment.
  • the elongation values A80 and A80_BH are determined according to DIN EN ISO 6892:2009.
  • the flat steel product according to the invention has a structure that contains no more than 15% by area of ferrite in order to ensure the required high strength.
  • the microstructure does not have more than 5% by area of bainite.
  • the microstructure of a flat steel product according to the invention contains at least 5% by volume of retained austenite. Residual austenite has a beneficial effect on the formability and elongation of martensite steels.
  • the austenite which has been stabilized down to room temperature, can be stretched more than other structural components using the TRIP effect with simultaneous higher hardening.
  • the austenite-stabilizing alloying elements such as C and Mn for reasons of weldability, a residual austenite content greater than 20% by volume is not possible with the manufacturing process described.
  • the flat steel product according to the invention contains at least 80% by area of martensite, of which at least 75% by area is tempered martensite.
  • the martensite formed in the course of the method according to the invention after the partitioning by the second quenching in step j) is also referred to as untempered martensite.
  • the martensite resulting from the first quench after austenitizing, which undergoes partitioning, is also known as tempered martensite. All of the martensite present in the structure is composed of tempered and untempered martensite, with the possibility that there is no untempered martensite.
  • the total proportion of martensite ie the sum of tempered and non-tempered martensite, should be at least 80% by area, preferably at least 90% by area. This high proportion of martensite contributes to the high strength of the flat steel product.
  • martensite is a carbon-rich structural component. As such, the martensite serves as a source for the diffusion of carbon both during the partitioning anneal and during the BH treatment.
  • the residual austenite present is stabilized by the carbon diffusion from the martensite into the austenite during the partitioning annealing, which makes it possible to set a residual austenite proportion of at least 5% by volume.
  • the carbon diffusion during the BH treatment increases the BH effect, resulting in an increase in the BH value.
  • At least 75% of the martensite present in the flat steel product is tempered martensite, because only then is there enough martensite available for sufficient residual austenite stabilization during partitioning annealing.
  • At least 90% of the martensite lancets have a martensite lancet width of at most 1000 nm. The narrow lancet width of at most 1000 nm leads to short diffusion paths during partitioning annealing, which enables targeted local stabilization of the retained austenite.
  • the martensite lancet length is limited to a maximum of 7.5 ⁇ m to ensure good formability. Since the lancets grow with a defined ratio of length to width, the width is limited, which has an advantageous effect on the diffusion of the carbon.
  • the information on the microstructural proportions for the microstructural components martensite, ferrite and bainite are based on area % and for retained austenite on vol. %. Due to the fineness of the microstructure, it is advisable to carry out the microstructure investigations, including the determination of the martensite lancet length and width, using a scanning electron microscope (SEM) at 5000x magnification. An examination using X-ray diffraction (XRD) according to ASTM E975 is recommended as a suitable method for the quantitative determination of retained austenite.
  • SEM scanning electron microscope
  • step a a hot-rolled flat steel product is provided, which consists of a steel of the composition mentioned in step a).
  • the hot-rolled flat steel product is pickled before cold rolling.
  • the pickling in step b) is carried out in a conventional manner.
  • the cold rolling in step c) should be carried out with a degree of cold rolling of at least 37%.
  • the degree of cold rolling KWG is understood to mean the reduction in thickness that occurs as a result of the cold rolling of the flat steel product.
  • h0 is the thickness of the flat steel product before the first cold rolling process or cold rolling pass in mm and h1 is the thickness of the flat steel product after the last cold rolling process or cold rolling pass in mm.
  • Cold rolling with a KWG of at least 37% results in mechanical homogenization and a reduction in grain size, resulting in a fine-grained structure. Due to the high degree of cold rolling and the precipitation processes and the resulting fine initial structure before annealing, a very fine-grained austenite structure is already present before cooling.
  • the grain boundaries act as an obstacle to the growth of martensite lancets, and the short distance between grain boundaries in a fine structure results in shorter and narrower lancets.
  • a structure of the finest martensite lancets with residual austenite embedded in between is created. This leads to the following Treatment step to short diffusion paths, whereby a targeted local stabilization of the retained austenite is possible.
  • the heating of the cold-rolled flat steel product in step d) to a holding zone temperature THZ takes place initially until a turning temperature TW is reached, which is 200-400° C., at a heating rate ThetaH1 of 5-50 K/s. Above the turning temperature TW, heating takes place at a heating rate ThetaH2 of 2 - 10 K/s until the holding zone temperature THZ is reached.
  • the heating can also take place in one step, i.e. the heating speeds ThetaH1 and ThetaH2 are set to the same value.
  • the steel flat product is heated to a holding zone temperature THZ, which is above the A3 temperature of the steel, in order to enable a complete transformation into austenite.
  • the holding zone temperature THZ can also be referred to as the austenitizing temperature and annealing at THZ can also be referred to as austenitizing.
  • the holding zone temperature is limited to a maximum of 950 °C.
  • step e) the flat steel product is held at the holding zone temperature THZ for a holding time tHZ of at least 5 seconds in order to ensure complete austenitization.
  • the holding time tHZ should not exceed 15 seconds in order to avoid the formation of a coarse austenite grain and irregular austenite grain growth.
  • the aim of austenitizing is to set a fine and regular austenite grain, since such a structure has a favorable effect on the BH value.
  • the flat steel product can optionally first be slowly cooled in step f) to an intermediate temperature TLK, which is 620° C. or more.
  • TLK is not lower than 620 °C to avoid phase transformation into ferrite.
  • the duration tLK of the cooling from THZ to TLK is limited to 30 - 300 seconds.
  • the flat steel product is cooled in step g) at a higher cooling rate ThetaQ than the cooling rate in step f) of more than 5 K/s cooled to a cooling stop temperature TAB. Because of the high cooling rate, such cooling is also referred to as quenching or, to distinguish between quenching after partitioning annealing, the quenching in work step g) is also referred to as first quenching.
  • the cooling rate from the intermediate temperature TLK to the cooling stop temperature TAB is more than 5 K/s in order to avoid both the transformation of the austenite into ferrite and into bainite for the steel compositions according to the invention. This is even more reliable with higher cooling rates, which is why the ThetaQ cooling rate is preferably set to more than 20 K/s.
  • the cooling rate ThetaQ is technically limited to values of at most 500 K/s, preferably at most 100 K/s.
  • the cooling stop temperature TAB is between the martensite start temperature TMS and a temperature that is up to 175°C lower than TMS ((TMS-175°C) ⁇ TAB ⁇ TMS).
  • the martensite start temperature TMS is the temperature at which the transformation from austenite to martensite begins.
  • the extent of the transformation i.e. the proportion of martensite
  • the holding time tQ in step h) is at least 10 seconds to ensure sufficient conversion of the austenite into martensite.
  • the proportion of martensite produced by the first quenching after austenitizing should be at least 60% by area.
  • the holding time tQ should not be more than 60 seconds in order to avoid complete transformation into martensite and to ensure a residual austenite content of at least 5% by volume in the structure of the steel flat product at room temperature.
  • step i) the flat steel product is heated to a treatment temperature TB at a heating rate ThetaB1 and optionally maintained at TB in order to enrich the residual austenite present after step h) with carbon from the supersaturated martensite, which was formed by the first quenching.
  • the redistribution of the carbon which can also be referred to as partitioning, takes place during the heating phase on TB. If the flat steel product is then also held isothermally on TB, partitioning also takes place during the optional isothermic holding.
  • the heating to the treatment temperature TB and the subsequent optional holding at the treatment temperature TB are also referred to as partitioning annealing or partitioning.
  • heating is carried out at a heating rate of at least 1 K/s and at most 80 K/s.
  • the treatment temperature TB is 350 - 500 °C to avoid the formation of carbides and the decomposition of retained austenite.
  • the total treatment time tBT is at least 10 and at most 1000 seconds, also to ensure sufficient redistribution of the carbon.
  • the total treatment time tBT is made up of the time required for heating and, if applicable, the time used for the optional isothermal hold.
  • the flat steel product is then cooled to room temperature in step j) at a cooling rate ThetaB2.
  • the cooling rate ThetaB2 is more than 5 K/s, preferably more than 20 K/s to allow the formation of martensite.
  • This cooling step can also be referred to as quenching due to the high cooling rate.
  • the quenching in step j) is also referred to as second quenching.
  • the cooling rate ThetaB2 is technically limited to values of at most 500 K/s, preferably at most 100 K/s.
  • the flat steel product can additionally optionally be subjected to a coating treatment (step k)).
  • the coating treatment can be carried out either as a hot-dip coating (step k1)) or as an electrolytic coating (step k2)). If hot-dip coating takes place (work step k1)), the flat steel product, after partitioning in work step i) and before cooling in work step j), runs through a coating bath with a zinc-based molten bath composition.
  • the temperature of the molten bath is preferably 450-500.degree.
  • the flat steel product can be subjected to electrolytic coating (work step k2)).
  • the electrolytic coating takes place here in contrast to Hot-dip coating not before, but only after the cooling of the flat steel product in step j).
  • the coating treatment of steps k1) or k2) preferably takes place in a continuous process.
  • a possible molten bath composition can consist of up to 1% by weight Al, the remainder zinc and unavoidable impurities.
  • Another possible molten bath composition can consist of 1-2% by weight Al, 1-2% by weight Mg, the remainder zinc and unavoidable impurities.
  • an anti-corrosion coating is applied to the flat steel product on at least one side of the flat steel product.
  • the coated flat steel product can also optionally be subjected to a galvannealing treatment.
  • the process according to the invention can be carried out continuously in annealing plants or coil coating plants which are usually provided for this purpose.
  • the cooling rate ThetaQ of the rapid cooling after austenitizing and the holding time tQ a microstructure results which has a very fine martensite structure.
  • This martensite structure is characterized by a particularly fine-grained structure with a narrow lancet width.
  • the high degree of cold rolling and the carbide and nitride precipitations lead to a fine-grained starting structure for austenitizing annealing.
  • coarsening of the grains during the austenitizing is avoided, so that a very fine-grained structure is already present before the cooling that follows the austenitizing.
  • the numerous grain boundaries of the fine structure hinder the growth of the martensite lancets.
  • the flat steel products made available by the present invention are particularly suitable for further processing that includes a cold forming process and subsequent heat treatment at temperatures below 300.degree.
  • the production of components for automotive applications is mentioned here as an example.
  • Flat steel products are formed into components, for example painted using cathodic dip painting (KTL) and then subjected to heat treatment in a further process step, for example during paint baking.
  • the heat treatment usually takes the form of heating within a temperature range of typically 120 to 250°C for a period of typically 3 to 40 minutes.
  • the flat steel products according to the present invention are particularly suitable for such applications.
  • the advantageous properties of the flat steel products according to the invention can also be used for products that have not been subjected to any pre-deformation.
  • the hot strips were pickled in a conventional manner and processed into cold strips with the cold rolling degrees "KWG” given in Table 2a.
  • the further production of the cold strips took place in accordance with the information given in Table 2a and Table 2b.
  • the cold strips were each heated to a turning temperature "TW” at a first, faster heating rate “ThetaH1” and then brought to the holding zone temperature “THZ” at a second, slower heating rate “ThetaH2”, at which they were held for the duration "tHZ”. .
  • the cold strips from tests 1-9 were first slowly cooled to an intermediate temperature "TLK” within a period of time "tLK”, then quickly quenched from the intermediate temperature "TLK” at a cooling rate "ThetaQ” to a cooling stop temperature "TAB".
  • the structural investigations were carried out on cross sections at 1/3t layer, i.e. on sections which were taken at a third of the sheet thickness.
  • the sections were prepared for scanning electron microscopy (SEM) examination and treated with a 3% Nital etch. Due to the fineness of the microstructure, the microstructure was characterized by means of REM observation at a magnification of 5000x.
  • the quantitative determination of the retained austenite was carried out by means of X-ray diffraction (XRD) according to ASTM E975.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Die Erfindung betrifft ein für eine Bake-Hardening-Behandlung geeignetes höchstfestes Stahlflachprodukt sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts. Das Stahlflachprodukt besteht aus einem Stahl, der aus (in Gew.-%) 0,1 - 0,5 % C, 1,0 - 3,0 % Mn, 0,5 - 2,0 % Si, 0,01 - 1,5 % Al, 0,001 - 0,008 % N, bis zu 0,02 % P, bis zu 0,005 % S sowie optional aus einem oder mehreren der folgenden Elemente 0,01 - 1,0 % Cr, 0,01 - 0,2 % Mo, 0,001 - 0,01 % B sowie optional aus in Summe 0,005 - 0,2 % V, Ti und Nb, wobei der Ti-Anteil nicht mehr als 0,10% beträgt, und als Rest Eisen und unvermeidbaren Verunreinigungen besteht, und wobei das Stahlflachprodukt ein Gefüge aufweist, das aus nicht mehr als als 15 Flächen-% Ferrit, nicht mehr als als 5 Flächen-% Bainit, mindestens 5 Volumen-% Restaustenit und mindestens 80 Flächen-% Martensit, von welchem mindestens 75 Flächen-% angelassener Martensit ist, besteht.The invention relates to a high-strength flat steel product suitable for bake-hardening treatment and a method for producing such a flat steel product. The steel flat product consists of a steel consisting of (in % by weight) 0.1 - 0.5% C, 1.0 - 3.0% Mn, 0.5 - 2.0% Si, 0.01 - 1.5% Al, 0.001 - 0.008% N, up to 0.02% P, up to 0.005% S and optionally one or more of the following elements 0.01 - 1.0% Cr, 0.01 - 0, 2% Mo, 0.001 - 0.01% B and optionally a total of 0.005 - 0.2% V, Ti and Nb, with the Ti content not exceeding 0.10%, and the remainder being iron and unavoidable impurities , and wherein the flat steel product has a microstructure consisting of no more than 15% by area ferrite, no more than 5% by area bainite, at least 5% by volume retained austenite and at least 80% by area martensite, of which at least 75 areas -% is tempered martensite.

Description

Die Erfindung betrifft ein für eine Bake-Hardening-Behandlung geeignetes höchstfestes Stahlflachprodukt sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts.The invention relates to a high-strength flat steel product suitable for bake-hardening treatment and a method for producing such a flat steel product.

Für eine Bake-Hardening-Behandlung (BH-Behandlung) geeignete Stahlflachprodukte werden auch als Bake-Hardening-Stahlflachprodukte (BH-Stahlflachprodukte) bezeichnet und werden häufig für Anwendungen im Automobilbau, wie zum Beispiel für Karosserieteile, verwendet.Steel flats suitable for bake hardening (BH) treatment are also referred to as bake hardening (BH) steel flats and are commonly used in automotive applications such as body panels.

Wenn vorliegend von Stahlflachprodukten die Rede ist, werden darunter Stahlbänder, Stahlbleche oder daraus erzeugte Zuschnitte wie Platinen verstanden.When flat steel products are discussed here, they are understood to be steel strips, steel sheets or blanks produced from them, such as blanks.

BH-Stahlflachprodukte weisen vor der BH-Behandlung ein geringeres Festigkeitsniveau auf als nach der BH-Behandlung. Dieser Umstand wird dazu genutzt, bei zu verformenden Stahlflachprodukten die Umformung vor der BH-Behandlung und damit bei geringeren Streckgrenzen und mit besserem Umformungsvermögen durchzuführen. Die Erhöhung des Festigkeitsniveaus erfolgt durch die BH-Behandlung, bei welcher das Material einer Wärmebehandlung unterzogen wird. Die BH-Behandlung wird typischerweise für 3 bis 40 Minuten innerhalb eines Temperaturbereichs von 120 bis 250 °C durchgeführt. Durch die BH-Behandlung werden Atome interstitiell gelöster Elemente zur Diffusion angeregt, wobei sie sich an Versetzungen anlagern können. Die Versetzungen werden dadurch in ihrer Bewegung behindert, was zu einem Anstieg der Streckgrenze führt. Dieser Effekt des Streckgrenzenanstiegs wird auch als Bake-Hardening-Effekt (BH-Effekt) und die Differenz der Streckgrenzen vor und nach der BH-Behandlung wird auch als Bake-Hardening-Wert (BH-Wert) bezeichnet. Je größer der BH-Wert ist, umso größer ist der Streckgrenzenanstieg durch die BH-Behandlung.BH steel flat products have a lower strength level before BH treatment than after BH treatment. This circumstance is used to carry out the forming of flat steel products to be formed before the BH treatment and thus with lower yield points and better forming capacity. The strength level is increased by the BH treatment, in which the material is subjected to heat treatment. The BH treatment is typically performed for 3 to 40 minutes within a temperature range of 120 to 250°C. The BH treatment stimulates atoms of interstitially dissolved elements to diffuse, whereby they can attach to dislocations. This hinders the dislocations in their movement, which leads to an increase in the yield point. This effect of the increase in yield point is also referred to as the bake hardening effect (BH effect) and the difference in the yield points before and after the BH treatment is also referred to as the bake hardening value (BH value). The higher the BH value, the greater the increase in yield point due to the BH treatment.

Weist ein Stahlflachprodukt eine ausgeprägte Streckgrenze auf, so ist vorliegend mit dem Begriff Streckgrenze der als obere Streckgrenze ReH bezeichnete Kennwert gemeint. Oftmals liegt in BH-Stahlflachprodukten vor der BH-Behandlung keine ausgeprägte Streckgrenze, sondern ausschließlich eine Dehngrenze vor. Wenn vorliegend vom Streckgrenzenanstieg oder vom BH-Wert die Rede ist, so wird darunter für Stahlflachprodukte, die vor der BH-Behandlung keine ausgeprägte Streckgrenze, sondern eine Dehngrenze aufweisen, die Differenz zwischen der Dehngrenze Rp0,2 vor der BH-Behandlung und der Streckgrenze ReH nach der BH-Behandlung verstanden.If a flat steel product has a pronounced yield point, the term yield point is the characteristic value referred to as the upper yield point ReH meant. BH steel flat products often do not have a pronounced yield point before the BH treatment, but only a yield point. If the increase in yield point or the BH value is discussed here, this means the difference between the yield point Rp0.2 before the BH treatment and the yield point for steel flat products that do not have a pronounced yield point before the BH treatment, but rather a yield point ReH understood after BH treatment.

Ein hoher BH-Wert wirkt sich positiv auf die Beulsteifigkeit von Bauteilen, welche aus BH-Stahlflachprodukten hergestellt sind, aus. Infolge dessen ist es möglich, die Bauteildicke durch den Einsatz von Stahlflachprodukten, welche einen hohen BH-Wert haben, zu reduzieren und gleichzeitig die Steifigkeit der Bauteile zu erhalten.A high BH value has a positive effect on the buckling resistance of components made from BH flat steel products. As a result, it is possible to reduce the thickness of the component by using flat steel products, which have a high BH value, while maintaining the rigidity of the components.

Der BH-Effekt wird bisher bei weichen Stählen, welche oftmals eine überwiegend ferritische Matrix, nur geringe Martensitanteile und Zugfestigkeiten unterhalb von 700 MPa aufweisen, genutzt.The BH effect has so far been used for soft steels, which often have a predominantly ferritic matrix, only low martensite content and tensile strengths below 700 MPa.

Aus US 2013/0240094 A1 sind kaltgewalzte Bake-Hardening-Bleche für Automobilanwendungen bekannt. Die Bleche sollen aus einem Stahl bestehen, der neben Eisen und unvermeidbaren Verunreinigungen 0,0010 - 0,0040 mass-% C, 0,005 - 0,05 mass-% Si, 0,1 - 0,8 mass-% Mn, 0,01 - 0,07 mass-% P, 0,001 - 0,01 mass-% S, 0,01 - 0,08 mass-% Al, 0,0010 - 0,0050 mass-% N, 0,002 - 0,02 mass-% Nb und 0,005 - 0,050 mass-% Mo enthält, wobei der Wert des Quotienten der Anteile von Mn und P [Mn%]/[P%] zwischen 1,6 bis 45 betragen soll, und die Menge des in fester Lösung vorliegenden Kohlenstoffs, welche aus [C%]-(12/95)×[Nb%] erhalten wird, zwischen 0,0005 bis 0,0025 mass-% betragen soll. Die für das Bake-Hardening geeigneten kaltgewalzten Bleche sollen die Gleichung X(222)/{X(119)+X(200)}>3,0 erfüllen. Dabei sind X(222), X(110) und X(200) die integrierte Intensität der Röntgendiffraktometrie der {222}-Ebene, der {110}-Ebene und der {200}-Ebene, die parallel sind zu einer Ebene, welche ausgehend von der Blechoberfläche bei ¼ der Blechdicke liegt. Die Bleche sollen eine gute Tiefziehfähigkeit und Zugfestigkeiten von 300 bis 450 MPa aufweisen.Out of US 2013/0240094 A1 cold-rolled bake-hardening sheets for automotive applications are known. The sheets should consist of a steel which, in addition to iron and unavoidable impurities, contains 0.0010 - 0.0040% by mass C, 0.005 - 0.05% by mass Si, 0.1 - 0.8% by mass Mn, 0. 01 - 0.07% by mass P, 0.001 - 0.01% by mass S, 0.01 - 0.08% by mass Al, 0.0010 - 0.0050% by mass N, 0.002 - 0.02% by mass -% Nb and 0.005 - 0.050% by mass Mo, the value of the quotient of the proportions of Mn and P [Mn%]/[P%] should be between 1.6 and 45, and the amount present in solid solution Carbon, which is obtained from [C%]-(12/95)×[Nb%], should be between 0.0005 and 0.0025% by mass. The cold-rolled sheets suitable for bake-hardening should satisfy the equation X(222)/{X(119)+X(200)} > 3.0. Here, X(222), X(110) and X(200) are the integrated X-ray diffraction intensity of the {222} plane, the {110} plane and the {200} plane which are parallel to a plane which starting from the sheet surface is ¼ of the sheet thickness. The sheets should have good deep-drawing properties and tensile strengths of 300 to 450 MPa.

Für Karosserieteile werden üblicherweise höchstfeste Stahlflachprodukte eingesetzt, um geringe Bauteildicken bei guter Beulsteifigkeit realisieren zu können. Höchstfeste Stähle zeichnen sich durch einen hohen Anteil Martensit im Gefüge aus. Martensit ist ein kohlenstoffreicher Gefügebestandteil, aus dem Kohlenstoff bei thermischer Aktivierung heraus in andere Gefügebestandteile diffundieren kann. Je höher der Martensitanteil am Gefüge ist, umso ausgeprägter ist typischerweise der BH-Effekt. Hohe Martensitanteile gehen jedoch mit einer schlechten Verformungsfähigkeit einher.High-strength flat steel products are usually used for body parts in order to be able to realize small component thicknesses with good dent resistance. High-strength steels are characterized by a high proportion of martensite in the structure. Martensite is a carbon-rich structural component from which carbon can diffuse into other structural components when thermally activated. The higher the proportion of martensite in the structure, the more pronounced the BH effect is typically. However, high proportions of martensite go hand in hand with poor deformability.

Aus US 2017/009315 A1 sind hochfeste, feuerverzinkte Stahlbleche bekannt. Die Bleche sollen 0,05 - 0,30 mass-% C, 0,5 - 3,0 mass-% Si, 0,2 - 3,0 mass-% Mn, bis zu 0,10 mass-% P, bis zu 0,010 mass-% S, bis zu 0,010 mass-% N und 0,001 - 0,10 mass-% Al, Rest Eisen und unvermeidbare Verunreinigungen enthalten. Das Gefüge soll 50 - 85 Flächen-% Martensit, weniger als 5 Flächen-% Ferrit und Rest Bainit enthalten und eine Versetzungsdichte von mindestens 5,0 x 1015 m-2 sowie mindestens 0,08 mass-% gelösten Kohlenstoffs aufweisen. Die Bleche sollen für ein Bake-Hardening geeignet sein und gute Biegeeigenschaften und Zugfestigkeiten von 1180 MPa oder mehr aufweisen. Die Bleche werden mittels konventionellem Stranggießen, Warmwalzen und Kaltwalzen erzeugt. Die kaltgewalzten Bleche sollen auf Glühtemperaturen von Ac3+50°C bis zu 930 °C aufgeheizt, 30 bis 1200 s lang bei dieser Glühtemperatur gehalten, danach mit einer mittleren Geschwindigkeit von 15°C/s oder mehr auf eine Kühlstopp-Temperatur zwischen 450 °C bis 550 °C abgekühlt, dann binnen höchstens 30 s ab Erreichen der Kühlstopp-Temperatur für 10 bis 60 s bei 480 bis 525 °C in ein Schmelzbad getaucht und dann mit einer mittleren Abkühlungsgeschwindigkeit von 15°C/s oder mehr auf 200 °C abgekühlt werden.Out of U.S. 2017/009315 A1 high-strength, hot-dip galvanized steel sheets are known. The sheets should contain 0.05 - 0.30% by mass C, 0.5 - 3.0% by mass Si, 0.2 - 3.0% by mass Mn, up to 0.10% by mass P, up to 0.010% by mass S, up to 0.010% by mass N and 0.001 - 0.10% by mass Al, the rest iron and unavoidable impurities. The structure should contain 50 - 85% by area martensite, less than 5% by area ferrite and the rest bainite and have a dislocation density of at least 5.0 x 10 15 m -2 and at least 0.08% by mass of dissolved carbon. The sheets should be suitable for bake-hardening and have good bending properties and tensile strengths of 1180 MPa or more. The sheets are produced using conventional continuous casting, hot rolling and cold rolling. The cold-rolled sheets should be heated to annealing temperatures of Ac3+50°C up to 930°C, held at this annealing temperature for 30 to 1200 s, then at an average speed of 15°C/s or more to a cooling stop temperature between 450° C to 550 °C, then immersed in a molten bath for 10 to 60 s at 480 to 525 °C within 30 s or less from reaching the cooling stop temperature and then to 200 ° at an average cooling rate of 15 °C/s or more C to be cooled.

Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, ein höchstfestes Stahlflachprodukt mit optimierten Eigenschaften, insbesondere sehr guten Bake-Hardening- Eigenschaften und sowohl vor als auch nach einer BH-Behandlung sehr guten Umformeigenschaften, anzugeben.Against this background, the object of the invention was to specify a high-strength flat steel product with optimized properties, in particular very good bake-hardening properties and very good forming properties both before and after a BH treatment.

Darüber hinaus sollte ein Verfahren zur Herstellung eines solchen Stahlflachprodukts angegeben werden.In addition, a method for producing such a flat steel product should be specified.

In Bezug auf das Stahlflachprodukt wurde die Aufgabe durch ein Produkt gelöst, das mindestens die in Anspruch 1 angegebenen Merkmale aufweist.With regard to the flat steel product, the object was achieved by a product which has at least the features specified in claim 1.

In Bezug auf das Verfahren wurde die Aufgabe dadurch gelöst, dass bei der Herstellung eines erfindungsgemäßen Stahlflachprodukts mindestens die in Anspruch 10 angegebenen Verfahrensschritte absolviert werden.With regard to the method, the object was achieved in that at least the method steps specified in claim 10 are completed in the production of a flat steel product according to the invention.

Ein erfindungsgemäßes Stahlflachprodukt besteht aus einem Stahl, der aus (in Gew.-%)

  • 0,1 - 0,5 % C,
  • 1,0 - 3,0% Mn,
  • 0,5 - 2,0% Si,
  • 0,01 - 1,5 % Al,
  • 0,001 - 0,008 % N,
  • bis zu 0,02 % P,
  • bis zu 0,005 % S
  • sowie optional aus einem oder mehreren der folgenden Elemente
    • 0,01 - 1,0 % Cr,
    • 0,01 - 0,2 % Mo,
    • 0,001 - 0,01 % B
  • sowie optional aus in Summe 0,005 - 0,2 % V, Ti und Nb, wobei der Ti-Anteil nicht mehr als 0,10 % beträgt, und als Rest Eisen und unvermeidbaren Verunreinigungen besteht, und wobei das Stahlflachprodukt ein Gefüge aufweist, das aus
    • nicht mehr als als 15 Flächen-% Ferrit,
      • nicht mehr als als 5 Flächen-% Bainit,
      • mindestens 5 Volumen-% Restaustenit und
      • mindestens 80 Flächen-% Martensit, von welchem
    • mindestens 75 Flächen-% angelassener Martensit ist,
      besteht.
A steel flat product according to the invention consists of a steel which consists of (in % by weight)
  • 0.1 - 0.5% C,
  • 1.0 - 3.0% Mn,
  • 0.5 - 2.0% Si,
  • 0.01 - 1.5% Al,
  • 0.001 - 0.008% N,
  • up to 0.02% P,
  • up to 0.005% S
  • and optionally one or more of the following
    • 0.01 - 1.0% Cr,
    • 0.01 - 0.2% Mo,
    • 0.001 - 0.01% B
  • and optionally from a total of 0.005 - 0.2% V, Ti and Nb, the Ti content being no more than 0.10%, and the remainder being iron and unavoidable impurities, and the flat steel product having a structure that consists of
    • not more than 15% by area ferrite,
      • not more than 5% by area bainite,
      • at least 5% by volume retained austenite and
      • at least 80% by area martensite, of which
    • at least 75% by area is tempered martensite,
      consists.

Wenn vorliegend von Ferrit gesprochen wird, dann ist jeweils die Rede von polygonalem Ferrit. Bezogen auf den gesamten Anteil Martensit im Gefüge weist dieser für mindestens 90% des Martensits eine Martensitlanzettenlänge von höchstens 7,5 µm und eine Martensitlanzettenbreite von höchstens 1000 nm auf.If ferrite is spoken of here, then polygonal ferrite is spoken of in each case. Based on the total proportion of martensite in the microstructure, at least 90% of the martensite has a martensite lancet length of no more than 7.5 μm and a martensite lancet width of no more than 1000 nm.

Ein erfindungsgemäßes Stahlflachprodukt zeichnet sich dadurch aus, dass es vor einer BH-Behandlung eine Dehngrenze Rp0,2 von über 700 MPa oder eine Streckgrenze ReH von über 700 MPa, eine Zugfestigkeit Rm von 950 - 1500 MPa sowie eine Dehnung A80 von 7 - 25 % und ein hohes Bake-Hardening-Potential (BH-Potential) aufweist. Das BH-Potential äußert sich darin, dass das Stahlflachprodukt nach einer BH-Behandlung einen Streckgrenzenanstieg um mindestens 80 MPa sowie eine Dehnung A80_BH aufweist, welche mindestens halb so hoch ist wie die Dehnung A80 vor der BH-Behandlung.A flat steel product according to the invention is characterized in that, before a BH treatment, it has a yield point Rp0.2 of over 700 MPa or a yield point ReH of over 700 MPa, a tensile strength Rm of 950-1500 MPa and an elongation A80 of 7-25% and has a high bake hardening (BH) potential. The BH potential is expressed in the flat steel product having an increase in yield point of at least 80 MPa after a BH treatment and an elongation A80_BH which is at least half as high as the elongation A80 before the BH treatment.

Wenn vorliegend Angaben zu Legierungsgehalten und Zusammensetzungen gemacht werden, beziehen sich diese auf das Gewicht beziehungsweise die Masse, sofern nichts anderes ausdrücklich angegeben ist.If information on alloy contents and compositions is given here, this refers to the weight or the mass, unless otherwise expressly stated.

Der Kohlenstoffgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts beträgt 0,1 - 0,5 Gew.-%. Zum einen trägt Kohlenstoff zur Bildung und Stabilisierung des Austenits bei. Vor allem während des nach dem Austenitisieren erfolgenden ersten Abkühlens und während des anschließenden partitionierenden Glühens tragen C-Gehalte von mindestens 0,1 Gew.-%, bevorzugt mindestens 0,12 Gew.-%, zur Stabilisierung der austenitischen Phase bei, wodurch es möglich ist, am erfindungsgemäßen Stahlflachprodukt einen Restaustenitanteil von mindestens 5 Vol-% zu gewährleisten. Besonders sicher kann die Stabilisierung des Restaustenits erfolgen, wenn der C-Gehalt mindestens 0,14 Gew.-% beträgt. Zum anderen hat der C-Gehalt einen starken Einfluss auf die Festigkeit des Martensits. Dies gilt sowohl für die Festigkeit des Martensits, der während des ersten Abschreckens entsteht, als auch für die Festigkeit des Martensits, der während des nach dem partitionierenden Glühen einsetzenden zweiten Abschreckens gebildet wird. Um den Einfluss des Kohlenstoffs auf die Festigkeit des Martensits zu nutzen, soll der C-Gehalt mindestens 0,1 Gew.-% betragen. Zudem ist ein Mindestgehalt von 0,1 Gew.-% erforderlich, um bei einer späteren BH-Behandlung ausreichend C-Atome für eine Diffusion zu den im Material vorhandenen Versetzungen zur Verfügung zu stellen und somit einen ausgeprägten BH-Effekt sicherzustellen. Besonders hohe BH-Werte werden erhalten, wenn der C-Gehalt mindestens 0,14 Gew.-% beträgt. Mit zunehmendem C-Gehalt wird die Martensit-Starttemperatur Ms jedoch auch zu tieferen Temperaturen verschoben. Ein C-Gehalt oberhalb von 0,5 Gew.-% könnte deshalb dazu führen, dass beim Abschrecken nicht genügend Martensit gebildet wird. Auch wird die Verarbeitbarkeit, insbesondere die Schweißbarkeit, bei höheren C-Gehalten beeinträchtigt, weshalb der C-Gehalt höchstens 0,5 Gew.-%, bevorzugt höchstens 0,4 Gew.-% betragen soll.The carbon content of the steel of a flat steel product according to the invention is 0.1-0.5% by weight. On the one hand, carbon contributes to the formation and stabilization of austenite. C contents of at least 0.1 wt. %, preferably at least 0.12 wt is, on the invention Flat steel product to ensure a residual austenite content of at least 5% by volume. The residual austenite can be stabilized particularly reliably if the C content is at least 0.14% by weight. On the other hand, the C content has a strong influence on the strength of the martensite. This applies to both the strength of the martensite formed during the first quench and the strength of the martensite formed during the second quench that begins after the partitioning anneal. In order to utilize the influence of the carbon on the strength of the martensite, the C content should be at least 0.1% by weight. In addition, a minimum content of 0.1% by weight is required in order to provide sufficient carbon atoms for diffusion to the dislocations present in the material during a later BH treatment and thus to ensure a pronounced BH effect. Particularly high BH values are obtained when the C content is at least 0.14% by weight. However, with increasing C content, the martensite start temperature Ms is also shifted to lower temperatures. A C content above 0.5% by weight could therefore lead to insufficient martensite formation during quenching. The workability, in particular the weldability, is also impaired at higher C contents, which is why the C content should be at most 0.5% by weight, preferably at most 0.4% by weight.

Mangan ist als Legierungselement wichtig für die Härtbarkeit des Stahls sowie für die Vermeidung der Bildung des Gefügebestandteils Perlit während des ersten Abschreckens. Der Mn-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts beträgt deshalb mindestens 1,0 Gew.-%, bevorzugt mindestens 1,9 Gew.-%, um nach dem ersten Abschrecken ein perlitfreies Gefüge für die weiteren Prozessschritte zur Verfügung zu stellen. Mit zunehmendem Mn-Gehalt verschlechtert sich jedoch die Schweißbarkeit und das Risiko des Auftretens starker Seigerungen nimmt zu. Bei Seigerungen handelt es sich um während des Erstarrungsvorgangs gebildete chemische Inhomogenitäten der Zusammensetzung in Form makroskopischer oder mikroskopischer Entmischungen. Um Seigerungen zu reduzieren und eine gute Schweißbarkeit sicherzustellen, ist der Mn-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts auf höchstens 3,0 Gew.-%, bevorzugt auf höchstens 2,7 Gew.-%, begrenzt.As an alloying element, manganese is important for the hardenability of the steel and for avoiding the formation of the microstructure component pearlite during the first quenching. The Mn content of the steel of a flat steel product according to the invention is therefore at least 1.0% by weight, preferably at least 1.9% by weight, in order to provide a pearlite-free structure for the further process steps after the first quenching. However, as the Mn content increases, the weldability deteriorates and the risk of severe segregation occurring increases. Segregations are chemical inhomogeneities in the composition formed during the solidification process in the form of macroscopic or microscopic demixing. In order to reduce segregation and ensure good weldability, the Mn content of the steel of a flat steel product according to the invention is limited to a maximum of 3.0% by weight, preferably a maximum of 2.7% by weight.

Der Si-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist auf 0,5 - 2,0 Gew.-% begrenzt. Si als Legierungselement unterstützt die Unterdrückung der Zementitbildung. Bei Zementit handelt es sich um ein Eisenkarbid. Durch die Bildung von Zementit wird Kohlenstoff in Form von Eisenkarbid abgebunden und steht nicht mehr in atomarer Form zur Lösung im Eisengitter zur Verfügung. Atomarer Kohlenstoff, welcher interstitiell im Eisengitter gelöst ist, trägt jedoch zum einen wesentlich zur Stabilisierung von Restaustenit und zum anderen zur Verbesserung des BH-Effekts bei. Restaustenit wiederum trägt zur Verbesserung der Umformbarkeit, insbesondere der Dehnung, sowohl vor als auch nach der BH-Behandlung bei. Eine ähnliche Wirkung hinsichtlich der Stabilisierung des Restaustenits kann auch durch Zulegieren von Aluminium erreicht werden. Enthält der Stahl mindestens 0,2 Gew.-% Al, so kann der Si-Gehalt, welcher mindestens erforderlich ist, um ein erfindungsgemäßes Stahlflachprodukt zu erhalten, bis auf 0,5 Gew.-% reduziert werden. Bei geringeren Al-Gehalten als 0,2 Gew.-% sollte der Si-Gehalt vorzugsweise mindestens 0,9 Gew.-% betragen. Da sich ein hoher Si-Gehalt jedoch negativ auf die Oberflächenqualität des Stahlflachprodukts auswirken kann, soll der Stahl nicht mehr als 2,0 Gew.-%, bevorzugt nicht mehr als 1,6 Gew.-% enthalten.The Si content of the steel of a flat steel product according to the invention is limited to 0.5-2.0% by weight. Si as an alloying element helps to suppress cementite formation. Cementite is an iron carbide. The formation of cementite binds carbon in the form of iron carbide and is no longer available in atomic form for solution in the iron lattice. However, atomic carbon, which is interstitially dissolved in the iron lattice, contributes significantly to the stabilization of retained austenite on the one hand and to the improvement of the BH effect on the other. In turn, retained austenite helps improve formability, especially elongation, both before and after BH treatment. A similar effect in terms of stabilizing the retained austenite can also be achieved by alloying aluminum. If the steel contains at least 0.2% by weight Al, the minimum Si content required to obtain a flat steel product according to the invention can be reduced to 0.5% by weight. If the Al content is less than 0.2% by weight, the Si content should preferably be at least 0.9% by weight. However, since a high Si content can have a negative effect on the surface quality of the steel flat product, the steel should contain no more than 2.0% by weight, preferably no more than 1.6% by weight.

Aluminium ist im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,01 - 1,5 Gew.-% vorhanden. Al wird zur Desoxidation und zur Kornfeinung hinzugegeben. Die Kornfeinung erfolgt durch Bildung von AlN-Clustern und AIN-Ausscheidungen, welche jeweils das Kornwachstum während des austenitisierenden Glühens, das auch kurz als Austenitisieren bezeichnet wird, hemmen. Unter AIN-Clustern werden dabei allgemeinhin Ansammlungen von Aluminium- und Stickstoffatomen verstanden, die jedoch im Unterschied zu AIN-Ausscheidungen keine scharfe Phasengrenze zur Matrix aufweisen. Um das Austenitkornwachstum effektiv zu hemmen, sollte der Al-Gehalt mindestens 0,01 Gew.-% betragen. Somit können durch die Anlagerung von Al und N an Gitterfehlern sowie deren nachfolgende Clusterbildung bzw. Ausscheidung besonders feine Austenitkörner eingestellt werden. Die feinere Austenitkorngröße führt dazu, dass während des ersten Abschreckens feiner Martensit mit einer geringen Lanzettenlänge gebildet wird. In Fällen, in denen die Dauer des Austenitisierens verkürzt werden soll, sind erhöhte Al-Gehalte von mindestens 0,02 Gew.-% besonders vorteilhaft. Weiterhin vorteilhaft für die Bildung von AlN-Clustern und AlN-Ausscheidungen ist eine hohe Anzahl an Gitterfehlern, die während des Aufheizens auf Austenitisierungstemperatur (THZ) zur Verfügung stehen. Diese Gitterfehler können vor dem Austenitisieren beispielsweise in Form von Versetzungen in das Material eingebracht werden. Für erfindungsgemäße Stahlflachprodukte hat es sich als günstig erwiesen, Gitterfehler durch ein Kaltwalzen mit einem Kaltwalzgrad von mindestens 37 % einzubringen. Aluminium trägt ebenso wie Silizium zur Unterdrückung der Zementitbildung bei. Allerdings wirkt Al hinsichtlich der Unterdrückung der Zementitbildung nicht so effektiv wie Si. Da sich Si jedoch nachteilig auf die Verzunderung und Beschichtbarkeit und somit auf die Oberflächenqualität der Stahlflachprodukte auswirkt, kann Al bei der Wahl der Legierungszusammensetzung zur Substitution von Si verwendet werden. Dabei haben sich für die erfindungsgemäße Stahlzusammensetzung Al-Gehalte von mindestens 0,1 Gew.-% als besonders wirksam erwiesen. Bei geringeren Al-Gehalten ist der Einfluss von Al auf die Zementitunterdrückung nicht signifikant. Darüber hinaus trägt Aluminium zur Erhöhung der Kohlenstoffaktivität im Martensit bei. Dies gilt sowohl für den nach dem ersten Abschrecken, welches nach dem Austenitisieren erfolgt, als auch für den nach dem zweiten Abschrecken, welches nach dem partitionierenden Glühen erfolgt, gebildeten Martensit. Im nach dem ersten Abschrecken gebildeten Martensit trägt Aluminium zur Beschleunigung der Partitionierung des Kohlenstoffs von Martensit in den Austenit während des partitionierenden Glühens bei. Dadurch kann die Dauer des partitionierenden Glühens verkürzt werden. Aber auch die Alterungsbeständigkeit des Endprodukts wird verbessert, da durch eine erhöhte Kohlenstoffaktivität einzelne Kohlenstoffatome bereits während des partitionierenden Glühens an Versetzungen diffundieren können und dann bei Raumtemperatur nicht mehr zur Alterung zur Verfügung stehen.Aluminum is present in the steel of a flat steel product according to the invention in contents of 0.01-1.5% by weight. Al is added for deoxidation and grain refinement. Grain refinement occurs through the formation of AlN clusters and AlN precipitations, each of which inhibits grain growth during austenitizing annealing, which is also referred to as austenitizing for short. AlN clusters are generally understood to be accumulations of aluminum and nitrogen atoms which, in contrast to AlN precipitations, do not have a sharp phase boundary to the matrix. In order to effectively inhibit austenite grain growth, the Al content should be at least 0.01% by weight. Particularly fine austenite grains can thus be set by the addition of Al and N to lattice defects and their subsequent cluster formation or precipitation. The finer austenite grain size results in fine martensite with a small lancet length being formed during the first quench. In cases where the duration of austenitizing is to be shortened, increased Al contents are required of at least 0.02% by weight is particularly advantageous. A further advantage for the formation of AlN clusters and AlN precipitations is a high number of lattice defects that are available during heating to the austenitizing temperature (THZ). These lattice defects can be introduced into the material before austenitizing, for example in the form of dislocations. For flat steel products according to the invention, it has proven advantageous to introduce lattice defects by cold rolling with a degree of cold rolling of at least 37%. Aluminum, like silicon, contributes to the suppression of cementite formation. However, Al is not as effective as Si in suppressing cementite formation. However, since Si has a negative effect on scaling and coatability and thus on the surface quality of the steel flat products, Al can be used as a substitute for Si when selecting the alloy composition. Al contents of at least 0.1% by weight have proven to be particularly effective for the steel composition according to the invention. At lower Al contents, the influence of Al on cementite suppression is not significant. In addition, aluminum contributes to increasing the carbon activity in martensite. This applies both to the martensite formed after the first quench, which takes place after austenitizing, and to the martensite formed after the second quench, which takes place after partitioning annealing. In the martensite formed after the first quench, aluminum contributes to accelerating the partitioning of the carbon from martensite to austenite during the partitioning anneal. This can shorten the duration of the partitioning anneal. But the aging resistance of the end product is also improved, since increased carbon activity means that individual carbon atoms can already diffuse at dislocations during partitioning annealing and are then no longer available for aging at room temperature.

Die Erhöhung der Kohlenstoffaktivität zeigt zudem eine positive Wirkung auf den BH-Effekt. Bei einer BH-Behandlung wird durch eine hohe Kohlenstoffaktivität auch die treibende Kraft für die Anlagerung von Kohlenstoffatomen an Versetzungen erhöht, was zur Steigerung des BH-Werts führt. Zur Erhöhung der Kohlenstoffaktivität im Martensit haben sich Al-Gehalte von mindestens 0,02 Gew.-% als besonders vorteilhaft erwiesen. Da Aluminium die für ein vollständiges Austenitisieren erforderliche Glühtemperatur erhöht und bei Al-Gehalten oberhalb von 1,5 Gew.-% ein vollständiges Austenitisieren nur noch schwer möglich ist, ist der Al-Gehalt des Stahls des erfindungsgemäßen Stahlflachprodukts auf höchstens 1,5 Gew.-% begrenzt. Soll eine niedrige Austenitisierungtemperatur zur Verbesserung der Energieeffizienz eingestellt werden, haben sich Al-Gehalte von höchstens 0,2 Gew.-% als zweckmäßig erwiesen.The increase in carbon activity also shows a positive effect on the BH effect. In a BH treatment, high carbon activity also increases the driving force for attachment of carbon atoms to dislocations, resulting in the increase in BH value. Al contents of at least 0.02% by weight have proven to be particularly advantageous for increasing the carbon activity in the martensite. Since aluminum has the required for complete austenitizing If the annealing temperature is increased and complete austenitization is only possible with difficulty at Al contents above 1.5% by weight, the Al content of the steel of the flat steel product according to the invention is limited to a maximum of 1.5% by weight. If a low austenitizing temperature is to be set in order to improve energy efficiency, Al contents of at most 0.2% by weight have proven to be expedient.

In einer bevorzugten Ausführung beträgt zur Verbesserung des BH-Werts die Summe des Si-Gehalts und der Hälfte des Al-Gehalts mindestens 0,9 Gew.-%.In a preferred embodiment, to improve the BH value, the sum of the Si content and half of the Al content is at least 0.9% by weight.

Es gilt dann folgende Beziehung: % Si + 0,5 % Al 0 ,9Gew .-%

Figure imgb0001
mit

  • %Si: jeweiliger Si-Gehalt des Stahls in Gew.-%
  • %Al : jeweiliger Al-Gehalt des Stahls in Gew.-%.
The following relationship then applies: % si + 0.5 % Al 0 .9wt %
Figure imgb0001
With
  • %Si: respective Si content of the steel in % by weight
  • %Al : Al content of the steel in % by weight.

Bei Werten kleiner 0,9 Gew.-% steigt das Risiko der Bildung von Zementit, durch welchen Kohlenstoff abgebunden wird und beim partitionierenden Glühen nicht mehr für eine Diffusion in den Restaustenit und damit nicht mehr für eine Stabilisierung des Restaustenits zur Verfügung steht.Values of less than 0.9% by weight increase the risk of cementite forming, through which carbon is bound and is no longer available for diffusion into the retained austenite during partitioning annealing and is therefore no longer available for stabilization of the retained austenite.

Der N-Gehalt ist im Stahl eines erfindungsgemäßen Stahlflachprodukts auf 0,001 - 0,008 Gew.-% begrenzt. Stickstoff bildet im Stahl eines erfindungsgemäßen Stahlflachprodukts Nitride, beispielsweise mit Aluminium oder Titan. Zur wirksamen Kornfeinung mittels AlN-Clustern oder AIN-Ausscheidungen sollen mindestens 0,001 Gew.-% N im Stahl enthalten sein. Um die thermodynamische Triebkraft der Ausscheidungsbildung zu erhöhen und damit den Prozess zu stabilisieren, kann ein bevorzugter N-Gehalt von mindestens 0,002 Gew.-% eingestellt werden. Zunehmende N-Gehalte führen zur Bildung tendenziell größerer Ausscheidungen. Um grobe Ausscheidungen zu vermeiden, welche sich nachteilig auf die Umformbarkeit auswirken können, ist der N-Gehalt auf höchstens 0,008 Gew.-% beschränkt.The N content in the steel of a flat steel product according to the invention is limited to 0.001-0.008% by weight. In the steel of a flat steel product according to the invention, nitrogen forms nitrides, for example with aluminum or titanium. For effective grain refinement by means of AlN clusters or AlN precipitations, the steel should contain at least 0.001% by weight of N. In order to increase the thermodynamic driving force of precipitation formation and thus to stabilize the process, a preferred N content of at least 0.002% by weight can be set. Increasing N contents tend to lead to the formation of larger precipitates. In order to avoid coarse precipitates, which can have an adverse effect on formability, the N content is limited to a maximum of 0.008% by weight.

Phosphor wirkt sich in erfindungsgemäßen Stahlflachprodukten negativ auf die Schweißbarkeit aus. Darum soll der P-Gehalt so niedrig wie möglich sein und insbesondere 0,02 Gew.-% nicht überschreiten.Phosphorus has a negative effect on the weldability in flat steel products according to the invention. For this reason, the P content should be as low as possible and in particular should not exceed 0.02% by weight.

Schwefel führt bei ausreichend hohen Gehalten zur Bildung von Sulfiden wie MnS oder (Mn,Fe)S. Diese Sulfidausscheidungen verschlechtern die Dehnung eines erfindungsgemäßen Stahlflachprodukts, weshalb der S-Gehalt auf höchstens 0,005 Gew.-% begrenzt ist.At sufficiently high levels, sulfur leads to the formation of sulfides such as MnS or (Mn,Fe)S. These sulfide precipitates impair the elongation of a steel flat product according to the invention, which is why the S content is limited to at most 0.005% by weight.

Chrom kann optional in Gehalten bis zu 1,0 Gew.-% im Stahl vorhanden sein. Chrom ist ein effektiver Inhibitor des Perlits und trägt zur Festigkeit bei. Dies gilt insbesondere für Cr-Gehalte von mindestens 0,01 Gew.-% Bei Cr-Gehalten von mehr als 1,0 Gew.-% ist jedoch das Risiko einer ausgeprägten Korngrenzenoxidation, welche zur Verschlechterung der Oberflächenqualität führt, erhöht.Optionally, chromium can be present in the steel in contents of up to 1.0% by weight. Chromium is an effective inhibitor of pearlite and contributes to strength. This applies in particular to Cr contents of at least 0.01% by weight. With Cr contents of more than 1.0% by weight, however, the risk of pronounced grain boundary oxidation, which leads to a deterioration in the surface quality, is increased.

Molybdän kann ebenfalls optional im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von mindestens 0,01 Gew.-% enthalten sein, um die Bildung von Perlit zu verhindern. Der Mo-Gehalt ist aus Kostengründen auf Gehalte von bis zu 0,2 Gew.-% begrenzt.Molybdenum can likewise optionally be contained in the steel of a steel flat product according to the invention in amounts of at least 0.01% by weight in order to prevent the formation of pearlite. For reasons of cost, the Mo content is limited to levels of up to 0.2% by weight.

Bor kann als optionales Legierungselement in Gehalten von 0,001 bis 0,01 Gew.-% im Stahl eines erfindungsgemäßen Stahlflachprodukts enthalten sein. Bor seigert auf die Phasengrenzen und blockiert somit deren Bewegung. Dies unterstützt die Bildung eines feinkörnigen Gefüges, was die mechanischen Eigenschaften des Stahlflachprodukts verbessert. Beim Zulegieren von Bor sollte genügend Aluminium zur Verfügung stehen, damit sich bevorzugt AIN bildet. In einer bevorzugten Ausführung wird deshalb ein Al/B-Verhältnis von mindestens 10 eingestellt. Durch Bor-Zugaben von über 0,01 Gew.-% kann jedoch keine weitere Verbesserung mehr erreicht werden.Boron can be contained as an optional alloying element in amounts of 0.001 to 0.01% by weight in the steel of a flat steel product according to the invention. Boron segregates onto the phase boundaries and thus blocks their movement. This supports the formation of a fine-grain structure, which improves the mechanical properties of the steel flat product. When alloying boron, sufficient aluminum should be available so that AlN forms preferentially. In a preferred embodiment, an Al/B ratio of at least 10 is therefore set. However, no further improvement can be achieved by adding boron in excess of 0.01% by weight.

Optional können Stähle erfindungsgemäßer Stahlflachprodukte auch eines oder mehrere Mikrolegierungselemente aus der Gruppe Ti, Nb und V enthalten. Mikrolegierungselemente können mit Kohlenstoff beziehungsweise Stickstoff Karbide, Nitride oder Karbonitride bilden. In Form sehr fein verteilter Ausscheidungen tragen diese zu einer höheren Festigkeit bei. Die Summe der Mikrolegierungselemente sollte mindestens 0,005 Gew.-% betragen, sodass die Ausscheidung von Karbiden, Nitriden oder Karbonitriden zum Einfrieren von Korn- und Phasengrenzen während des Austenitisierens führen kann und damit einer Kornvergröberung entgegenwirken kann. Gleichzeitig wird jedoch Kohlenstoff, welcher in atomarer Form günstig für die Stabilisierung des Restaustenits ist, als Karbid- bzw. Karbonitrid abgebunden. Um eine ausreichende Stabilisierung des Restaustenits zu gewährleisten, sollte die Konzentration der Mikrolegierungselemente in Summe nicht mehr als 0,2 Gew.-% betragen. Zur Vermeidung von groben Titannitridausscheidungen sollte die Titan-Konzentration nicht mehr als 0,10% betragen.Optionally, steels of flat steel products according to the invention can also contain one or more micro-alloying elements from the group Ti, Nb and V. Micro-alloying elements can be combined with carbon or nitrogen carbides, form nitrides or carbonitrides. In the form of very finely distributed precipitations, these contribute to greater strength. The sum of the micro-alloying elements should be at least 0.005% by weight, so that the precipitation of carbides, nitrides or carbonitrides can lead to the freezing of grain and phase boundaries during austenitizing and thus counteract grain coarsening. At the same time, however, carbon, which in atomic form is favorable for stabilizing the retained austenite, is bound as carbide or carbonitride. In order to ensure adequate stabilization of the retained austenite, the total concentration of the micro-alloying elements should not exceed 0.2% by weight. To avoid coarse titanium nitride precipitation, the titanium concentration should not be more than 0.10%.

Ein erfindungsgemäßes Stahlflachprodukt weist bevorzugt eine Dehngrenze Rp02 von über 700 MPa oder eine Streckgrenze ReH von über 700 MPa, eine Zugfestigkeit Rm von 950 - 1500 MPa sowie eine Dehnung A80 von 7 - 25 % auf, wobei die Dehngrenze Rp02 bzw. die Streckgrenze ReH, die Zugfestigkeit Rm sowie die Dehnung A80 gemäß DIN EN ISO 6892:2009 bestimmt werden. Gleichzeitig weist ein erfindungsgemäßes Stahlflachprodukt bevorzugt ein hohes Bake-Hardening-Potential (BH-Potential) auf. Ein Maß für das BH-Potential ist der BH2-Wert, der nach einer Vorverformung von 2% und einem Anlassen für 20 Minuten bei 170°C gemäß DIN EN 10325:2006 bestimmt wird und für erfindungsgemäße Stahlflachprodukte mindestens 80 MPa beträgt. Die nach einer BH-Behandlung für 20 Minuten bei 170°C an um 2% vorverformten erfindungsgemäßen Stahlflachprodukten vorliegende Dehnung A80_BH ist dabei mindestens halb so hoch wie die Dehnung A80 vor der BH-Behandlung. Die Dehnungswerte A80 und A80_BH werden dabei gemäß DIN EN ISO 6892:2009 bestimmt.A flat steel product according to the invention preferably has a yield strength Rp02 of more than 700 MPa or a yield strength ReH of more than 700 MPa, a tensile strength Rm of 950-1500 MPa and an elongation A80 of 7-25%, with the yield strength Rp02 or the yield strength ReH the tensile strength Rm and the elongation A80 are determined according to DIN EN ISO 6892:2009. At the same time, a flat steel product according to the invention preferably has a high bake-hardening potential (BH potential). A measure of the BH potential is the BH2 value, which is determined after pre-deformation of 2% and tempering for 20 minutes at 170° C. in accordance with DIN EN 10325:2006 and is at least 80 MPa for flat steel products according to the invention. The elongation A80_BH present after a BH treatment for 20 minutes at 170° C. on flat steel products according to the invention preformed by 2% is at least half as high as the elongation A80 before the BH treatment. The elongation values A80 and A80_BH are determined according to DIN EN ISO 6892:2009.

Das erfindungsgemäße Stahlflachprodukt hat ein Gefüge, dass nicht mehr als 15 Flächen-% Ferrit enthält, um die geforderten hohen Festigkeiten zu gewährleisten.The flat steel product according to the invention has a structure that contains no more than 15% by area of ferrite in order to ensure the required high strength.

Darüber hinaus weist das Gefüge aufgrund der Prozessführung nicht mehr als 5 Flächen-% Bainit auf.In addition, due to the way the process is carried out, the microstructure does not have more than 5% by area of bainite.

Das Gefüge eines erfindungsgemäßen Stahlflachprodukts enthält mindestens 5 Volumen-% Restaustenit. Restaustenit wirkt sich günstig auf die Umformbarkeit und Dehnung martensithaltiger Stähle aus. Der bis auf Raumtemperatur stabilisierte Austenit kann unter Nutzung des TRIP-Effekts bei gleichzeitig höherer Verfestigung stärker gedehnt werden als andere Gefügebestandteile. Mit der Begrenzung der austenitstabilisierenden Legierungselemente wie C und Mn aus Schweißbarkeitsgründen ist ein Restaustenitanteil größer 20 Vol.% mit dem beschriebenen Herstellungsprozess nicht möglich.The microstructure of a flat steel product according to the invention contains at least 5% by volume of retained austenite. Residual austenite has a beneficial effect on the formability and elongation of martensite steels. The austenite, which has been stabilized down to room temperature, can be stretched more than other structural components using the TRIP effect with simultaneous higher hardening. With the limitation of the austenite-stabilizing alloying elements such as C and Mn for reasons of weldability, a residual austenite content greater than 20% by volume is not possible with the manufacturing process described.

Zudem enthält das erfindungsgemäße Stahlflachprodukt mindestens 80 Flächen-% Martensit, von welchem mindestens 75 Flächen-% angelassener Martensit ist.In addition, the flat steel product according to the invention contains at least 80% by area of martensite, of which at least 75% by area is tempered martensite.

Der im Zuge des erfindungsgemäßen Verfahrens nach dem Partitioning durch das zweite Abschrecken in Arbeitsschritt j) gebildete Martensit wird auch als nicht angelassener Martensit bezeichnet. Der durch das erste Abschrecken nach dem Austenitisieren entstandene Martensit, der einem Partitioning unterzogen wird, wird auch als angelassener Martensit bezeichnet. Der gesamte im Gefüge vorhandene Martensitanteil setzt sich aus angelassenem und nicht angelassenem Martensit zusammen, wobei die Möglichkeit besteht, dass kein nicht angelassener Martensit vorliegt.The martensite formed in the course of the method according to the invention after the partitioning by the second quenching in step j) is also referred to as untempered martensite. The martensite resulting from the first quench after austenitizing, which undergoes partitioning, is also known as tempered martensite. All of the martensite present in the structure is composed of tempered and untempered martensite, with the possibility that there is no untempered martensite.

Der Gesamtanteil an Martensit, d.h. die Summe aus angelassenem und nicht angelassenem Martensit, soll mindestens 80 Flächen-%, bevorzugt mindestens 90 Flächen-%, betragen. Dieser hohe Martensitanteil trägt zu einer hohen Festigkeit des Stahlflachprodukts bei. Darüber hinaus ist Martensit ein kohlenstoffreicher Gefügebestandteil. Als solcher dient der Martensit als Quelle für die Diffusion von Kohlenstoff zum einen während des partitionierenden Glühens und zum anderen während der BH-Behandlung. Durch die Kohlenstoff-Diffusion aus dem Martensit in den Austenit während des partitionierenden Glühens wird der vorhandene Restaustenit stabilisiert, was das Einstellen eines Restaustenitanteils von mindestens 5 Vol.-% ermöglicht. Durch die Kohlenstoff-Diffusion während der BH-Behandlung wird der BH-Effekt verstärkt, was eine Erhöhung des BH-Werts bewirkt.The total proportion of martensite, ie the sum of tempered and non-tempered martensite, should be at least 80% by area, preferably at least 90% by area. This high proportion of martensite contributes to the high strength of the flat steel product. In addition, martensite is a carbon-rich structural component. As such, the martensite serves as a source for the diffusion of carbon both during the partitioning anneal and during the BH treatment. The residual austenite present is stabilized by the carbon diffusion from the martensite into the austenite during the partitioning annealing, which makes it possible to set a residual austenite proportion of at least 5% by volume. The carbon diffusion during the BH treatment increases the BH effect, resulting in an increase in the BH value.

Mindestens 75 % des im Stahlflachprodukt vorhandenen Martensits sind angelassener Martensit, weil nur so genügend Martensit für eine ausreichende Restaustenitstabilisierung während des partitionierenden Glühens zur Verfügung steht. Dabei liegt bei mindestens 90 % der Martensitlanzetten eine Martensitlanzettenbreite von höchstens 1000 nm vor. Die geringe Lanzettenbreite von höchstens 1000 nm führt beim partitionierenden Glühen zu kurzen Diffusionswegen, wodurch eine gezielte lokale Stabilisierung des Restaustenits möglich ist.At least 75% of the martensite present in the flat steel product is tempered martensite, because only then is there enough martensite available for sufficient residual austenite stabilization during partitioning annealing. At least 90% of the martensite lancets have a martensite lancet width of at most 1000 nm. The narrow lancet width of at most 1000 nm leads to short diffusion paths during partitioning annealing, which enables targeted local stabilization of the retained austenite.

Die Martensitlanzettenlänge ist auf höchstens 7,5 µm begrenzt, um eine gute Umformbarkeit zu gewährleisten. Da die Lanzetten mit einem definierten Verhältnis von Länge zu Breite wachsen, ist die Breite begrenzt, was sich vorteilhaft auf die Diffusion des Kohlenstoffs auswirkt.The martensite lancet length is limited to a maximum of 7.5 µm to ensure good formability. Since the lancets grow with a defined ratio of length to width, the width is limited, which has an advantageous effect on the diffusion of the carbon.

Insofern nicht anders erwähnt, sind die Angaben zu den Gefügeanteilen für die Gefügebestandteile Martensit, Ferrit und Bainit vorliegend auf Flächen-% und für Restaustenit auf Vol.-% bezogen. Aufgrund der Feinheit der Gefügestrukturen empfiehlt es sich, die Gefügeuntersuchungen einschließlich der Bestimmung der Martensitlanzettenlänge und -breite an einem Rasterelektronenmikroskop (REM) bei 5000facher Vergrößerung durchzuführen. Als geeignete Methode zur quantitativen Bestimmung des Restaustenits empfiehlt sich eine Untersuchung mittels Röntgenbeugung (XRD) nach ASTM E975.Unless otherwise stated, the information on the microstructural proportions for the microstructural components martensite, ferrite and bainite are based on area % and for retained austenite on vol. %. Due to the fineness of the microstructure, it is advisable to carry out the microstructure investigations, including the determination of the martensite lancet length and width, using a scanning electron microscope (SEM) at 5000x magnification. An examination using X-ray diffraction (XRD) according to ASTM E975 is recommended as a suitable method for the quantitative determination of retained austenite.

Das erfindungsgemäße Verfahren zum Herstellen eines für eine Bake-Hardening-Behandlung geeigneten höchstfesten Stahlflachprodukts umfasst mindestens folgende Arbeitsschritte:

  1. a) Bereitstellen eines warmgewalzten Stahlflachprodukts, welches aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen aus (in Gew.-%) 0,1 - 0,5 % C, 1,0 - 3,0 % Mn, 0,5 - 2,0 % Si, 0,01 - 1,5 % Al, 0,001 - 0,008 % N, bis zu 0,02 % P, bis zu 0,005 % S sowie optional aus einem oder mehreren der folgenden Elemente: 0,01 - 1,0 % Cr, 0,01 - 0,2 % Mo, 0,001 - 0,01 % B sowie optional aus in Summe 0,005 - 0,2 % V, Ti und Nb besteht, wobei der Ti-Anteil nicht mehr als 0,10% beträgt;
  2. b) Beizen des warmgewalzten Stahlflachprodukts;
  3. c) Kaltwalzen des Stahlflachprodukts mit einem Kaltwalzgrad von mindestens 37 %;
  4. d) Erwärmen des kaltgewalzten Stahlflachprodukts auf eine Haltezonentemperatur THZ, welche oberhalb der A3-Temperatur des Stahls liegt und höchstens 950 °C beträgt, wobei das Aufheizen bis zu einer 200 - 400 °C betragenden Wendetemperatur TW mit einer Aufheizgeschwindigkeit ThetaH1 von 5 - 50 K/s und oberhalb der Wendetemperatur TW mit einer Aufheizgeschwindigkeit ThetaH2 von 2 - 10 K/s erfolgt;
  5. e) Halten des Stahlflachprodukts für 5 - 15 s auf der Haltezonentemperatur THZ;
  6. f) optionales Abkühlen des Stahlflachprodukts innerhalb von 30 - 300 Sekunden von der Haltezonentemperatur THZ auf eine mindestens 620 und höchstens 720°C betragende Zwischentemperatur TLK;
  7. g) Abkühlen des Stahlflachprodukts mit einer Abkühlrate ThetaQ von mehr als durchschnittlich 5 K/s auf eine Kühlstopptemperatur TAB, welche zwischen der Martensitstarttemperatur TMS und einer Temperatur, die bis zu 175 °C kleiner als TMS ist, liegt;
  8. h) Halten des Stahlflachprodukts auf der Kühlstopptemperatur TAB für 10 - 60 Sekunden;
  9. i) Erwärmen des Stahlflachprodukts mit einer Aufheizrate ThetaB1, welche 1 - 80 K/s beträgt, auf eine 350 - 500 °C betragende Behandlungstemperatur TB und optionales isothermes Halten des Stahlflachprodukts auf der Behandlungstemperatur TB, wobei die Zeit für das Erwärmen und das optionale isotherme Halten insgesamt 10 - 1000 Sekunden beträgt;
  10. j) Abkühlen des Stahlflachprodukts mit einer Abkühlrate ThetaB2 von mehr als 5 K/s und weniger als 500 K/s auf Raumtemperatur;
  11. k) optionales Beschichten des Stahlflachprodukts in einem Schmelzbad entweder
    • k1) mittels Schmelztauchbeschichten vor dem Abkühlen in Arbeitsschritt j)
      oder
    • k2) mittels elektrolytischem Beschichten nach dem Abkühlen in Arbeitsschritt j).
The method according to the invention for producing a high-strength flat steel product suitable for bake-hardening treatment comprises at least the following work steps:
  1. a) Providing a hot-rolled flat steel product, which consists of a steel which, in addition to iron and unavoidable impurities, consists of (in % by weight) 0.1-0.5% C, 1.0-3.0% Mn, 0.5 - 2.0% Si, 0.01 - 1.5% Al, 0.001 - 0.008% N, up to 0.02% P, up to 0.005% S and optionally one or more of the following elements: 0.01 - 1.0% Cr, 0.01 - 0.2% Mo, 0.001 - 0.01% B and optionally a total of 0.005 - 0.2% V, Ti and Nb, with the Ti content not exceeding 0 is .10%;
  2. b) pickling the hot-rolled flat steel product;
  3. c) cold rolling of the steel flat product with a degree of cold rolling of at least 37%;
  4. d) Heating of the cold-rolled flat steel product to a holding zone temperature THZ, which is above the A3 temperature of the steel and is at most 950 °C, with the heating up to a turning temperature TW of 200 - 400 °C at a heating rate ThetaH1 of 5 - 50 K /s and above the turning temperature TW with a heating rate ThetaH2 of 2 - 10 K/s;
  5. e) holding the steel flat product for 5-15 s at the holding zone temperature THZ;
  6. f) optional cooling of the steel flat product within 30-300 seconds from the holding zone temperature THZ to an intermediate temperature TLK of at least 620 and at most 720°C;
  7. g) cooling the flat steel product at a cooling rate ThetaQ of more than an average of 5 K/s to a cooling stop temperature TAB, which is between the martensite start temperature TMS and a temperature that is up to 175 °C lower than TMS;
  8. h) holding the steel flat product at the cooling stop temperature TAB for 10 - 60 seconds;
  9. i) heating the steel flat product at a heating rate ThetaB1, which is 1 - 80 K/s, to a treatment temperature TB of 350 - 500 °C and optionally isothermally holding the steel flat product at the treatment temperature TB, the time for the heating and the optional isotherm total hold is 10 - 1000 seconds;
  10. j) cooling the flat steel product to room temperature at a cooling rate ThetaB2 of more than 5 K/s and less than 500 K/s;
  11. k) optional coating of the flat steel product in a molten bath either
    • k1) by means of hot-dip coating before cooling in step j)
      or
    • k2) by means of electrolytic coating after cooling in step j).

In Arbeitsschritt a) wird ein warmgewalztes Stahlflachprodukt bereitgestellt, das aus einem Stahl der in Arbeitsschritt a) genannten Zusammensetzung besteht.In step a), a hot-rolled flat steel product is provided, which consists of a steel of the composition mentioned in step a).

Das warmgewalzte Stahlflachprodukt wird vor dem Kaltwalzen gebeizt. Das Beizen in Arbeitsschritt b) erfolgt auf konventionelle Art und Weise.The hot-rolled flat steel product is pickled before cold rolling. The pickling in step b) is carried out in a conventional manner.

Das Kaltwalzen in Arbeitsschritt c) soll erfindungsgemäß mit einem Kaltwalzgrad von mindestens 37 % erfolgen. Unter dem Kaltwalzgrad KWG wird vorliegend die Dickenreduktion, die durch das Kaltwalzen des Stahlflachprodukts erfolgt, verstanden. Der KWG lässt sich mit folgender Beziehung beschreiben: KWG = h 0 h1 / h0

Figure imgb0002
wobei h0 die Dicke des Stahlflachprodukts vor dem Kaltwalzen in mm ist und h1 die Dicke des Stahlflachprodukts nach dem Kaltwalzen in mm ist. Sollte das Stahlflachprodukt nach dem Beizen und vor dem Aufheizen in Arbeitsschritt d) mehrere Kaltwalzvorgänge oder Kaltwalzstiche erfahren, so ist KWG auf den Gesamtkaltwalzgrad bezogen, d.h. h0 ist die Dicke des Stahlflachprodukts vor dem ersten Kaltwalzvorgang oder Kaltwalzstich in mm und h1 ist die Dicke des Stahlflachprodukts nach dem letzten Kaltwalzvorgang oder Kaltwalzstich in mm. Durch ein Kaltwalzen mit einem KWG von mindestens 37 % wird eine mechanische Homogenisierung sowie eine Reduzierung der Korngröße und damit ein feinkörniges Gefüge eingestellt. Aufgrund des hohen Kaltwalzgrades sowie der Ausscheidungsvorgänge und des daraus resultierenden feinen Ausgangsgefüges vor dem Glühen liegt bereits vor der Abkühlung ein sehr feinkörniges Austenitgefüge vor. Hierbei fungieren die Korngrenzen als Hindernis für das Wachstum der Martensitlanzetten und der kurze Abstand zwischen den Korngrenzen in einem feinen Gefüge führt zu kürzeren und schmaleren Lanzetten. Beim Abschrecken entsteht so ein Gefüge aus feinsten Martensitlanzetten mit dazwischen eingelagertem Restaustenit. Dies führt im anschließenden Behandlungsschritt zu kurzen Diffusionswegen, wodurch eine gezielte lokale Stabilisierung des Restaustenits möglich ist.According to the invention, the cold rolling in step c) should be carried out with a degree of cold rolling of at least 37%. In the present case, the degree of cold rolling KWG is understood to mean the reduction in thickness that occurs as a result of the cold rolling of the flat steel product. The KWG can be described with the following relationship: KWG = H 0 h1 / h0
Figure imgb0002
where h0 is the thickness of the steel flat product before cold rolling in mm and h1 is the thickness of the steel flat product after cold rolling in mm. If the flat steel product undergoes several cold rolling processes or cold rolling passes after pickling and before heating in step d), KWG is related to the total degree of cold rolling, i.e. h0 is the thickness of the flat steel product before the first cold rolling process or cold rolling pass in mm and h1 is the thickness of the flat steel product after the last cold rolling process or cold rolling pass in mm. Cold rolling with a KWG of at least 37% results in mechanical homogenization and a reduction in grain size, resulting in a fine-grained structure. Due to the high degree of cold rolling and the precipitation processes and the resulting fine initial structure before annealing, a very fine-grained austenite structure is already present before cooling. Here, the grain boundaries act as an obstacle to the growth of martensite lancets, and the short distance between grain boundaries in a fine structure results in shorter and narrower lancets. During quenching, a structure of the finest martensite lancets with residual austenite embedded in between is created. This leads to the following Treatment step to short diffusion paths, whereby a targeted local stabilization of the retained austenite is possible.

Es wurde erkannt, dass durch Kaltwalzgrade von 37 % oder mehr viele Keimstellen für die Bildung von Austenit während des austenitisierenden Glühens zur Verfügung gestellt werden, sodass während des Austenitisierens ein feinkörniges austenitisches Gefüge entsteht. Die Korngröße des austenitischen Gefüges kann weiter reduziert werden, wenn der Kaltwalzgrad mindestens 42 % beträgt. Aus anlagentechnischen Gründen ist der Kaltwalzgrad typischerweise auf 85 % begrenzt.It has been recognized that cold rolling grades of 37% or more provide many nucleation sites for austenite formation during austenitizing annealing, resulting in a fine-grained austenitic structure during austenitizing. The grain size of the austenitic structure can be further reduced if the degree of cold rolling is at least 42%. For technical reasons, the degree of cold rolling is typically limited to 85%.

Das Aufheizen des kaltgewalzten Stahlflachprodukts in Arbeitsschritt d) auf eine Haltezonentemperatur THZ erfolgt zunächst bis zum Erreichen einer Wendetemperatur TW, welche 200 - 400 °C beträgt, mit einer Aufheizgeschwindigkeit ThetaH1 von 5 - 50 K/s. Oberhalb der Wendetemperatur TW erfolgt das Aufheizen bis zum Erreichen der Haltezonentemperatur THZ mit einer Aufheizgeschwindigkeit ThetaH2 von 2 - 10 K/s. Dabei kann das Aufheizen auch einstufig erfolgen, d.h. die Aufheizgeschwindigkeiten ThetaH1 und ThetaH2 werden auf den gleichen Wert eingestellt.The heating of the cold-rolled flat steel product in step d) to a holding zone temperature THZ takes place initially until a turning temperature TW is reached, which is 200-400° C., at a heating rate ThetaH1 of 5-50 K/s. Above the turning temperature TW, heating takes place at a heating rate ThetaH2 of 2 - 10 K/s until the holding zone temperature THZ is reached. The heating can also take place in one step, i.e. the heating speeds ThetaH1 and ThetaH2 are set to the same value.

Das Stahlflachprodukt wird auf eine Haltezonentemperatur THZ erwärmt, welche oberhalb der A3-Temperatur des Stahls liegt, um eine vollständige Gefügeumwandlung in den Austenit zu ermöglichen. Die A3-Temperatur ist analysenabhängig und kann mit Hilfe der folgenden empirischen Gleichung abgeschätzt werden: A3 ° C = 910 203 * %C 15,2 % Ni + 44,7 % Si + 31,5 % Mo 21,1 % Mn

Figure imgb0003
mit %C=C-Gehalt des Stahls in Gew.-%, %Ni=Ni-Gehalt des Stahls in Gew.-%, %Si=Si-Gehalt des Stahls in Gew.-%, %Mo=Mo-Gehalt des Stahls in Gew.-%, %Mn=Mn-Gehalt des Stahls in Gew.-%.The steel flat product is heated to a holding zone temperature THZ, which is above the A3 temperature of the steel, in order to enable a complete transformation into austenite. The A3 temperature is analysis dependent and can be estimated using the following empirical equation: A3 ° C = 910 203 * %C 15.2 % no + 44.7 % si + 31.5 % Mon 21:1 % Mn
Figure imgb0003
with %C=C content of the steel in % by weight, %Ni=Ni content of the steel in % by weight, %Si=Si content of the steel in % by weight, %Mo=Mo content of the steel in % by weight, %Mn=Mn content of the steel in % by weight.

Die Haltezonentemperatur THZ kann auch als Austenitisierungstemperatur und das Glühen bei THZ auch als Austenitisieren bezeichnet werden. Die Haltezonentemperatur ist aus Kostengründen auf höchstens 950 °C beschränkt.The holding zone temperature THZ can also be referred to as the austenitizing temperature and annealing at THZ can also be referred to as austenitizing. For reasons of cost, the holding zone temperature is limited to a maximum of 950 °C.

Das Stahlflachprodukt wird in Arbeitsschritt e) für eine Haltedauer tHZ von mindestens 5 Sekunden auf der Haltezonentemperatur THZ gehalten, um eine vollständige Austenitisierung zu gewährleisten. Die Haltedauer tHZ soll 15 Sekunden nicht überschreiten, um die Bildung eines groben Austenitkorns sowie ein unregelmäßiges Austenitkornwachstum zu vermeiden. Ziel des Austenitisierens ist die Einstellung eines feinen und regelmäßigen Austenitkorns, da sich ein solches Gefüge günstig auf den BH-Wert auswirkt.In step e), the flat steel product is held at the holding zone temperature THZ for a holding time tHZ of at least 5 seconds in order to ensure complete austenitization. The holding time tHZ should not exceed 15 seconds in order to avoid the formation of a coarse austenite grain and irregular austenite grain growth. The aim of austenitizing is to set a fine and regular austenite grain, since such a structure has a favorable effect on the BH value.

Von der Haltezonentemperatur THZ kann das Stahlflachprodukt optional in Arbeitsschritt f) zunächst langsam auf eine Zwischentemperatur TLK abgekühlt werden, die 620 °C oder mehr beträgt. TLK ist nicht tiefer als 620 °C, um eine Phasenumwandlung in Ferrit zu vermeiden. Aus demselben Grund ist die Dauer tLK der Abkühlung von THZ auf TLK auf 30 - 300 Sekunden begrenzt.From the holding zone temperature THZ, the flat steel product can optionally first be slowly cooled in step f) to an intermediate temperature TLK, which is 620° C. or more. TLK is not lower than 620 °C to avoid phase transformation into ferrite. For the same reason, the duration tLK of the cooling from THZ to TLK is limited to 30 - 300 seconds.

Nach dem optionalen langsamen Abkühlen des Stahlflachprodukts in Arbeitsschritt f) oder bereits nach dem Halten des Stahlflachprodukts auf der Haltezonentemperatur THZ in Arbeitsschritt e) wird das Stahlflachprodukt in Arbeitsschritt g) mit einer im Vergleich zur Abkühlrate in Arbeitsschritt f) höheren Abkühlrate ThetaQ von mehr als 5 K/s auf eine Kühlstopptemperatur TAB abgekühlt. Wegen der hohen Abkühlrate wird eine solche Abkühlung auch als Abschrecken oder zur Unterscheidung des Abschreckens nach dem partitionierenden Glühen wird das Abschrecken in Arbeitsschritt g) auch als erstes Abschrecken bezeichnet. Die Abkühlungsgeschwindigkeit von der Zwischentemperatur TLK auf die Kühlstopptemperatur TAB beträgt mehr als 5 K/s, um für die erfindungsgemäßen Stahlzusammensetzungen sowohl die Umwandlung des Austenits in Ferrit als auch in Bainit zu vermeiden. Dies gelingt bei höheren Abkühlungsraten noch sicherer, weshalb die Abkühlungsrate ThetaQ bevorzugt auf mehr als 20 K/s eingestellt wird. Die Abkühlrate ThetaQ ist anlagentechnisch auf Werte von höchstens 500 K/s, bevorzugt höchstens 100 K/s, begrenzt.After the optional slow cooling of the flat steel product in step f) or after holding the flat steel product at the holding zone temperature THZ in step e), the flat steel product is cooled in step g) at a higher cooling rate ThetaQ than the cooling rate in step f) of more than 5 K/s cooled to a cooling stop temperature TAB. Because of the high cooling rate, such cooling is also referred to as quenching or, to distinguish between quenching after partitioning annealing, the quenching in work step g) is also referred to as first quenching. The cooling rate from the intermediate temperature TLK to the cooling stop temperature TAB is more than 5 K/s in order to avoid both the transformation of the austenite into ferrite and into bainite for the steel compositions according to the invention. This is even more reliable with higher cooling rates, which is why the ThetaQ cooling rate is preferably set to more than 20 K/s. The cooling rate ThetaQ is technically limited to values of at most 500 K/s, preferably at most 100 K/s.

Die Kühlstopptemperatur TAB liegt zwischen der Martensitstarttemperatur TMS und einer Temperatur, die bis zu 175 °C kleiner als TMS ist ((TMS-175°C) < TAB < TMS). Unter der Martensitstarttemperatur TMS wird dabei die Temperatur verstanden, bei welcher die Umwandlung von Austenit in Martensit beginnt. Die Martensitstarttemperatur kann mit Hilfe der folgenden Gleichung abgeschätzt werden: TMS ° C = 539 ° C + 423 % C 30,4 % Mn 7,5 % Si + 30 % Al ° C/Gew .-%

Figure imgb0004
mit %C=C-Gehalt des Stahls in Gew.-%, %Mn=Mn-Gehalt des Stahls in Gew.-%, %Si=Si-Gehalt des Stahls in Gew.-%, %Al=Al-Gehalt des Stahls in Gew.-%.The cooling stop temperature TAB is between the martensite start temperature TMS and a temperature that is up to 175°C lower than TMS ((TMS-175°C)<TAB<TMS). The martensite start temperature TMS is the temperature at which the transformation from austenite to martensite begins. The martensite start temperature can be estimated using the following equation: TMS ° C = 539 ° C + 423 % C 30.4 % Mn 7.5 % si + 30 % Al ° c/wt %
Figure imgb0004
with %C=C content of the steel in % by weight, %Mn=Mn content of the steel in % by weight, %Si=Si content of the steel in % by weight, %Al=Al content of the steel in % by weight.

Da die Umwandlung von Austenit in Martensit nicht schlagartig sondern zeitabhängig erfolgt, kann der Umfang der Umwandlung, d.h. der Martensitanteil, über die Haltezeit tQ, mit welcher das Stahlflachprodukt auf Kühlstopptemperatur TAB gehalten wird, gesteuert werden. Die Haltezeit tQ in Arbeitsschritt h) beträgt mindestens 10 Sekunden, um eine ausreichende Umwandlung des Austenits in Martensit zu gewährleisten. Bezogen auf das gesamte Gefüge sollte der Anteil des Martensits, der durch das erste Abschrecken nach dem Austenitisieren entsteht, mindestens 60 Flächen-% betragen. Die Haltezeit tQ sollte nicht mehr als 60 Sekunden betragen, um eine vollständige Umwandlung in Martensit zu vermeiden und einen Restaustenitanteil von mindestens 5 Vol-% im Gefüge des Stahlflachprodukts bei Raumtemperatur zu gewährleisten.Since the transformation of austenite into martensite does not take place suddenly but as a function of time, the extent of the transformation, i.e. the proportion of martensite, can be controlled via the holding time tQ, with which the steel flat product is held at the cooling stop temperature TAB. The holding time tQ in step h) is at least 10 seconds to ensure sufficient conversion of the austenite into martensite. In relation to the entire microstructure, the proportion of martensite produced by the first quenching after austenitizing should be at least 60% by area. The holding time tQ should not be more than 60 seconds in order to avoid complete transformation into martensite and to ensure a residual austenite content of at least 5% by volume in the structure of the steel flat product at room temperature.

In Arbeitsschritt i) wird das Stahlflachprodukt mit einer Aufheizrate ThetaB1 auf eine Behandlungstemperatur TB erwärmt und optional auf TB gehalten, um den nach Arbeitsschritt h) vorliegenden Restaustenit mit Kohlenstoff aus dem übersättigten Martensit, welcher durch das erste Abschrecken gebildet wurde, anzureichern. Die Umverteilung des Kohlenstoffs, welche auch als Partitionieren bezeichnet werden kann, erfolgt dabei während der Aufheizphase auf TB. Wird das Stahlflachprodukt anschließend zudem auch noch isotherm auf TB gehalten, so erfolgt ein Partitionieren zusätzlich auch während des optionalen isothermen Haltens. Das Erwärmen auf Behandlungstemperatur TB und das anschließende optionale Halten auf der Behandlungstemperatur TB werden auch als partitionierendes Glühen oder auch als Partitioning bezeichnet. Um eine ausreichende Umverteilung des Kohlenstoffs zu ermöglichen, erfolgt das Erwärmen mit einer Aufheizrate von mindestens 1 K/s und höchstens 80 K/s. Die Behandlungstemperatur TB beträgt 350 - 500 °C, um die Bildung von Karbiden und den Zerfall von Restaustenit zu vermeiden. Zudem beträgt die gesamte Behandlungszeit tBT mindestens 10 und höchstens 1000 Sekunden, ebenfalls um eine ausreichende Umverteilung des Kohlenstoffs zu gewährleisten. Die gesamte Behandlungszeit tBT setzt sich aus der Zeit, die für das Erwärmen benötigt wird und gegebenenfalls der Zeit, die für das optionale isotherme Halten verwendet wird, zusammen.In step i), the flat steel product is heated to a treatment temperature TB at a heating rate ThetaB1 and optionally maintained at TB in order to enrich the residual austenite present after step h) with carbon from the supersaturated martensite, which was formed by the first quenching. The redistribution of the carbon, which can also be referred to as partitioning, takes place during the heating phase on TB. If the flat steel product is then also held isothermally on TB, partitioning also takes place during the optional isothermic holding. The heating to the treatment temperature TB and the subsequent optional holding at the treatment temperature TB are also referred to as partitioning annealing or partitioning. In order to enable sufficient redistribution of the carbon, heating is carried out at a heating rate of at least 1 K/s and at most 80 K/s. The treatment temperature TB is 350 - 500 °C to avoid the formation of carbides and the decomposition of retained austenite. In addition, the total treatment time tBT is at least 10 and at most 1000 seconds, also to ensure sufficient redistribution of the carbon. The total treatment time tBT is made up of the time required for heating and, if applicable, the time used for the optional isothermal hold.

Anschließend wird das Stahlflachprodukt in Arbeitsschritt j) mit einer Abkühlrate ThetaB2 auf Raumtemperatur abgekühlt. Die Abkühlrate ThetaB2 beträgt mehr als 5 K/s, bevorzugt mehr als 20 K/s, um die Bildung von Martensit zu ermöglichen. Dieser Abkühlschritt kann aufgrund der hohen Abkühlrate ebenfalls als Abschrecken bezeichnet werden. Zur Unterscheidung von dem in Arbeitsschritt g) durchgeführten ersten Abschrecken wird das Abschrecken in Arbeitsschritt j) auch als zweites Abschrecken bezeichnet. Die Abkühlrate ThetaB2 ist anlagentechnisch auf Werte von höchstens 500 K/s, bevorzugt höchstens 100 K/s, begrenzt.The flat steel product is then cooled to room temperature in step j) at a cooling rate ThetaB2. The cooling rate ThetaB2 is more than 5 K/s, preferably more than 20 K/s to allow the formation of martensite. This cooling step can also be referred to as quenching due to the high cooling rate. To distinguish it from the first quenching carried out in step g), the quenching in step j) is also referred to as second quenching. The cooling rate ThetaB2 is technically limited to values of at most 500 K/s, preferably at most 100 K/s.

Das Stahlflachprodukt kann zusätzlich optional einer Beschichtungsbehandlung (Arbeitsschritt k)) unterzogen werden. Die Beschichtungsbehandlung kann entweder als Schmelztauchbeschichten (Arbeitsschritt k1)) oder als elektrolytisches Beschichten (Arbeitsschritt k2)) ausgeführt werden. Erfolgt ein Schmelztauchbeschichten (Arbeitsschritt k1)), so durchläuft das Stahlflachprodukt nach dem Partitionieren in Arbeitsschritt i) und vor dem Abkühlen in Arbeitsschritt j) ein Beschichtungsbad mit einer auf Zink basierenden Schmelzbadzusammensetzung. Die Temperatur des Schmelzbads beträgt dabei bevorzugt 450 - 500 °C.The flat steel product can additionally optionally be subjected to a coating treatment (step k)). The coating treatment can be carried out either as a hot-dip coating (step k1)) or as an electrolytic coating (step k2)). If hot-dip coating takes place (work step k1)), the flat steel product, after partitioning in work step i) and before cooling in work step j), runs through a coating bath with a zinc-based molten bath composition. The temperature of the molten bath is preferably 450-500.degree.

Alternativ zum Aufbringen einer Beschichtung mittels Schmelztauchbeschichten kann das Stahlflachprodukt einem elektrolytischen Beschichten (Arbeitsschritt k2)) unterzogen werden. Das elektrolytische Beschichten erfolgt dabei im Unterschied zum Schmelztauchbeschichten nicht vor, sondern erst nach dem Abkühlen des Stahlflachprodukts in Arbeitsschritt j).As an alternative to applying a coating by means of hot-dip coating, the flat steel product can be subjected to electrolytic coating (work step k2)). The electrolytic coating takes place here in contrast to Hot-dip coating not before, but only after the cooling of the flat steel product in step j).

Die Beschichtungsbehandlung der Arbeitsschritte k1) oder k2) erfolgt bevorzugt in einem kontinuierlichen Verfahren. Eine mögliche Schmelzbadzusammensetzung kann aus bis zu 1 Gew.-% Al, Rest Zink und unvermeidbare Verunreinigungen bestehen. Eine weitere mögliche Schmelzbadzusammensetzung kann aus 1-2 Gew.-% Al, 1-2 Gew.-% Mg, Rest Zink und unvermeidbare Verunreinigungen bestehen. Durch die Beschichtungsbehandlung wird auf mindestens einer Seite des Stahlflachprodukts ein Korrosionsschutzüberzug auf das Stahlflachprodukt aufgebracht. Das beschichtete Stahlflachprodukt kann ebenfalls optional einer Galvannealingbehandlung unterzogen werden.The coating treatment of steps k1) or k2) preferably takes place in a continuous process. A possible molten bath composition can consist of up to 1% by weight Al, the remainder zinc and unavoidable impurities. Another possible molten bath composition can consist of 1-2% by weight Al, 1-2% by weight Mg, the remainder zinc and unavoidable impurities. By the coating treatment, an anti-corrosion coating is applied to the flat steel product on at least one side of the flat steel product. The coated flat steel product can also optionally be subjected to a galvannealing treatment.

Das erfindungsgemäße Verfahren kann im kontinuierlichen Durchlauf in hierzu üblicherweise vorgesehenen Glühanlagen oder Bandbeschichtungsanlagen durchgeführt werden.The process according to the invention can be carried out continuously in annealing plants or coil coating plants which are usually provided for this purpose.

Bei erfindungsgemäßem Vorgehen insbesondere bei Einhalten des Kaltwalzgrades KWG, der Abkühlrate ThetaQ der schnellen Abkühlung nach dem Austenitisieren und der Haltezeit tQ ergibt sich ein Gefüge, welches eine sehr feine Martensitstruktur aufweist. Diese Martensitstruktur zeichnet sich durch eine besondere Feinkörnigkeit mit geringer Lanzettenbreite aus. Der hohe Kaltwalzgrad sowie die karbidischen und nitridischen Ausscheidungen führen zu einem feinkörnigen Ausgangsgefüge für das austenitisierende Glühen. Bei erfindungsgemäßem Vorgehen wird eine Kornvergröberung während des Austenitisierens vermieden, sodass bereits vor dem dem Austenitisieren nachfolgenden Abkühlen ein sehr feinkörniges Gefüge vorliegt. Die zahlreichen Korngrenzen des feinen Gefüges behindern das Wachstum der Martensitlanzetten. Die kurzen Abstände zwischen den Korngrenzen des feinkörnigen Gefüges führen zu kurzen und schmalen Martensitlanzetten. Durch die schnelle Abkühlung mit Abkühlraten ThetaQ von mehr als 5 K/s entsteht daraus ein Gefüge aus sehr feinen Martensitlanzetten mit dazwischen eingelagertem Restaustenit. Ein solches Gefüge stellt für den Glühprozess des anschließenden Arbeitsschritts i) kurze Diffusionswege für den Kohlenstoff zur Verfügung und ermöglicht somit eine gezielte lokale Stabilisierung des Restaustenits.When proceeding according to the invention, in particular when maintaining the degree of cold rolling KWG, the cooling rate ThetaQ of the rapid cooling after austenitizing and the holding time tQ, a microstructure results which has a very fine martensite structure. This martensite structure is characterized by a particularly fine-grained structure with a narrow lancet width. The high degree of cold rolling and the carbide and nitride precipitations lead to a fine-grained starting structure for austenitizing annealing. With the procedure according to the invention, coarsening of the grains during the austenitizing is avoided, so that a very fine-grained structure is already present before the cooling that follows the austenitizing. The numerous grain boundaries of the fine structure hinder the growth of the martensite lancets. The short distances between the grain boundaries of the fine-grain structure lead to short and narrow martensite lancets. The rapid cooling with cooling rates ThetaQ of more than 5 K/s results in a structure of very fine martensite lancets with residual austenite embedded in between. Such a structure provides short for the annealing process of the subsequent step i). Diffusion paths for the carbon available and thus enables a targeted local stabilization of the retained austenite.

Gleichzeitig steht jedoch weiterhin ausreichend Kohlenstoff aus dem nicht angelassenen Martensit und aus dem bei der Umformung gebildeten, verformungsinduzierten Martensit für die nachgeschaltete BH-Behandlung zur Anlagerung an die Versetzungen zur Verfügung. Durch das nach dem partitionierendem Glühen vorliegende feine Gefüge sind die Diffusionswege in den angelassenen Martensit hinein im Rahmen der späteren BH-Behandlung kurz genug, um auch bei niedrigen BH-Temperaturen und kurzen BH-Behandlungszeiten einen hohen BH-Effekt erzielen zu können.At the same time, however, there is still sufficient carbon from the untempered martensite and from the deformation-induced martensite formed during forming for the subsequent BH treatment to attach to the dislocations. Due to the fine structure present after the partitioning annealing, the diffusion paths into the tempered martensite are short enough during the later BH treatment to be able to achieve a high BH effect even at low BH temperatures and short BH treatment times.

Die durch die vorliegende Erfindung zur Verfügung gestellten Stahlflachprodukte eignen sich besonders für Weiterverarbeitungsprozesse, die einen Kaltumformprozess und eine anschließende Wärmebehandlung bei Temperaturen unterhalb von 300 °C umfassen. Beispielhaft sei hier die Herstellung von Bauteilen für Automobilanwendungen genannt. Stahlflachprodukte werden dabei zu Bauteilen umgeformt, zum Beispiel mittels kathodischer Tauchlackierung (KTL) lackiert und in einem weiteren Prozessschritt einer Wärmebehandlung zum Beispiel während des Lackeinbrennens unterzogen. Die Wärmebehandlung erfolgt üblicherweise als Erwärmung innerhalb eines Temperaturbereichs von typischerweise 120 bis 250 °C für einen Zeitraum von typischerweise 3 bis 40 Minuten. Für derartige Anwendungen sind die vorliegend erfindungsgemäßen Stahlflachprodukte besonders geeignet. Allerdings können die vorteilhaften Eigenschaften der erfindungsgemäßen Stahlflachprodukte auch für Produkte, die keiner Vorverformung unterzogen wurden, genutzt werden.The flat steel products made available by the present invention are particularly suitable for further processing that includes a cold forming process and subsequent heat treatment at temperatures below 300.degree. The production of components for automotive applications is mentioned here as an example. Flat steel products are formed into components, for example painted using cathodic dip painting (KTL) and then subjected to heat treatment in a further process step, for example during paint baking. The heat treatment usually takes the form of heating within a temperature range of typically 120 to 250°C for a period of typically 3 to 40 minutes. The flat steel products according to the present invention are particularly suitable for such applications. However, the advantageous properties of the flat steel products according to the invention can also be used for products that have not been subjected to any pre-deformation.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:
Zur Erprobung wurden fünf Schmelzen A-E der in Tabelle 1 angegebenen Zusammensetzungen erzeugt, aus welchen auf konventionelle Weise 10 Warmbänder mit einer Dicke von 1,8-2,5 mm erzeugt wurden. Dabei entsprechen die Schmelzen C und E den erfindungsgemäßen Vorgaben für die Stahlzusammensetzung, wohingegen die Schmelzen A, B und D zu geringe Si-Gehalte aufweisen.
The invention is explained in more detail below using exemplary embodiments:
For testing, five melts AE of the compositions given in Table 1 were produced, from which 10 hot strips with a thickness of 1.8-2.5 mm were produced in a conventional manner. The melts correspond to C and E meet the specifications for the steel composition according to the invention, whereas the melts A, B and D have too low Si contents.

Die Warmbänder wurden auf konventionelle Weise gebeizt und mit den in Tabelle 2a angegebenen Kaltwalzgraden "KWG" zu Kaltbändern verarbeitet. Die weitere Fertigung der Kaltbänder erfolgte entsprechend der in Tabelle 2a und Tabelle 2b gemachten Angaben. Dabei wurden die Kaltbänder jeweils mit einer ersten, schnelleren Aufheizrate "ThetaHl" auf eine Wendetemperatur "TW" erwärmt und dann mit einer zweiten, langsameren Aufheizrate "ThetaH2" auf Haltezonentemperatur "THZ" gebracht, auf welcher sie für die Dauer "tHZ" gehalten wurden. Danach wurden die Kaltbänder aus den Versuchen 1-9 zunächst langsam innerhalb einer Zeitspanne "tLK" auf eine Zwischentemperatur "TLK" abgekühlt, dann von der Zwischentemperatur "TLK" mit einer Abkühlrate "ThetaQ" schnell auf eine Kühlstopp-temperatur "TAB" abgeschreckt, auf welcher sie für eine Dauer "tQ" gehalten wurden. Das Kaltband des Versuchs 10 wurde ohne langsame Abkühlung direkt mit einer Abkühlrate "ThetaQ" schnell auf die Kühlstopptemperatur "TAB" abgeschreckt und auf dieser Temperatur für die Dauer "tQ" gehalten. Anschließend wurden die Stahlflachprodukte über eine Zeit "tBT" einem Partitioning unterzogen, wobei sie mit einer Aufheizrate "ThetaB1" auf die Partitioningtemperatur "TB" erwärmt wurden. Abschließend wurden die Stahlflachprodukte mit einer Abkühlrate "ThetaB2" auf Raumtemperatur abgeschreckt. Es wurden 10 Versuche durchgeführt, von denen die Versuche 4, 8 und 10 den Vorgaben der Erfindung genügen.The hot strips were pickled in a conventional manner and processed into cold strips with the cold rolling degrees "KWG" given in Table 2a. The further production of the cold strips took place in accordance with the information given in Table 2a and Table 2b. The cold strips were each heated to a turning temperature "TW" at a first, faster heating rate "ThetaH1" and then brought to the holding zone temperature "THZ" at a second, slower heating rate "ThetaH2", at which they were held for the duration "tHZ". . The cold strips from tests 1-9 were first slowly cooled to an intermediate temperature "TLK" within a period of time "tLK", then quickly quenched from the intermediate temperature "TLK" at a cooling rate "ThetaQ" to a cooling stop temperature "TAB". on which they were held for a duration "tQ". The cold strip of test 10 was quickly quenched directly to the cool stop temperature "TAB" at a cooling rate "ThetaQ" without slow cooling and held at this temperature for the duration "tQ". The flat steel products were then subjected to partitioning for a time "tBT", with them being heated to the partitioning temperature "TB" at a heating rate "ThetaB1". Finally, the steel flat products were quenched to room temperature with a cooling rate "ThetaB2". 10 tests were carried out, of which tests 4, 8 and 10 meet the requirements of the invention.

Von den Versuchen 1-10 wurden Proben entnommen, an welchen das Gefüge untersucht und die mechanischen Eigenschaften geprüft wurden. Die Ergebnisse der Gefügeuntersuchungen sind in Tabelle 3 angegeben und die Ergebnisse der Prüfungen der mechanischen Eigenschaften sind in Tabelle 4 angegeben. Dabei bezeichnet "MA" den Anteil angelassenen Martensits am gesamten Gefüge, "M" den Anteil nicht angelassenen Martensits am gesamten Gefüge, "F" den Anteil Ferrits, "B" den Anteil Bainits, "RA" den Anteil Restaustenits. Die Begriffe Lanzettenlänge und Lanzettenbreite beziehen sich auf die Strukturen des Martensits.Samples were taken from tests 1-10, on which the structure was examined and the mechanical properties tested. The results of the structural tests are given in Table 3 and the results of the mechanical property tests are given in Table 4. "MA" denotes the proportion of tempered martensite in the entire structure, "M" the proportion of untempered martensite in the entire structure, "F" the proportion of ferrite, "B" the proportion of bainite, "RA" the proportion of residual austenite. The terms lancet length and lancet width refer to the structures of the martensite.

Die Gefügeuntersuchungen erfolgten an Querschliffen bei 1/3t-Lage, d.h. an Schliffen, welche bei einem Drittel der Blechdicke entnommen wurden. Die Schliffe wurden für eine rasterelektronenmikroskopische (REM) Untersuchung präpariert und mit einer 3%-Nital-Ätzung behandelt. Aufgrund der Feinheit der Gefügestrukturen wurde das Gefüge mittels REM-Betrachtung bei 5000facher Vergrößerung charakterisiert. Die quantitative Bestimmung des Restaustenits wurde mittels Röntgenbeugung (XRD) nach ASTM E975 durchgeführt.The structural investigations were carried out on cross sections at 1/3t layer, i.e. on sections which were taken at a third of the sheet thickness. The sections were prepared for scanning electron microscopy (SEM) examination and treated with a 3% Nital etch. Due to the fineness of the microstructure, the microstructure was characterized by means of REM observation at a magnification of 5000x. The quantitative determination of the retained austenite was carried out by means of X-ray diffraction (XRD) according to ASTM E975.

Die Prüfung der mechanischen Eigenschaften Dehngrenze "Rp02", Zugfestigkeit "Rm" und Dehnung "A80" erfolgte gemäß DIN EN ISO 6892:2009 an Proben, die keiner BH-Behandlung unterzogen wurden. Zur Prüfung der BH-Eigenschaften wurden Proben aus denselben Stahlflachprodukten entnommen und mit einer Vorverformung von 2% beaufschlagt und für 20 Minuten bei 170 °C angelassen. Die Prüfung des Bake-Hardening-Werts "BH2" erfolgte gemäß DIN EN 10325:2006. Die Prüfung der nach der BH-Behandlung vorliegenden Dehnung "A80_BH", welche auch als Restdehnung bezeichnet wird, erfolgte gemäß DIN EN ISO 6892:2009.The mechanical properties yield strength "Rp02", tensile strength "Rm" and elongation "A80" were tested according to DIN EN ISO 6892:2009 on samples that were not subjected to any BH treatment. To test the BH properties, samples were taken from the same steel flat products and subjected to a pre-deformation of 2% and tempered at 170 °C for 20 minutes. The bake hardening value "BH2" was tested in accordance with DIN EN 10325:2006. The test of the elongation "A80_BH" present after the BH treatment, which is also referred to as the residual elongation, was carried out according to DIN EN ISO 6892:2009.

Die Versuche zeigen, dass die Differenz der Dehngrenze Rp02 vor der BH-Behandlung und der Streckgrenze nach der BH-Behandlung mit zunehmender Festigkeit des Stahlflachprodukts tendenziell zunimmt. Dies lässt sich auf den höheren Martensitanteil der höherfesten Proben zurückführen. Bei vergleichbarer Festigkeit und Dehnung A80 weisen die erfindungsgemäßen Proben 4 und 8 einen höheren BH-Wert "BH2" und eine deutlich bessere Restdehnung "A80_BH" auf als ihre nicht erfindungsgemäß aus gleicher Schmelze hergestellten Vergleichsproben 5 und 9. Tabelle 1 Schmelze C Si Mn P S Al Cr Nb Mo N Ti B A 0,142 0,210 1,63 0,012 0,0027 0,031 0,780 - - 0,0027 0,037 0,0011 B 0,072 0,260 2,59 0,013 0,0021 0,029 0,690 - 0,11 0,0025 0,079 0,0013 C 0,158 1,180 1,99 0,014 0,0020 0,017 - - - 0,0016 0,015 0,0015 D 0,153 0,420 2,35 0,013 0,0025 0,710 0,720 0,027 - 0,0042 0,023 0,0014 E 0,218 1,478 2,21 0,016 0,0023 0,024 0,173 - - 0,0046 - - Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen.
Unterstrichene Werte liegen außerhalb der erfindungsgemäßen Vorgaben.
Tabelle 2a Probe Schmelze A3 [°C] TMS [°C] KWG [%] Theta H1 [K/s] TW [°C] ThetaH2 [K/s] THZ [°C] tHZ [s] 1 A 808 429 42 12 350 3,5 780 14 2 B 816 429 39 10 375 4,0 820 7 3 B 816 429 25 10 375 4,0 820 18 4 C 840 403 45 12 350 5,0 850 8 5 C 840 403 29 12 350 5,0 850 6 6 D 799 421 48 15 360 3,5 875 5 7 D 799 421 33 15 360 3,5 875 12 8 E 834 369 42 12 325 3,3 895 9 9 E 834 369 25 12 325 3,3 895 13 10 E 834 369 44 12 325 3,3 895 9 Unterstrichene Werte liegen außerhalb der erfindungsgemäßen Vorgaben Tabelle 2b Probe Schmelze TLK [°C] tLK [s] ThetaQ [K/s] TAB [°C] tQ [s] TB [°C] ThetaB1 [K/s] tBT [s] ThetaB2 [K/s] 1 A 685 415 33 410 25 425 65 15 20 2 B 690 320 34 390 15 440 35 30 15 3 B 690 340 34 390 55 440 50 25 33 4 C 710 129 38 355 30 455 25 150 25 5 C 710 75 38 355 65 455 15 80 29 6 D 715 185 31 340 20 437 70 120 15 7 D 715 290 31 340 45 437 45 70 34 8 E 685 45 33 330 55 445 30 200 35 9 E 685 25 33 330 10 445 5 15 27 10 E * * 39 330 50 450 30 180 33 Unterstrichene Werte liegen außerhalb der erfindungsgemäßen Vorgaben
* Keine Langsamkühlung durchgeführt
Tabelle 3 Probe MA M F B RA Lanzettenlänge [µm] Lanzettenbreite [nm] 1 25 30 40 Sp. 2 3,5 400 2 45 25 27 0 3 7,5 600 3 35 32 26 0 7 8,5 850 4 70 15 7 Sp. 7 4,5 150 5 60 28 5 Sp. 6 9,0 700 6 70 20 8 Sp. 2 8,0 450 7 55 35 9 0 1 11,5 650 8 80 5 Sp. Sp. 12 6,0 250 9 65 25 Sp. Sp. 8 9,5 750 10 85 0 Sp. Sp. 13 6,5 275 Unterstrichene Werte liegen außerhalb der erfindungsgemäßen Vorgaben. "Sp." steht für Spuren, d.h. Gefügeanteile von höchstens 2 Flächen-%. Angaben zu MA, M, F, B in Flächen-%. Angaben zu RA in Vol.-%. Tabelle 4 Probe Rp02 [MPa] Rm [MPa] A80 [%] BH2 [MPa] A80_BH [%] 1 475 810 21 28,3 19,3 2 750 1050 12 83,78 5,1 3 720 1065 13 65 5,1 4 823 1060 18,1 85 15,3 5 791 1073 18,6 80 7,5 6 912 1217 7,8 123 1,8 7 940 1235 8,2 137,2 2,4 8 907 1204 13,3 158 12 9 825 1229 12,7 148 5,1 10 935 1225 13,1 151 10,4 Unterstrichene Werte liegen außerhalb der erfindungsgemäßen Vorgaben.
The tests show that the difference between the yield point Rp02 before the BH treatment and the yield point after the BH treatment tends to increase with increasing strength of the steel flat product. This can be attributed to the higher proportion of martensite in the higher-strength samples. With comparable strength and elongation A80, samples 4 and 8 according to the invention have a higher BH value "BH2" and a significantly better residual elongation "A80_BH" than their comparison samples 5 and 9, which were not produced according to the invention from the same melt. <b>Table 1</b> melt C si Mn P S Al Cr Nb Mon N Ti B A 0.142 0.210 1.63 0.012 0.0027 0.031 0.780 - - 0.0027 0.037 0.0011 B 0.072 0.260 2.59 0.013 0.0021 0.029 0.690 - 0.11 0.0025 0.079 0.0013 C 0.158 1,180 1.99 0.014 0.0020 0.017 - - - 0.0016 0.015 0.0015 D 0.153 0.420 2.35 0.013 0.0025 0.710 0.720 0.027 - 0.0042 0.023 0.0014 E 0.218 1,478 2:21 0.016 0.0023 0.024 0.173 - - 0.0046 - - Data in % by weight, remainder iron and unavoidable impurities.
Underlined values are outside the specifications according to the invention.
sample melt A3 [°C] TMS [°C] KWG [%] Theta H1 [K/s] TW [°C] ThetaH2 [K/s] THZ [°C] tHZ [s] 1 A 808 429 42 12 350 3.5 780 14 2 B 816 429 39 10 375 4.0 820 7 3 B 816 429 25 10 375 4.0 820 18 4 C 840 403 45 12 350 5.0 850 8th 5 C 840 403 29 12 350 5.0 850 6 6 D 799 421 48 15 360 3.5 875 5 7 D 799 421 33 15 360 3.5 875 12 8th E 834 369 42 12 325 3.3 895 9 9 E 834 369 25 12 325 3.3 895 13 10 E 834 369 44 12 325 3.3 895 9 Underlined values are outside the specifications according to the invention sample melt DC [°C] tLK [s] ThetaQ [K/s] TAB [°C] tQ [s] TB [°C] ThetaB1 [K/s] tBT [s] ThetaB2 [K/s] 1 A 685 415 33 410 25 425 65 15 20 2 B 690 320 34 390 15 440 35 30 15 3 B 690 340 34 390 55 440 50 25 33 4 C 710 129 38 355 30 455 25 150 25 5 C 710 75 38 355 65 455 15 80 29 6 D 715 185 31 340 20 437 70 120 15 7 D 715 290 31 340 45 437 45 70 34 8th E 685 45 33 330 55 445 30 200 35 9 E 685 25 33 330 10 445 5 15 27 10 E * * 39 330 50 450 30 180 33 Underlined values are outside the specifications according to the invention
* No slow cooling performed
sample MA M f B RA Lancet length [µm] Lancet width [nm] 1 25 30 40 Sp. 2 3.5 400 2 45 25 27 0 3 7.5 600 3 35 32 26 0 7 8.5 850 4 70 15 7 Sp. 7 4.5 150 5 60 28 5 Sp. 6 9.0 700 6 70 20 8th Sp. 2 8.0 450 7 55 35 9 0 1 11.5 650 8th 80 5 Sp. Sp. 12 6.0 250 9 65 25 Sp. Sp. 8th 9.5 750 10 85 0 Sp. Sp. 13 6.5 275 Underlined values are outside the specifications according to the invention. "Sp." stands for traces, ie microstructure fractions of at most 2% by area. Information on MA, M, F, B in area %. Information on RA in % by volume. sample Rp02 [MPa] Rm [MPa] A80 [%] BH2 [MPa] A80_BH [%] 1 475 810 21 28.3 19.3 2 750 1050 12 83.78 5.1 3 720 1065 13 65 5 , 1 4 823 1060 18.1 85 15.3 5 791 1073 18.6 80 7.5 6 912 1217 7.8 123 1.8 7 940 1235 8.2 137.2 2.4 8th 907 1204 13.3 158 12 9 825 1229 12.7 148 5.1 10 935 1225 13.1 151 10.4 Underlined values are outside the specifications according to the invention.

Claims (15)

Für eine Bake-Hardening-Behandlung geeignetes höchstfestes Stahlflachprodukt, das aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) aus C: 0,1 - 0,5 %, Si: 0,5 - 2,0 %, Mn: 1,0 - 3,0 %, Al: 0,01 - 1,5 %, N: 0,001 - 0,008 %, P: ≤ 0,02 %, S: ≤ 0,005 %, sowie optional aus einem oder mehreren der folgenden Elemente Cr: 0,01 - 1,0 %, Mo: 0,01 - 0,2 %, B: 0,001 - 0,01 %, sowie optional aus in Summe 0,005 - 0,2 % V, Ti und Nb, wobei der Ti-Anteil nicht mehr als 0,10 % beträgt, besteht, wobei das Stahlflachprodukt ein Gefüge aufweist, das aus - nicht mehr als 15 Flächen-% Ferrit, - nicht mehr als 5 Flächen-% Bainit, - mindestens 5 Volumen-% Restaustenit und - mindestens 80 Flächen-% Martensit, von welchem mindestens 75 Flächen-% angelassener Martensit ist, besteht, wobei bezogen auf den gesamten Anteil Martensit im Gefüge dieser für mindestens 90% des Martensits eine Martensitlanzettenlänge von höchstens 7,5 µm und eine Martensitlanzettenbreite von höchstens 1000 nm aufweist. High-strength flat steel product suitable for bake-hardening treatment, which consists of a steel which, in addition to iron and unavoidable impurities (in % by weight), consists of C: 0.1 - 0.5%, Si: 0.5 - 2.0%, Mn: 1.0 - 3.0%, Al: 0.01 - 1.5%, N: 0.001 - 0.008%, P: ≤ 0.02%, S: ≤ 0.005%, and optionally one or more of the following elements Cr: 0.01 - 1.0%, Mo: 0.01 - 0.2%, B: 0.001 - 0.01%, and optionally from a total of 0.005 - 0.2% V, Ti and Nb, with the Ti content not exceeding 0.10%, consists, wherein the steel flat product has a structure that consists of - not more than 15% by area ferrite, - not more than 5% by area bainite, - at least 5% by volume retained austenite and - at least 80% by area of martensite, of which at least 75% by area is tempered martensite, consists, based on the total proportion of martensite in the microstructure, this has a martensite lancet length of at most 7.5 μm and a martensite lancet width of at most 1000 nm for at least 90% of the martensite. Stahlflachprodukt nach Anspruch 1 dadurch gekennzeichnet, dass der Kohlenstoffgehalt mindestens 0,14 Gew.-% beträgt.Flat steel product according to Claim 1 , characterized in that the carbon content is at least 0.14% by weight. Stahlflachprodukt nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Summe des Si-Gehalts und der Hälfte des Al-Gehalts mindestens 0,9 Gew.-% beträgt.Flat steel product according to Claim 1 or 2 , characterized in that the sum of the Si content and half of the Al content is at least 0.9% by weight. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Si-Gehalt mindestens 0,5 Gew.-% beträgt.Flat steel product according to one of the preceding claims , characterized in that the Si content is at least 0.5% by weight. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Si-Gehalt mindestens 0,9 Gew.-% beträgt.Flat steel product according to one of the preceding claims , characterized in that the Si content is at least 0.9% by weight. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Al-Gehalt des Stahls des Stahlflachprodukts mindestens 0,02 Gew.-% beträgt.Flat steel product according to one of the preceding claims , characterized in that the Al content of the steel of the flat steel product is at least 0.02% by weight. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Al-Gehalt des Stahls des Stahlflachprodukts höchstens 0,2 Gew.-% beträgt.Flat steel product according to one of the preceding claims , characterized in that the Al content of the steel of the flat steel product is at most 0.2% by weight. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass es eine Dehngrenze Rp02 von über 700 MPa oder eine Streckgrenze ReH von über 700 MPa, eine Zugfestigkeit Rm von 950 - 1500 MPa, eine Dehnung A80 von 7 - 25 % und einen BH2-Wert, der nach einer Vorverformung von 2% und einem Anlassen für 20 Minuten bei 170°C gemäß DIN EN 10325:2006 bestimmt wird, von mindestens 80 MPa aufweist.Flat steel product according to one of the preceding claims , characterized in that it has a yield point Rp02 of over 700 MPa or a yield point ReH of over 700 MPa, a tensile strength Rm of 950 - 1500 MPa, an elongation A80 of 7 - 25% and a BH2 value which is determined after a pre-deformation of 2% and tempering for 20 minutes at 170°C according to DIN EN 10325:2006, is at least 80 MPa. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass es mindestens auf einer Seite mit einem auf Zink basierendem Korrosionsschutzüberzug versehen ist.Flat steel product according to one of the preceding claims , characterized in that it is provided with a zinc-based anti-corrosion coating on at least one side. Verfahren zum Herstellen eines für eine Bake-Hardening-Behandlung geeigneten höchstfesten Stahlflachprodukts umfassend folgende Arbeitsschritte: a) Bereitstellen eines warmgewalzten Stahlflachprodukts, welches aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen aus (in Gew.-%)0,1 - 0,5 % C, 1,0 - 3,0 % Mn, 0,5 - 2,0 % Si, 0,01 - 1,5 % Al, 0,001 - 0,008 % N, bis zu 0,02 % P, bis zu 0,005 % S sowie optional aus einem oder mehreren der folgenden Elemente: 0,01 - 1,0 % Cr, 0,01 - 0,2 % Mo, 0,001 - 0,01 % B sowie optional aus in Summe 0,005 - 0,2 % V, Ti und Nb, wobei der Ti-Anteil nicht mehr als 0,10 % beträgt, besteht; b) Beizen des warmgewalzten Stahlflachprodukts; c) Kaltwalzen des Stahlflachprodukts mit einem Kaltwalzgrad von mindestens 37 %; d) Erwärmen des kaltgewalzten Stahlflachprodukts auf eine Haltezonentemperatur THZ, welche oberhalb der A3-Temperatur des Stahls liegt und höchstens 950 °C beträgt, wobei das Aufheizen bis zu einer 200 - 400 °C betragenden Wendetemperatur TW mit einer Aufheizgeschwindigkeit ThetaH1 von 5 - 50 K/s und oberhalb der Wendetemperatur TW mit einer Aufheizgeschwindigkeit ThetaH2 von 2 - 10 K/s erfolgt; e) Halten des Stahlflachprodukts für 5 - 15 s auf der Haltezonentemperatur THZ; f) optionales Abkühlen des Stahlflachprodukts innerhalb von 30 - 300 Sekunden von der Haltezonentemperatur THZ auf eine mindestens 620 und höchstens 720°C betragende Zwischentemperatur TLK; g) Abkühlen des Stahlflachprodukts mit einer Abkühlrate ThetaQ von mehr als durchschnittlich 5 K/s auf eine Kühlstopptemperatur TAB, welche zwischen der Martensitstarttemperatur TMS und einer Temperatur, die bis zu 175 °C kleiner als TMS ist, liegt; h) Halten des Stahlflachprodukts auf der Kühlstopptemperatur TAB für 10 - 60 Sekunden; i) Erwärmen des Stahlflachprodukts mit einer Aufheizrate ThetaB1, welche 1 - 80 K/s beträgt, auf eine 350 - 500 °C betragende Behandlungstemperatur TB und optionales isothermes Halten des Stahlflachprodukts auf der Behandlungstemperatur TB, wobei die Zeit für das Erwärmen und das optionale isotherme Halten insgesamt 10 - 1000 Sekunden beträgt; j) Abkühlen des Stahlflachprodukts mit einer Abkühlrate ThetaB2 von mehr als 5 K/s und weniger als 500 K/s auf Raumtemperatur k) optionales Beschichten des Stahlflachprodukts in einem Schmelzbad entweder k1) mittels Schmelztauchbeschichten vor dem Abkühlen in Arbeitsschritt j) oder k2) mittels elektrolytischem Beschichten nach dem Abkühlen in Arbeitsschritt j). Process for producing a high-strength steel flat product suitable for bake-hardening treatment, comprising the following work steps: a) Provision of a hot-rolled flat steel product, which consists of a steel which, in addition to iron and unavoidable impurities, consists of (in % by weight) 0.1-0.5% C, 1.0-3.0% Mn, 0.5 - 2.0% Si, 0.01 - 1.5% Al, 0.001 - 0.008% N, up to 0.02% P, up to 0.005% S and optionally one or more of the following elements: 0.01 - 1.0% Cr, 0.01 - 0.2% Mo, 0.001 - 0.01% B and optionally a total of 0.005-0.2% V, Ti and Nb, with the Ti content not exceeding 0.10%; b) pickling the hot-rolled flat steel product; c) cold rolling of the steel flat product with a degree of cold rolling of at least 37%; d) Heating of the cold-rolled flat steel product to a holding zone temperature THZ, which is above the A3 temperature of the steel and is at most 950 °C, with the heating up to a turning temperature TW of 200 - 400 °C at a heating rate ThetaH1 of 5 - 50 K /s and above the turning temperature TW with a heating rate ThetaH2 of 2 - 10 K/s; e) holding the steel flat product for 5-15 s at the holding zone temperature THZ; f) optional cooling of the steel flat product within 30-300 seconds from the holding zone temperature THZ to an intermediate temperature TLK of at least 620 and at most 720°C; g) cooling the flat steel product at a cooling rate ThetaQ of more than an average of 5 K/s to a cooling stop temperature TAB, which is between the martensite start temperature TMS and a temperature that is up to 175 °C lower than TMS; h) holding the steel flat product at the cooling stop temperature TAB for 10 - 60 seconds; i) heating the steel flat product at a heating rate ThetaB1, which is 1 - 80 K/s, to a treatment temperature TB of 350 - 500 °C and optionally isothermally holding the steel flat product at the treatment temperature TB, the time for the heating and the optional isotherm total hold is 10 - 1000 seconds; j) cooling the flat steel product to room temperature at a cooling rate ThetaB2 of more than 5 K/s and less than 500 K/s k) optional coating of the flat steel product in a molten bath either k1) by means of hot-dip coating before cooling in step j) or k2) by means of electrolytic coating after cooling in step j). Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass der Kaltwalzgrad in Arbeitsschritt c) mindestens 42 % beträgt.Method according to Claim 10 , characterized in that the degree of cold rolling in step c) is at least 42%. Verfahren nach Anspruch 10 oder 11 dadurch gekennzeichnet, dass das Stahlflachprodukt in Arbeitsschritt k) ein auf Zink basierendes Schmelzbad durchläuft.Method according to Claim 10 or 11 , characterized in that the flat steel product runs through a zinc-based molten bath in work step k). Verfahren nach Anspruch 12 dadurch gekennzeichnet, dass die Schmelzbadzusammensetzung in Arbeitsschritt k) aus 1-2 Gew.-% Al, 1-2 Gew.-% Mg, Rest Zink und unvermeidbare Verunreinigungen besteht.Process according to Claim 12 , characterized in that the molten bath composition in step k) consists of 1-2% by weight Al, 1-2% by weight Mg, the remainder zinc and unavoidable impurities. Verfahren nach einem der Ansprüche 10 bis 13 dadurch gekennzeichnet, dass die optionale Beschichtungsbehandlung in Arbeitsschritt k) in einem kontinuierlichen Ablauf erfolgt.Method according to one of Claims 10 to 13 , characterized in that the optional coating treatment in step k) takes place in a continuous process. Verfahren nach einem der Ansprüche 10 bis 14 dadurch gekennzeichnet, dass die Abkühlrate ThetaB2 in Arbeitsschritt j) mehr als 20 K/s beträgt.Method according to one of Claims 10 to 14 , characterized in that the cooling rate ThetaB2 in step j) is more than 20 K/s.
EP22159990.5A 2017-09-28 2017-09-28 Flat steel product and method for its production Withdrawn EP4043603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22159990.5A EP4043603A1 (en) 2017-09-28 2017-09-28 Flat steel product and method for its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP22159990.5A EP4043603A1 (en) 2017-09-28 2017-09-28 Flat steel product and method for its production
PCT/EP2017/074642 WO2019063081A1 (en) 2017-09-28 2017-09-28 Flat steel product and method for the production thereof
EP17780063.8A EP3688203B1 (en) 2017-09-28 2017-09-28 Flat steel product and production method thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17780063.8A Division EP3688203B1 (en) 2017-09-28 2017-09-28 Flat steel product and production method thereof
EP17780063.8A Division-Into EP3688203B1 (en) 2017-09-28 2017-09-28 Flat steel product and production method thereof

Publications (1)

Publication Number Publication Date
EP4043603A1 true EP4043603A1 (en) 2022-08-17

Family

ID=60019885

Family Applications (2)

Application Number Title Priority Date Filing Date
EP22159990.5A Withdrawn EP4043603A1 (en) 2017-09-28 2017-09-28 Flat steel product and method for its production
EP17780063.8A Active EP3688203B1 (en) 2017-09-28 2017-09-28 Flat steel product and production method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17780063.8A Active EP3688203B1 (en) 2017-09-28 2017-09-28 Flat steel product and production method thereof

Country Status (6)

Country Link
EP (2) EP4043603A1 (en)
JP (1) JP7105302B2 (en)
CN (1) CN111148853B (en)
ES (1) ES2921013T3 (en)
PL (1) PL3688203T3 (en)
WO (1) WO2019063081A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313349B (en) * 2018-06-12 2023-04-14 蒂森克虏伯钢铁欧洲股份公司 Flat steel product and method for the production thereof
EP3686293B1 (en) * 2019-01-22 2021-06-23 voestalpine Stahl GmbH A high strength high ductility complex phase cold rolled steel strip or sheet
WO2020151856A1 (en) * 2019-01-22 2020-07-30 Voestalpine Stahl Gmbh A high strength high ductility complex phase cold rolled steel strip or sheet
PT3754037T (en) 2019-06-17 2022-04-19 Tata Steel Ijmuiden Bv Method of heat treating a high strength cold rolled steel strip
PT3754035T (en) 2019-06-17 2022-04-21 Tata Steel Ijmuiden Bv Method of heat treating a cold rolled steel strip
EP3992314A4 (en) * 2019-06-28 2023-07-19 Nippon Steel Corporation Steel sheet
CN115537635B (en) * 2022-09-16 2024-01-23 北京科技大学 Grain-reinforced wear-resistant steel plate NM300 based on TRIP effect and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130240094A1 (en) 2010-11-29 2013-09-19 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same
JP2015224359A (en) * 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
WO2016177763A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
JP2016194138A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN PROCESSABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND MANUFACTURING METHOD THEREFOR
US20170009315A1 (en) 2014-03-06 2017-01-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
WO2017155263A1 (en) * 2016-03-08 2017-09-14 주식회사 포스코 Hot-dip galvanized steel sheet with superior bake hardenability and aging resistance, and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173618B2 (en) 2000-03-07 2008-10-29 株式会社神戸製鋼所 Manufacturing method of high strength and high toughness martensitic steel
JP4411751B2 (en) * 2000-06-28 2010-02-10 アイシン精機株式会社 Flat member with gear part
EP2524970A1 (en) 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
JP5857909B2 (en) * 2012-08-09 2016-02-10 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
WO2016079565A1 (en) 2014-11-18 2016-05-26 Arcelormittal Method for manufacturing a high strength steel product and steel product thereby obtained
JP6282577B2 (en) * 2014-11-26 2018-02-21 株式会社神戸製鋼所 High strength high ductility steel sheet
EP3257962B1 (en) 2015-02-13 2019-08-28 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP6540131B2 (en) 2015-03-20 2019-07-10 日本製鉄株式会社 Ferritic heat resistant steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130240094A1 (en) 2010-11-29 2013-09-19 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same
US20170009315A1 (en) 2014-03-06 2017-01-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
JP2015224359A (en) * 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
JP2016194138A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN PROCESSABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND MANUFACTURING METHOD THEREFOR
WO2016177763A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
WO2017155263A1 (en) * 2016-03-08 2017-09-14 주식회사 포스코 Hot-dip galvanized steel sheet with superior bake hardenability and aging resistance, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. FUKUSHIMA: "Recent technological progress in High speed continuous annealing", TRANSACTIONS ISIJ, vol. 25, 1 January 1985 (1985-01-01), pages 275 - 293, XP055490618 *

Also Published As

Publication number Publication date
ES2921013T3 (en) 2022-08-16
CN111148853B (en) 2022-04-15
JP7105302B2 (en) 2022-07-22
JP2021503040A (en) 2021-02-04
CN111148853A (en) 2020-05-12
EP3688203A1 (en) 2020-08-05
WO2019063081A1 (en) 2019-04-04
EP3688203B1 (en) 2022-04-27
PL3688203T3 (en) 2022-08-29

Similar Documents

Publication Publication Date Title
EP3688203B1 (en) Flat steel product and production method thereof
EP2710158B1 (en) High strength steel flat product and method for its production
EP3292228B1 (en) Flat steel product and methode for production of said product
EP2028282B1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for manufacturing a flat product
DE102012002079B4 (en) Process for producing a cold or hot rolled steel strip from a high strength multiphase steel
EP3027784B1 (en) Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
EP3221484B1 (en) Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties
EP3221478B1 (en) Hot or cold rolled strip of a high-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production a hot or cold rolled strip from said air-hardening multi-phase steel
EP3320120A1 (en) Ultrahigh strength multiphase steel and method for producing a cold-rolled steel strip therefrom
DE102014017274A1 (en) Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel
EP2746409A1 (en) Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
EP3807429A1 (en) Flat steel product and method for the production thereof
WO2019068560A1 (en) Ultrahigh strength multiphase steel and method for producing a steel strip from said multiphase steel
EP3856936B1 (en) Method for producing a coated flat steel product and coated flat steel product
EP3872206B1 (en) Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product
EP4139492A1 (en) Hot-rolled flat steel product and method for the production thereof
DE102022125128A1 (en) Method for producing a steel strip from a high-strength multi-phase steel and corresponding steel strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3688203

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230218